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VECTOR BUNDLES
WITH NO INTERMEDIATE COHOMOLOGY

ON FANO THREEFOLDS OF TYPE V22

ENRIQUE ARRONDO AND DANIELE FAENZI

We classify rank-2 vector bundles with no intermediate cohomology on the
general prime Fano threefold of index 1 and genus 12. The structure of their
moduli spaces is given by means of a monad-theoretic resolution in terms of
exceptional bundles.

1. Introduction

The study of vector bundles with no intermediate cohomology, also called arith-
metically Cohen–Macaulay bundles (see Definition 2.1), has been taken up by
several authors. The well-known splitting criterion for projective spaces showed
by Horrocks [1964] has been generalized by Ottaviani [1987; 1989] to Grassman-
nians and quadrics. Knörrer [1987] proved that line bundles and spinor bundles
are the only ACM bundles on quadrics, while Buchweitz, Greuel and Schreyer
showed in [1987] that only projective spaces and quadrics admit a finite number
of equivalence classes of ACM bundles, up to twists.

On the other hand, the problem of classifying ACM bundles on special classes
of varieties has been studied in several papers. Arrondo and Costa [2000] took up
the case of prime Fano threefolds of index 2, while Faenzi [2005] considered the
case of the index-2 prime threefold V5.

Madonna classified rank-2 ACM bundles on the quartic threefold [2000], and got
a numerical classification [2002] of the invariants of these bundles on any prime
Fano threefold V2g−2 of index 1 and genus g, with 2 ≤ g ≤ 12 and g 6= 11. In
particular, he conjectured that all the cases of this classification occur on every
such threefold V2g−2.

For higher dimensional varieties, the case of G(P1,P4) has been studied in
[Arrondo and Graña 1999].
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In this paper we consider rank-2 ACM bundles on the general prime Fano three-
fold X of index 1 and genus 12 (see Definition 2.3). Write the Chern classes of a
sheaf F on X as integers (see Section 2), and we denote by Fc1,c2 a rank-2 sheaf
F on X with c1(F)= c1 and c2(F)= c2. The main result of this paper states:

Theorem. On the general X as above, there exist the following vector bundles with
no intermediate cohomology:

(1) The bundle F−1,1 associated to a line contained in X ;

(2) The bundle F0,2 associated to a conic contained in X ;

(3) The bundle F−1,d(1) associated to an elliptic curve of degree d , with 7 ≤ d ≤

14;

(4) The bundle F0,4(1) associated to a canonical curve of degree 26 and genus
14 contained in X ;

(5) The bundle F−1,15(2) associated to a half-canonical curve C59
60 of degree 59

and genus 60 contained in X.

These are the only possible indecomposable vector bundles with no intermediate
cohomology on X , up to isomorphism and twists by line bundles.

The moduli space of semistable vector bundles with no intermediate cohomology
is generically smooth, of dimension equal to 2 in Case (2), 2d−14 in Case (3), 5
in Case (4), and 16 in Case (5).

This gives a complete classification of ACM rank-2 bundles on the general Fano
threefold X , together with a description of their moduli spaces. The main tools for
proving the theorem are the study of elliptic curves in X and the resolution of the
diagonal on X × X obtained in [Faenzi 2006].

The paper is structured as follows: In Section 2 we state basic definitions and
review some known facts concerning the threefold X . We also recall for the reader’s
convenience the available descriptions of X , which we will use frequently.

In Section 3 we briefly consider lines and conics contained in X . We also give
a monad-theoretic interpretation of the Hilbert scheme of lines and conics in X . In
Sections 4 and 5 we take up the analysis of elliptic, canonical, and half-canonical
curves in X that give rise to vector bundles with no intermediate cohomology,
proving their existence and describing their associated moduli spaces.

2. Preliminaries

Let Y be a smooth projective threefold with Pic(Y )' Z = 〈OY (1)〉 and H1(O(t)
)
=

H2(O(t)
)
= 0 for any t ∈ Z. Following standard terminology, we have:
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Definition 2.1. Given a sheaf F over Y , we say that F is ACM (arithmetically
Cohen–Macaulay) if Hp(Y,F(t)

)
= 0 for all t ∈ Z and 0 < p < 3. Equivalently,

we say that F has no intermediate cohomology.

We denote the dual of a vector bundle F by F∗, and recall that if F has rank 2
then F∗

' F
(
−c1(F)

)
.

We now review the Hartshorne–Serre correspondence between codimension-2
subvarieties and rank-2 vector bundles, originally introduced in [Serre 1963] and
later considered by many authors; see for example [Hartshorne 1974; Vogelaar
1978; Okonek et al. 1980].

Definition 2.2. A complete subvariety Z of Y is called subcanonical if there exists
a line bundle O(r) on Y such that O(r)|Z ∼= ωZ . Let Z be a subcanonical locally
complete intersection codimension-2 subvariety of Y . By [Okonek et al. 1980,
Theorem 5.1.1], there exist a rank-2 vector bundle FZ over Y and a section sZ ∈

H0(Y,F∗

Z ) such that Z = {sZ =0}, that is, Z is the zero locus of sZ . We say in this
case that FZ is associated to Z . We denote by NZ ,Y the normal bundle of Z in Y
and by JZ ,Y the ideal sheaf of Z in Y .

Under these hypotheses, we have the fundamental exact sequence

(1) 0 −→ det FZ −→ FZ −→ JZ ,Y −→ 0

and the adjunction isomorphism

(2) (F∗

Z )|Z ' NZ ,Y .

Definition 2.3. A prime Fano threefold of index 1 and genus 12 is a 3-dimensional
algebraic variety X with Pic(X) ' Z = 〈OX (1)〉 and ωX

∼= OX (−1), and with
deg OX (1)= 22. Any such X is rational. We have h0(OX (1)

)
= 14, while CHi (X),

the i-th Chow group of X , is isomorphic to Z for i = 1, 2, 3.

From now on, X will denote a prime Fano threefold of index 1 and genus 12.
We denote the Chern classes of a sheaf F on X by integers ci ∈ Z, meaning that
ci (F)= ciξi , where ξi is the generator of CHi (X)' Z for i = 1, 2, 3. Recall that
ξ2 is the class of a line in X .

