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Let M be a closed oriented surface endowed with a Riemannian metric g
and let � be a 2-form. We show that the magnetic flow of the pair (g, �)

has zero asymptotic Maslov index and zero Liouville action if and only if g
has constant Gaussian curvature, � is a constant multiple of the area form
of g and the magnetic flow is a horocycle flow.

This characterization of horocycle flows implies that if the magnetic flow
of a pair (g, �) is C1-conjugate to the horocycle flow of a hyperbolic metric
ḡ, there exists a constant a > 0 such that ag and ḡ are isometric and a−1�

is, up to a sign, the area form of g. It also implies that if a magnetic flow is
Mañé-critical and uniquely ergodic it must be the horocycle flow.

As a byproduct we show the existence of closed magnetic geodesics for
almost all energy levels in the case of weakly exact magnetic fields on closed
manifolds of arbitrary dimension satisfying a certain technical condition.

1. Introduction

Let 0 be a cocompact lattice of PSL(2,R). The standard horocycle flow h is given
by the right action of the one-parameter subgroup(1 t

0 1

)
on 0\PSL(2,R). The horocycle flow is known to display very peculiar ergodic
properties. It preserves the Riemannian volume on 0\PSL(2,R), is uniquely er-
godic [Furstenberg 1973], and mixing of all degrees [Marcus 1978]. It has zero
entropy, since

(1) φ0
t ◦ hs = hse−t ◦φ0

t

for all s, t ∈ R, where φ0 is the geodesic flow given by the one-parameter subgroup(
et/2 0
0 e−t/2

)
.
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In fact, h parametrizes the strong stable manifold of φ0. The horocycle flow is a
very rigid object, as shown in [Marcus 1983; Ratner 1982; 1983]. Recent results
on ergodic averages and solutions of cohomological equations for h can be found
in [Burger 1990; Flaminio and Forni 2003].

Here we look at horocycle flows as magnetic flows. A matrix X in sl(2,R) gives
rise to a flow φ on 0\PSL(2,R) by setting

φt(0g)= 0get X .

The geodesic and horocycle flows are just particular cases of these algebraic flows.
Consider the path of matrices in sl(2,R) given by

R 3 λ 7→ Xλ :=

(
1/2 0
0 −1/2

)
+ λ

(
0 1/2

−1/2 0

)
.

The flows φλ on 0\PSL(2,R) associated with the matrices Xλ have an interesting
interpretation. Since PSL(2,R) acts by isometries on the hyperbolic plane H2,
M :=0\H2 is a compact hyperbolic surface (provided 0 acts without fixed points)
and the unit sphere bundle SM of M can be identified with 0\PSL(2,R). A calcu-
lation shows that φλ is the Hamiltonian flow of the Hamiltonian H(x, v) =

1
2 |v|2x

with respect to the symplectic form on TM given by

−dα+ λπ∗�a,

where �a is the area form of M , π : TM → M is the canonical projection and α
is the contact 1-form that generates the geodesic flow of M . For λ = 0, φ0 is the
geodesic flow and for λ= 1, φ1 is the flow induced by the one-parameter subgroup
with matrix on sl(2,R) given by

X1 =

(
1/2 1/2

−1/2 −1/2

)
.

Since there exists an element c ∈ PSL(2,R) such that

c−1 X1c =

(0 1
0 0

)
,

the map f : 0\PSL(2,R)→ 0\PSL(2,R) given by f (0g) = 0gc conjugates φ1

and h; that is, f ◦ φ1
t = ht ◦ f . In fact, any matrix in sl(2,R) with determinant

zero will give rise to a flow conjugate to ht or h−t . (So, up to orientation, there is
just one algebraic horocycle flow.) In passing we note that det Xλ = −

1
4(1 − λ2),

so for |λ| < 1, the flow φλ is conjugate to the geodesic flow φ0, up to a constant
time scaling by

√
1 − λ2. Hence the magnetic flows φλ are just geodesic flows, but

with entropy
√

1 − λ2. This observation is due to V. I. Arnold [1961].
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In general, if (M, g) is a closed Riemannian manifold and � is a closed 2-form,
the Hamiltonian flow φ of H(x, v)= 1

2 |v|2x with respect to the symplectic form on
TM given by

ω := −dα+π∗�,

is called the magnetic flow of the pair (g, �) because it models the motion of a
particle under the influence of the magnetic field �. The projection of the orbits of
φ to M are called magnetic geodesics. The discussion above shows that h appears
as the magnetic flow of a hyperbolic surface with � equal to the area form of the
surface.

Since the horocycle flow has no closed orbits, this already gives an example of
a Hamiltonian system with an energy level (the unit sphere bundle SM) without
closed orbits. This example has been much used, most notably by V. Ginzburg
[1995; 1996; 1997] to give smooth counterexamples to the Hamiltonian Seifert
conjecture in R2n , where n ≥ 3. (A C2-counterexample is now available in R4; see
[Ginzburg and Gürel 2003].)

How often does the horocycle flow appear as a magnetic flow? To answer this we
first prove a characterization of horocycle flows within the set of magnetic flows.

Magnetic flows on surfaces leave invariant the volume form α∧dα. The associ-
ated Borel probability measure is called the Liouville measure µ` of SM . We shall
assume from now on that M has genus ≥ 2. Then π∗

: H 2(M,R)→ H 2(SM,R)

is the zero map and thus if � is any 2-form, π∗� is exact on SM . It follows that
ω restricted to SM is exact and we let 2 be any primitive. We define the action of
the Liouville measure as

a(µ`) :=

∫
2(X) dµ`,

where X is the vector field on SM that generates the magnetic flow. The action
does not depend on the primitive, since the asymptotic cycle of µ` is zero (see
Section 2 and [Contreras et al. 2003]). That is, for any closed 1-form ϕ on SM we
have ∫

ϕ(X) dµ` = 0.

