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We show that the Alexander–Conway polynomial is recoverable from the
Links–Gould (LG) polynomial via a certain reduction, and hence that the
LG polynomial is a generalization of the Alexander–Conway polynomial.
Furthermore, the LG polynomial inherits some properties of the Alexander–
Conway polynomial. For example, the LG polynomial is a Laurent polyno-
mial in a particular pair of symmetric variables, and this is related to a
symmetry of the Alexander–Conway polynomial.

1. Introduction

Since the discovery of the Jones polynomial [1985], many new link invariants have
been defined, including the so-called quantum invariants. The Links–Gould poly-
nomial [1992], commonly known as the LG polynomial, is derived from the one-
parameter family of four-dimensional representations of the quantum superalgebra
Uq

[
gl(2|1)

]
. It is a two-variable polynomial invariant of oriented links.

D. De Wit, L. H. Kauffman and J. R. Links [De Wit et al. 1999] gave the explicit
form of its R-matrix. The LG polynomial is a complete invariant for all prime knots
with up to 10 crossings [De Wit 2000], as well as for the Kanenobu knots, which
include infinitely many knots with the same HOMFLY polynomial [Ishii 2003].
On the other hand, we have recently constructed arbitrarily many links with the
same LG polynomial [Ishii and Kanenobu 2005].

Because of the size of its R-matrix, it is in general not easy to evaluate the
LG polynomial without the aid of a computer. That said, we have given in [Ishii
2004a] two useful skein relations that lead to algorithms for the recursive calcula-
tion of the LG polynomial for various links, including Conway’s algebraic links;
this represents an improvement of the methods for evaluating LG.

In this paper, by supplying relationships between the LG polynomial and the
Alexander–Conway polynomial, we give the LG polynomial a more concrete po-
sition among the many invariants, and thereby offer a potent motivation for its
study.
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The LG polynomial was originally defined as a polynomial invariant in two
variables p and q . In [Ishii 2003; 2004b; 2004a; Ishii and Kanenobu 2005] we
used instead the symmetrical variables t0 = p−2 and t1 = p2q2, making the LG
polynomial into a polynomial in t1/2

0 and t1/2
1 . In this paper we will show that the

LG polynomial is actually a Laurent polynomial in t0 and t1 (see Theorem 1).
In Theorem 5 we will prove that the Alexander–Conway polynomial 1L(t) is

determined by the LG polynomial LGL(t0, t1), as was conjectured in [Ishii and
Kanenobu 2005]:

LGL(t, −t−1) = 1L(t2) for every link L .

The R-matrix R of the LG polynomial does not satisfy the equality:

R
∣∣t0=t,
t1=−t−1− R−1∣∣t0=t,

t1=−t−1 =
(
t − t−1) idV ⊗V .

If this equality held, the proof of the theorem would be clear. A key to the actual
proof is the determination of the kernel of the quantum trace (Lemma 3).

The variables t0 and t1 are not only eigenvalues of the R-matrix, but their use is
appropriate also from the viewpoint of the Alexander–Conway polynomial.

The symmetry 1(t) •

=1(t−1) of the Alexander–Conway polynomial transforms
into the symmetry LGL(t0, t1) = LGL(t1, t0) of the LG polynomial (the symbol •

=

is used to indicate equality up to a unit factor). We remark that, because of the
symmetry 1(t) •

= 1(t−1), the Alexander–Conway polynomial does not detect the
chirality of knots. In contrast, the LG polynomial does detect the chirality of knots,
at least for all prime knots with up to 12 crossings [De Wit and Links 2005].

The LG polynomial inherits some properties from the Alexander–Conway poly-
nomial. Corresponding to the property

1L(1) =

{
1 if L is a knot,

0 otherwise,

we have the following result (see Theorem 7): for every link L

LGL(t0, 1) = LGL(1, t1) =

{
1 if L is a knot,

0 otherwise.

