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Using a density theorem and a drilling theorem of Bromberg we prove
a uniqueness result for singly degenerate hyperbolic 3-manifolds without
cusps. By results of Minsky on the curve complex and end-invariants we
then improve upon this theorem to prove the ending lamination conjecture
for singly degenerate hyperbolic 3-manifolds with slender end-invariants.
Although this result is known by work of Brock, Canary and Minsky, our
proof uses a different approach, in particular avoiding the construction of a
model manifold.

1. Introduction

An orientable hyperbolic 3-manifold is a quotient H3/0, where 0 is a discrete
subgroup of PSL2(C). Under the natural identification of PSL2(C) with the group
Isom+H3 of orientation preserving isometries of H3, we can equivalently consider
0 as a subgroup of Isom+H3 acting properly discontinuously on H3.

One of the fundamental problems in the study of hyperbolic 3-manifolds is to
provide conditions that determine the manifold uniquely. Thurston’s ending lam-
ination conjecture proposes that a geometrically tame hyperbolic 3-manifold is
uniquely determined by its topological type and a collection of end-invariants. An
end-invariant is either a conformal structure on a surface or a measured lamination
on a surface.

In the case of finite volume hyperbolic 3-manifolds the conjecture is true by the
classical Mostow–Prasad rigidity theorem. For geometrically finite infinite-volume
hyperbolic 3-manifolds (equivalently manifolds for which all end-invariants are
conformal structures) the conjecture is true by work of Ahlfors, Bers, Kra, Mar-
den, Maskit, Sullivan, Thurston et al. The earliest results involving geometrically
infinite hyperbolic 3-manifolds were obtained by Minsky in two distinct settings.
The first, in [Minsky 1994], is for hyperbolic 3-manifolds with compact cores in
which every boundary component is incompressible and such that there is a positive
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lower bound to the injectivity radius. The second, in [Minsky 1999], is a general
result in the case that the hyperbolic 3-manifold has pared relative compact core
(F × I, ∂ F × I ), where int(F) is homeomorphic to a once-punctured torus. More
recently, Brock, Canary and Minsky [Brock et al. 2004] have proved the conjecture
in full in the case that the compact core has incompressible boundary. One of the
key steps in both of Minsky’s papers and in the Brock–Canary–Minsky proof is the
construction of a model manifold together with a bilipschitz map from this model
to the hyperbolic 3-manifold given the topological type and the end-invariants of
the hyperbolic 3-manifold. It is this step that we are able to avoid in this paper.

In contrast to [Minsky 1994], we will consider hyperbolic 3-manifolds with
unbounded geometry. This means that their injectivity radius is not bounded away
from zero outside of the cusp components. Equivalently there is no positive lower
bound to the length of closed geodesics in the manifold.

We will further restrict the class of manifolds within those of unbounded ge-
ometry. Let S be a compact orientable surface. A pair-of-pants multicurve is a
collection of disjoint simple closed curves on S that give a pair-of-pants decom-
position of S. In a hyperbolic 3-manifold a geodesic pair-of-pants multicurve is a
collection of geodesics that have a pair-of-pants multicurve representative on some
component of the boundary of a relative compact core minus the parabolic locus.
The length `(α) of a geodesic pair-of-pants multicurve α is the sum of the lengths
of the closed geodesic components.

Our first theorem is a uniqueness result for singly degenerate hyperbolic 3-
manifolds based upon the work of Bromberg [2002; 2004]:

Theorem 3.1. Suppose N1 and N2 are singly degenerate hyperbolic 3-manifolds
without cusps with the same conformal boundary end-invariant and the same se-
quence of geodesic pair-of-pants multicurves with length going to zero. Then N1 is
isometric to N2.

For simplicity in this paper we have restricted attention to singly degenerate
manifolds. With current technology the theorem can be immediately extended to
hyperbolic 3-manifolds with pared incompressible compact cores in which corre-
sponding geometrically infinite ends of each manifold have the same unbounded
length exiting sequence of geodesic pair-of-pants multicurves. In future work we
will generalise these results to the class of hyperbolic 3-manifolds with unbounded
geometry.

