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We study Sidon and quasi-independence properties (in the discrete complex
plane C) for subsets of the roots of unity. We obtain criteria for sets of roots
of unity to be quasi-independent and to be Sidon in C.

For any set of positive primes, P , let W be the be multiplicative subset of
Z generated by P . Then E = {ei2πa/m : a ∈ Z and m ∈ W} is a finite union
of independent sets (and therefore a Sidon subset) of the additive group of
complex numbers if and only if

∑
p∈P 1/ p < ∞.

More generally, S⊂ e2π iQ is a Sidon set if and only if its intersections with
cosets of certain (multiplicative) subgroups, those with square-free order,
satisfy a (quasi-independence related) criterion of Pisier.

Certain new aspects of the combinatorial geometry of the integer-coordi-
nate points in n-dimensional Euclidean space are shown to be equivalent
to quasi-independence for subsets of the roots of unity. These aspects are
fully resolved in two-dimensional Euclidean space but lead to combinatorial
explosion in three dimensions.

Overview

A subset B of a discrete abelian group G is a Sidon set set if and only if every
bounded complex-valued function on B is the restriction to B of the Fourier–
Stieltjes transform of a bounded Borel measure on the dual group of G. A subset
B of a locally compact abelian group G is a Sidon set if and only if B is a Sidon set
when G is given the discrete topology. A subset B of an (additively-written) abelian
group G is said to be quasi-independent if, given k ≥ 1 and x j ∈ B, ε j = 0,±1 for
1 ≤ j ≤ k, we have ∑

j

ε j x j = 0 H⇒ ε j = 0 for 1 ≤ j ≤ k.

The set B is independent if the same implication holds for ε j ∈ Z for 1 ≤ j ≤ k.
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Keywords: independent sets in discrete groups, Sidon sets, quasi-independent sets.
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For independence in divisible groups such as C, it is equivalent to substitute
“ε j ∈ Q” for “ε j ∈ Z”.

The motivation of this paper is the question: Which subsets of e2π iQ, the set of
all roots of unity, are Sidon subsets of the complex plane C and which are quasi-
independent?

Varopoulos [1970] shows that for quasi-all differentiable functions f : [0, 1] →

R, the graph of f in R2 is a Sidon set — in fact, a finite union of two independent
sets. (This result was simplified and extended in [Stegeman 1971].) The quasi-all
result of Varopoulos does not tell us if any particular function, such as f (t) =

(t,
√

1 − t2), has as its image a finite union of independent sets, unless f is a
polynomial, in which case the graph is not Sidon [Varopoulos 1970, Theorems 3
and 3′]. (These last results also suggest that the unit circle is not a Sidon subset of
the discrete plane, but this case lies outside our scope here.)

Quasi-independent sets have been important in the study of Sidon sets since the
work of Stečkin [1956] and Rider [1966]. Of particular importance is the criterion
of Pisier [1983] (see also [Bourgain 1985]): a subset A of a discrete abelian group
G is a Sidon set if and only if there is some positive integer k such that, for every
finite subset F ⊂ A, there is some quasi-independent E ⊂ F such that #E ≥ # F/k.
Hadamard sets are those sequences3={λ j :1≤ j} in R with λ j+1/λ j ≥α>1; they
are quasi-independent when α ≥ 2. We give new examples of quasi-independent
sets in C = R2.

One should not conclude from Pisier’s result that A is a union of k quasi-
independent sets: Grow and Whicher [1984] give an example that satisfies the
Pisier condition for k = 2 but is not the union of two quasi-independent sets.

Throughout this paper n will denote a positive integer and Tn the set of n-th
roots of unity. When we use the terms “quasi-independent” or “independent,” we
shall mean as subsets of the additive group C of complex numbers. We warn the
reader that we shall be interested in the additive group C and the multiplicative
group T, the set of complex numbers of absolute value one and a closed subset of
C. The interplay between those two multiplications is the source of the problems
addressed here.

For consistency with the literature on finite abelian groups we shall often use
additive notation for the finite subgroups of T which we study here! Thus, the
group Tn of n-th roots of unity with multiplication is identified with Zn = Z/nZ

with addition mod n. Hence, when we speak of a “coset” of the group Tn of n-th
roots of unity, we mean a set of the form rTn , where r ∈ e2π iQ.

A number of our results hold for both the class of independent sets and for
the class of quasi-independent sets. We show this by writing (quasi-)independent,
(quasi-)independence, and (quasi)relation (defined below) in the affected state-
ments and proofs.
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Statement of results. We prove Sidonicity for relatively small subsets of e2π iQ:

Theorem 1.4. For any set of positive primes P , let W be the be multiplicative
subset of Z generated by P. Then

E = {ei2πa/m
: a ∈ Z and m ∈ W }

is a finite union of independent sets if and only if
∑

p∈P 1/p <∞, in which case

M =

⌈∏
p∈P

p
p − 1

⌉
independent sets will suffice (and no fewer) and E is Sidon in C.