It is simple to check that a(µ`) = 0 for the horocycle flow, the flow defined on
a hyperbolic surface M when � is the area form. In fact, in this case, there is a
primitive 2 with 2(X) ≡ 0. It is also easy to check that there are no conjugate
points [Contreras and Iturriaga 1999, Example A.1]. Equivalently, using the results
in [Contreras et al. 2003], we can say that the asymptotic Maslov index m(µ`) of
the Liouville measure is zero (see Section 2). (We remark that the only magnetic
flows without conjugate points on the 2-torus are geodesic flows of flat metrics;
see [Bialy 2000]).
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We first show that these two symplectic-ergodic quantities characterize horocy-
cle flows.

Proposition. Let M be a closed oriented surface of genus greater than or equal to
two endowed with a Riemannian metric g and let� be a 2-form. The magnetic flow
of the pair (g, �) has a(µ`) = m(µ`) = 0 if and only if g has constant Gaussian
curvature, � is a constant multiple of the area form of g and the magnetic flow is
a horocycle flow.

The Proposition has the following consequence:

Theorem A. Let M be a closed oriented surface endowed with a Riemannian met-
ric g and let� be a 2-form. If the magnetic flow of the pair (g, �) is C1-conjugate
to the horocycle flow of a hyperbolic metric ḡ, there exists a constant a > 0, such
that ag and ḡ are isometric and a−1� is, up to a sign, the area form of g.

It is not possible to conclude that g has curvature −1 (i.e. a = 1). This is simply
because the magnetic flow of a pair (g, �) with g of constant negative curvature
−k, � = λ�a (λ > 0) and λ2

= k is smoothly conjugate to the horocycle flow
of a hyperbolic surface. To see this observe that an easy scaling argument shows
that the magnetic flow of a such pair is, up to a constant time change, conjugate
to the horocycle flow of a hyperbolic surface. But by (1), ht is conjugate to hτ t

for any positive real number τ . This shows that the area A of a surface is not
preserved under C1-conjugacies of magnetic flows. C. Croke and B. Kleiner [1994]
have shown that the volume of a Riemannian manifold is preserved under C1-
conjugacies of geodesic flows. In the case of transitive magnetic flows, we show
that C1-conjugacies preserve a(µ`)/A (Lemma 4.1).

We now describe a second and more involved application of the Proposition.
Let �̃ be the lift of � to the universal cover M̃ ∼= R2 of M . Since �̃ is an exact
form, there exists a smooth 1-form θ such that �̃ = dθ . Consider the Lagrangian
on M̃ given by

L(x, v)=
1
2 |v|2x − θx(v).

It is well known that the extremals of L , which are the solutions of the Euler–
Lagrange equations

d
dt
∂L
∂v
(x, v)=

∂L
∂x
(x, v),

coincide with the lift to M̃ of the magnetic geodesics. The action of the Lagrangian
L on an absolutely continuous curve γ : [a, b] → M̃ is defined by

AL(γ )=

∫ b

a
L(γ (t), γ̇ (t)) dt.
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The Mañé critical value of the pair (g, �) is defined as

c = c(g, �) := inf
{
k ∈ R : AL+k(γ )≥ 0 for any absolutely continuous

closed curve γ defined on any closed interval [0, T ]
}
.

Like any Lagrangian flow, the magnetic flow for TM̃ can be viewed as the Hamil-
tonian flow defined by the canonical symplectic form on T ∗M̃ and a suitable
Hamiltonian function H : T ∗M̃ → R; in this case,

H(x, p)=
1
2 |p + θx |

2.

The Legendre transform L : TM̃ → T ∗M̃ , defined by

L(x, v)=
∂L
∂v
(x, v),

carries orbits of the Lagrangian flow for L to orbits of the Hamiltonian flow defined
by H and the canonical symplectic form. The critical value can also be defined in
Hamiltonian terms [Burns and Paternain 2002] as:

c(g, �)= inf
u∈C∞(M̃,R)

sup
x∈M̃

H(x, dx u)= inf
u∈C∞(M̃,R)

sup
x∈M̃

1
2 |dx u + θx |

2.

As u ranges over C∞(M̃,R) the form θ + du ranges over all primitives of �̃,
because any two primitives differ by a closed 1-form, which must be exact since
M̃ is simply connected. Since for a surface of genus at least 2 there are always
bounded primitives, we have c(g, �) < ∞. (On the upper-half plane with the
hyperbolic metric, the primitive −dx/y of the area form dx ∧ dy/y2 is bounded.)

We will say that a magnetic flow is Mañé-critical if c(g, �)= 1
2 . Magnetic flows

which are supercritical, i.e. 1
2 > c(g, �) always have positive topological entropy

[Burns and Paternain 2002, Proposition 5.4]. Hence such flows exhibit a horseshoe
and exponential growth rate of hyperbolic closed magnetic geodesics. In fact, we
will show that, in any dimension, if 1

2 > c(g, �), then a nontrivial homotopy class
contains a closed magnetic geodesic provided that the centralizer of some element
in the class is an amenable subgroup (Theorem 5.5). For subcritical magnetic
flows — those for which 1

2 < c(g, �)— one hopes to prove that there are always
closed contractible magnetic geodesics, although nothing of this kind has been
proved in general. When � itself is exact, the main result in [Contreras et al.
2004] says that there always exists a closed magnetic geodesic.

What happens for magnetic flows which are Mañé-critical with � nonexact?
It is easy to check that the horocycle flow is Mañé-critical; see [Contreras 2001,
Example 6.2]. Is it the only magnetic flow which is Mañé-critical and uniquely
ergodic? Aubry–Mather theory combined with the Proposition gives the answer:
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Theorem B. Let M be a closed oriented surface endowed with a Riemannian
metric g and let � be a 2-form. Suppose the magnetic flow of the pair (g, �)
is Mañé-critical and uniquely ergodic. Then g has constant Gaussian curvature,
� is a constant multiple of the area form of g and the magnetic flow is a horocycle
flow.