The LG polynomial of an alternating knot seems to ‘alternate’ in the same way as
the Alexander–Conway polynomial. In fact, this property holds for all prime knots
with up to 10 crossings.

Since one of the biggest problems of quantum topology is finding a topological
meaning for quantum invariants, the analogy between LG and 1 is interesting.



LINKS–GOULD AS A GENERALIZATION OF ALEXANDER–CONWAY 275

2. Preliminaries

Any oriented tangle diagram can be presented, up to isotopy, as a diagram com-
posed from the elementary oriented tangle diagrams shown here:

Furthermore, any oriented tangle diagram can be presented, up to isotopy, as
a sliced diagram, which is such a diagram sliced by horizontal lines so that each
domain between adjacent horizontal lines has either a single crossing or a single
critical point.

Let V be a vector space and let V ∗ be its dual. We consider an invertible
endomorphism R : V ⊗ V → V ⊗ V , as well as linear maps n : V ⊗ V ∗

→ C,
ñ : V ∗

⊗ V → C, u : C → V ⊗ V ∗ and ũ : C → V ∗
⊗ V . We associate these maps

to elementary oriented tangle diagrams as follows:

V

V
idV

6

V ⊗ V

V ⊗ V
R6

C

V ⊗ V ∗

n6
C

V ∗
⊗ V

ñ6

V ∗

V ∗

idV ∗
6

V ⊗ V

V ⊗ V
R−16

V ⊗ V ∗

C

u6
V ∗

⊗ V

C

ũ6

Corresponding to any oriented tangle diagram D, we obtain a linear map [D] as
the composition of tensor products of the linear maps associated with the oriented
elementary tangle diagrams within D. For example,

(1)

[ ]
= (idV ⊗n)(R ⊗ idV ∗)(idV ⊗u).

Now let cl be the linear map End(V ⊗k+1) → End(V ⊗k) that transforms A into
(id⊗k

V ⊗n)(A ⊗ idV ∗)(id⊗k
V ⊗u); that is, the application of cl is the algebraic equiv-

alent of closing the rightmost strand of an oriented (k + 1, k + 1)-tangle. Observe
that (1) describes cl(R).

The LG polynomial is defined as follows: Let V be a four-dimensional vector
space with basis {ei }

4
i=1 and dual basis {e∗

i }
4
i=1. Denote by ei1···in

j1··· jn the linear map
V ⊗n

→ V ⊗n defined by

ei1···in
j1··· jn (ek1 ⊗ · · · ⊗ ekn ) = δ

j1
k1

· · · δ
jn
kn

ei1 ⊗ · · · ⊗ ein ,
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where δi
j is the Kronecker symbol. In a similar way, define linear maps ei1···in :

W1 ⊗ · · · ⊗ Wn → C and e i1···in : C → W1 ⊗ · · · ⊗ Wn , where each Wk is either V
or V ∗. For example, ei1i2 : V ⊗ V → C and e i1i2 : C → V ⊗ V ∗ are defined by
ei1i2(ek1 ⊗ ek2) = δ

i1
k1

δ
i2
k2

and e i1i2(1) = ei1 ⊗ e∗

i2
.

We obtain the bracket [ ] by setting

R = t0e11
11 −

(
e22

22+e33
33

)
+ t1e44

44 + (t0−1)
(
e21

21+e31
31

)
+ (t0−1)(1−t1)e41

41

+ (t1−1)
(
e42

42+e43
43

)
+ (t0t1−1)e23

23 +
(
e14

41+e41
14

)
− t1/2

0 t1/2
1

(
e23

32+e32
23

)
+ t1/2

0

(
e12

21+e21
12+e13

31+e31
13

)
+ t1/2

1

(
e24

42+e42
24+e34

43+e43
34

)
− t1/2

0 t1/2
1

(
(t0−1)(1−t1)

)1/2(e23
41+e41

23
)
+

(
(t0−1)(1−t1)

)1/2(e32
41+e41

32
)
,

n = e11 + e22 + e33 + e44,

ñ = t0e11 − t−1
1 e22 − t0e33 + t−1

1 e44,

u = t−1
0 e11

− t1e22
− t−1

0 e33
+ t1e44,

ũ = e11
+ e22

+ e33
+ e44.

