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Let 6g be a closed orientable surface of genus g ≥ 2 and τ a graph on 6g

with one vertex that lifts to a triangulation of the universal cover. We have
shown before that the cross ratio parameter space Cτ associated with τ ,
which can be identified with the set of all pairs of a projective structure and
a circle packing on it with nerve isotopic to τ , is homeomorphic to R6g−6,
and moreover that the forgetting map of Cτ to the space of projective struc-
tures is injective. Here we show that the composition of the forgetting map
with the uniformization from Cτ to the Teichmüller space Tg is proper.

1. Introduction

In [Kojima et al. 2003], we initiated the study of circle packings on Riemann sur-
faces with complex projective structures. Since the topic is rather new, we recall
the setting briefly.

A projective structure on a surface is, by definition, a geometric structure mod-
eled on the pair of the Riemann sphere Ĉ and the projective linear group PGL2(C)

acting on Ĉ by projective transformations. Hence it is in particular a complex
structure, but finer than the complex structure up to conformal equivalence. We
call a surface with a projective structure a projective Riemann surface for short
throughout this paper.

The key observation is that circles and disks are fundamental objects in one-
dimensional complex projective geometry, without reference to a metric, since a
projective transformation sends a circle in Ĉ to another. This is despite the fact that
PGL2(C) does not preserve any metric on the Riemann sphere. Thus, circles on a
projective Riemann surface are not metric circles in the usual sense, rather, they are
homotopically trivial closed curves that are taken to circles in Ĉ by the developing
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map. A circle in this article is a circle in this projective sense, and not a circle with
respect to the hyperbolic metric conformally equivalent to the projective structure.

Suppose we are given a closed orientable surface 6g of genus g ≥ 2 without
any auxiliary structure, and a graph τ on 6g that lifts to an honest triangulation of
the universal cover 6̃g. We are interested in the moduli space of all pairs (S, P)

consisting of a projective Riemann surface S with a reference homeomorphism
h : 6g → S and a circle packing P on S whose nerve is isotopic to h(τ ). In
[Kojima et al. 2003], this moduli space is shown to be identifiable with what we
call the cross ratio parameter space Cτ .

Let Pg be the space of all marked projective structures on 6g, that is, all projec-
tive Riemann surfaces homeomorphic to 6g up to marked projective equivalence.
To each pair (S, P) ∈ Cτ , assign its first component to obtain the forgetting map

f : Cτ → Pg.

One of main results in [Kojima et al. 2003] is that when τ has exactly one vertex,
Cτ is homeomorphic to euclidean space of dimension 6g − 6 and f is injective.
Injectivity implies that each projective Riemann surface admits at most one circle
packing dominated by τ . In other words, the packings are in fact rigid.

At the same time, by assigning the underlying complex structure to each pro-
jective Riemann surface, we obtain the uniformization map

u : Pg → Tg

from Pg to the Teichmüller space Tg, the space of all complex structures on 6g

up to marked conformal equivalence. By taking the Schwarzian derivative of the
developing map, we can identify a projective structure with a holomorphic qua-
dratic differential on the underlying Riemann surface, so the uniformization map
is a complex vector bundle of rank 3g − 3 over Tg.

For the genus-one case, when τ has one vertex, it was shown in [Mizushima
2000] in a slightly different language that the composition of the forgetting map
with the uniformization map is a homeomorphism. In [Kojima et al. 2003], we
conjectured that this holds in general, regardless of the (positive) genus g and the
graph τ . In this paper we take the first step towards solving that conjecture, by
proving the following properness theorem for graphs τ having a single vertex:

Theorem 1.1. Let τ be a one-vertex graph on 6g (g ≥ 2) that lifts to an honest
triangulation of 6̃g, and let Cτ be the cross ratio parameter space associated with
τ . The composition u ◦ f : Cτ → Tg of the forgetting map with the uniformization
map is proper.

To complete the proof of the conjecture for such graphs τ , since Cτ in this case
was shown to be homeomorphic to R6g−6, it suffices to show that the map is locally
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injective. This sort of question for the grafting map based on Tanigawa’s properness
theorem [1997] was settled in [Scannell and Wolf 2002]. See also [Faltings 1983;
McMullen 1998] for earlier proofs of special cases. However, it is not clear that
the proofs in these papers can be extended to our setting.