Our results on the existence of closed magnetic geodesics in nontrivial free ho-
motopy classes for supercritical magnetic flows, combined with recent results of
G. Contreras [2003] and O. Osuna [2005], imply the following statement on the
almost existence of closed magnetic geodesics for weakly exact magnetic flows.
Recall that � is weakly exact if its lift to the universal covering M̃ of M is exact.

Theorem C. Let M be an arbitrary closed manifold endowed with a Riemannian
metric g and let � be a weakly exact 2-form whose lift to M̃ has a bounded prim-
itive. If π1(M) contains a nontrivial element with an amenable centralizer, then
almost every energy level contains a closed magnetic geodesic.

Recall that a discrete group 0 is said to be amenable if the space of bounded
functions 0 → R has a left (or right) invariant mean [Pier 1984]. Examples are
finite groups, abelian groups and finite extensions of solvable groups. If a group
contains a free subgroup on two generators, then it is nonamenable. I do not know
of any example of a finitely presented group for which the centralizer of every
element is nonamenable. Contreras [2003] proved Theorem C when � is exact
without any assumption on π1(M) and V. Ginzburg and E. Kerman [1999] proved
the theorem when M is a torus. Also, by virtue of Preissman’s theorem, Theorem
C applies to all closed manifolds that admit a metric of negative curvature (in this
case there are bounded primitives; see [Gromov 1991]).

There are several results establishing the existence of closed contractible mag-
netic geodesics for almost every low energy level; see [Schlenk 2006; Macarini
2003] and references therein. The methods of symplectic topology have proved to
be effective in this respect. For high energy levels, at least when g is generic, one
can also obtain existence of closed magnetic geodesics in free homotopy classes by
observing that magnetic flows approach geodesic flows as energy increases. Very
little is known about how to bridge the gap. The exceptions seem to be Theorem C
and the main result in [Contreras et al. 2004] alluded above, which are both based
on Aubry–Mather theory.

2. Geometric preliminaries

Let M be a closed oriented surface, SM the unit sphere bundle and π : SM → M
the canonical projection. The latter is in fact a principal S1-fibration and we let V
be the infinitesimal generator of the action of S1.
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Given a unit vector v ∈ Tx M , we will denote by iv the unique unit vector or-
thogonal to v such that {v, iv} is an oriented basis of Tx M . There are two basic
1-forms α and β on SM , defined by the formulas

α(x,v)(ξ) := 〈d(x,v)π(ξ), v〉, β(x,v)(ξ) := 〈d(x,v)π(ξ), iv〉.

The form α is precisely the contact form that we mentioned in the Introduction.
The vector field X0 uniquely determined by the equations α(X0)≡1 and iX0dα≡0
generates the geodesic flow φ0 of M .

A basic theorem in two-dimensional Riemannian geometry asserts that there
exists a unique 1-form ψ on SM (the connection form) such that ψ(V )≡ 1 and

dα = ψ ∧β, dβ = −ψ ∧α, dψ = −(K ◦π) α∧β,

where K is the Gaussian curvature of M . In fact, the form ψ is given by

ψ(x,v)(ξ)=

〈
DZ
dt
(0), iv

〉
,

where Z : (−ε, ε) → SM is any curve with Z(0) = (x, v) and Ż(0) = ξ , and
DZ/dt is the covariant derivative of Z along the curve π ◦ Z .

It is easy to check that α∧β = π∗�a , where �a is the area form. Hence

(2) dψ = −π∗(K �a).

In the case of a hyperbolic surface, the vertical vector field V corresponds to the
matrix in sl(2,R) given by (

0 1/2
−1/2 0

)
.

Asymptotic cycles. Given a φ-invariant Borel probability measure µ, the asymp-
totic cycle of µ is the real 1-homology class S(µ) defined by the equality

〈[ϕ],S(µ)〉 =

∫
SM
ϕ(X) dµ

for any closed 1-form ϕ. (Recall that φ is the magnetic flow of the pair (g, �)
with associated vector field X .) We check that S(µ`)= 0. We will prove a slightly
more general result needed later. Let3∗

0 be the space of continuous forms λ whose
exterior derivatives, weakly defined by Stokes’ theorem

(∫
σ

dλ =
∫
∂σ
λ for every

smooth chain σ
)

are also continuous differential forms. The space 3∗

0 is closed
under exterior differentiation, wedge products and pull back by C1 maps.

Let ϕ be a continuous 1-form that is closed in the sense that its integral over the
boundary of any 2-chain is zero: ϕ ∈31

0 and dϕ = 0. We claim that∫
SM
ϕ(X) dµ` = 0.
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Note that we always have α ∧ π∗� = 0 as it easily follows from evaluating the
3-form on any basis that contains V . Thus α∧ (−dα)= α∧ω (ω= −dα+π∗�)
and it suffices to show that ∫

SM
ϕ(X) α∧ω = 0.

Observe that
ϕ(X) α∧ω = ϕ ∧ iX (α∧ω)= ϕ ∧ω,

since iXω= 0. But since ω is exact, if we let2 be a primitive, we have d(ϕ∧2)=

ϕ ∧ω and the claim follows from our definition of exterior differentiation and the
fact that M is a closed surface.

Asymptotic Maslov index. Let 3(SM) be the set of Lagrangian subspaces of the
restriction T |SM TM . Given any subspace E ∈ 3(SM) at (x, v) and any T > 0,
we can consider the curve of Lagrangian subspaces [0, T ] 3 t 7→ dφt(E). Let
n(x, v, E, T ) be the intersection number of this curve with the Maslov cycle of
3(SM). It was shown in [Contreras et al. 2003] that if µ is φ-invariant, the limit

m(x, v) := lim
T →∞

1
T

n(x, v, E, T )

exists for µ-almost every (x, v), is independent of E , and (x, v) 7→ m(x, v) is
integrable. The asymptotic Maslov index of µ is

m(µ) :=

∫
SM

m(x, v) dµ(x, v).