Beautiful new developments by Minsky [2000; 2001; 2003], using work of Ma-
sur and Minsky [1999; 2000], allow one to determine which geodesics associated
to an (incompressible) geometrically infinite end are short based solely upon the
combinatorics of curves in the curve complex associated to the measured lami-
nation end-invariant of this end. Using these estimates Minsky [2003] was able



THE ENDING LAMINATION CONJECTURE IN THE SLENDER CASE 233

to construct a model manifold and a lipschitz map from this model manifold to
a hyperbolic 3-manifold where the model manifold depends upon the topological
type of the hyperbolic 3-manifold and its end-invariants. The already cited article
[Brock et al. 2004] promotes this lipschitz map to a bilipschitz map, proving the
ending lamination conjecture.

Using the results of Minsky we are able to prove the ending lamination con-
jecture for singly degenerate hyperbolic 3-manifolds without cusps with slender
ending lamination end-invariants (see Theorem 3.2).

Theorem 1.2. If N is a singly degenerate hyperbolic 3-manifold without cusps
with a slender ending lamination end-invariant then it is uniquely determined by
its end-invariants.

Since it is not immediately clear that there are any manifolds with slender end-
invariants, in Section 4 we construct examples of such manifolds. We note that
this is a construction given by Minsky in [Minsky 2000] and relies upon the results
contained within that paper.

2. Preliminaries

Let N be a hyperbolic 3-manifold. The convex core, C(N ), of N is the smallest
convex submanifold whose inclusion is a homotopy equivalence.

Let 0 =π1(N ). Then 0 acts a group of conformal automorphisms of the bound-
ary at infinity of H3 which we will identify with C̄. The domain of discontinuity
for the action of 0 on C̄ is denoted �0 and is the largest open subset upon which
0 acts properly discontinuously. The complement is the limit set, 30. For a singly
degenerate hyperbolic 3-manifold the associated domain of discontinuity is con-
nected and simply connected.

Given a hyperbolic 3-manifold N the associated Kleinian manifold is N̂ = (H3
∪

�(π1(N )))/π1(N ). If N is a singly degenerate hyperbolic 3-manifold without
cusps it is homeomorphic to S × (−∞, ∞) (S a closed surface of genus at least 2)
by [Bonahon 1986] and the associated Kleinian manifold N̂ is homeomorphic to
S × [0, ∞).

The injectivity radius of a point x ∈ N , in jN (x), is half the length of the shortest
homotopically nontrivial loop passing through x . For ε > 0 we define the ε-thin
part of N to be Nthin(ε) = {x ∈ N | in jN (x) < ε}, and the ε-thick part of N to
be Nthick(ε) = N − Nthin(ε). A result of Margulis gives a universal constant (the
Margulis constant) M3 such that if ε < M3 then a component of Nthin(ε) is a solid
cusp cylinder, a torus cusp or a solid torus neighbourhood of a closed geodesic. A
component of the first (respectively second) type is a rank-1 (respectively rank-2)
cusp. The collection of components of the first and second type are the ε-thin cusp
components of N or simply the cusp components of N .
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A hyperbolic 3-manifold is geometrically finite if the convex core minus its
intersection with all cusp components is compact. Otherwise the manifold is geo-
metrically infinite.

We note that the only thin components of a singly degenerate hyperbolic 3-
manifold without cusps are solid torus neighbourhoods of closed geodesics.

Deformation spaces and Bers slices. (For a discussion of deformation spaces of
hyperbolic 3-manifolds see for instance [Anderson 1998].) Fix a compact three-
manifold M . The deformation space, D(M), associated to M is the collection of
hyperbolic 3-manifolds homotopy-equivalent to M each with a fixed marking, that
is, a homotopy equivalence from M to the manifold. Two hyperbolic 3-manifolds
are considered equivalent as elements of D(M) if there is an isometry between them
in the homotopy class of the map between them determined by their markings.