Further, we defineµ(F) as the rational number c1(F)/ rk F. We say that a vector
bundle F is normalized if −rk F < c1(F) ≤ 0. Equivalently, F is normalized if
−1< µ(F)≤ 0. Clearly, µ(F1 ⊗ F2)= µ(F1)+µ(F2).

We refer to [Huybrechts and Lehn 1997] for the definition of (semi)stability (in
the sense of Mumford and Takemoto). A stable bundle F with µ(F) < 0 satisfies
h0(F)= 0. Recall that, by Hoppe’s criterion, since Pic(X) is generated by OX (1),
a rank-2 bundle F on X is stable if h0(F(t)

)
= 0, for the only integer t such that

c1
(
F(t)

)
= 0 or c1

(
F(t)

)
= −1. See for example [Okonek et al. 1980, Lemma

1.2.5].
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From the Hirzebruch–Riemann–Roch formula for a vector bundle on X of rank
r and Chern classes ci , we obtain:

6χ
(
F(s)

)
= 22s3r + 11s2(3r+6c1)+ s(23r+66c1−6c2+66c2

1)

+ 6r + 23c1 − 3c2 − 3c1c2 + 33c2
1 + 3c3 + 22c3

1.

Given a smooth projective variety Y equipped with a very ample line bundle
OY (1), for any integer r and string c with ci ∈ CHi (Y ) (identified with integers
whenever possible), we write MY (r; c) for the moduli space of rank-r semistable
sheaves on Y with Chern classes ci .

By virtue of the exact sequence (1), the Hilbert polynomial and the Chern classes
of FZ are determined by the Hilbert polynomial of Z . Denote by P

[Z ]
the Hilbert

polynomial of Z with respect to the polarization OY (1), and by Hilb
[Z ]
(Y ) the

Hilbert scheme of closed subschemes of Y with Hilbert polynomial P
[Z ]

(see [Huy-
brechts and Lehn 1997, Page 41]). Further, if Z is a curve of degree d and genus
g contained in X , we denote Hilb

[Z ]
(X) by Hd,g(X).

If the bundle FZ is stable, the Hartshorne–Serre correspondence provides a mor-
phism

(3) τ : Hilb
[Z ]
(X)→ MX

(
2; c1(FZ ), c2(FZ )

)
, [Z ] 7→ [FZ ].

We next recall some of the available constructions of the threefold X . We also
sketch the description of four fundamental vector bundles E , U , Q, K of respective
ranks 2, 3, 4, 5 and defined over X .

We refer to [Mukai 1992, 2004; Schreyer 2001; Faenzi 2006] for proofs and
more details.

Nets of dual quadrics and twisted cubics. Let k be an algebraically closed field.
Let A ' k4 and B ' k3 be k-vector spaces, and let R(A)= k[A] and R(B)= k[B]

be polynomial algebras. Let Sd A = R(A)d be the d-th symmetric power of the
vector space A.

Given a twisted cubic 0, we have P
[0]
(t) = χ

(
O0(t)

)
= 3t + 1. We consider

the Hilbert scheme Hilb3t+1
(
P(A)

)
of closed subschemes of P(A) with Hilbert

polynomial 3t +1, and we define the variety H to be the irreducible component of
Hilb3t+1

(
P(A)

)
containing the rational normal cubics in P(A), as constructed in

[Ellingsrud et al. 1987]. Given a twisted cubic [0] ∈ H, we denote by J0 the ideal
sheaf of 0 in P(A). The open subset Hc consisting of points that are arithmetically
Cohen–Macaulay embeds in G(k3,S2 A) by means of the vector bundle UH whose
fiber over [0] ∈ Hc is TorR[A]

1

(
R[A]/J0, k

)
2 ' k3. Equivalently, we associate to

any [0] ∈ H the net of quadrics in P(A) vanishing on 0.
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Definition 2.4. A net of dual quadrics 9 (parametrized by B) in P(A) is defined
as a surjective map 9 : S2 A → B. Let V9 = ker9. Given a general net 9, we
define:

X9 =
{
[0] ∈ H ⊂ Hilb3t+1(P

3)
∣∣9(

H0(J0(2))
)
= 0

}
=

{
[0] ∈ H ⊂ Hilb3t+1(P

3)
∣∣ H0(J0(2)

)
⊂ V9

}
.

We define the bundle U on X = X9 as the restriction of UH to X .

Definition 2.5. Let 9 be a general net of dual quadrics and X = X9 . There is
a rank-2 vector bundle E on X defined by E

[0]
= TorR[A]

2

(
R[A]/J0, k

)
3 ' k2.

Equivalently, we associate to any [0] ∈ H its space of first-order syzygies.

Lemma 2.6 [Faenzi 2006, Lemma 6.3]. The bundle E∗ is globally-generated and
ACM, with h0(E∗)= 8. Consider the rank-6 bundle E ′

= ker
(
H0(E∗)⊗ O → E∗

)
.

The bundle E ′ is also stable and ACM.

Plane quartics. Let B be a 3-dimensional k-vector space and F ∈ S4 B a plane
quartic. Set P̌2

= P(B∗). Take the Hilbert scheme Hilb6(P̌
2) of zero-dimensional

length 6 closed subschemes of P̌2. Define the subvariety of Hilb6(P̌
2) consisting

of polar hexagons to F ,

XF =
{
3=( f1, . . . , f6) ∈ Hilb6(P̌

2)
∣∣ f 4

1 + · · · + f 4
6 = F

}
.

Lemma 2.7 [Mukai 2004; Schreyer 2001]. For a general F , the variety XF is a
prime Fano threefold of index 1 and genus 12. Given a net of dual quadrics 9,
there exists a quartic form F such that XF ' X9 .

Definition 2.8. Let F be a general plane quartic and let X = XF . There is a
rank-5 vector bundle K on XF defined over an element 3=( f1, . . . , f6) ∈ XF by
K3 = 〈 f 4

1 , . . . , f 4
6 〉/F . The bundle K ∗ is stable and ACM, with h0(K ∗)= 14 and

c1(K )= −2 [Faenzi 2006, Lemma 6.1 and 6.2].

Remark 2.9. Under the hypothesis of Lemma 2.7, there is a natural isomorphism
V9 ' S3 B/F(B∗), where we consider F as a map B∗

→ S3 B taking an element
∂ ∈ B∗ to the cubic form ∂(F) (apolarity action). We set VF = S3 B/F(B∗).
The fiber of U over an element 3=( f1, . . . , f6) ∈ XF is naturally identified with
〈 f 3

1 , . . . , f 4
3 〉/F(B∗). The global sections of U∗ and K ∗ are then identified with

VF = S3 B/F(B∗) and S4 B/F , respectively. An element ∂ of B∗ gives a map
S4 B → S3 B by the apolarity action and, therefore, a homomorphism ∂ : K → U .