Green subbundles. Given (x, v) ∈ TM we define the vertical subspace at (x, v)
as V(x, v) := ker d(x,v)π , where π : TM → M is the canonical projection. Note
that V(x, v)∩ T(x,v)SM is spanned by the value of the vector field V at (x, v). We
say that the orbit of (x, v) ∈ SM does not have conjugate points if, for all t 6= 0,

d(x,v)φt(V(x, v))∩ V(φt(x, v))= {0}.

Since magnetic flows are optical, the main result of [Contreras et al. 2003] says
that SM has no conjugate points (meaning that no orbit a point (x, v) ∈ M has
conjugate points) if and only if m(µ`)= 0.

If SM has no conjugate points, one can construct the Green subbundles [Contr-
eras and Iturriaga 1999, Proposition A] given by

E(x, v) := lim
t→+∞

dφ−t(V(φt(x, v))), F(x, v) := lim
t→+∞

dφt(V(φ−t(x, v))).

These subbundles are Lagrangian, they never intersect the vertical subspace and,
crucially for us, they are contained in T (SM). Moreover, they vary measurably
with (x, v) and they contain the vector field X .
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3. Proof of the Proposition

The proof will be based on integrating an appropriate Riccati equation along a
solution arising from the Green bundles. This is a well known method, first used
by E. Hopf [1948] and subsequently extended to higher dimensions by L. W. Green
[1958]. The method is still paying dividends; see [Bialy 2000; Gouda 1998].

Let � be an arbitrary smooth 2-form. We write � = f �a , where f : M → R

is a smooth function and �a is the area form of g.
Since H 2(M,R)= R, there exist a constant c and a smooth 1-form % such that

�= cK �a + d%

and c = 0 if and only if � is exact. Using (2) we have

ω := −dα+ π∗�= d(−α− cψ +π∗%).

The vector field X that generates the magnetic flow φ is given by X = X0 + f V
since it satisfies the equation d H = iXω. Since X0 and V preserve the volume
form α∧dα, so does X = X0 + f V , and thus φ preserves the normalized Liouville
measure µ` of SM .

If we evaluate the primitive −α− cψ+π∗% of the symplectic form ω on X we
obtain:

(3) (−α− cψ +π∗%)(X)(x, v)= −1 − c f (x)+ %x(v).

Let A be the area of g. Then a(µ`) is given by:

a(µ`)= −1 −
c
A

∫
M

f (x) dx

since µ` is invariant under the flip v 7→ −v. By the definition of c and f and the
Gauss–Bonnet theorem we have∫

M
f (x) dx = c

∫
M

K (x) dx = 2π χ c,

and hence

(4) a(µ`)= −1 −
1

2πχ A

(∫
M

f (x) dx
)2

.

Given (x, v) ∈ SM and ξ ∈ T(x,v)TM , let

Jξ (t)= d(x,v)(π ◦φt)(ξ).

We call Jξ a magnetic Jacobi field with initial condition ξ . It was shown in [Pater-
nain and Paternain 1996] that Jξ satisfies the Jacobi equation

(5) J̈ξ + R(γ̇ , Jξ )γ̇ −
(
Y ( J̇ξ )+ (∇JξY )(γ̇ )

)
= 0,



310 GABRIEL P. PATERNAIN

where γ (t) = π ◦ φt(x, v), R is the curvature tensor of g and Y is determined by
the equality �x(u, v)= 〈Yx(u), v〉 for all u, v ∈ Tx M and all x ∈ M .

We express Jξ as
Jξ (t)= x(t)γ̇ (t)+ y(t)i γ̇ (t),

and suppose in addition that ξ ∈ T(x,v)SM , which implies that

gγ ( J̇ξ , γ̇ )= 0.

A straightforward computation using this equality and (5) shows that x and y must
satisfy the scalar equations

(6) ẋ = f (γ ) y, ÿ +
(
K (γ )− 〈∇ f (γ ), i γ̇ 〉 + f 2(γ )

)
y = 0.

The no-conjugate points condition is equivalent to saying that any nontrivial
magnetic Jacobi field which vanishes at t = 0 is never zero again.

Consider one of the Green subbundles, say E . Since E does not intersect the
vertical subspace V(x, v) for any (x, v) ∈ SM , there exists a linear map S(x, v) :

Tx M → Tx M such that E can be identified with the graph of S. Let u(x, v) be the
trace of S(x, v). An easy calculation using (6) shows that u along φ satisfies the
Riccati equation

(7) u̇ + u2
+ K (γ )− 〈∇ f (γ ), i γ̇ 〉 + f 2(γ )= 0.

We can now integrate equation (7) with respect to t ∈ [0, 1] and then with respect
to µ` (using the φ-invariance of µ`) to conclude that∫

SM
u2 dµ` +

∫
SM

(
K (x)− 〈∇ f (x), iv〉 + f 2(x)

)
µ` = 0.

Since µ` is invariant under the flip v 7→ −v, we have∫
SM

〈∇ f (x), iv〉 dµ` = 0,

and thus ∫
SM

u2 dµ` +

∫
SM

(
K (x)+ f 2(x)

)
µ` = 0.

The last equality implies that

(8)
∫

SM

(
K (x)+ f 2(x)

)
µ` =

2πχ
A

+
1
A

∫
M

f 2(x) dx ≤ 0,

with equality if and only if u is zero for almost every (x, v) ∈ SM . But if we
now assume that the action a(µ`) vanishes, equation (4) and the Cauchy–Schwarz
inequality tell us that

−2πχ A =

(∫
M

f (x) dx
)2

≤ A
∫

M
f 2(x) dx .
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Combining the last inequality with (8) we see that f must be constant and u is
zero for almost every (x, v) ∈ SM . If we now use this information in the Riccati
equation (7) we conclude that K must be constant and K + f 2

=0. The last equality
ensures that the magnetic flow is a horocycle flow, thus concluding the proof of
the Proposition.

4. Proof of Theorem A

Lemma 4.1. Let Mi , for i = 1, 2, be closed oriented surfaces with magnetic flows
φi determined by pairs (gi , �i ), i = 1, 2. Suppose φ1 is C1-conjugate to φ2 and
one of them is transitive. Then

A2 a(µ1
`)= A1 a(µ2

`),

where Ai is the area of gi .