For any (1,1)-tangle T , the LG polynomial of the link T̂ (the closure of T ) is
defined by

[DT ] = LGT̂ (t0, t1) idV ,

where DT is a tangle diagram of T . Note that LGL(p−2, p2q2) with p = qα coin-
cides with the Links–Gould invariant from [De Wit et al. 1999], where α originates
as a complex parameter of a family of Uq

[
gl(2|1)

]
-representations. For the details

we refer the reader to [De Wit et al. 1999; Ohtsuki 2002].

3. Laurent polynomials

We now show that the LG polynomial, when expressed in terms of the variables t0
and t1, is indeed a Laurent polynomial. Observe that, after changing basis by

e1 7→
(
(t0−1)(1−t1)

)1/2e1 and ei 7→ ei for i 6= 1,

the coefficients of the R-matrix belong to the set Z
[
t±1/2
0 , t±1/2

1

]
. Hence, we im-

mediately see that LGL(t0, t1) ∈ Z
[
t±1/2
0 , t±1/2

1

]
.

For all prime knots with up to 10 crossings, the LG polynomial is a Laurent
polynomial in p2 and q2 (with p = qα), as was observed in [De Wit 2000, p. 322].
Since t0 = p−2 and t1 = p2q2, the following theorem shows that this property
actually holds for all links.

Theorem 1. For any link L , we have

LGL(t0, t1) ∈ Z
[
t±1
0 , t±1

1

]
.

We prepare a lemma for the proof of the theorem. Set I = {1, 2, 3, 4}. A word
over I is a finite sequence of letters a1· · · an with a1, . . . , an ∈ I. Denote the empty
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word by ∅. Let W be the set of all words over I. Define the product of a word
u = a1· · · an with a word v = b1· · · bm as uv = a1· · · anb1· · · bm . Then, with respect
to this product, W is a monoid. A word w′ is called a subword of w if w can be
written in the form uw′v for some u, v ∈ W.

Let #u(w) be the number of subwords of form u inside a word w, and let # fi
u

(
w
w′

)
be the difference

# fi
u

(
w
w′

)
:= #u

(
fi (w)

)
− #u

(
fi (w

′)
)
,

for i = 0, 1. Here f0 and f1 are the endomorphisms of W given by

f0(1) = 32, f0(2) = 2, f0(3) = 3, f0(4) = ∅,

f1(1) = ∅, f1(2) = 2, f1(3) = 3, f1(4) = 32.

For example,

# f0
2

(
1234
4321

)
= #2

(
f0(1234)

)
− #2

(
f0(4321)

)
= #2(3223) − #2(3232) = #{2, 2} − #{2, 2} = 2 − 2 = 0,

# f0
2···3

(
1234
4321

)
= #2···3( f0(1234)) − #2···3( f0(4321))

= #2···3(3223) − #2···3(3232) = #{223, 23} − #{23} = 2 − 1 = 1.

We remark that

(2) # fi
u
(
w
w′′

)
= # fi

u
(
w
w′

)
+ # fi

u
(
w′

w′′

)
.

Set

In :=
{( i1···in

j1··· jn

) ∣∣ i1, . . . , in, j1, . . . , jn ∈ I, # fi
j

( i1···in
j1··· jn

)
= 0 (i = 0, 1; j = 2, 3)

}
.

By equality (2), we have the property

(3)
( i1···in

j1··· jn

)
,
( j1··· jn

k1···kn

)
∈ In H⇒

( i1···in
k1···kn

)
∈ In.