(For s real, dse denotes the smallest integer k ≥ s.)
A maximal independent subset of Tn has cardinality equal to Euler’s φ(n) (see

Proposition 1.2), and this fact is essential to the proof of the theorem. Since e2π iQ is
not a finite union of independent sets (because

∑
p prime1/p = ∞; see for instance

[Hardy and Wright 1960]), more than independent sets in e2π iQ need to be studied
and that leads to consideration of quasi-independent sets. We begin by showing that
Pisier’s criterion can be weakened as applied to sets of roots of unity by allowing
one to test fewer finite sets for the proportionality property.

Theorem 3.1. A subset A of e2π iQ is Sidon in C if and only if there is an integer
k such that, for every positive, square-free, integer n > 1, for every coset U of
Tn in e2π iQ (coset with respect to complex multiplication), and for every finite
F ⊂ (A ∩ U ), there is some quasi-independent set E ⊂ F such that #E ≥ # F/k.

We then turn to the computation, for some integers n, of the size 9(n) of a
largest quasi-independent subset of Tn and to develop tools for that purpose.

First, using Proposition 1.2 and Corollary 2.2, we have φ(n)≤9(n) < n. Now,
infn 9(n)/n > 0 suggests that e2π iQ is Sidon, supn 9(n)/φ(n) <∞ would prove
that e2π iQ is not Sidon, and we obtain some evidence pertinent to the second in-
equality: 9(n)≥ φ(n)+4 if n has three (or more) distinct odd prime factors. (It is
also the case that 9(n)≥ φ(n)+5 if n has at least three distinct odd prime factors
and 5 is not one of them; see [Ramsey and Graham 2006, Corollary 4.3.2(3)].)

The best exact information we have about 9 is in the next three theorems.

Theorem 4.1. Let n ≥ 2 be an integer.

(1) If a prime p divides n, then 9(pn)= p9(n).

(2) If p is prime and k ≥ 1, then 9(pk)= φ(pk)= pk−1(p − 1).

(3) If n is odd, then 9(2n)=9(n).

(4) Let p be a prime that does not divide n. Then 9(pn)≥ (p − 1)9(n).
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Thus, 9 is much like Euler’s φ function, and calculations of 9(n) reduce to the
case of square-free, odd integers n.

The case where n has only two prime factors is simple, and that of n = 15p only
slightly more complex:

Theorem 6.3. If the positive integer n has exactly two distinct, positive prime
factors, then 9(n)= φ(n).

Theorem 7.4. If n = 15p, where p ≥ 7 is a prime, then 9(n)= φ(n)+ 4.

We know an example of a 52-element quasi-independent subset of T105 (Exam-
ple 7.3). The upper bound for9(105) is established in Lemma 7.2; the example of a
52-element quasi-independent set was verified by computer calculation, after some
technical simplifications, using in particular the permutation theorem of [Ramsey
and Graham 2006]. This example is essential in establishing several inequalities
that show 9(n) > φ(n) (with varying degrees of precision). The general question
of the size of 9(n) thus remains open (this is where the combinatorial explosion
of the abstract occurs).

For many of our results, it is sufficient to consider the case of square-free n.
Given an integer n, we denote by ñ the product of the prime factors of n.

Theorem 2.12 (Square-free theorem). A set E ⊂ Tn is (quasi-)independent if and
only if the intersection of E with each coset of Tñ is (quasi-)independent.

As an immediate consequence:

Corollary. A subset A of e2π iQ is (quasi-)independent if and only if , for every
positive square-free integer n > 1, the intersection of A with every coset of Tn in
e2π iQ is (quasi-)independent.

A rephrasing of the square-free theorem is this: Every relation for Tn is a sum
of characteristic functions of cosets of nontrivial subgroups of Z ñ , where ñ is the
square-free part of n.

Permutations of sets of roots of unity that preserve the (quasi-)independent sets
and “extensions” of (quasi-)independent sets by increasing the prime factors of n
are studied in [Ramsey and Graham 2006], where some of the estimates here are
given modest improvement.

Organization of this paper. Section 1 establishes notation and gives the compu-
tation of the maximal size of an independent subset of Tn , as well as the proof of
Theorem 1.4.

In Section 2 we go over the construction of bases in the set of relations and the
proof of Theorem 2.12.
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The proof of Theorem 3.1 is given in Section 3, after some technical results
needed for this theorem and later ones.

Section 4 is devoted to the arithmetic properties of 9(n), and includes the proof
of Theorem 4.1.

In Section 6 we consider products n = pq of two distinct odd primes, and prove
Theorem 6.3.

The case of Z105 is of particular interest. It is discussed in Section 7, along
with related results. This section also contains the proof of Theorem 7.4. An
Appendix discusses the computer-aided methods employed to investigate this and
larger cases.

1. Preliminaries

Notation. The prime factorization of an integer n ≥ 2 will be written

(1–1) n =

K∏
j=1

pn j
j ,

for K distinct, positive primes p j , and integers 1 ≤ n j . Let D denote {1, . . . , K }.
Let Zn denote the cyclic group of order n, given by {0, . . . , n −1} with addition

mod n. Zn is isomorphic to Tn under the mapping

(1–2) ω(k)= e2π ik/n.