Proof. Let f : SM1 → SM2 be the C1-conjugacy and ω i the corresponding sym-
plectic forms restricted to SMi . Recall that α ∧ (−dα) = α ∧ω. Since magnetic
flows preserve α∧ dα, the volume form f ∗(α2 ∧ω2) is invariant under φ1. Since
we are assuming that the magnetic flows are transitive, there exists a (nonzero)
constant κ such that

(9) f ∗(α2 ∧ω2)= κ α1 ∧ω1.

Note that d f maps X1 to X2, that αi (X i )= 1 and that iX iω i = 0. Hence contracting
with X1 in the last equation gives

f ∗ω2 = κ ω1.

Let2i be a primitive of ω i . Then ϕ := f ∗22−κ 21 is a continuous 1-form, which
is closed in the sense that its integral over the boundary of every 2-chain is zero.
By (9), f∗µ1

` = µ2
`, thus∫

SM1

ϕ(X1) dµ1
` =

∫
SM2

22(X2) dµ2
` − κ

∫
SM1

21(X1) dµ1
` = a(µ2

`)− κ a(µ1
`).

But, since the asymptotic cycle ofµ` is zero (page 307), the left-hand side vanishes.
Equality (9) implies that κ = A2/A1 and the lemma follows. �

Lemma 4.2. Let Mi , for i = 1, 2, be closed oriented surfaces with magnetic flows
φi determined by pairs (gi , �i ). Suppose φ1 is C1-conjugate to φ2 and let f :

SM1 → SM2 be the conjugacy. Then m(µ1
`) = m( f∗µ1

`). In particular, φ1 has
conjugate points if and only if φ2 does.

Proof. Let W1(x, v) be the subspace of T(x,v)SM1 spanned by the magnetic vector
field X1 and the vertical vector field V . Since W1 contains the magnetic vector
field and it is 2-dimensional it must be a Lagrangian subbundle. Since d f maps
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X1 to X2, it also maps Lagrangian subspaces contained in T (SM1) to Lagrangian
subspaces contained in T (SM2). In particular, the subbundle W2 := d f (W1) must
be a Lagrangian subbundle contained in T (SM2).

We now invoke [Contreras et al. 2003, Corollary 3.2], to the effect that the
asymptotic Maslov index of a measure with zero asymptotic cycle does not depend
on the continuous Lagrangian section that is used to compute it. Thus we can
compute m(µ1

`) using W1 and m( f∗µ1
`) using W2 to readily obtain the equality

claimed in the lemma. To see that φ1 has conjugate points if and only if φ2 does
we use [Contreras et al. 2003, Theorem 4.4], which says that the asymptotic Maslov
index of an invariant probability measure (with zero asymptotic cycle) is positive
if and only if there are conjugate points in its support. �

We now prove Theorem A. We know that the horocycle flow of a closed hyper-
bolic surface has a(µ`) = m(µ`) = 0. Since the horocycle flow is transitive, by
Lemmas 4.1 and 4.2 the magnetic flow of (g, �) also has a(µ`)= m(µ`)= 0. The
Proposition tells us that g has constant curvature k and�=λ�a with k+λ2

= 0. If
we let a := −k, then ag has curvature −1 and we have the situation of two closed
hyperbolic surfaces with C1-conjugate horocycle flows. From [Marcus 1983] or
[Ratner 1982] we know that ag and ḡ must in fact be isometric, as desired.

5. Closed orbits in nontrivial free homotopy classes

We consider magnetic flows defined on an arbitrary closed connected manifold M .
Let g be a Riemannian metric and let � be a closed 2-form. We will assume that
� is weakly exact, that is, the lift of � to M̃ , the universal covering of M , is exact.
Let θ be a primitive and let c = c(g, �) be Mañé’s critical value, defined as in the
Introduction. Recall that c is finite if and only if there is a bounded primitive. If θ is
a bounded primitive, then our Lagrangian L satisfies all the hypotheses of Aubry–
Mather theory for noncompact manifolds as described for example in [Contreras
2001; Fathi ≥ 2007; Fathi and Maderna ≥ 2007]. Recall that the energy in this
case is simply the real valued function on TM̃ given by (x, v) 7→

1
2 |v|2x .

We consider π1(M) acting on M̃ by covering transformations and we let 5 :

M̃ → M be the covering projection. Given a nontrivial element ϕ ∈ π1(M), let
Zϕ := {ρ ∈ π1(M) : ρ−1ϕρ = ϕ} be the centralizer of ϕ.

Theorem 5.1. Let k > c be given. Suppose that there exists a primitive θ which is
Zϕ-invariant and for which

sup
x∈M̃

1
2 |θx |

2
≤ k − ε

for some ε > 0. Then the nontrivial free homotopy class determined by ϕ contains
a closed magnetic geodesic with energy k.
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Proof. Let θ be a Zϕ-invariant primitive with

sup
x∈M̃

1
2 |θx |

2
≤ k − ε

for some ε > 0. If we consider the Lagrangian on M̃ given by

L(x, v)=
1
2 |v|2x − θx(v)

then

(10) L(x, v)+ k ≥ ε > 0

for all (x, v) ∈ TM . Consider the Mañé action potential, which is given by

8k(x, y)= inf
T>0

8k(x, y; T ),

where
8k(x, y; T ) := inf

γ
AL+k(γ )

with γ ranging over all absolutely continuous curves defined on [0, T ] and con-
necting x to y. The potential 8k is a Lipschitz function and satisfies the triangle
inequality:

8k(x, y)≤8k(x, z)+8k(z, y).

Note that the action potential is Zϕ-invariant, since θ is Zϕ-invariant.
Letψ ∈π1(M) be an arbitrary covering transformation. Sinceψ∗θ−θ is closed,

there exists a smooth function fψ : M̃ → R such that ψ∗θ−θ = d fψ . The function
fψ is uniquely defined up to addition of a constant, so from now on we shall assume
that fψ is the unique function for which fψ(x0)= 0 where x0 is some fixed point
in M̃ . Note that from the definition of 8k we have:

(11) 8k(ψx, ψy)=8k(x, y)+ fψ(y)− fψ(x)

for all x, y ∈ M̃ and all ψ ∈ π1(M).