We also have the property

(4)
( i1···ink

j1··· jnk
)
∈ In+1 ⇐⇒

( i1···in
j1··· jn

)
∈ In ⇐⇒

(ki1···in
k j1··· jn

)
∈ In+1,

which follows since

# fi
j

( i1···ink
j1··· jnk

)
= #j

(
fi (i1 · · · ink)

)
− #j

(
fi (i1 · · · ink)

)
= #j

(
fi (i1 · · · in) fi (k)

)
− #j

(
fi (i1 · · · in) fi (k)

)
= #j

(
fi (i1 · · · in)

)
+ #j

(
fi (k)

)
− #j

(
fi (i1 · · · in)

)
− #j

(
fi (k)

)
= #j

(
fi (i1 · · · in)

)
− #j

(
fi ( j1 · · · jn)

)
= # fi

j

( i1···in
j1··· jn

)
,

and since, similarly, # fi
j

(ki1···in
k j1··· jn

)
= # fi

j

( i1···in
j1··· jn

)
.



278 ATSUSHI ISHII

For
( i1···in

j1··· jn

)
∈ In , set

C
[ i1···in

j1··· jn

]
:= t

1
2 # f0

2···3

(
i1···in
j1··· jn

)
0 t

1
2 # f1

2···3

(
i1···in
j1··· jn

)
1 Z

[
t±1
0 , t±1

1 ,
(
(t0−1)(1−t1)

)1/2]
.

We have the following properties: for
( i1···in

j1··· jn

)
,
( j1··· jn

k1···kn

)
∈ In and k ∈ I,

a, b ∈ C
[ i1···in

j1··· jn

]
H⇒ a + b ∈ C

[ i1···in
j1··· jn

]
,(5)

a ∈ C
[ i1···in

j1··· jn

]
, b ∈ C

[ j1··· jn
k1···kn

]
H⇒ ab ∈ C

[ i1···in
k1···kn

]
,(6)

C
[ i1···ink

j1··· jnk
]

= C
[ i1···in

j1··· jn

]
= C

[ki1···in
k j1··· jn

]
.(7)

Property (5) is easily checked. From equality (2), we have property (6). The first
equality in property (7) follows from

# fi
2···3

( i1···ink
j1··· jnk

)
= #2···3( fi (i1 · · · ink)) − #2···3( fi ( j1 · · · jnk))

= #2···3( fi (i1 · · · in) fi (k)) − #2···3( fi ( j1 · · · jn) fi (k))

= #2···3( fi (i1 · · · in)) + #2( fi (i1 · · · in))#3( fi (k))

+ #2···3( fi (k)) − #2···3( fi ( j1 · · · jn))

− #2( fi ( j1 · · · jn))#3( fi (k)) − #2···3( fi (k))

= #2···3( fi (i1 · · · in)) − #2···3( fi ( j1 · · · jn))

+
(
#2( fi (i1 · · · in)) − #2( fi ( j1 · · · jn))

)
#3( fi (k))

= # fi
2···3

( i1···in
j1··· jn

)
+ # fi

2

( i1···in
j1··· jn

)
#3( fi (k))

= # fi
2···3

( i1···in
j1··· jn

)
,

where we noticed that #3
(

fi (k)
)

∈ {0, 1} and that # fi
2

( i1···in
j1··· jn

)
= 0. The second

equality in property (7) follows similarly from # fi
2···3

(ki1···in
k j1··· jn

)
= # fi

2···3

( i1···in
j1··· jn

)
.

We define the subset An ⊂ End(V ⊗n) by

An :=

{∑ (
i1···in
j1··· jn

)
∈In

a i1···in
j1··· jn e i1···in

j1··· jn

∣∣∣ a i1···in
j1··· jn ∈ C

[ i1···in
j1··· jn

]}
.

Lemma 2. For every x, y ∈ An , we have

xy ∈ An, x ⊗ idV ∈ An+1, idV ⊗ x ∈ An+1, cl(x) ∈ An−1.

Proof. Since by property (5) we have x + y ∈ An for every x, y ∈ An , it is enough
to consider x = a i1···in

j1··· jn e i1···in
j1··· jn and y = bs1···sn

t1···tn es1···sn
t1···tn from An .