Nets of alternating 2-forms. Let V be a 7-dimensional k-vector space and B a 3-
dimensional one. Let G be the Grassmannian G(k3, V ). Define UG as the universal
rank-3 subbundle, and QG as the universal rank-4 quotient bundle on G. Let σ
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be a section of B∗
⊗

∧2U∗

G . Equivalently, σ is a net of alternating 2-forms σ ∈

B∗
⊗

∧2V ∗.

Definition 2.10. Define Xσ as the zero locus in G of σ ∈ B∗
⊗

∧2V ∗. For a general
σ , the variety Xσ is a prime Fano threefold of index 1 and genus 12.

Lemma 2.11 [Mukai 2004]. Given a general plane quartic F , there is a net of
alternating 2-forms σF such that Xσ ' XF .

From now on, we identify X with X9 ' XF ' Xσ , where 9 is a general net
of dual quadrics, F is the quartic form provided by Lemma 2.7, and σ is the
net of alternating 2-forms given by Lemma 2.11. In particular, we fix the 3- and
4-dimensional k-vector spaces B and A. Recall that, by Remark 2.9, we have
V ' VF ' V9 . We also notice that, under our hypotheses, (UG)|X ' (UH)|X .
Thus, we denote also by U the restriction of the vector bundle UG to Xσ . We set
Q = (QG)|X .

Lemma 2.12. There are natural isomorphisms

Hom(U, Q∗)' B, Hom(E,U )' A∗,(4)

Hom(K ,U )' B∗, Hom(E, K )' A.(5)

Moreover, there are exact sequences

0 −→ U −→ V ⊗ O −→ Q −→ 0,(6)

0 −→ K −→ B ⊗ U −→ Q∗
−→ 0,(7)

0 −→
∧2U −→ A ⊗ E −→ K −→ 0,(8)

0 −→ E −→ O⊕8
−→ (E ′)∗ −→ 0.(9)

The Chern classes of these bundles are

c1(E)= −1, c2(E)= 7,

c1(U )= −1, c2(U )= 10, c3(U )= −2,

c1(Q∗)= −1, c2(Q∗)= 12, c3(Q∗)= −4,

c1(K )= −2, c2(K )= 40, c3(K )= −20,

c1(E ′)= −1, c2(E ′)= 15, c3(E ′)= −8.

Proof. The exact sequences (6) and (7), together with (4) and the first isomorphism
in (5), are proved in [Faenzi 2006, Lemma 6.1]. The sequence (8) follows from
[Faenzi 2006, Proposition 6.4], while (9) is Lemma 2.6. The second isomorphism
in (5) follows from [Faenzi 2006, Corollary 6.8]. The Chern classes of U , Q∗ and∧2U are easily computed by restriction from G(k3, V ). Finally, the Chern classes
of K , E and E ′ follow from the exact sequences (7), (8) and (9). �
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Birational geometry. We briefly sketch the birational geometry of X following
[Iskovskih 1978, 1989]. Fano’s double projection from a line is used, and we refer
to [Iskovskikh and Prokhorov 1999] for a complete treatment.

Let V5 be the del Pezzo threefold obtained by cutting G(P1,P4) ⊂ P9 with a
general P6

⊂ P9. Denote by S5 a general hyperplane section of V5.
It turns out that our X is birational to V5 under the double projection from a line

contained in X . We will use this map to embed in X some elliptic curves contained
in V5.

The divisor S5 is a degree 5 del Pezzo surface, hence it is isomorphic to the blow
up of P2 at 4 points B1, . . . , B4. Further, we have ω∗

S5
' OS5

(1) ' O
(
3`−

∑
bi

)
,

where ` is the class of a line in P2 and bi is the exceptional divisor over the point Bi .
Recall that, by [Iskovskikh and Prokhorov 1999], the threefold V5 contains a

rational normal curve C5
0 of degree 5 (restrict to S5 and take the divisor 2`− b1).

Furthermore, C5
0 has exactly 3 chords T1, T2, T3. Indeed, any chord of C5

0 is
contained in S5, and the only lines in S5 meeting C5

0 in two points are of the form
`− bi − bj for 1< i < j .

Denote by HV5 the divisor associated to OV5(1). The linear system 3HV5− 2C5
0

defines a birational map ϕ : V5 99K X . Let X̃ be the variety obtained by blowing
up V5 along C5

0 and then along the proper preimages of T1, T2, T3. Denote by ψ1

the contraction to V5. There also exists a contraction ψ2 : X̃ → X , and we have
ϕ ◦ψ1 = ψ2.

Definition 2.13. Fix a general hyperplane section S5 of V5 and an isomorphism
S5 → BlB1,...,B4

(P2) (there is a finite number of such isomorphisms). Let bi be
the exceptional divisors of S5 over Bi . For a given rational normal curve C5

0 ⊂ V5

with chords {T1, T2, T3}, let {e1, . . . , e5} = S5 ∩ C5
0 and fi = S5 ∩ Ti . On S5,

define L = 9`− 3
∑

bi − 2
∑

ej −
∑

fk . We have ϕ|S5 = ϕ
|L|

, where ϕ
|L|

is the
map associated to the linear system |L|.

Resolution of the diagonal. We recall here the resolution of the diagonal on X and
the induced Beilinson theorem. We refer to [Gorodentsev 1990; Rudakov 1990;
Drezet 1986] for the general setup on exceptional collections and mutations.

Define the collection (G3, . . . ,G0)= (E,U, Q∗,O). This collection is strongly
exceptional, that is, Extp(G j ,Gi ) = 0 if p > 0 or i > j , as proved in [Kuznetsov
1996]. Further, we define the collection (G3, . . . ,G0)= (E, K ,U,O). The follow-
ing lemma, proved in [Faenzi 2006, Theorem 7.2], states that these two collections
fit together to give a resolution of O1 over X × X .