Zn is also isomorphic to the product group,

(1–3)
∏
j∈D

Z pn jj

We shall abuse notation and think of Zn as if it were the product group (1–3)
whenever convenient.

The isomorphism between Zn and the product group is

(1–4) τ :

∏
j∈D

Z pn jj
→ Zn with τ(x1, . . . , xK )=

∑
j∈D

x j m j ,

where m j = n/(pn j
j ). Under this isomorphism, let h j denote the j-th component

of h ∈ Zn:
h j = Pj (τ

−1(h)),

where Pj is the projection onto the j-th coordinate in (1–3).
We shall write

ñ =

K∏
j=1

p j .
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We shall say, abusing notation, that a subset E ⊂ Zn is (quasi-)independent
if ω(E) is (quasi-)independent in C. This is equivalent to E not supporting any
nonzero function f in the kernel of ψ defined below (with the range of f a subset
of {0,±1} for quasi-independence). We shall also abuse notation in using the
same symbol H for both the factor subgroup H of Zn = H × L and the subgroup
H ×{0}. Here we have conflated, as we warned, the cyclic group with its product
group representation (1–3).

Q[Zn] denotes the vector space over Q which consists of functions f : Zn → Q,
under pointwise operations. Define ψ : Q[Zn] → C by

(1–5) ψ( f )=

∑
j∈Zn

f ( j)e2π i j/n
=

∑
j∈Zn

f ( j)ω( j).

Note that ψ is a linear map whose range is the Q-linear span of Tn in C. The
dimension of this range is φ(n) by Proposition 1.2 below. Thus the dimension
of the kernel of ψ equals n − φ(n). Note that f in the kernel of ψ correspond
one-to-one to relations (with coefficients in Q) among the elements of Tn . A key
technical step of this paper is the description of a basis for this kernel in Corollary
2.7.

Definition 1.1. An N-relation on Zn is an integer-valued function f ∈ kerψ with
range in [−N , N ]. A relation is an element of the union of the sets of N -relations,
1 ≤ N <∞.

We denote the set of N -relations supported on a set E by RN (E). The set of all
relations supported on E is be denoted by R∞(E). Let

(1–6) β(E)= −1 + inf{N : RN (E) 6= {0}}.

Another way to say this: if f is a relation supported on E , and β(E) = N , then
the range of f is not contained in [−N , N ]. Thus, if β(E) ≥ 1, then E is quasi-
independent; if β(E) ≥ 2, then E is dissociate (see [Graham and McGehee 1979,
p.159ff]); and if β(E)= ∞, then E is independent. A quasirelation is a 1-relation.
Thus, a set E is quasi-independent if and only if it does not support a nonzero
quasirelation.

The size of a maximal independent subset in Tn is φ(n). This comes from clas-
sical algebra. For more details than we give here, see [Lang 1965].

Proposition 1.2. The maximum size of a fully independent set in Tn (for any n ≥ 2)
is exactly Euler’s φ(n). Furthermore, the set {e2π ik/n

:0≤k<φ(n)} is independent
in C.

Proof. Let Q[Zn] be the subset of the complex numbers that is generated by Tn

as a vector space over Q. The dimension of this subspace is φ(n), which is the
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same as the degree of the irreducible polynomial over Q for primitive n-th roots of
unity. If E ⊂ Tn has more than φ(n) elements, some nontrivial linear relation holds:∑

x∈E ax x = 0, with ax ∈ Q. Of course, we can rewrite this as
∑

x∈E bx x = 0,
with bx ∈ Z, which shows the nonindependence of E . The assertion about the set
{e2π ik/n

: 0 ≤ k < φ(n)} is [Lang 1965, p. 204, Theorem 6]. �

Corollary 1.3. The set of relations on Zn has dimension n −φ(n).

Proof. The dimension of the range of ψ is φ(n), so the dimension of the kernel is
n − φ(n). Since f ∈ Q[Zn] is a relation if and only if ψ( f ) = 0, the conclusion
follows. �

Theorem 1.4. For any set of positive primes P , let W be the be multiplicative
subset of Z generated by P. Then

E = {ei2πa/m
: a ∈ Z and m ∈ W }

is a finite union of independent sets if and only if
∑

p∈P 1/p <∞, in which case

M =

⌈∏
p∈P

p
p − 1

⌉
independent sets will suffice (and no fewer) and E is Sidon in C.

Proof. For n ≥ 2 and M(n)= dn/φ(n)e, let

(1–7) A j (n)=

{
{e2π im/n

: jφ(n)≤ m < ( j + 1)φ(n)} if 1 ≤ j < M(n),

Tn\
⋃M(n)−1
`=1 A` if j = M(n).

Lemma 1.5. Tn is the union of M(n)= dn/φ(n)e independent sets, for n ≥ 2.

Proof. Indeed if F ⊂ T is independent in C and z ∈ T, then z F , the set of products
of elements of F with z, is also independent. We apply that successively to see that
A j (n)⊆ e2πφ(n)/n A j−1(n) is independent for 1 ≤ j ≤ M(n), using Proposition 1.2
to give the independence of A1(n). �

Remark 1.6. It is clear from the proof of Lemma 1.5 and Proposition 1.2 that
fewer than M(n) independent sets can not cover Tn .