If jk 6= sk for some k ∈ {1, . . . , n}, then xy = 0 ∈ An . Thus, we can assume
that jk = sk for all k. Properties (3) and (6) then imply that

(i1···in
t1···tn

)
∈ In and that

a i1···in
s1···sn

bs1···sn
t1···tn ∈ C

[i1···in
t1···tn

]
, respectively. Then xy = a i1···in

s1···sn
bs1···sn

t1···tn ei1···in
t1···tn ∈ An .
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Properties (4) and (7) imply that
( i1···ink

j1··· jnk
)
,
(ki1···in

k j1··· jn

)
∈ In+1 and that a i1···in

j1··· jn ∈

C
[ i1···in

j1··· jn

]
= C

[ i1···ink
j1··· jnk

]
= C

[ki1···in
k j1··· jn

]
, respectively. Then

x ⊗ idV =
∑

k∈I a i1···in
j1··· jn e i1···ink

j1··· jnk, idV ⊗ x =
∑

k∈I a i1···in
j1··· jn eki1···in

k j1··· jn ∈ An+1.

Since cl(x) = 0 ∈ An−1 for in 6= jn , we can assume that in = jn . Then

cl(x) = cin a i1···in−1in
j1··· jn−1in

e i1···in−1
j1··· jn−1

,

where (c1, c2, c3, c4) = (t−1
0 , −t1, −t−1

0 , t1). Properties (4) and (7) imply that( i1···in−1
j1··· jn−1

)
∈ In−1 and that cin a i1···in−1in

j1··· jn−1in
∈ cin C

[ i1···in−1
j1··· jn−1

]
= C

[ i1···in−1
j1··· jn−1

]
, respectively.

Then cl(x) ∈ An−1. �

Proof of Theorem 1. Let Bn be the n-string braid group and let σ1, . . . , σn−1 be
its standard generators. There is a unique homomorphism Bn → Aut(V ⊗n) which
transforms σi into id⊗(i−1)

V ⊗ R ⊗ id⊗(n−i−1)
V for i = 1, . . . , n − 1. Denote this

homomorphism by bR . For a closed braid θ̂ (with θ ∈ Bn),

(8) cln−1(bR(θ)
)

= cln−1(
[θ ]

)
= LG

θ̂
(t0, t1) idV =

∑4
k=1 LG

θ̂
(t0, t1)ek

k ,

where cln−1
= cl ◦ · · · ◦ cl (n − 1 times) : End(V ⊗n) → End(V ).

By definition, R, R−1
∈ A2:

R = t0 e11
11 −

(
e22

22+e33
33

)
+ t1e44

44 + (t0−1)
(
e21

21+e31
31

)
+ (t0−1)(1−t1)e41

41

+ (t1−1)
(
e42

42+e43
43

)
+ (t0t1−1)e23

23 +
(
e14

41+e41
14

)
− t1/2

0 t1/2
1

(
e23

32+e32
23

)
+ t1/2

0

(
e12

21+e21
12+e13

31+e31
13

)
+ t1/2

1

(
e24

42+e42
24+e34

43+e43
34

)
− t1/2

0 t1/2
1

(
(t0−1)(1−t1)

)1/2(e23
41+e41

23
)

+
(
(t0−1)(1−t1)

)1/2(e32
41+e41

32
)
,

R−1
= t−1

0 e11
11 −

(
e22

22+e33
33

)
+ t−1

1 e44
44 + (t−1

0 −1)
(
e12

12+e13
13

)
+ (t−1

0 −1)(1−t−1
1 )e14

14 + (t−1
1 −1)

(
e24

24+e34
34

)
+ (t−1

0 t−1
1 −1)e32

32

+
(
e14

41+e41
14

)
− t−1/2

0 t−1/2
1

(
e23

32+e32
23

)
+ t−1/2

0

(
e12

21+e21
12+e13

31+e31
13

)
+ t−1/2

1

(
e24

42+e42
24+e34

43+e43
34

)
+ t−1/2

0 t−1/2
1

(
(t0−1)(1−t1)

)1/2(e23
14+e14

23
)

− t−1
0 t−1

1

(
(t0−1)(1−t1)

)1/2(e32
14+e14

32
)
.