Lemma 2.14. For a general X , there exists a resolution of O1 on X × X of the
form:

0 −→ G3 � G3
−→ · · · −→ G0 � G0

−→ O1 −→ 0.
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Any coherent sheaf F on X is functorially isomorphic to the cohomology of a com-
plex CF whose terms are

Ck
F =

⊕
i− j=k

Hi (F ⊗ G j )⊗ G j .

Alternatively, F is functorially isomorphic to the cohomology of a complex DF

whose terms are

Dk
F =

⊕
i− j=k

Hi (F ⊗ G j )⊗ G j .

The following Castelnuovo–Mumford regularity for the collection (G3, . . . ,G0)

is a consequence of Lemma 2.14; see [Faenzi 2006, Corollary 7.4].

Corollary 2.15. Let F be a coherent sheaf on X. If Hp(G p ⊗ F) = 0 for p > 0,
then F is globally-generated.

Vector bundles with no intermediate cohomology. Recall from the introduction
that a rank-2 vector bundle F with c1(F)= c1 and c2(F)= c2 is denoted by Fc1,c2 .
Similarly, a curve of genus g and degree d is denoted by Cd

g .

Lemma 2.16 (Madonna). The only possible classes of indecomposable normalized
rank-2 ACM vector bundles on X are, up to isomorphism:

(1) the unstable bundle F−1,1 associated to a line in X ;

(2) the semistable bundle F0,2 associated to a conic in X ;

(3) the stable bundle F−1,d(1) associated to an elliptic curve Cd
1 contained in X ,

with 7 ≤ d ≤ 14;

(4) the stable bundle F0,4(1) associated to a canonical curve C26
14 in X ;

(5) the stable bundle F−1,15(2) associated to a half-canonical curve C59
60 con-

tained in X.

In each case, the smallest t ∈ Z with h0(F(t)
)
6= 0 is the one stated.

Proof. We refer to [Madonna 2002] for the full proof, with the exception of the
condition d ≥ 7 in (3), which we prove at the end of Section 4. We nonetheless
sketch here the Madonna’s main argument.

Considering the first twist Fc1,c2 of F by a nonzero global section s, one proves
easily that Z = {s=0} is a connected curve of arithmetic genus 1+1/2(c1c2 −c2)

and degree c2. Therefore c1 ≥ 1−2/c2 ≥ −1, so F is stable except for c1 = −1 or
c1 = 0, which correspond, respectively, to Cases (1) and (2).

For c1 = 1, we end up in Case (3) and, making use of (1), it is easy to check
that d ≤ 14.
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For c1 > 1, we find hp(Fc1,c2(−1)
)
= 0 and hp(Fc1,c2(−2)

)
= 0 for any p. Take

the following polynomial equations in the variables c1 and c2:{
χ

(
Fc1,c2(−1)

)
= 0,

χ
(
Fc1,c2(−2)

)
= 0.

When c1 > 1, we find Cases (4) and (5) as the only solutions. �

3. Lines and conics

It is classically known that X contains a one-dimensional family of lines and a
two-dimensional family of smooth conics; see [Iskovskikh and Prokhorov 1999,
Propositions 4.2.2 and 4.2.5] and references therein. Denote a line in X by C1

0 and
a conic in X by C2

0 . We will just provide resolutions of the sheaf OC1
0
(−1) and

of the bundle FC2
0

with respect to the collection (G3, . . . ,G0). This will give a
straightforward description of the Hilbert schemes of lines and conics in X .

Lemma 3.1. The sheaf OC1
0
(−1) admits the resolution

(10) 0 −→ E −→ K
αC1

0
−−−→ U −→ OC1

0
(−1)−→ 0.

The map αC1
0
∈ Hom(K ,U )' B∗ degenerates along a line C1

0 if and only if it lies
in the discriminant quartic curve det9>

⊂ P̌2
=P(B∗). In particular, the Hilbert

scheme of lines in X is isomorphic to the curve det9>.

Proof. Clearly, we have (G j )C1
0
' OP1(−1)⊕ O

4− j
P1 . Hence, h1(G j ⊗ OC1

0
(−1)

)
= 1

for j = 1, 2, 3. By Lemma 2.14, the sheaf OC1
0
(−1) admits the resolution (10).

It is known from [Schreyer 2001, Theorem 6.1] that the Hilbert scheme of lines
in X is isomorphic to the curve det9>. We nonetheless sketch here a simpler
argument.

From (5) follows the isomorphism Hom(K ,U ) ' B∗. The application of the
functor Hom(E,−) to a morphism α : K → U corresponds, under the mor-
phism 9>

: B∗
→ S2 A∗, to the linear map α 7→ 9>(α). That is, α is taken by

Hom(E,−) to a linear map 9>(α) : A → A∗. Since both Hom(E, K )⊗ E → K
and Hom(E,U )⊗ E → U are epimorphisms, it follows that Hom(E, α) is sur-
jective if and only if α is surjective. This fails to hold precisely when α lies in
the discriminant curve det9>, in which case there is a unique map E → kerα.
This map is an isomorphism. By a Hilbert polynomial computation, cokerα is
isomorphic to OC1

0
(−1). �

Lemma 3.2 (Takeuchi). Through any point in X there exists a finite number of
conics contained in X. The Hilbert scheme of conics in X is isomorphic to P(B).
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Proof. The first statement is proved in [Takeuchi 1989]. One may also consult
[Iskovskikh and Prokhorov 1999, Lemma 4.2.6].

For any conic C2
0 in X , there exists an exact sequence

(11) 0 −→ U −→ Q∗
−→ JC2

0 ,X
−→ 0.

Any homomorphism U → Q∗ degenerates along a conic. Since Hom(U, Q∗)' B,
the lemma is proved. �

Corollary 3.3. The set of stable points in the moduli space MX (2; 0, 2) is empty.
The set of semistable points is isomorphic to P2

=P(B). The bundle F0,2 of Lemma
2.16, Case (2), admits the resolution

0 −→ U −→ Q∗
⊕ O −→ F0,2 −→ 0.

Proof. Since the bundle F0,2 admits a unique global section s, and since s van-
ishes along a conic C2

0 , there exists an isomorphism between MX (2; 0, 2) and
Hilb2t+1(X)' P2, the Hilbert scheme of conics contained in X . The bundle F0,2

is strictly semistable for c1(F)= 0.
In this case, the exact sequence (1) reads

(12) 0 −→ O −→ F0,2 −→ JC2
0 ,X

−→ 0.