Continuing with the proof of the theorem, set P = {p1, . . . , pn, . . . } and rn =

(p1 · · · pn)
n , where 1 ≤ n <∞.

Suppose
∑

j 1/p j <∞. Then

M =

⌈ ∞∏
j=1

(
1 +

1
p j−1

)⌉
<∞,

so M(rn) ≤ M for all n. Then for each 1 ≤ n, Trn is the union of at most M
independent sets, by the lemma above, while E =

⋃
n Trn .
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Let x1, . . . , be an enumeration of E . For n large enough, x1 ∈ Trn . By Lemma
1.5, the M(rn) subsets A j (rn) cover Trn . Thus x1 ∈ A j (rn) for some j (1, n) ≤

M(rn)≤ M . By passing to a subsequence n(1,s) we may assume that the sequence
s 7→ j (1, n(1,s)) is constant. Inductively, for every integer ` > 1, we choose a
subsequence n(`,s) of n(`−1,s) so that s 7→ j (`, n(`,s)) is constant and

x` ∈ A j (`,n(`,s))(rn(`,s)).

Then, for each ` the diagonal sequence j (`, n(s,s)) is constant for s ≥ `, and x` ∈

A j (`,n(s,s))(rn(s,s)) for all sufficiently large s.
For each 1 ≤ j ≤ M let A j = limS→∞

⋂
∞

s=S A j (rn(s,s)). We claim that the A j

are nonempty, independent, pairwise disjoint, and cover E . Independence follows
because each A j (rn(s,s)) is independent (the empty set is trivially “independent”).
The pairwise disjointness follows because the A j (n) are pairwise disjoint. Let
x = x` ∈ E . Since x` ∈ A j (`,n(s,s))(rn(s,s)) for all sufficiently large s, we have
x` ∈

⋃
A j and the A j cover E . Since fewer than M independent sets cannot

cover E (by Remark 1.6), M independent sets are required, and all the A j must be
nonempty.

Since a union of M independent sets is Sidon, E is Sidon.
If

∑
j 1/p j = ∞, then rn/φ(rn) =

∏n
1 p j/(p j − 1) → ∞, so the number of

independent sets needed to cover Trn grows without bound. �

With more elaborate calculations, one can prove results such as this:

Proposition 1.7 [Ramsey and Graham 2006, Prop. 2.1.8]. Suppose that n ≥ 2 is
any integer. Let p1 be the smallest prime factor of n, and p2 be the second smallest
prime factor of n (if it exists).

(1) If E ⊂ Zn and #E < p1, then E is independent.

(2) If E ⊂ Zn has cardinality p1, then E is (quasi-)independent if and only if E is
a not coset of Z p1 .

(3) If E ⊂ Zn , n is odd and square-free, and #E < p1 + p2 −2, then E is (quasi-)
independent if and only if E does not contain a coset.

(4) (Z p1 ∪ Z p2)\{0} is not quasi-independent, and has cardinality p1 + p2 − 2.

2. Bases, relations, and nonindependent sets

We describe bases for the relations that describe the non-(quasi-)independent sets.
The underlying ideas are most easily understood if one keeps in mind the special
cases of n = 9, n = 3 · 5 and n = 9 · 5. These bases are useful, because they
provide a way to work with (quasi)relations without being directly concerned with
the mappingψ , and to move our discussion to the product group homomorph (1–3)
for Tn .
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Zn itself will be used to index a basis for Q[Zn], a subset of which will be a
basis for the kernel of ψ . In fact, a basis B′ of the kernel of ψ will be shown to
consist of the characteristic functions of Z ñ and of all cosets (in Zn) of nontrivial
(i.e., not {0}) subgroups of Z ñ . To establish that B′ is indeed such a basis, we will
need to find an enumeration of a basis of Q[Zn].

First, some natural members of the kernel will be described.

Lemma 2.1. Let G be a nonzero subgroup of Zn . If U is a coset of G in Zn (with
respect to addition mod n), then χU is in the kernel of ψ .

Proof. Because Zn is a cyclic group, so is G. One has G = {km : 0 ≤ k < #G },
where m = n/#G. It follows that ω(m)= e2π i(n/#G)/n

= e2π i/#G is a primitive #G-
th root of unity and that ω(G) = T#G . Because #G > 1, ψ(χG) =

∑
g∈G ω(g) =∑

ν∈T#G
ν = 0. Consider now U = t + G for some t ∈ Zn . Then

ψ(χU )=

∑
v∈U

ω(v)=

∑
g∈G

ω(t + g)=

∑
g∈G

ω(t)ω(g)

= ω(t)
∑
g∈G

ω(g)= ω(t) · 0 = 0. �

Lemma 2.1 is an exhaustive description of the kernel of ψ because it describes
the form of the functions in the promised basis.

Corollary 2.2. If n ≥ 2, then 9(n) < n. If n ≥ 2 is prime, then 9(n)= n − 1.