An equivalent space is the space of all faithful representations

ρ : π1(M) → PSL2(C) = Isom+(H3)

with discrete image. Two representations are equivalent if there is an element of
PSL2(C) conjugating one to the other. We topologise this space with the algebraic
topology by fixing some finite generating set H of π1(M) and stating that represen-
tations {ρi } converge to ρ if ρi (g) converges to ρ(g) in PSL2(C) for each g ∈ H .
This topology is independent of the choice of H . A fundamental fact is that the
deformation space D(M) is a closed subspace of the space of all representations
of π1(M) into PSL2(C) equipped with the same topology.

We now restrict attention to the case of interest in this paper. Let S be a closed
surface and let M = S × [0, 1]. Since M is homotopy equivalent to S the defor-
mation space associated to M is often denoted D(S). The interior of D(S) (in the
full representation space) consists of geometrically finite manifolds without cusps.
Equivalently it consists of those manifolds with a compact convex core. These are
the quasifuchsian manifolds. If N is a quasifuchsian manifold then the associated
Kleinian manifold N̂ is homeomorphic to M = S × [0, 1].

By work of Ahlfors and Bers quasifuchsian manifolds are uniquely determined
by their conformal boundary consisting of a pair of conformal structures on the
surface S. Further, given a pair of conformal structures there is a quasifuchsian
manifold in D(S) with this pair of structures as its conformal boundary. We will
denote each manifold in the interior of D(S) by QF(X, Y ), where X and Y are
conformal structures on S.

A Bers slice is a subset of the interior of D(S) consisting of all quasifuchsian
manifolds in which one of the conformal structures is fixed. If the fixed structure
is X we denote the Bers slice by BX . A result of Bers is that each Bers slice has
compact closure in D(S).
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Ends and end-invariants. (For a discussion of ends of hyperbolic three-manifolds
see, for instance, [Canary 1993]. For a discussion of end-invariants see [Minsky
2001], for instance.)

An end of a hyperbolic 3-manifold is geometrically finite if it has a neighbour-
hood disjoint from the convex core. It is geometrically infinite otherwise.

Let N be a singly degenerate hyperbolic 3-manifold without cusps. By [Bona-
hon 1986] N is homeomorphic to S × (−∞, ∞) where S is a closed orientable
surface of genus at least 2 and N has two ends, one geometrically finite and the
other geometrically infinite. Each end has a product neighbourhood homeomorphic
to S × [0, ∞).

The end-invariant associated to each geometrically finite end of a hyperbolic
3-manifold is a conformal boundary component. The conformal boundary com-
ponent, X , associated to the geometrically finite end of N is the full conformal
boundary: X = �π1(N )/π1(N ). Note that X is homeomorphic to S.

The end-invariant associated to a geometrically infinite end of a hyperbolic 3-
manifold is a lamination. We describe one way to identify the lamination λ for the
manifold N using the conformal boundary X . Bonahon’s result [1986] implies that
there is a sequence {ci } of simple closed curves on X , considered as the boundary
component of the Kleinian manifold N̂ , such that the geodesic representatives {c∗

i }

of {ci } within N exit the geometrically infinite end; that is, given any neighbour-
hood U of the geometrically infinite end, all but finitely many of the geodesics are
contained in U . Bonahon [1986] and Thurston [1979] show that the support of any
limit measured geodesic lamination of a convergent subsequence of {c∗

i /`(c
∗

i )} (in
the space of measured geodesic laminations on X ) is unique. This support is the
ending lamination λ.

Let N and N ′ be two singly degenerate hyperbolic 3-manifolds without cusps
in D(S) with associated end-invariants (X, λ) and (X ′, λ′). Note that X = ∂ N̂
and X ′

= ∂ N̂ ′ where N̂ and N̂ ′ are the associated Kleinian manifolds. Suppose
f : S → N and f ′

: S → N ′ are the attached homotopy equivalences. The end-
invariants of N and N ′ are the same if

• there exists a homeomorphism h : N̂ → N̂ ′ such that h|N : N → N ′ is homo-
topic to the map f ′

◦ f −1
: N → N ′,

• there is a conformal map X → X ′ in the homotopy class of h|X : X → X ′, and

• h|X (λ) is homotopic to λ′ in X ′.