Since Ext1(Q∗,O) = 0, any morphism Q∗
→ JC2

0 ,X
lifts to a morphism Q∗

→

F0,2. Considering the map O → F0,2 in the exact sequence (12) and lifting the
projection Q∗

→ JC2
0 ,X

in the exact sequence (11), we obtain a surjective bundle
map Q∗

⊕ O → F0,2 whose kernel is isomorphic to U . This provides the desired
resolution. �

4. Elliptic curves

In this section we prove the existence in X of elliptic curves with the properties
required by Case (3) of Lemma 2.16. In particular, the degree of these curves varies
from 7 to 14. The case 7 ≤ d ≤ 13 is considered in Proposition 4.1, while the case
d = 14 is considered in Proposition 4.4. In the latter we also deal with the case
d = 15, which we will need in Section 5.

Proposition 4.1. On the general variety X , there exist smooth elliptic curves Cd
1

of any degree d , for 7 ≤ d ≤ 13. The curve Cd
1 is contained in exactly 14 − d

independent hyperplanes.

We will construct smooth elliptic curves in X by means of the birational map
ϕ : V =V5 99K X of page 207.

Lemma 4.2. Let S = S5 be a fixed hyperplane section of V , and fix the nota-
tions from page 207. The irreducible component H5t+1 of the Hilbert scheme
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Hilb5t+1(V ) containing smooth rational normal quintics in V has dimension 10
at a general [C5

0 ]. There is a dominant map ζ : H5t+1(V )→ Hilb5(P
2) defined by

ζ : [C5
0 ] 7→ e1+ · · · +e5.

Proof. Set C = C5
0 . First, notice that by the Riemann–Roch formula we have

expdim
(
TH5t+1(V ),[C]

)
= 10, because deg NC,V = 10 and so χ(NC,V ) = 10. Since

C ⊂ S, we have the exact sequence of normal bundles

0 −→ NC,S −→ NC,V −→ (NS,V )|C −→ 0.

Now, by computing (2` − b1)
2

= 3, after the identification C ' P1 we get
NC,S ' OP1(3) and obtain an exact sequence

0 −→ OP1(3)−→ NC,V −→ OP1(5)−→ 0.

Therefore h0(NC,V )= χ(NC,V )= 10, so H5t+1(V ) is smooth and 10-dimensional.
Let P

(
H0(V,OV (1))

)
= P6. Notice that, once we fix the hyperplane section S,

for any curve C the intersection C∩S gives 5 points spanning P4
⊂P6. Conversely,

given any P4
⊂ P6, there is a curve C such that the spaces 〈C〉 and 〈S〉 span P6.

Fixing S thus provides a birational map H5t+1(V ) 99K G(P4,P6).
Since dim H5t+1(V ) = dim Hilb5(P

2) = 10, we have to prove that the map ζ
is generically finite. So we fix e = (e1, . . . , e5) and consider the space P4

e =

〈e1, . . . , e5〉. Varying a hyperplane section S′ of V in the pencil of hyperplanes
containing P4

e , we obtain a ruled surface S j
e consisting of exceptional lines in S′ of

type b′

j . The ruled surface S j
e is not a cone, for there are finitely many lines through

any point in V (see [Iskovskikh and Prokhorov 1999, page 64] and [Furushima and
Nakayama 1989]). Thus, its dual variety is a hypersurface in P̌6.

Given a curve C ⊂ S′, write C = 2`− b′

1. We have ζ(C)= e1 + · · · + e5 if and
only if there is a hyperplane section S′

= P5
∩ V with P5

⊃ P4
e and such that P5

contains the curve of class 2`− b1. This happens if and only if the hyperplane P5

is tangent to the ruled surface S1
e . Being the dual variety of the hypersurface S1

e , it
intersects the general pencil of P5’s containing P4

b in a finite set of points. �

Lemma 4.3. Let S be a fixed hyperplane section and fix notation as in Definition
2.13. Define the linear systems

L9 = 4`− 2b1 − 2b2 − b3 − b4 − e1 − e2 − e3 −
∑

fj ,

L10 = 5`− 2
∑

bi − 2e1 − e2 − e3 −
∑

fj ,

L11 = 4`− 2b1 − 2b2 − b3 − b4 − e1 − e2 −
∑

fj ,

L12 = 5`− 2
∑

bi − 2e1 − e2 −
∑

fj ,

L13 = 4`− 2b1 − 2b2 − b3 − b4 − e1 −
∑

fj .
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Each Ld has positive dimension and contains a smooth element C̃d
1 . The curve

ϕ(C̃d
1 ) is a smooth elliptic curve in X of degree d , contained in precisely 14 − d

independent hyperplanes.

Proof. The linear systems Lj have positive dimension, as can be seen by counting
parameters. Indeed, it suffices to compute the expected dimension of the linear
system of curves in P2 passing through assigned points and with prescribed nodes.

For odd (even) d , the system Ld contains a smooth element C̃d
1 if and only if

there exists an irreducible plane quartic with nodes only at B1 and B2 (respectively,
an irreducible plane quintic with nodes only at B1, . . . , B6 and at the point in P2

corresponding to e1). It suffices to project an elliptic normal quartic (quintic) in
P3 (P4) from a general point (line) to obtain such a curve.

The degree of ϕ(C̃d
1 ) is easily computed to be d = Ld ·L, where L is the linear

system of Definition 2.13.
Since any elliptic curve of degree d ≤ 13 is contained in a hyperplane section

S22 of X , we have that

h0(JCd
1,X (1)

)
= h0(JCd

1,S22
(1)

)
+ 1.

Using the map ϕ and the fixed isomorphism S → BlB1,...B4
(P2), we get

h0(JCd
1,S22

(1)
)
= h0(P2, L − Ld).