Thus, Lemma 2 implies that cln−1(bR(θ)
)
∈ A1. By the equalities (8), we have

LG
θ̂
(t0, t1) ∈ C

[
k
k

]
= Z

[
t±1
0 , t±1

1 ,
(
(t0−1)(1−t1)

)1/2].
Since LG

θ̂
(t0, t1) is in Z

[
t±1/2
0 , t±1/2

1

]
, we have LG

θ̂
(t0, t1) ∈ Z

[
t±1
0 , t±1

1

]
. �
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4. A relation between the LG polynomial and
the Alexander–Conway polynomial

In this section we show the following relation:

LGL(t,−t−1) = 1L(t2).

1L(t) is the Alexander–Conway polynomial, defined by the relations

1
©

(t) = 1 and 1 (t) − 1 (t) =
(
t1/2

− t−1/2) 1 (t).

If V ≡ V (α) is the vector space underlying the original definition of the LG
polynomial, then, for generic values of α, the tensor-product module has the irre-
ducible decomposition

V ⊗ V = V0 ⊕ V1 ⊕ V2

with respect to the coproduct [De Wit et al. 1999]. If Pi is the projector V ⊗V → Vi ,
we have

(9) Pi Pj = δi
j Pi and P0 + P1 + P2 = idV ⊗V ,

From [De Wit et al. 1999, p. 170] we also have

(10) R = t0 P0 + t1 P1 − P2, and R−1
= t−1

0 P0 + t−1
1 P1 − P2.

We denote X
∣∣t0=t,
t1=−t−1 by X .

Lemma 3. The following identities hold:

cl(P0) = t0(1−t1)
(
t0−t1

)−1(t0+1
)−1 idV ,

cl(P1) = t1(1−t0)
(
t1−t0

)−1(t1+1
)−1 idV ,

cl(P2) = −(t0t1+1)
(
t0+1

)−1(t1+1
)−1 idV .

In particular,
cl(P0) =

(
t+t−1)−1 idV ,

cl(P1) = −
(
t+t−1)−1 idV ,

cl(P2) = 0 idV .

Proof. From the equalities (9) and (10), we have

(t0−t1)(t0+1)P0 = t0 R + t0(1−t1) idV ⊗V − t0t1 R−1,

(t1−t0)(t1+1)P1 = t1 R + t1(1−t0) idV ⊗V − t0t1 R−1,

(t0+1)(t1+1)P2 = −R + (t0+t1) idV ⊗V − t0t1 R−1.
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Since cl(R) = cl(R−1) = LG
©

(t0, t1) idV = idV and

cl
(
idV ⊗V

)
= LG

©©
(t0, t1) idV = 0 idV ,

the results follow. �

For any oriented (2, 2)-tangle T , since [T ] is a product of intertwiners and
{P0, P1, P2} is a basis for the space of intertwiners, we have

(11) [T ] = aT
0 (t0, t1)P0 + aT

1 (t0, t1)P1 + aT
2 (t0, t1)P2,

with aT
i (t0, t1) ∈ Q

(
t±1/2
0 , t±1/2

1 , ((t0−1)(1−t1))1/2
)
. The following lemma shows

that aT
i (t0, t1) ∈ Z

[
t±1/2
0 , t±1/2

1 ,
(
(t0−1)(1−t1)

)
1/2

]
, which then guarantees that

aT
i (t0, t1) is well defined, that is,

aT
i (t,−t−1) ∈ Z

[
t±1/2, (−t)±1/2,

(
t−t−1)1/2].