Remark. As noted in the introduction, a hyperbolic 3-manifold with finitely
generated fundamental group is uniquely determined by its end-invariants if each
end-invariant is a conformal boundary component (equivalently if every end is
geometrically finite).
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The arc complex. (For a discussion of arc and curve complexes see [Minsky 2000;
2001].)

Let Z be a compact surface (possibly with boundary). Let A0(Z) be the set of
essential homotopy classes of simple closed curves or properly embedded arcs in
Z . For simple closed curves homotopy class means the free homotopy class. For
properly embedded arcs homotopy class means homotopy relative to the boundary
of Z if Z is not an annulus or homotopy relative to endpoints if Z is an annulus.
The arc complex of Z , A(Z), is a simplicial complex whose simplices consist of
k + 1-tuples of distinct elements of A0(Z) with pairwise disjoint representatives
on Z . Making every simplex regular Euclidean of side length 1 gives A(Z) a path
metric.

Let S be a closed surface, GL(S) be the geodesic lamination space of S and
Y be an annular subsurface of S. Let Ŷ be the unique compactified cover of S
determined by the inclusion of π1(Y ) into π1(S). The boundary of Ŷ is simply
the quotient by pi1(Y ) of the boundary at infinity of the universal cover minus the
fixed points of a generator of π1(Y ). Define a “projection map”

πY : GL(S) → A(Ŷ ) ∪ ∅

as follows: each λ ∈ GL(S) lifts to Ŷ . The collection of all proper essential arcs
of this lift determines a simplex of A(Y ). We let πY (λ) be the barycentre of this
simplex. If there are no essential proper arcs in the lift of λ, πY (λ) = ∅.

Given an annular subsurface Y of S we define the Y -distance between lamina-
tions α, β in GL(S) as dY (α, β) = dA(Y )(πY (α), πY (β)).

Two notions of slenderness. A geometrically infinite end of a hyperbolic three-
manifold is slender if it has an exiting sequence of geodesic pair-of-pants multic-
urves with length going to zero. To say that a sequence is exiting an end requires
that all but finitely many of the geodesic pair-of-pants multicurves in the sequence
are contained in any neighbourhood of the geometrically infinite end. We will call
a hyperbolic 3-manifold slender if every geometrically infinite end of this manifold
is slender.

Let λ be an ending lamination associated to a geometrically infinite end E of a
hyperbolic 3-manifold without cusps, N . Let X be the boundary component of a
compact core of N facing the end E , and set g = genus X . Let αX be a pair-of-
pants multicurve on X . Let 8 be a collection of pairwise disjoint embedded annuli
Ak in X (k = 1, . . . , 3g−3) such that the collection of core curves of each annulus
Ak gives a pair-of-pants decomposition of X . Set

diamN (8) = min
Ak∈8

dA(Ak)(πAk (λ), πAk (αX )).
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We say that the ending lamination λ of N is slender if and there exists a sequence
{8n} of collections of annuli whose core curves give pair-of-pants decompositions
of X (for each n) such that diamN (8n) → ∞. Note that this definition does not
depend upon the choice of multicurve αX nor upon the choice of compact core
defining X .

It is the deep results of Minsky [2000; 2001; 2003] that provide a link between
these seemingly disparate notions of slenderness.

3. The ending lamination conjecture

We are now ready to prove the two theorems stated in the introduction. The proofs
depend heavily on powerful technologies recently introduced to the field. The first
is the theory of deformations of hyperbolic structures through hyperbolic cone-
manifolds developed by Hodgson and Kerckhoff [1998] and extended to geomet-
rically finite hyperbolic 3-manifolds by Bromberg [2004]. The other technology is
the theory of the complex of curves (and arcs) and projection coefficients developed
by Minsky [2000; 2001].

For the remainder of this section we fix a closed orientable surface S of genus
at least 2. Given P, Q ∈ D(S) and markings h P : S → P and hQ : S → Q, let
h : P → Q be a homeomorphism in the homotopy class of the map hQ ◦ (h P)−1.
We say that closed geodesics p∗

⊂ P and q∗
⊂ Q are the same (with respect to

D(S)) if h(p∗) is in the same free homotopy class as q∗ and extend this definition
to collections of geodesics in the obvious way.