It is then enough to compute the dimension of the following linear systems on P2:

L − L9 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − e2 − e3 − 2e4 − 2e5,(13)

L − L10 = 4`−
∑

bi − e2 − e3 − 2e4 − 2e5,(14)

L − L11 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − e2 − 2e3 − 2e4 − 2e5,(15)

L − L12 = 4`−
∑

bi − e2 − 2e3 − 2e4 − 2e5,(16)

L − L13 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − 2e2 − 2e3 − 2e4 − 2e5.(17)

Using Lemma 4.2, we can compute the dimension of these linear systems by choos-
ing the points corresponding to the ei ’s in a Zariski open set of Hilb5(P

2). Notice
that expdim(L − Ld) = 13 − d, so we need only check that expdim(L − Ld) =

dim(L − Ld). This we can do using Cremona transformations on P2.
For Case (13), consider the Cremona transformation γ9 associated to the linear

system 2` − b3 − b4 − e4. Any curve in L − L9 touches a conic through b3 −

b4 − e4 in 4 points. Further, any curve in L − L9 touches the line 〈B3, B4〉 (or,
respectively, 〈B4, e4〉 or 〈B3, e4〉) in a single further point e′

4 (or, respectively, b′

3
or b′

4). Therefore, the linear system L − L9 is mapped under γ9 to 4` − b1 −

b2 − b′

3 − b′

4 − e1 − e2 − e3 − e′

4 − 2e5. By Lemma 4.2, the points e1, . . . , e5 lie
in general position. The points bi can be chosen generic, for we can define S to
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be the blow-up of P2 at a general 4-tuple of points. Since we now have a linear
system of plane quartics with only one node and passing through 8 general points,
we conclude that h0(P2,L − L9)= 4.

In Case (15), define γ11 as the Cremona transformation associated to 2`− b3 −

b4 − e3, sending L−L9 to 4`−b1 −b2 −b′

3 −b′

4 − e1 − e2 − e′

3 −2e4 −2e5. Take
γ ′

11 = γ2`−e3−e4−b1
. Then γ ′

11 ◦ γ11 sends L − L9 to 3`− b2 − b′

3 − b′

4 − e1 − e2 −

e′

3 − e′′

4 − e′′

5 . And 8 general points impose 8 linearly independent conditions on
the 10-dimensional space of plane cubics.

In Case (17), put γ13 = γ2`−b3−b4−e2
and γ ′

13 = γ2`−e3−e4−e5
. The linear system

L − L13 is mapped by γ ′

13 ◦ γ13 to 2`− b2 − b2 − b′

3 − b′

4 − e1 − e′

2. Since there is
no conic through 6 general points, we are done.

In Case (14), set γ10 = γ2`−e3−e4−e5
. The lines 〈e3, e4〉 and 〈e3, e5〉 give rise to

two extra points e′

4 and e′

5, so we compute h0(3`−
∑

bi − e2 − e′

4 − e′

5

)
= 3.

In Case (16), put γ12 = γ2`−e3−e4−e5
. Here we have no extra points, and the

statement follows since h0(2`−
∑

bi − e2
)
= 1. �

Proof of Proposition 4.1. The curve C7
1 exists according to [Kuznetsov 1996;

Faenzi 2006]. In fact, it is just the zero locus of a general global section s from
H0(E∗)' k8.

For C8
1 , consider a homomorphism α : K →U , with α∈ Hom(K ,U )' B∗. This

morphism is surjective whenever α lies outside the discriminant curve det9>
⊂

P(B∗) (see Lemma 3.1), so for a general α we get a rank-2 locally free sheaf
F8 = kerα. It follows easily from Lemma 2.12 that c1(F8)= −1 and c2(F8)= 8.
Taking global sections of F∗

8 and using the identifications of Lemma 2.7, we get

H0(F∗

8 )' ker
(
α : S4 B/F → S3 B/F(B∗)

)
.

For a general α, this map is surjective, so h0(F∗

8 )= 7. Further, F∗

8 is globally-gene-
rated since K ∗ is. Therefore, a general section of F∗

8 vanishes along the required
curve C8

1 .
Finally, for 9 ≤ d ≤ 13 the statement follows from Lemma 4.3. �

Proposition 4.4. On the general variety X , there exists a smooth elliptic curve Cd
1

of degree d for d = 14 or d = 15. In both cases, Cd
1 is nondegenerate.

Proof. It is well-known that there exist smooth elliptic normal curves of degree 7
in V . Nonetheless, we sketch a quick proof.

Denote by UV and QV the universal rank-2 subbundle and the universal rank-
3 quotient bundle on G(k2, k5), restricted to V . One proves that, for a general
map α : U⊕2

V → (Q∗

V )
⊕2, the sheaf cokerα⊗ OV (1) is a globally-generated rank-2

bundle on V , whose general section vanishes on the required curve D7.
Take now a hyperplane section S and denote by d1, . . . d7 the intersection points

of D7 with S. Recall the notation from Definition 2.13. Choose a smooth curve
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C5
0 in the linear system 2` − b1 − d1 − d2 − d3. Clearly, this linear system has

positive dimension. The curve D7 is mapped by ϕ
|L|

to a smooth elliptic curve
of degree 15, for it intersects C5

0 at 3 points with normal crossings. This curve is
nondegenerate, since D7 is nondegenerate as well.

Moving the hyperplane section S in P̌6, we can suppose that the point d4 coin-
cides with the point f1. Taking again C5

0 ∈ |2`− b1 − d1 − d2 − d3|, we have that
D7 is now mapped by ϕ

|L|
to a nondegenerate smooth elliptic curve of degree 14;

indeed, it intersects C5
0 at 3 points and T1 at 1 point, with normal crossings. �

Proposition 4.5. Consider d with 7≤d ≤15 and let Fd be the rank-2 vector bundle
over X associated to the elliptic curve Cd

1 constructed above. We have c1(Fd)=−1
and c2(Fd) = d. Furthermore, Fd is stable for any d , is ACM when 7 ≤ d ≤ 14,
and has h0(F∗

15)= h1(F∗

15)= 1 when d = 15.

Proof. Set C = Cd
1 . The numerical invariants of the bundle Fd are obvious, while

its stability follows at once from Hoppe’s criterion.
By Serre duality and (1), one has h2(F∗

d )= h1(Fd(−1)
)
= h1(F∗

d (−2)
)
= 0.

Taking twisted sections in the sequence (1), we get that Fd is ACM if and only if
h1(Fd(1)

)
= 0, that is, if and only if h1(JC,X (1)

)
= 0. Indeed, in this case the map

H0(OX (1)
)
→ H0(OC(1)

)
is surjective. This implies that H0(OX (t)

)
→ H0(OC(t)

)
is surjective for all t ≥ 1, so h1(JC,X (t)

)
= 0 for t ≥ 1. After using (1), we get

h1(Fd(t)
)
= 0 for t ≥ 1. For t ≤ 0 this trivially holds as well, so, by Serre duality,

Fd is ACM.
This happens precisely when h0(JC,X (1)

)
= 14 − d, so the conclusion follows

from Propositions 4.1 and 4.4. �

Theorem 4.6. For d with 8≤d ≤15, the bundle Fd of Proposition 4.5 is isomorphic
to the cohomology of a monad

(18) E⊕d−8 βd
−−→ K ⊕d−7 αd

−−→ U⊕d−7.