The rest of this paper is organized as follows. In Section 2 we recall the def-
inition of the cross ratio parameter space and show that it is properly embedded
in euclidean space. In Section 3, following the exposition in [Kamishima and Tan
1992], we briefly review the Thurston coordinates of Pg in terms of hyperbolic
structures and measured laminations, and show that the projected image of f (Cτ )

to the space of measured laminations on 6g is bounded. The results up to that sec-
tion are valid for any graph τ . In Section 4, under the assumption that τ has exactly
one vertex, we show that the holonomy map from f (Cτ ) to the algebrogeometric
quotient of the space of representations of π1(6g) in PGL2(C) up to conjugacy
is proper, and deduce that the projection of f (Cτ ) to the space of the hyperbolic
structures in the Thurston coordinates is also proper. In Section 5, we complete
the proof of the theorem using Tanigawa’s inequality [1997].

2. The cross ratio parameter space

Let 6g be a closed orientable surface of genus g ≥ 2 and τ a graph on 6g that lifts
to an honest triangulation of 6̃g. Suppose that S is a projective Riemann surface
lying in f (Cτ ) with a reference homeomorphism h : 6g → S, and let P be a circle
packing on S with nerve isotopic to h(τ ). In [Kojima et al. 2003], we defined the
cross ratio parameter for the pair (S, P), which is a function

c : Eτ → R,

where Eτ denotes the set of edges of τ . To each edge e of τ is associated a
configuration of four circles in the developed image surrounding a preimage ẽ of
e; see Figure 1, left. The real number c(e) assigned to the edge e is obtained by
taking the imaginary part of the cross ratio

(p14, p23, p12, p13) =
(p14 − p12)(p23 − p13)

(p14 − p13)(p23 − p12)

of the four contact points (p14, p23, p12, p13) in the configuration chosen as in
Figure 1, right, with an orientation convention. (For the definition of the cross
ratio of four ordered points, see [Ahlfors 1953].) This number is the modulus
of the rectangle obtained by normalizing the configuration by moving the contact
point p13 to ∞; see Figure 2, where it can be seen that the cross ratio is purely
imaginary. Moreover, unless the imaginary part is positive, neighboring triangular
interstices overlap and the circles cannot correspond to a correct packing.
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Because the developing map is a local homeomorphism, the cross ratio pa-
rameter must satisfy certain conditions, best expressed in terms of the associated
matrices. If e is an edge of τ with real value x = c(e), we associate to e the matrix

A =

(
0 1

−1 x

)
,

where x is positive real. The matrix A represents a transformation sending the
left triangular interstice to the right one in the normalized picture of Figure 1,
which, as we recall, is obtained by sending p12, p13 and p23 to ∞, 0 and

√
−1

respectively. Now, if v is a vertex of τ with valence m, we read off the edges
e1, . . . , em incident to v in a clockwise direction to obtain a sequence of real values
x1 = c(e1), . . . , xm = c(em) associated to v. Set

W j = A1 A2 · · · A j =

(
a j b j

c j d j

)
for j = 1, . . . , m,
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where Ai is the matrix
(

0 1
−1 xi

)
associated to ei . Then, for each vertex v of τ ,

Wv = A1 A2 · · · Am =

(
−1 0

0 −1

)
(1)

and

(2) a j , c j < 0 and b j , d j > 0 for 1 ≤ j ≤ m − 1, except for a1 = dm−1 = 0.

Roughly, the first condition means that a fixed triangular interstice is mapped back
to its original position by the composition of the transformations represented by
the associated matrices, and this ensures the consistency of the chain of circles
surrounding the circle corresponding to v; see Figure 3. The second condition
eliminates the case where the chain surrounds the central circle more than once. It
does not matter which edge we start out with in this construction.

Conversely, if an assignment to the edges of τ ,

c : Eτ → R,

satisfies conditions (1) and (2) for each vertex, the map is the cross ratio parameter
for some packing P on a projective Riemann surface S ∈ f (Cτ ), and both S and
P are determined by c [Kojima et al. 2003, Main lemma]. Hence, the set

Cτ = {c : Eτ → R | c satisfies (1) and (2) for each vertex},

called the cross ratio parameter space, can be identified with the space of pairs
(S, P) of a projective Riemann surface S and a circle packing P on S, and c
parametrizes the space of such pairs.