Proof. Let G = Zn in Lemma 2.1; χG is in the kernel of ψ and the coefficients of
ψ(χG) are all +1; hence Zn is not quasi-independent and 9(n) < n. The second
statement follows from Proposition 1.2. �

For the promised enumeration, some further notation is needed. For j ∈ D and
the previously specified prime factor p j as in (1–1), let H j denote the subgroup of
Zn of order p j :

(2–1) H j = {ks j : 0 ≤ k < p j },

where s j = n/p j . Note that τ−1(H j ) equals {k pn j −1
j : 0 ≤ k< p j }×

∏
t∈(D\{ j}){0}.

For any h in Zn , let

Sh = { j ∈ D : h j ≥ pn j −1
j }, and Gh =

∑
t∈(D\Sh)

Ht .

Because Pt is the projection onto the t-th factor in (1–3),

τ−1(Gh)=

( ∏
t∈(D\Sh)

Pt(τ
−1(Ht))

)
×

( ∏
t∈Sh

{0}

)
.
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Finally, let Eh = h + Gh and r(h) = # D − #Sh . One can think of r(h) as the
dimension of the subgroup Gh and, by translation, the dimension of Eh . We will
show that

(2–2) B = {χEh : h ∈ Zn }

is a basis for Q[Zn] (Corollary 2.6) and that

(2–3) B′
= {χEh : h ∈ Zn and r(h) > 0}

is a basis for the kernel of ψ (Corollary 2.7). That B′ does indeed consist of
the characteristic functions of the cosets claimed earlier is easily shown, since the
sets Eh are cosets of nontrivial subgroups of Z ñ . The indexing will be shown to
ensure uniqueness, and the cosets Eh ∈ B\B′, that is, those with r(h)= 0, are just
singletons, with enough of them (as we shall show) to complete a basis of Q[Zn].

Lemma 2.3. If r(h)≥ r(g) and h 6= g, then h ∈ (Eh\Eg).

Proof. Because Gh is a subgroup of Zn , it is trivially true that h ∈ Eh . What remains
to be shown is that h /∈ Eg. Since r(h) ≥ r(g), one has #Sg ≥ #Sh . Suppose first
that there is some j ∈ (Sg\Sh). By the definition of Sg, g j ≥ pn j −1

j . Since every
element w of Gg has w j = 0, we have (g +w) j ≥ pn j −1

j for all w ∈ Gg. Because
Eg = g+Gg, then every v ∈ Eg has v j ≥ pn j −1

j . However, h j < pn j −1
j since j /∈ Sh .

Thus h cannot be in Eg.
Second, suppose that Sg ⊂ Sh . Because #Sg ≥ #Sh , one has Sg = Sh . It follows

that Gg = Gh . Suppose h ∈ Eg. Then, for each t ∈ Sh , gt = ht (since elements of
Gh have zero in such coordinates). For each t ∈ (D\Sh), ht = gt +wt for some
wt ∈ Ht . However, both gt and ht are less that pnt−1

t . Recall that wt is a multiple
of pnt−1

t . It follows that wt = 0. Thus ht = gt for all t ∈ D, and hence h = g. This
contradicts the hypotheses. �

Corollary 2.4. The mapping h 7→ χEh is one-to-one.

Proof. Clearly, for distinct members h and g of Zn , r(h)≥ r(g) or vice versa, and
hence either h ∈ (Eh\Eg) or g ∈ (Eg\Eh). In either case, χEh 6= χEg . �

Lemma 2.5. The elements of B are linearly independent over Q.

Proof. Consider any Q-linear combination

f =

∑
g∈Zn

agχEg

of the elements of B, and assume that f = 0. (Indexing B by h ∈ Zn is legal,
because distinct h denote distinct elements of B.) We claim that

(2–4) f (h)=

∑
g∈Zn

r(g)>r(h)

agχEg(h) + ah .
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Note that, for h ∈ Zn ,

f (h)=

∑
g∈Zn

agχEg (h)=

∑
g∈Zn

r(g)>r(h)

agχEg (h)+
∑
g∈Zn

r(g)≤r(h)

agχEg (h)

=

∑
g∈Zn

r(g)>r(h)

agχEg (h)+
∑
g∈Zn

r(g)≤r(h)
g 6=h

agχEg (h)+ ahχEh (h)

=

∑
g∈Zn

r(g)>r(h)

agχEg (h)+
∑
g∈Zn

r(g)≤r(h)
g 6=h

ag · 0 + ah · 1 =

∑
g∈Zn

r(g)>r(h)

agχEg (h) + ah .

When r(h)=# D (that is, the case when Sh =∅), there is no g such that r(g)>r(h)
and (2–4) simplifies to the single term ah as the value of f (h). Since f is the 0
function, ah vanishes in this case. Then we work by induction down from #D. For
an induction step, suppose there is an integer k ∈ [0, # D] such that ag = 0 for g
such that r(g)≥ k. This implies that

f =

∑
g∈Zn

r(g)<k

agχEg .