For d = 7, the bundle F7 is isomorphic to E.

Proof. From Hirzebruch–Riemann–Roch we get the equalities

χ(Q∗
⊗ Fd)= d − 7,

χ(U ⊗ Fd)= d − 7,

χ(E ⊗ Fd)= d − 8.

Recall that the vector bundles U , Q∗, E and Fd are stable. Hence, by [Maruyama
1981, Theorem 1.14], any tensor product between them is also stable. This implies
at once the vanishings

h0(Q∗
⊗ Fd)= 0, h0(U ⊗ Fd)= 0, h0(E ⊗ Fd)= 0.
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Serre duality also yields

h3(Q∗
⊗ Fd)= h0(Q ⊗ Fd)= 0 because µ(Q ⊗ Fd)= −1/4,(19)

h3(U ⊗ Fd)= h0(U∗
⊗ Fd)= 0 because µ(U∗

⊗ Fd)= −1/6,(20)

h3(E ⊗ Fd)= h0(E∗
⊗ Fd)= 0 because c2(E) 6= c2(Fd).(21)

Here, (21) follows since µ(E) = µ(Fd) = −1/2, but c2(E) = 7 6= d = c2(Fd), so
Hom(E, Fd)= 0.

Consider the tensor product of the bundle Fd by the sequences (6), (9), and the
dual of sequence (6). Since h0(Fd)= 0 and h1(Fd)= 0, we have

h1(Q∗
⊗ Fd)= h0(U∗

⊗ Fd)= 0 by (20),

h1(U ⊗ Fd)= h0(Q ⊗ Fd)= 0 by (19),

h1(E ⊗ Fd)= h0((E ′)∗ ⊗ Fd
)
.

The group H0((E ′)∗ ⊗ Fd
)

vanishes as well, because E ′ is a stable bundle as well,
and we have µ

(
(E ′)∗⊗ Fd

)
= −1/3. Summing up:

h2(Q∗
⊗ Fd)= d − 7, h2(U ⊗ Fd)= d − 7, h2(E ⊗ Fd)= d − 8.

This implies that Fd is isomorphic to the cohomology of a monad of form (18).
Clearly, for d = 7 the above argument implies E ' F7. �

Theorem 4.7. Consider d with 7 ≤ d ≤ 15, and let X be general. Take the Hilbert
scheme Hd,1(X) of curves in X of degree d and arithmetic genus 1. At generic
points, Hd,1(X) is smooth of dimension d and the moduli space MX (2; −1, d) is
smooth of dimension 2d − 14.

Proof. Let Z = Cd
1 be a curve of degree d and arithmetic genus 1, contained in X .

Consider the vector bundle Fd associated to Z .
Tensoring by Fd both the exact sequence (1) and the exact sequence defining

Z ⊂ X , we get, after using the isomorphism (2), the exact sequences

0 −→ Fd −→ End(Fd)−→ F∗

d ⊗ JZ ,X −→ 0,(22)

0 −→ F∗

d ⊗ JZ ,X −→ F∗

d −→ NZ ,X −→ 0.(23)

Taking global sections, we get h2(X,End(Fd)
)

= h1(Z , NZ ,X ). This means that
MX (2; −1, d) is unobstructed at [Fd ] if and only if Hd,1(X) is unobstructed at [Z ].

Consider now the monad (18) given by Theorem 4.6. Denote by W 1
d the vector

space H2(Q∗
⊗ Fd)' kd−7, and by W 2

d the space H2(U ⊗ Fd)' kd−7. An element
(m, n) of the group SL(W 1

d )× SL(W 2
d ) acts on P

(
Hom(K ,U )⊗ Hom(W 1

d ,W 2
d )

)
by taking αd to n ◦αd ◦ m−1. For a general αd , this action is free. Taking now the
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functor Hom(E,−), we get a morphism:

(24) Hom(K ,U )⊗ Hom(W 1
d ,W 2

d )−→ A∗
⊗ A∗

⊗ Hom(W 1
d ,W 2

d ).

Recall from (5) that Hom(K ,U ) ' B∗. Hence, any element αd in the vector
space Hom(K ,U )⊗ Hom(W 1

d ,W 2
d ) can be seen as a map W 1

d → W 2
d with entries

in B∗. The morphism (24) takes the map αd to a 4(d −7)×4(d −7) square matrix
W 1

d ⊗ A → W 2
d ⊗ A∗, whose entries are given by9>

⊗ id(W 1
d )

∗ ⊗ idW 2
d
. Denote this

matrix by 9>(αd) (see Lemma 3.1).
Consider the sheaf ker

(
αd : W 1

d ⊗ K → W 2
d ⊗ U

)
. The above discussion implies

that there exists an injective map βd : Ed−8 ↪→ kerαd if and only if rk9>(αd) ≤

4(d−7)− (d−8)= 3d − 20. Since Fd is stable and h2(E ⊗ Fd)= d − 8, there is a
unique βd up to isomorphisms.

Summing up, around [Fd ] there exists an open neighborhood of an irreducible
component of the moduli space MX (2; −1, d), isomorphic to the set

M(d)=
{
[αd ] ∈ P

(
B∗

⊗ Hom(W 1
d ,W 2

d )
) ∣∣ rk9>(αd)= 3d − 20

}/
SL(d − 7)× SL(d − 7).

For a sufficiently general 9>
: B∗

→ A∗
⊗ A∗, the variety M(d) admits smooth

points, indeed it is obtained by cutting the smooth subset of the variety of (3d−20)-
secant (3d − 19)-spaces to the Segre image of P4d−27

× P4d−27 by a sufficiently
general linear space.