Lemma 4. For any oriented (2, 2)-tangle T ,

aT
i (t0, t1) ∈ Z

[
t±1/2
0 , t±1/2

1 ,
(
(t0−1)(1−t1)

)1/2].
In particular,

aT
i (t,−t−1) ∈ Z

[
t±1/2, (−t)±1/2,

(
t−t−1)1/2].

Proof. For any linear map A, we denote by Ai1···in
j1··· jm the coefficient of e i1···in

j1··· jm in A:

A =
∑

Ai1···in
j1··· jm e i1···in

j1··· jm .

Since the coefficients of R, n, ñ, u, and ũ are in Z
[
t±1/2
0 , t±1/2

1 ,
(
(t0−1)(1−t1)

)
1/2

]
(see the definitions), so too are the coefficients of [T ]. By [De Wit et al. 1999,
p. 169], we have

(Pi )
11
11 = δ0

i , (Pi )
44
44 = δ1

i , (Pi )
22
22 = δ2

i .

By comparing the coefficients in both sides of the equality (11), we get

[T ]
11
11 = aT

0 (t0, t1), [T ]
44
44 = aT

1 (t0, t1), [T ]
22
22 = aT

2 (t0, t1).

Then [T ]
11
11, [T ]

22
22, [T ]

44
44 ∈ Z

[
t±1/2
0 , t±1/2

1 ,
(
(t0−1)(1−t1)

)
1/2

]
, which implies that

aT
i (t0, t1) ∈ Z

[
t±1/2
0 , t±1/2

1 ,
(
(t0−1)(1−t1)

)
1/2

]
. �

Theorem 5. For any link L ,

LGL(t,−t−1) = 1L(t2).
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Proof. For any oriented (2, 2)-tangle T , we have T

 −

 T

 − (t−t−1)

 T


= cl

(
R ◦ [T ]

)
− cl

(
R−1 ◦ [T ]

)
− (t−t−1)cl

(
[T ]

)
= t0 aT

0 (t0, t1) cl(P0) + t1aT
1 (t0, t1) cl(P1) − aT

2 (t0, t1) cl(P2)

− t−1
0 aT

0 (t0, t1) cl(P0) + t−1
1 aT

1 (t0, t1) cl(P1) − aT
2 (t0, t1) cl(P2)

− (t−t−1)
(
aT

0 (t0, t1) cl(P0) + aT
1 (t0, t1) cl(P1) + aT

2 (t0, t1) cl(P2)
)

= taT
0 (t,−t−1)cl(P0) − t−1aT

1 (t,−t−1)cl(P1) − aT
2 (t,−t−1)cl(P2)

− t−1aT
0 (t,−t−1)cl(P0) + taT

1 (t,−t−1)cl(P1) + aT
2 (t,−t−1)cl(P2)

− (t−t−1)
(
aT

0 (t,−t−1)cl(P0) + aT
1 (t,−t−1)cl(P1) + aT

2 (t,−t−1)cl(P2)
)

= 0 idV .

The second equality follows from (9)–(11), the third from Lemmas 3 and 4, and
the last one from Lemma 3. Thus, we have the following skein relation:

LG (t,−t−1) − LG (t,−t−1) =
(
t − t−1) LG (t,−t−1),

which implies that LGL(t,−t−1) = 1L(t2). �

Problem. More generally, is there a relation between each invariant LGm,n(p, q)

and the Alexander–Conway polynomial?

In the case of n = 1, we have proved the following theorem in joint work with
D. De Wit and J. R. Links.

Theorem 6 [De Wit et al. 2005]. For any link L ,

LGm,1
L

(
p, eπ

√
−1/m)

= 1L
(

p−2m)
,

with p = qα on the left hand side.

5. Some properties of the polynomials

By setting t0 = t and t1 = −t−1, we obtain the Alexander–Conway polynomial
from the LG polynomial (Theorem 5). That is to say, the LG polynomial may be
regarded as a two-variable generalization of the Alexander–Conway polynomial.
Indeed, the LG polynomial inherits some properties of the Alexander–Conway
polynomial.
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For example, the LG polynomial of a split link vanishes, as does the Alexander–
Conway polynomial.