Consider any h such that r(h)= k − 1. Then

f (h)= ah +

∑
g∈Zn

r(g)>r(h)

agχEg (h)

reduces to a single term ah as the value of f (h). Because f (h)= 0, we have ah = 0
when r(h)= k − 1. This proves the induction step, and the principle of induction
completes the proof. �

Corollary 2.6. B is a basis for Q[Zn].

Proof. Because the mapping h 7→ χEh is one-to-one, #B = # Zn = n. Because n is
the dimension of Q[Zn], B is a basis for it. �

Corollary 2.7. B′ is a basis for the kernel of ψ .

Proof. Since B′ is linearly independent (as a subset of B), we must check that B′

is a subset of the kernel and that the cardinality of B′ equals the dimension of the
kernel. (This anticipates the rôle of n − φ(n), the dimension of the kernel of the
mapping ψ .)

For the first point, note that r(h) > 0 implies that Gh is not the zero subgroup of
Zn . Since Eh = h + Gh is a coset of Gh , Lemma 2.1 implies that χEh is a element
of the kernel of ψ .
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For #B′, recall that χEh is excluded from B′ if and only if r(h) = 0. To have
r(h)= 0, one must have h j ≥ pn j −1

j in all coordinates j . The number of such h is∏
j∈D(p

n j
j − pn j −1

j ) =
∏

j∈D pn j −1(p j − 1) = φ(n). Therefore #B′
= n − φ(n),

exactly the dimension of the kernel of ψ . �

Lemma 2.8. Let n ≥ 2 have prime factorization n = pn1
1 · · · pnK

K . Fix 1 ≤ j ≤ K
and 0 ≤ ` < p j . Let m = n/p j . Then every relation supported on Zm + ` is a
linear combination of characteristic functions of cosets of nonzero subgroups of
Zm contained in Zm + `.

Proof. When ` = 0, this is immediate from Corollary 2.7. For ` 6= 0 this follows
from the fact that translation in Zn corresponds to a rotation in Tn , and that rotation
preserves relations. �

Example 2.9. Let p 6= q be odd primes and n = pq . The basis B′ for the relations
consists of the characteristic functions of the group Zn and of the cosets Z p +

(0, 1), . . . , Z p+(0, q−1), Zq +(1, 0), . . . Zq +(p−1, 0), where we have identified
Z p with Z p × {0} and Zq with {0} × Zq . Replacing the characteristic function of
Zn with that of Zq yields another basis, one more useful in some situations. It
consists of the characteristic functions of the following p + q − 1 sets:

(1) The p cosets of Zq .

(2) The (q − 1) nonzero cosets of Z p.

Here is a more general version of the second basis of Example 2.9.

Lemma 2.10. Let n ≥ 2 have prime factorization n = pn1
1 · · · pnK

K . Suppose that
1 ≤ s ≤ K and that ns = 1. Let 0 ≤ ` < ps , and write Zn = Z ps × H. Then the set
of relations on Zn has a basis consisting of

(1) the characteristic functions of cosets of Z ps , and

(2) characteristic functions of cosets of nonzero subgroups of H , each such coset
being disjoint from H + ` and contained in H + k, 0 ≤ k 6= ` < ps .

That is, each relation is a sum of “spikes”, the characteristic functions of the cosets
of Z ps and relations supported on cosets of H , with one coset of H being left out.

Proof. We induct on K , the number of prime factors of n. If K = 1, there is
nothing to prove: the characteristic function of Z p1 spans a space of dimension
1 = p1 −φ(p1)= p1 − (p1 − 1).

Suppose the lemma is true when n has 1 ≤ K prime factors. Let n have K + 1
distinct prime factors. By Lemma 2.8, for each coset H + k in Zn , 0 ≤ k < ps ,
we can find a basis Bk for the relations supported on the coset and each such
basis will have m − φ(m) elements, all supported on that coset of H . Consider
any linear combination of characteristic functions of cosets of Z ps plus a linear
combination of elements of

⋃
k 6=` Bk . If that sum is zero, then it is zero on H + `.
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That can happen only if the coefficients of all the spikes χZ ps +h , h ∈ H , are zero.
Because each Bk is supported on a distinct coset H + k, our sum is the 0 function
on H + k and expressible in terms of just Bk . By the independence of Bk , all
the coefficients for that Bk part of our sum must be zero. Therefore, the union
of the set of spikes with

⋃
k 6=` Bk is independent. Since #H + (ps − 1)#Bs =

n/ps + (ps − 1)((n/ps)− φ(n/ps)) = n/ps + n − n/ps − φ(n) = n − φ(n), the
union of the set of spikes with

⋃
k 6=` Bk is a basis. �

We can rephrase the conclusion of Lemma 2.10 as follows. Let n be given by
(1–1), suppose ns = 1, 1 ≤ s ≤ K , 0 ≤ ` < ps , and m = n/ps . Then there is a basis
for the kernel of ψ (for Zn) that consists of

the characteristic functions of all cosets of Z ps , and(2–5)

the characteristic functions of a set L of cosets(2–6)
of certain nonzero subgroups of H = Zm described below.