From the definition we see that Cτ is a semialgebraic set in REτ defined by the
equations (1) and the inequalities (2) for each vertex v. We first show that the strict
inequalities of (2) can be replaced by nonstrict inequalities; namely, for each vertex



292 SADAYOSHI KOJIMA, SHIGERU MIZUSHIMA AND SER PEOW TAN

v and with the same notation as before, consider the set of conditions

(3) a j , c j ≤ 0 and b j , d j ≥ 0 for 1 ≤ j ≤ m − 1, except for a1 = dm−1 = 0.

Lemma 2.1. Conditions (1) and (2) are equivalent to (1) and (3).

Proof. It is sufficient to prove that (2) follows from (1) and (3). We have the
identity

(4)
(

a j+1 b j+1

c j+1 d j+1

)
=

(
a j b j

c j d j

)(
0 1

−1 x j+1

)
=

(
−b j a j + b j x j+1

−d j c j + d j x j+1

)
for j = 1, . . . , m − 1. Condition (2) is then shown to follow from (1) and (3) by
induction as follows. We first show that a j < 0 and b j−1 > 0 for j = 2, . . . , m −1.

Set the inductive hypotheses to be a j <0 and b j−1 >0. Since a2 =−b1 =−1<0,
the hypotheses are true for j = 2. Assume that (1) and (3) hold and the hypotheses
are true for j = k, where 2 ≤ k ≤ m − 2. Then bk ≥ 0, by (3). If bk = 0,
bk+1 = ak + bk xk+1 = ak < 0 by (4) and the hypotheses, contradicting bk+1 ≥ 0.
Thus bk > 0. Also ak+1 = −bk < 0; hence the hypotheses are true for j = k + 1.
Combining this induction with the relations bm−1 = −am = −1 < 0 gives the strict
inequalities for the a j and b j in (2).

A similar argument yields the strict inequalities for the c j and d j . �

This lemma tells us that condition (2) does not divide a connected component
of the algebraic set determined by (1). It just chooses appropriate connected com-
ponents. With this, we can easily prove the next result:

Lemma 2.2. The inclusion map of Cτ into REτ is proper, where Eτ is the set of
edges of τ . This holds for general τ , with no restriction on the number of vertices.

Proof. Let {cn} be a sequence of points in the intersection of a compact set in REτ

with Cτ . Then there exists a convergent subsequence. Let c∞ denote the limit of
the subsequence. Each cn satisfies the conditions (1) and (2). Each entry of the
product of matrices in conditions (1) and (2) is a polynomial in the xi and is thus
continuous. Hence, the limit c∞ satisfies the conditions (1) and (3), and also lies
in Cτ by Lemma 2.1. �

3. Measured laminations

We recall Thurston’s parametrization of Pg and how f (Cτ ) is located with respect
to the parametrization.

The space we are concerned with consists of isotopy classes of measured lami-
nations on 6g, and is denoted by MLg. A measured lamination is defined to be a
closed subset on 6g locally homeomorphic to a product of a totally disconnected
subset of the interval with an interval, together with a transverse measure. Although
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a measured lamination is a topological concept, once we put a hyperbolic metric
on 6g, its support is canonically realized as a disjoint union of simple geodesics
which forms a closed subset on the surface. Such a lamination is called a measured
geodesic lamination, and hence MLg can be identified with the set of measured
geodesic laminations on a hyperbolic surface homeomorphic to 6g. The space
MLg has a natural topology induced from the weak topology on measures on the
set of undirected geodesics [Thurston 1979], and is known to be homeomorphic to
euclidean space of dimension 6g − 6. A detailed account of the theory in terms of
measured foliations (a notion equivalent to that of a measured geodesic lamination:
see [Miller 1982]) can be found in [Fathi et al. 1979; Thurston 1988].

Thurston has shown that any projective Riemann surface corresponds uniquely
to a hyperbolic surface pleated along geodesic laminations with a bending measure.
Following [Kamishima and Tan 1992], we briefly review his parametrization.

Start with a projective Riemann surface S that is not a hyperbolic surface. Con-
sider the set of maximal disks in the universal cover S̃. Each maximal disk is
naturally endowed with the hyperbolic metric, the boundary of each disk intersects
the ideal boundary of S̃ in two or more points, and we can take the convex hull
of these ideal boundary points. It can be shown that this gives a stratification of
S̃ by ideal polygons, and ideal bigons foliated by “parallel lines” joining the two
ideal vertices of the bigons. The polygonal parts support a canonical hyperbolic
metric. Collapsing each bigon foliated by the parallel lines in S̃ to a line and
taking the quotient of the result by the action of the fundamental group, we obtain
a hyperbolic surface H .