By Theorem 5, the symmetry 1(t) •

= 1(t−1) (where the symbol •

= indicates
equality up to a unit factor) transforms into the symmetry LGL(t0, t1)=LGL(t1, t0).
Under chirality change, these polynomials behave as follows:

1L∗ (t) = 1L(t−1), LGL∗ (t0, t1) = LGL(t−1
0 , t−1

1 ).

Because of the symmetry 1(t) •

=1(t−1), the Alexander–Conway polynomial does
not detect the chirality of knots. In contrast, the LG polynomial does detect it, at
least for knots of small crossing number. So we can think of the LG polynomial
as the Alexander–Conway polynomial, “expanded” with respect to chirality.

It is well-known that 1L(1) equals 1 if L is a knot, and 0 otherwise. Corre-
sponding to this property, we have:

Theorem 7. For any link L , LGL(t0, 1) = LGL(1, t1) =

{
1 if L is a knot,
0 otherwise.

Proof. The first equality follows from the symmetry LGL(t0, t1) = LGL(t1, t0). We
show the result for LGL(t0, 1). Since the LG polynomial of a split link vanishes, it
suffices to show that LGL(t0, 1) is a Vassiliev invariant of type 0; equivalently, that

LG (t0, 1) = LG (t0, 1).

This equality is verified in the same way as a similar one in the proof of Theorem 5.
Denoting X

∣∣
t1=1 by X , we get from Lemmas 3 and 4

cl(P0) = 0, cl(P1) = 1/2, cl(P2) = −1/2, aT
i (t0, 1) ∈ Z

[
t±1/2
0

]
.

Thus, for any oriented (2, 2)-tangle T , we have T

 −

 T


= cl(R ◦ [T ]) − cl(R−1 ◦ [T ])

= t0 aT
0 (t0, t1) cl(P0) + t1aT

1 (t0, t1) cl(P1) − aT
2 (t0, t1) cl(P2)

− t−1
0 aT

0 (t0, t1) cl(P0) + t−1
1 aT

1 (t0, t1) cl(P1) − aT
2 (t0, t1) cl(P2)

= t0 aT
0 (t0, 1)cl(P0) + aT

1 (t0, 1)cl(P1) − aT
2 (t0, 1)cl(P2)

− t−1
0 aT

0 (t0, 1)cl(P0) − aT
1 (t0, 1)cl(P1) + aT

2 (t0, 1)cl(P2)

= 0 idV ,



284 ATSUSHI ISHII

which implies that LG (t0, 1) = LG (t0, 1). �

For any Laurent polynomial A(t) ∈ Z[t±1
] with A(1) = ±1 and A(t) •

= A(t−1),
there exists a knot K such that 1K (t) •

= A(t) (see, for example, [Rolfsen 1976]).
Then we ask:

Problem. Let A(t0, t1) ∈ Z
[
t±1
0 , t±1

1

]
be a Laurent polynomial satisfying the equal-

ities A(t0, 1) = A(1, t1) = 1 and A(t0, t1) = A(t1, t0). Does there exist a knot K
such that LGK (t0, t1) = A(t0, t1)?

The Alexander–Conway polynomial 1K (t) =
∑

i ai t i of an alternating knot K
is “alternating”, in the sense that ai ai ′ ≥ 0 if i−i ′ is even, and ai ai ′ ≤ 0 otherwise
[Murasugi 1958a; 1958b; Crowell 1959].

Conjecture. The LG polynomial LGK (t0, t1) =
∑

i, j ai j t i
0 t j

1 of an alternating knot
K is “alternating”: ai j ai ′j ′ ≥ 0 if i+ j−i ′

− j ′ is even, and ai j ai ′j ′ ≤ 0 otherwise.

This conjecture is true for all prime knots with up to 10 crossings.
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