Each coset L ∈ L meets each coset of Z ps in at most one point, and, given any
0 ≤ t < ps , L is either contained in t + H or is disjoint from it. Furthermore, each
L ∈ L is disjoint from H + `.

The cosets of (2–5) meet each coset of H = Zm in at most one point.

Corollary 2.11 (Empty floor). Let n, s, H be as in Lemma 2.10. Suppose that
E ⊂ Zn is such that E ∩ H = ∅. Then E is (quasi-)independent if and only if
E ∩ (t + H) is (quasi-)independent for all 1 ≤ t < ps .

Proof. One direction is easy: subsets of (quasi-)independent sets are always (quasi-)
independent.

Let m = n/ps and let f be any (quasi)relation supported on E . We use the
basis given in (2–5) and (2–6), with `= 0. Let L j denote the cosets in L that are
contained in H + j, 1 ≤ j < ps . Then for some rational numbers at and bh ,

f =

∑
t∈Zm

atχt+Z ps
+

∑
1≤ j<ps

L∈L j

bLχL .

That follows from the properties of the basis.
Denote the value of f at (t, w) ∈ H × Z ps = Zn by f (t, w). Since L ∩ H = ∅

for all L ∈ L j , 1 ≤ j < ps , f (t, 0) = at . But by the hypotheses E ∩ H = ∅,
f (t, 0)= 0 for all t : that is, at = 0 for all t ∈ H . Therefore

f =

∑
1≤ j<ps

L∈L j

bLχL .
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Fix 0< u < ps . Because each L ∈ L j meets only one coset of H , namely j + H ,

χu+H f =

∑
1≤ j<ps

L∈L j

bLχu+H χL =

∑
L∈Lu

bLχL ,

is a (quasi)relation supported on E ∩ (u + H), which set is (quasi-)independent by
the hypothesis. Therefore χu+H f = 0 for 0< u < ps; that is, f = 0. Hence E is
(quasi-)independent. �

Theorem 2.12 (Square-free theorem). A set E ⊂ Tn is (quasi-)independent if and
only if the intersection of E with each coset of Tñ is (quasi-)independent.

Proof. If E is (quasi-)independent, so are all of its subsets, including the intersec-
tions of E with the cosets of Z ñ .

On the other hand, suppose that all of the intersections of E with cosets of Z ñ

are (quasi-)independent and that f is a (quasi-)relation supported on E . We must
show that f = 0. We know that f is a sum of characteristic functions of cosets
of nontrivial subgroups of Z ñ , by Corollary 2.7. Let g be any such characteristic
function. Let H be any coset of Z ñ . Then either χH g = 0 or χH g = g. Thus, χH f
is a sum of characteristic functions of cosets of nontrivial subgroups of Z ñ all of
which are contained in H . Hence χH f is a (quasi-)relation supported on E ∩ H .
Since E ∩ H is assumed to be (quasi-)independent, χH f = 0. Hence, f = 0. �

3. Characterization of Sidonicity

Theorem 3.1. A subset A of e2π iQ is Sidon in C if and only if there is an integer
k such that, for every positive, square-free, integer n > 1, for every coset U of
Tn in e2π iQ (coset with respect to complex multiplication), and for every finite
F ⊂ (A ∩ U ), there is some quasi-independent set E ⊂ F such that #E ≥ # F/k.

Lemma 3.2 (Quasi-independent sets partitioned by cosets). Let p be a positive
prime such that p | n. In Znp let

Ln = {kp : 0 ≤ k < n }.

The distinct cosets of Ln in Znp are t + Ln , 0 ≤ t < p. Suppose that Ft ⊂ (t + Ln)

is (quasi-)independent for 0 ≤ t < p. Then F =
⋃p−1

t=0 Ft is (quasi-)independent.

Proof. Without loss of generality, assume that p = p1 in the prime factorization
of n. To prove the lemma for quasi-independent sets, consider any f ∈ Q[Znp]

such that f ( j) = 0 for j /∈ F , f ( j) ∈ {0,±1} for all j ∈ Z pn , and that f is in
the kernel of ψ (defined by (1–5), with np in the role of n). To prove the lemma
for independent sets, simply drop the restriction of the range of f to {0,±1}. Let
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W = {h ∈ Znp : r(h) > 0}. Then, for some choice of rational coefficients fh ,

(3–1) f =

∑
h∈W

fhχEh .

It will be proved next that each Eh in (3–1) is a subset of exactly one coset of Ln .
This will follow immediately from the fact that Eh is a coset of Gh , once one proves
that Gh is a subgroup of Ln . Let τ be given by (1–4). Let V =

∏
t∈(D\{1}) Z pnt

t
.

Then Ln = τ({kp : 0 ≤ k < pn1
1 } × V ). Thus, if h1 ≥ pn1

1 , then Gh is a subgroup
of τ({0} × V ) and hence of Ln . Likewise, if h1 < pn1

1 , there is a subgroup V ′ of
V such that Gh = τ(V1 × V ′), where V1 = {kpn1

1 : 0 ≤ k < p }. Clearly V1 is a
subgroup of the first factor of τ−1(Ln) and thus Gh is a subgroup of Ln .