A hyperbolic surface is in particular a projective Riemann surface and there is
a natural section

s : Tg → Pg

to the uniformization map u : Pg → Tg obtained by assigning a hyperbolic surface
to each conformal class of Riemann surfaces. Thus assigning H to each S, we
obtain the hyperbolization map

π : Pg → s(Tg).

Also the stratification defines a geodesic lamination λ on H by taking the union
of collapsed lines. Moreover, using the convex hull of the ideal points of the max-
imal disk not in the disk but in 3-dimensional hyperbolic space H3, we can assign
a transverse bending measure supported on λ. This defines the pleating map

β : Pg → MLg.

Thurston showed that π and β together form a homeomorphism parametrizing Pg:

(π, β) : Pg
∼=

−→ s(Tg) × MLg.
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Lemma 3.1. β( f (Cτ )) is bounded in MLg. This holds for a general τ .

Proof. Let S be a surface in f (Cτ ) ⊂ Pg and P a circle packing on S with nerve τ .
Set H = π(S) and λ = β(S). The measured lamination λ can be pulled back to a
lamination with a transverse measure by blowing up in a canonical way the atomic
leaves on H to parallel leaves in S with stretched transverse measure. Hence we
regard S as a surface with this measured lamination µ. To see the boundedness of
β( f (Cτ )), it is sufficient to show that the measure along each edge of τ is uniformly
bounded, since τ generates the fundamental group of 6g and µ collapses to λ.

We can choose a reference point for each circle in P to represent the vertex v

of τ such that the supporting maximal disk of the point representing v contains the
circle. We take these points’ preimage in P̃ to get equivariant reference vertices.
Let C1 and C2 be contact circles in P̃ , and Di , for i = 1, 2, the supporting maximal
disk of the reference point vi of Ci . Now D1 contains C1 and D2 contains C2, so the
Di form a π roof over the pleated hyperbolic surface in H3 locally corresponding
to the developed image of S̃; see Figure 4. So the total transverse measure along a
path ẽ between v1 and v2 contained in D1 ∪ D2 is bounded above by π . �

4. Holonomy representations

We now restrict ourselves to the case where τ has one vertex, and see how the
holonomy representations behave.

Our main concern is the space of representations of π1(6g) in PGL2(C) up
to conjugacy, which is unfortunately non-Hausdorff. Hence we take further the
algebrogeometric quotient, to obtain

Xg = Hom(π1(6g), PGL2(C)) // ∼,

which can be identified with the space of characters. Assign to each projective
Riemann surface its holonomy representation, to obtain the map

hol : Pg → Xg,

which is a local homeomorphism [Hejhal 1975].
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Lemma 4.1. Suppose that τ has only one vertex. There is a finite subset F of
the fundamental group π1(6g) such that, if {cn} is a sequence of points in Cτ that
escapes away from the compact sets, there is an element g ∈ F and a subsequence
of {cn} for which |tr ρn(g)| → ∞, where ρn = hol( f (cn)). In particular, the com-
position hol ◦ f : Cτ → Xg is proper.

Remark. Although the image of the holonomy lies in PGL2(C) and the trace
makes sense only up to a sign, its absolute value is well defined.

Proof. Since τ has one vertex, each edge ei of τ starts and ends at the same vertex
v, and so corresponds to a pair of elements g±1

i ∈ π1(6g), and the set {g±1
i } forms

a generating set for π1(6g). Define F as the set of all words of length 2 in this
generating set.

Passing to a subsequence we may assume by Lemma 2.2 that the real value
cn(e) of some fixed edge e of τ approaches either 0 or ∞ as n → ∞. By using
(1), (2) and (4), we may further assume that, in fact, it approaches ∞. For each
Sn = f (cn), consider the developed image of S̃n and in particular the configuration
of 6 circles C1, . . . , C6 in P̃n with corresponding vertices v1, . . . , v6 of τ̃ as given
in Figure 5, left. Here the edge e3 = v1v3 is the one whose assigned real value
cn(e3) approaches ∞ as n → ∞. Note that the configuration of C j and v j depends
on n.