Lemma 5.2. If ψ−1
1 ϕψ1 = ψ−1

2 ϕψ2, then fψ1 = fψ2 .

Proof. Clearly τ := ψ1ψ
−1
2 ∈ Zϕ . Hence ψ∗

1 θ − θ = ψ∗

2 τ
∗θ − θ = ψ∗

2 θ − θ which
implies d fψ1 = d fψ2 . Thus fψ1 = fψ2 since they both vanish at x0. �

A theorem of Mañé [1996] (see also [Contreras et al. 1997]) ensures that given
two distinct points x and y in M̃ there exists a magnetic geodesic γ : [0, R] → M̃
with energy k, which connects x to y and realizes the potential, i.e.,

AL+k(γ )=8k(x, y).

On account of (10)

(12) 8k(x, y)≥ ε R ≥
ε

√
2k

d(x, y).
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Let a := infx∈M̃ 8k(x, ϕx). Take a sequence of points xn such that 8k(xn, ϕxn)

converges to a. Let K be a compact fundamental domain for the action of π1(M)
on M̃ and let ψn ∈ π1(M) be such that ψ−1

n xn ∈ K . Let yn := ψ−1
n xn . Without

loss of generality we can assume that yn converges to some point y ∈ K . Using
the triangle inequality for 8k we have:

8k(ψn y, ϕψn y)≤8k(ψn y, ψn yn)+8k(ψn yn, ϕψn yn)+8k(ϕψn yn, ϕψn y).

Using the ϕ-invariance of 8k and (11) we obtain

8k(ψn y, ϕψn y)

≤8k(y, yn)+ fψn (yn)− fψn (y)+8k(yn, y)+ fψn (y)− fψn (yn)+8k(xn, ϕxn)

=8k(y, yn)+8k(yn, y)+8k(xn, ϕxn).

But the expression 8k(y, yn)+8k(yn, y)+8k(xn, ϕxn) is bounded in n; hence
there exists C > 0 such that

8k(ψn y, ϕψn y) < C

for all n. Inequality (12) now implies that there exist only finitely many different
elements of the form ψ−1

n ϕψn . Hence, for infinitely many values of n, ψ−1
n ϕψn

equals some fixed covering transformation, say λ. Without loss of generality we
shall assume that ψ−1

n ϕψn =λ for all n. Lemma 5.2 tells us that fψn is independent
of n, so we set f0 := fψn .

Using (11) again we have

8k(ψn y, ϕψn y)=8k(y, λy)+ f0(λy)− f0(y),

8k(xn, ϕxn)=8k(ψn yn, ϕψn yn)=8k(yn, λyn)+ f0(λyn)− f0(yn).

Since 8k(xn, ϕxn) converges to a we conclude that 8k(ψn y, ϕψn y)= a for all n,
hence the points ψn y realize the infimum of the function x 7→8k(x, ϕx).

Let z be one of these points, so that 8k(z, ϕz) = a. Consider the minimizing
magnetic geodesic γ with energy k given by Mañé’s theorem, connecting z to ϕz
and for which

AL+k(γ )=8k(z, ϕz).

We claim that dϕ(γ̇ (0))= γ̇ (R). This implies that the projection of γ to M gives
a closed magnetic geodesic in the free homotopy class determined by ϕ. To prove
that dϕ(γ̇ (0)) = γ̇ (R) we play the same game as in Riemannian geometry. Con-
sider b > 0 small and note that

8k(γ (b), ϕγ (b))≤8k(γ (b), ϕz)+8k(ϕz, ϕγ (b))

=8k(γ (b), ϕz)+8k(z, γ (b))=8k(z, ϕz),
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where in the first equality we used the ϕ-invariance of 8k . Since x 7→8k(x, ϕx)
achieves its minimum at z, we must have dϕ(γ̇ (0))= γ̇ (R), which concludes the
proof of the theorem. �

The next lemma will be important for us. Its proof is a fairly standard application
of amenability combined with smoothing results of [Fathi and Maderna ≥ 2007].

Lemma 5.3. Let 0 ⊂ π1(M) be an amenable subgroup. For any k > c, there exists
a smooth 0-invariant primitive ϑ such that

sup
x∈M̃

1
2 |ϑx |

2
≤ k.

Proof. Take M̂ = M̃/0. Let C∗(M̃) and C∗(M̂) be the real cochains (on smooth
chains) in M̃ and M̂ respectively. We can view C∗(M̂) as the set of 0-invariant
cochains in M̃ . Given a manifold X , let9 :�∗(X)→ C∗(X) be the de Rham map:

9(ω)(σ )=

∫
σ

ω.

It induces an isomorphism in real cohomology.
By the definition of Mañé’s critical value, given k > c, there exists a smooth

primitive θ and ε > 0 such that

(13) sup
x∈M̃

1
2 |θx |

2
=

1
2‖θ‖2

∞
≤ k − ε.

Note that
|(9θ)(σ )| ≤ ‖θ‖∞`(σ ),

where `(σ ) is the length of σ . The group 0 acts on C∗(M̃) by (ϕ∗c)(σ )= c(ϕ◦σ),
which gives ϕ∗(9θ)(σ )=9(ϕ∗θ)(σ ). Since 0 acts by isometries, we obtain

|ϕ∗(9θ)(σ )| ≤ ‖θ‖∞`(σ ).

Thus, for a fixed σ , the map ϕ 7→ ϕ∗(9θ)(σ ) is in `∞(0).
Since 0 is amenable it has a right invariant mean on `∞(0), that is, there exists

a bounded linear functional m : `∞(0)→ R such that

(i) m(a)= a if a is a constant function;

(ii) m(a1)≥ m(a2) if a1(ϕ)≥ a2(ϕ) for all ϕ ∈ 0;

(iii) m(ϕ∗a)= m(a), where ϕ∗a(ψ) := a(ψϕ).