It is easy to check that the dimension of M(d) at a smooth point [α′

d ] is 2d −14.
At the bundle [F ′

d ] corresponding to [α′

d ], the dimension of MX (2; −1, d) is also
2d − 14. Thus, taking a section of the general bundle F ′

d , we obtain a curve (Z)′

with h1(N(Z)′,X
)
= 0, so h0(N(Z)′,X

)
= d. Therefore, the Hilbert scheme Hd,1(X)

is d-dimensional and smooth at [(Z)′]. �

End of the proof of Lemma 2.16. Consider a general hyperplane section S22 of X . It
is a K3 surface of Picard number ρ(S22)= 1. Take Fd as defined in Proposition 4.5.
Restricting Fd to S22, we get a stable rank-2 vector bundle on S22. The moduli space
MS22(2; −1, d) is then smooth and projective, of dimension −χ

(
End(S22, Fd)

)
−2.

It is immediate to check that dim MS22(2; −1, d)= 4d − 28. Hence d ≥ 7. �

5. Canonical and half-canonical curves

We now prove the existence of the bundles from Cases (4) and (5) of Lemma 2.16.
We deal with the latter case first.

Half-canonical curves. We prove the existence of a smooth half-canonical curve
C59

60 by a deformation argument.
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Lemma 5.1. There exists a smooth curve Z = C59
60 in X of degree 59 and genus 60,

given as the zero locus of a section of an ACM vector bundle F−1,15(2). We have
ωZ ' OX (2)|Z . The ACM bundle F−1,15 specializes to the non-ACM bundle F15.

Proof. Recall from Proposition 4.4 that there exists an elliptic curve C = C15
1

such that h1(JC,X ) = 1 and C is not contained in any hyperplane. According to
Proposition 4.5, the vector bundle F∗

15 has a unique section vanishing along C .
By Theorem 4.6, the moduli space MX (2; −1, 15) is smooth and 16-dimensio-

nal at a general [F15]. Consider the irreducible component of MX (2; −1, 15) that
contains [F15] and take an open neighborhood of [F15] contained in this component.
Pick a point [F ′

15] belonging to this neighborhood and represented by a stable
bundle F ′

15 not isomorphic to F15.
Suppose F ′

15(1) has a nontrivial global section s. Recall that h0(F15) = 0 by
stability. The zero locus of s would be a curve C ′ of degree 15 and arithmetic
genus 1. Therefore, s would give a point [C ′

] in H15,1(X). The point [C ′
] could

not coincide with [C], for otherwise JC ′,X ' JC,X would yield F ′

15 ' F15.
Since H15,1(X) is smooth of dimension 15 at [C], the above discussion proves

that the map τ : H15,1(X)→ MX (2; −1, 15) is an open embedding at [C], and that
its image is the codimension-1 locus

{
[F ′

15] ∈ MX (2; −1, 15)
∣∣ h0(F ′

15(1)
)

6= 0
}
.

Thus, for a general [F ′

15] we must have h0(F ′

15(1)
)
= 0.

Now, since χ
(
F ′

15(1)
)

= 0, we also get h1(F ′

15(1)
)

= 0. We set F−1,15 = F ′

15,
and then F−1,15 is ACM. Finally, by Castelnuovo–Mumford regularity, F−1,15(2)
is globally generated, so a general section vanishes along a smooth curve Z with
the required invariants. �

Remark 5.2. Any ACM stable bundle of type F−1,15 is the cohomology of a
monad of type (18) with d = 15. Indeed, it suffices to apply the proof of Theorem
4.6 to F−1,15.

Canonical curves. Here we will prove the existence of a smooth canonical curve
in X by exhibiting the bundle F0,4 of Lemma 2.16.

Lemma 5.3. Given a general homomorphism α :U⊕2
→ (Q∗)⊕2, the sheaf cokerα

is a vector bundle of type F0,4.

Proof. Let W1 and W2 be 2-dimensional vector spaces such that the domain and
codomain of α are W1 ⊗ U and W2 ⊗ Q∗. Let p1 : k → W1 be an element of P̌(W1)

and p2 : W2 → k an element of P(W2). To the pair (p1, p2) we associate a map
U → Q∗ via the morphism

ηα : P1
× P1

→ P2
=P(B), (p1, p2) 7→ (p2 ⊗ idQ∗) ◦α ◦ (p1 ⊗ idU∗).

For a general α, the map ηα is a 2 : 1 cover. Suppose now that α is not injective, as
a bundle map, at some given point x of X . Then there exists p1 : k → W1 such that,



218 ENRIQUE ARRONDO AND DANIELE FAENZI

for any p2 : W2 → k, the map ηα(p1, p2) is zero over x . Equivalently, x lies in the
conic whose ideal is coker ηα(p1, p2). Since ηα is a finite map, this means that x
lies in the pencil of conics parameterized by p2 ∈P(W2), thus contradicting Lemma
3.2. Therefore cokerα is locally free and, by a straightforward computation, it has
the required Chern classes.

From the exact sequence 0 −→ U⊕2
−→ (Q∗)⊕2

−→ F0,4 −→ 0, we see
immediately that h0(F0,4) = 0 and h1(F0,4(t)

)
= 0 for any t ∈ Z; indeed, U and

Q∗ are ACM bundles.
Therefore F0,4 is stable and ACM. Indeed, Serre duality gives h2(F0,4(t)

)
=

h1(F0,4(−1 − t)
)
= 0 for all t ∈ Z. Finally, one can compute

h1(Q∗
⊗ F0,4(1)

)
= 0, h2(U ⊗ F0,4(1)

)
= 0, h3(E ⊗ F0,4(1)

)
= 0.

By Corollary 2.15, we get that F0,4(1) is globally generated, hence the zero locus
of its general global section is the required canonical curve. �

Lemma 5.4. Any ACM stable vector bundle of type F0,4 is the cokernel of a map
α : U⊕2

→ (Q∗)⊕2.

Proof. The argument is analogous to that of Theorem 4.6. We find hp(U ⊗ F0,4)=

0 for p 6= 1, hp(K ⊗ F0,4) = 0 for p 6= 1, and hp(E ⊗ F0,4) = 0 for all p.
We conclude that h1(U ⊗ F0,4) = −χ(U ⊗ F0,4) = 2 and that h1(K ⊗ F0,4) =

−χ(K ⊗ F0,4)= 2, so the statement follows from Lemma 2.14. �

Remark 5.5. Summing up, we found that an open subset of a component of
MX (2; 0, 4) is isomorphic to an open subset of the variety of Kronecker modules

P(W ∗

1 ⊗ W2 ⊗ B)
/

SL(W1)× SL(W2),

where W1 and W2 are 2-dimensional vector spaces. In particular, it is unirational
and generically smooth of dimension 5.
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