Theorem 3.1. Suppose P, Q ∈ D(S) are slender singly degenerate hyperbolic 3-
manifolds without cusps with the same conformal boundary end-invariants and the
same (w.r.t D(S)) sequence of geodesic pair-of-pants multicurves with length going
to zero. Then P is isometric to Q. In fact, P and Q are equal as elements of D(S).

Proof. Let {p∗
n} and {q∗

n } be the respective sequences of geodesic pair-of-pants
multicurves with length going to zero.

Let X be the conformal boundary component of P and Q. By the density the-
orem in [Bromberg 2002], P and Q lie in the boundary of the Bers slice BX . So
we may approximate P and Q (in the algebraic topology on D(S)) by sequences
of quasifuchsian manifolds within this Bers slice, say {Pi } and {Qi }, respectively.
Call the conformal boundary component X of {Pi } and {Qi } indexing the Bers
slice BX the bottom conformal boundary component.

For each i , let {(pi
n)

∗
} and {(q i

n)
∗
} be the corresponding sequences of geodesic

pair-of-pants multicurves in Pi and Qi , respectively. Let km be a sequence of
positive numbers such that limm→1 km = 0. We may pass to subsequences of
{Pi } and {Qi } relabelled as {Pi } and {Qi } such that for each i , `((pi

i )
∗) < ki and

`((q i
i )

∗) < ki .
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Apply the drilling theorem [Bromberg 2004, Theorem 1.2] to the geodesic mul-
ticurves (pi

i )
∗ and (q i

i )
∗ in Pi and Qi , respectively, to get manifolds P̃i and Q̃i ,

respectively. The multicurves pi
i and q i

i correspond to rank-2 cusps (zero cone-
angle) in P̃i and Q̃i , respectively. Further, P̃i and Q̃i each have the same bottom
conformal boundary component X as Pi and Qi , respectively.

For each i , pass to a cover corresponding to this bottom conformal boundary
component X of P̃i and Q̃i , respectively, to obtain new sequences {P i } and {Qi }.
See Figure 1.

The estimates provided by [Bromberg 2004, Theorem 8.2] (or Theorem 1.3 in
the same reference) ensure that {P i } and {Qi } converge algebraically to P and Q.

In P i and Qi the curves corresponding to the geodesic pair-of-pants multicurves
(pi

i )
∗ and (q i

i )
∗ are now homotopic into rank-1 cusps. Thus P i and Qi are maximal

cusps (in the sense of [McMullen 1991]). Further, each lies in the closure of the
Bers slice BX . Maximal cusps are unique in the boundary of a Bers slice (meaning
they are uniquely determined by the corresponding pair-of-pants multicurve), so
P̄i is isometric to Qi for each i . Hence P and Q are approximated by identical
sequences in D(S) and are thus equal as elements of D(S). �

Theorem 3.2. Suppose P ∈ D(S) is a singly degenerate hyperbolic 3-manifold
without cusps with a slender ending lamination end-invariant and Q ∈ D(S) is a

Bottom conformal boundary component

Rank−2
cusps

Rank−1
cusps

Short
geodesics

Apply the drilling
theorem

Pass to the cover
associated to the

bottom conformal
boundary

component

Pi P̃i P i

Figure 1. Producing the manifold P i from the manifold Pi .
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hyperbolic 3-manifold with the same end-invariants as P. Then P = Q in D(S);
that is, there exists an isometry from P to Q in the homotopy class determined by
markings of P and Q as elements of D(S).