Now define
Aθ (σ ) := m(ϕ 7→ ϕ∗(9θ)(σ )).

Clearly Aθ lies in C∗(M̃) and is 0-invariant. It also satisfies

(14) |Aθ (σ )| ≤ ‖θ‖∞`(σ ).
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Let δ be the boundary operator on cochains. We have

(δAθ )(σ )= Aθ (∂σ )= m(ϕ 7→ ϕ∗(9θ)(∂σ )).

But the value of

ϕ∗(9θ)(∂σ )=

∫
∂σ

ϕ∗θ =

∫
σ

d(ϕ∗θ)=

∫
σ

ϕ∗5∗�=

∫
σ

5∗�

is independent of ϕ. Thus

(δAθ )(σ )=

∫
σ

5∗�=9(5∗�)(σ),

which implies
δAθ =9(5∗�).

Since both Aθ and 5∗� descend to M̂ to give Âθ and �̂, de Rham’s theorem tells
us that �̂ is exact. Hence there exists a smooth 1-form α in M̂ such that �̂= dα.
Now Âθ −9α is a 1-cocycle in M̂ and so there is a smooth closed 1-form ω in M̂
such that 9(ω+α) and Âθ are cohomologous. Thus for any 1-cycle σ we have

Âθ (σ )=

∫
σ

α+ω,

which in turn implies by (14) that, for any smooth closed curve γ in M̂ ,∣∣∣∣∫
γ

α+ω

∣∣∣∣ ≤ ‖θ‖∞`(γ ).

On account of (13) this implies that the action of the Lagrangian

1
2 |v|2x +αx(v)+ω x(v)+ k − ε

on any closed curve γ : [0, T ] → M̂ is at least

`(γ )2

2T
− ‖θ‖∞`(γ )+

‖θ‖2
∞

T
2

=

(
`(γ )
√

2T
−

‖θ‖∞

√
T

√
2

)2

≥ 0.

This is enough to ensure the existence of a locally Lipschitz function u : M̂ → R

such that, for almost every x ∈ M̂

1
2 |αx +ω x + dx u|

2
≤ k − ε.

(See [Burns and Paternain 2002] for a proof.) But now the smoothing results in
[Fathi and Maderna ≥ 2007, Section 6] imply that there exists a smooth function
uε : M̂ → R such that

1
2 |αx +ω x + dx uε|2 ≤ k

for all x ∈ M̂ . If we let ϑ be the lift of α + ω+ duε to M̃ , we obtain a smooth
1-form possessing all the required properties. �
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Corollary 5.4. Suppose that π1(M) is amenable and � is not exact. Then c(g, �)
is infinite.

Proof. If c(g, �) is finite, �̃ admits a bounded primitive and by the previous lemma,
�̃ admits a π1(M)-invariant primitive θ . The form θ descends to M , showing that
� is exact. �

Theorem 5.5. Take k> c and let ϕ ∈π1(M) be a nontrivial element with amenable
centralizer. Then the nontrivial free homotopy class determined by ϕ contains a
closed magnetic geodesic with energy k.

Proof. This follows right away from Theorem 5.1 and Lemma 5.3. �

Remark 5.6. If π1(M) is the fundamental group of a closed manifold of negative
curvature and ϕ is nontrivial, Preissman’s theorem implies that Zϕ coincides with
the infinite cyclic group generated by ϕ, which is of course amenable. Thus we
can apply Theorem 5.5 to any nontrivial free homotopy class.

In the next section we will apply the theorem to a closed surface of genus ≥ 2.

Proof of Theorem C. Theorem C is an immediately consequence of Theorem 5.5
and the following result, which was proved by G. Contreras [2003] in the exact
case and extended by O. Osuna [2005] to the weakly exact case, as part of his
Ph.D. work.

Theorem 5.7. Suppose the lift of� to M̃ has a bounded primitive. Then, for almost
every k in the interval (0, c) there exists a closed contractible magnetic geodesic
with energy k.

This is proved by showing that an appropriate action functional (which depends
on the energy level) on the space of contractible loops exhibits a mountain pass
geometry. Standard Morse theory then guarantees that critical points exist when-
ever the Palais–Smale condition holds. It has been known for some time that the
Palais–Smale condition can only fail in the time direction. An argument originally
due to M. Struwe can now be applied to the mountain pass geometry to overcome
this difficulty for almost every energy level.

6. Proof of Theorem B

In this section we return to the case in which M is a closed surface of genus ≥ 2.
The following lemma has independent interest.

Lemma 6.1. Suppose the magnetic flow of (g, �) is Mañé-critical. If there exists a
nontrivial free homotopy class without closed magnetic geodesics, then there exists
an invariant Borel probability measure ν with a(ν) = S(ν) = 0. Equivalently, the
magnetic flow is not of contact type.
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Proof. Let σ be a nontrivial free homotopy class without closed magnetic geodesics
and suppose that σ is generated by the covering transformation ϕ. As in the proof
of Theorem 5.5 we consider a ϕ-invariant action potential8k ≥ 0 for all k> c =

1
2 .

Now take a decreasing sequence kn approaching 1
2 as n → ∞. Theorem 5.5 gives

points xn and orbits γn : [0, Tn] → M̃ with energy kn connecting xn and ϕxn . The
orbits γn project to M as closed orbits in the class σ and

0 ≤ ALn+kn (γn)=8kn (xn, ϕxn).

Moreover, xn is a minimum of x 7→8kn (x, ϕx). Hence, if y is any point in M̃ ,

8kn (xn, ϕxn)≤8kn (y, ϕy)≤ C

for some constant C > 0, since Ln(x, v)+kn ≤
1
2 +kn +

√
2kn for all (x, v) ∈ TM

with |v|x ≤ 1. Thus

(15) 0 ≤ ALn+kn (γn)≤ C.