For each n, we may normalize the developed image so that it becomes as in
Figure 5, right, where the tangency point p13 between C1 and C3 is

√
−1. The con-

catenation of the two directed edges e2 = v2v1 and e4 = v1v4, which are the neigh-
boring edges of e3 about the vertex v1, corresponds to an element g = g4g−1

2 ∈ F .
Its holonomy image ϕn := ρn(g) = ρn(g4g−1

2 ) is an element of PGL2(C) mapping
C2 to C4. In the normalized picture, the radius of C4 approaches zero as n → ∞,
since cn(e3) → ∞. Hence we can represent the images of 0, 1 and ∞ under ϕn ,
all lying on C2, by

√
−1+ε1,

√
−1+ε2 and

√
−1+ε3 respectively, where ε1, ε2,

ε3 depend on n and they all approach 0 as n tends to infinity. Note that the point 1

p12

p23

p13 p14

p34
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and its image are not necessarily contact points. Setting Kn = (ε2 − ε3)/(ε2 − ε1),
we can write

ϕ−1
n (z) = Kn

z − (
√

−1 + ε1)

z − (
√

−1 + ε3)
.

Further,

Mn =
1

√
Kn(ε1 − ε3)

(
Kn −Kn(

√
−1 + ε1)

1 −(
√

−1 + ε3)

)
∈ SL2(C)

is a matrix representative of ϕ−1
n . We have

tr Mn =
1

√
ε1 − ε3

(√
Kn −

1
√

Kn
(
√

−1 + ε3)

)
and |tr ϕn| = |tr ϕ−1

n | = |tr Mn|. If |tr Mn| → ∞, we are done; otherwise, we must
have √

Kn −
1

√
Kn

(
√

−1 + ε3) → 0,

since (ε1 − ε3) → 0 as n → ∞. This implies that Kn approaches
√

−1, since
ε3 → 0 does. Geometrically, this means that the angle formed by

√
−1 + ε1,

√
−1 + ε2 and

√
−1 + ε3 approaches π/2, and hence

√
−1 + ε1 and

√
−1 + ε3

approach diametrically opposite positions on the circle C4. In other words, the arc
α1 = ϕn([−∞, 0]) occupies half of the circle C4 in the limit.

On the other hand, the minor arc α2 on C4 connecting p14 and p34 (this is
the arc on the circle joining p14 to p34 which does not contain p45 and p46) also
occupies half of C4 in the limit, since the radius of C4, which we denote by rad C4,
approaches 0, where p jk is the tangency point between C j and Ck .

For each circle, the contact points with neighboring circles cuts it into arcs meet-
ing only at the endpoints.

Claim. α1 and α2 are the images under ϕn of two distinct, nonadjacent arcs of C2

and thus are distinct nonadjacent arcs on C4.

Proof. It suffices to show that the image of [−∞, 0] on C1 under ρn(g−1
2 ) and the

image of the arc α2 under ρn(g−1
4 ) are nonadjacent arcs of C1.

We recall from [Kojima et al. 2003, Section 4] the notion of intersecting and
nonintersecting triples. For a packing with one circle, an edge of nerve τ cor-
responds to the self-contact points of the unique circle on 6g, and hence to the
pair of contact points on a circle in the developed image, where the contact points
are developed images of the prescribed contact point on 6g. A triangle of the
nerve τ appears as a triple of such pairs of contact points, the six contact points
consisting of three pairs of neighboring contact points at the same time. There are
two possible cases, as shown in Figure 6.
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Figure 6. Intersecting and nonintersecting triples.

The pair of edges (e2, e3) are either part of an intersecting or a nonintersect-
ing triple of edges, since they are adjacent. Similarly, the pair of edges (e3, e4)

are also part of an intersecting or nonintersecting triple. For all possibilities,
ρn(g−1

2 )[−∞, 0] and ρn(g−1
4 )(α2) are nonadjacent arcs of C1; see Figure 7. �

C4

C3

C2 C1

α2

[−∞, 0]

ρn(g−1
4 )(α2)

ρn(g−1
2 )([−∞, 0])