Proof. Let h : P → Q be a homeomorphism respecting the markings of P and Q as
elements of D(S). Fix a compact core MP of P . Then MQ = h(MP) is a compact
core of Q. Let X P be the boundary component of MP facing the geometrically
infinite end of P and let X Q = h(X P). Since P has a slender ending lamination
end-invariant there is a sequence {8n} of collections of annuli whose core curves
give pair-of-pants decompositions of X P (for each n) such that diamP(8n) → ∞.
But then {h(8n)} is a sequence of collections of annuli whose core curves give pair-
of-pants decompositions of X Q (for each n) such that diamQ(h(8n)) → ∞. As
the end-invariants of P and Q are the same, this implies that the ending lamination
end-invariant of Q is also slender.

Let p∗
n and q∗

n be the geodesic multicurves in P and Q representing the core
curves of the annuli 8n and h(8n), respectively. If limn→∞ diamP(8n) = ∞ and
limn→∞ diamQ(h(8n)) = ∞, we know from [Minsky 2000, Theorem B] and the
Bounded Geometry Theorem of [Minsky 2001] that {`(p∗

n)} and {`(q∗
n )} converge

to zero; in other words, a slender ending lamination implies a slender end. The
result now follows by Theorem 3.1. �

4. Examples: Singly degenerate manifolds without cusps with a slender
ending lamination end-invariant.

We now give a construction that demonstrates that singly degenerate hyperbolic
3-manifolds without cusps but with slender ending lamination end-invariants are
abundant. Ours is a slight modification of an example of Minsky. See [Minsky
2000] for his construction and for a complete description of the techniques in-
volved.

Fix a closed surface S of genus at least 2 and a complete hyperbolic structure
on S. Let X be the conformal structure determined by this hyperbolic structure.
We will construct a singly degenerate hyperbolic 3-manifold without cusps in the
boundary of the Bers slice BX with a slender ending lamination end-invariant.

Let σ = (σ1, . . . , σn) be a collection of simple closed curves of X giving a
pair-of-pants decomposition of S. Let α = (α1, . . . , αn) and β = (β1, . . . , βn)

be collections of simple closed curves giving pair-of-pants decompositions of the
surface S such that for each pair of integers (i, j) with 1 ≤ i, j ≤ n, the pairs
(αi , β j ), (αi , σ j ) and (βi , σ j ) bind the surface S.

Let A1, . . . , An be disjoint embedded annuli in int(S) such that the core curve
of A j is α j , 1 ≤ j ≤ n. Similarly define B1, . . . , Bn using the curves β1, . . . , βn .
For each integer i > 0, let Y j

i be the annulus A j if i is odd, or B j if i is even,
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1 ≤ j ≤ n. Let 8i be the homeomorphism of S determined by doing a single
Dehn-twist around the core-curve of each of the annuli Y j

i , 1 ≤ j ≤ n (the order in
which the Dehn-twists are done being irrelevant since they commute).

Let mi be an increasing sequence of distinct positive integers. We now define
homeomorphisms of the surface S for each pair of positive integers. For each pair
of positive integers (p, q) with p < q let hq

p = 8
m p
p ◦ · · · ◦ 8

mq−1
q−1 . For a pair of

positive integers (q, p) with q > p let h p
q = (hq

p)
−1. For pairs of positive integers

(p, p) let h p
p = identity. Observe that hq

p ◦ hr
q = hr

p.
For each conformal structure X ′ on int(S) there is a unique point in the Bers slice

BX with conformal boundary X ∪ X ′. We will consider the sequence of manifolds
Nk determined by the conformal structures X and hk

1(X) for k >0. By compactness
of the closure of the Bers slice BX we may pass to a subsequence such that there
is a limit hyperbolic 3-manifold N .

For 1 ≤ j ≤ n and for positive l let Z j
l = hl

1(Y
j

l ). By applying h1
l we obtain

c j
l (k) = dY j

l
(h1

l (σ ), hk
l (σ ))

. By making ml larger we can increase c j
l (k) independently of k for each j . For

each j , after possibly passing to a subsequence, let c j
l = limk→∞ c j

l (k). Then we
can ensure that c j

l → ∞ as l → ∞ for each j .
Consider a limit manifold N . This has conformal end-invariant X and ending

lamination λ= limk→∞ hk
1(σ ). The distances dZ j

l
(σ, λ)= c j

l . Thus N has a slender
end-invariant.
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