We now observe that infn Tn > 0, otherwise we would get curves in the class σ
with arbitrarily short lengths, which is impossible. If supn Tn <∞, by passing to
a subsequence if necessary, we can assume that Tn → T0 and that the projection
of (γn(0), γ̇n(0)) to TM converges to some point (p, v) ∈ SM . The orbit of (p, v)
gives rise to a closed magnetic geodesic with period T0 in the homotopy class σ .
Since we are assuming that σ has no such orbits we must have supn Tn = ∞.
Without loss of generality we shall assume from now on that Tn → ∞.

We indicate with a tilde the lift of objects on M (or SM) to M̃ (or SM̃). Note
that

(16) (Ln + kn)(γn, γ̇n)= 2kn − θn(γ̇n)= (α̃− π̃∗θn)(X̃)(γn, γ̇n).

Let 2 be a primitive of ω in a neighborhood of SM . Since

d(α̃− π̃∗θn)= −ω̃ = −d2̃,

there exists a smooth closed 1-form ρn defined in a neighborhood of SM̃ for which

(17) α̃− π̃∗θn = −2̃+ ρn.

Combining (16) and (17) we obtain

(18) (Ln + kn)(γn, γ̇n)= −2̃(X̃)(γn, γ̇n)+ ρn(X̃)(γn, γ̇n).

Let νn be the Borel probability measure on TM given by∫
f dνn :=

1
Tn

∫ Tn

0
f
(
5(γn(t)), d5(γ̇n(t))

)
dt.
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Without loss of generality we can assume that νn converges weakly to an invariant
measure ν. Since kn →

1
2 , the measure ν has support in SM . We check that

a(ν)= S(ν)= 0. Using (15) and (18) we see that

0 = lim
1
Tn

ALn+kn (γn)= −

∫
2(X) dν+ lim

1
Tn

∫
(γn,γ̇n)

ρn,

and therefore to show that a(ν)= 0 it suffices to check that

lim
1
Tn

∫
(γn,γ̇n)

ρn = 0.

Equality (17) implies that ρn is ϕ-invariant and its norm is bounded by a constant
independent of n, say A. Let M̂ be the manifold obtained by taking the quotient
of M̃ by the action of the cyclic group generated by ϕ. The curves γn project to
simple closed curves in M̂ that are all homotopic, so the curves (γn, γ̇n) in TM̃
project to closed curves 0n in a neighborhood of SM̂ whose homology class [0n]

is independent of n. The form ρn descends to a closed 1-form ρ̂n defined in a
neighborhood of SM̂ . Observe that∫

(γn,γ̇n)

ρn =

∫
0n

ρ̂n = 〈[ρ̂n], [0n]〉.

Since [0n] is independent of n and ρ̂n is bounded by A we have

lim
1
Tn

〈[ρ̂n], [0n]〉 = 0,

as desired.
Next we prove that S(ν) = 0. Let ϒ be any closed 1-form on SM . Since

π∗
: H 1(M,R)→ H 1(SM,R) is an isomorphism, there exists a closed 1-form δ

on M and a smooth function G on SM such that ϒ = π∗δ+ dG. Thus∫
ϒ(X) dν =

∫
π∗δ(X) dν,

and to prove that S(ν)= 0 it suffices to show that∫
π∗δ(X) dν = 0.

But ∫
π∗δ(X) dν = lim

1
Tn

∫
5◦γn

δ = lim
1
Tn

〈[δ], [5 ◦ γn]〉.

The curves 5 ◦ γn are all in the same free homotopy class σ , hence the homology
class [5 ◦ γn] is independent of n which gives S(ν)= 0, as desired.
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To complete the proof of the lemma, recall that SM is of contact type if and
only if for all invariant Borel probability measures µ with zero asymptotic cycle,
a(µ) 6= 0; see [Contreras et al. 2004, Proposition 2.4]. �

Proof of Theorem B. First, we always have semistatic curves starting at any point
in M̃ [Contreras et al. 1998; Contreras 2001; Fathi and Maderna ≥ 2007]. These
are magnetic geodesics γ : [0,∞)→ M̃ such that

AL+1/2(γ |[s,t])=81/2(γ (s), γ (t))

for 0 ≤ s < t <∞ where as before

81/2(x, y)= inf
T>0

81/2(x, y; T ).

A semistatic curve must be free of conjugate points in [0,∞), by [Contreras and
Iturriaga 1999, Corollary 4.2]; hence the ω-limit set of the projection of γ to M
must also be free of conjugate points. Since we are assuming that the magnetic
flow is uniquely ergodic, this implies that all SM is free of conjugate points. On
account of Lemma 6.1 and unique ergodicity, a(µ`) = 0 and the theorem follows
from the Proposition. �

Remark 6.2. To obtain the conclusion of Theorem B it is not really necessary
to assume unique ergodicity, merely that there is a unique invariant probability
measure with zero asymptotic cycle. The measure ν obtained in Lemma 6.1 will
have zero asymptotic Maslov index because it is the limit of measures νn with zero
asymptotic Maslov index (the asymptotic Maslov index is continuous in the weak∗

topology [Contreras et al. 2003]). The measures νn have zero asymptotic Maslov
index because they are supported on the minimizers5◦γn and we are dealing with
surfaces.

Remark 6.3. We can rephrase Lemma 6.1 by saying that if a Mañé-critical mag-
netic flow is of contact type, every nontrivial free homotopy class contains a closed
magnetic geodesic. Since there are nontrivial free homotopy classes with the prop-
erty that any closed curve in them is homologous to zero, we obtain, in particular,
closed magnetic geodesics homologous to zero. Recall that the Weinstein con-
jecture says that every Reeb vector field on a closed 3-manifold admits a closed
orbit. The strong Weinstein conjecture asserts that in fact one can find finitely
many closed orbits which form a cycle homologous to zero. There has been much
progress recently regarding this conjecture; see [Abbas et al. 2005]. However,
the work of J. Etnyre [2004] implies that magnetic flows, with � symplectic, are
excluded from all known cases in which the conjecture holds.
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