C4

C3

C2

C1

C4

C3

C2

C1

Figure 7. Top left: two nonintersecting triples; bottom: two inter-
secting triples; top right: one of each.
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From the claim, we see that the angle subtended on C4 between p45 and p34 in
Figure 5 (right) approaches zero, as does the angle between p46 and p14. Thus,
the radii ratios rad C5/rad C4 and rad C6/rad C4 approach zero as n → ∞. This
in turn implies that the values of cn at the two edges v1v4 and v3v4 both approach
∞. This can be seen by scaling the same figure so that rad C4 = 1 for each n;
then C1 tends to a straight line parallel to C3 and the radii of C5 and C6 tend to
0, so the values of cn at the two edges v1v4 and v3v4 both approach ∞ [Kojima
et al. 2003, Proposition 2.8]. Repeating the argument with the roles of C2 and
C4 reversed, we see that either |tr ϕn| → ∞ or the values of cn at v1v2 and v2v3

both approach ∞. In other words, either |tr ϕn| → ∞ or the values of cn at all
neighboring edges approach ∞. By induction, using the edge e4 instead of e3 and
repeating the argument, we see that either some element g ∈ F has holonomy with
diverging trace, or the values of cn at all the edges of τ diverge to ∞. However,
in the latter case, the (2, 2) term dm of the matrix corresponding to the word Wm

defined in Section 2 has a dominant term x1x2 · · · xm and diverges to ∞. This
contradicts the fact that dm = −1 for all points of the sequence by condition (1) in
Section 2. �

Lemma 4.2. Suppose that τ has only one vertex. The composition

π ◦ f : Cτ → s(Tg)

of the forgetting map with the collapsing map π : Pg → s(Tg) in the Thurston
parametrization is proper. In particular, the restriction of π to f (Cτ ) is proper.

Proof. Suppose that {cn} is a sequence in Cτ that escapes away from compact
sets. By passing to a subsequence, we may assume by Lemma 4.1 that there is
an element g ∈ π1(6g) with holonomy ϕn = ρn(g) for which |tr ϕn| → ∞. This
g corresponds to a closed curve γ on 6g and the length ln(γ ) of the geodesic
representative of γ on the collapsed surface Hn = π(Sn) satisfies the inequality

ln(γ ) ≥ dH3(zn, ϕn(zn)),

where zn is any point on the axis of ϕn in H3 and dH3(zn, ϕn(zn)) is the hyperbolic
distance between zn and ϕn(zn). Since |tr ϕn|→∞, we have dH3(zn, ϕn(zn))→∞

and hence ln(γ ) → ∞. It follows that {Hn} escapes away from compact sets in
s(Tg). �

5. Proof of the main theorem

Theorem 5.1 [Tanigawa 1997, Theorem 3.4]. Let S = (H, λ) be a projective
Riemann surface homeomorphic to 6g (g ≥ 2), where H = π(S) ∈ s(Tg) and
λ = β(S) ∈ MLg. Let X be the underlying Riemann surface and h : X → H a
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harmonic map with respect to the hyperbolic metric on H. Let E(h) be its energy.
Then

(5) lH (λ) ≤
lH (λ)2

EX (λ)
≤ 2E(h) ≤ lH (λ) + 8π(g − 1),

where lH (λ) is the hyperbolic length of λ on H and EX (λ) is the extremal length
of λ on X.

Proof of Theorem 1.1. Assuming that τ has one vertex, we follow the argument in
[Tanigawa 1997]. Let {cn} be a sequence of points in C that escapes away from
compact sets. Write f (cn) = Sn = (Hn, λn) ∈ s(Tg)×MLg and let Xn = u(Sn) be
the corresponding underlying Riemann surface. By Lemma 4.2, we may assume
that {Hn} escapes away from compact sets in T. By Lemma 3.1, since {λn} lies in
a compact subset of MLg, we may assume by taking a subsequence if necessary
that λn → λ for some fixed measured lamination λ. Let hn be the harmonic map
from Xn to Hn with respect to a hyperbolic metric on Hn .

If E(hn) is bounded, {Xn} escapes away from compact sets as desired, since
otherwise we have a contradiction with a result of M. Wolf [1989]. If not, the
diverging rate of all terms in the inequalities (5) is the same as that of lHn (λn) and
hence

lim
n→∞

EXn (λ) = lim
n→∞

EXn (λn) = lim
n→∞

(lHn (λn) + O(1)) = ∞.

This implies that {Xn} escapes away from compact sets as well. �
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