Let U = t + Ln for any 0 ≤ t < p. For h ∈ W, either Eh ⊂ U or Eh ∩ U = ∅.
Thus χEh ·χU = χEh in the former case, while χEh ·χU = 0 in the latter. It follows
that f ·χU is in the kernel of ψ , because

f ·χU =

∑
h∈W

Eh⊂U

fhχEh .

If f is supported on F , f ·χU is supported on F ∩U = Ft . Also, because f ( j) ∈
{0,±1} for all j ∈ Z pn , the same is true for f ·χU . For any h ∈ W such that Eh ⊂U ,
if one has fh 6= 0 then f · χU 6= 0 (because the χEh ’s are linearly independent).
Thus, if any such fh 6= 0, Ft would not be quasi-independent. This proves that
fh = 0 for all h such that Eh ⊂ U . As U ranges over the cosets of Ln , this includes
all h ∈ W. �

Proof of Theorem 3.1. Let A ⊂ e2π iQ satisfy the hypotheses of the theorem. Let F
be any finite subset of A. Then there is some n such that F ⊂ Tn . Let the distinct
prime factors of n be listed as p1, . . ., pK and let D = {1, . . . K }. By hypothesis,
there is some k (independent of r = ñ and therefore n) such that, for any coset U of
Tr , there is some (quasi-)independent EU ⊂ (F ∩U ) such that #EU ≥ #(F ∩U )/k.
If n = r , we are done. Otherwise, proceed by induction. Suppose that we have r |m,
m|n, p j |(n/m), and the fact that, for any coset U of Tm in ei2πQ, there is some
(quasi-)independent EU ⊂ (F ∩ U ) such that #EU ≥ #(F ∩ U )/k. Consider any
coset V of Tmp j . Any such coset consists of p j disjoint cosets Ut of Tm , each of
which contains a (quasi-)independent Et of the desired size. By Lemma 3.2,

⋃
t Et

is (quasi-)independent. Also, #
(⋃

t Et
)
≥ (1/k)

∑
t #(F ∩Ut)= #(F ∩V )/k. Thus

Pisier’s Sidon condition with the same k is satisfied for subsets of F which are
also subsets of cosets of Tmp j . This argument can be extended by induction on the
exponents of the factors p j of ñ to include subsets of F which are subsets of Tn .
That includes F itself. �
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4. Arithmetic properties of 9

Theorem 4.1. Let n ≥ 2 be an integer.

(1) If a prime p divides n, then 9(pn)= p9(n).

(2) If p is prime and k ≥ 1, then 9(pk)= φ(pk)= pk−1(p − 1).

(3) If n is odd, then 9(2n)=9(n).

(4) Let p be a prime that does not divide n. Then 9(pn)≥ (p − 1)9(n).

Lemma 4.2. Let ρ : Zn → Zmn be defined by ρ(k)= km. Let Rn denote the range
of ρ. For any t ∈ Zmn , a set E ⊂ (t + Rn) is (quasi-)independent in Zmn if and only
if ρ−1(E − t) is (quasi-)independent in Zn .

Proof. Note that ρ is an isomorphism from Zn to Rn . Let t ∈ Zmn and E ⊂ (t +Rn).
Let λ : Q[Zmn] → C be the mapping

λ( f )=

mn−1∑
j=0

f ( j)e2π i j/(mn),

while ψ continues to label the corresponding mapping for Q[Zn]. Suppose that f
is in the kernel of λ, and that f ( j)= 0 for j 6∈ E . Then, since E ⊂ (t + Rn),

λ( f )=

mn−1∑
j=0

f ( j)e2π i j/(mn)
=

∑
j∈(t+Rn)

f ( j)e2π i j/(mn)

=

∑
0≤k<n

f (t + km)e2π i(t+km)/(mn)

= e2π i t/(mn)
∑

0≤k<n

f (t + km)e2π i(km)/(mn)

= e2π i t/(mn)
∑

0≤k<n

g(k)e2π ik/n
= e2π i t/(mn)

·ψ(g),

where g(k)= f (t + km). Since e2π i t/(mn)
6= 0, it is clear that λ( f )= 0 if and only

if ψ(g)= 0. It is now clear that E is (quasi-)independent if and only if ρ−1(E − t)
is. �

Lemma 4.3. 9(n)≤9(mn)≤ m9(n).

Proof. Let ρ and Rn be defined as in Lemma 4.2. The m distinct cosets of Rn are
t + Rn , 0 ≤ t < m. Let F be an arbitrary quasi-independent subset of Zmn . Then
each subset of F is also quasi-independent, in particular the sets Ft = F ∩(t + Rn).

By Lemma 4.2, E ⊂ (t+Rn) is quasi-independent in Zmn if and only if ρ−1(E−

t) is quasi-independent in Zn . Since the mapping x 7→ ρ−1(x − t) is a one-to-one
correspondence between t+Rn and Zn , # Ft =#(ρ−1(Ft −t)). Because ρ−1(Ft −t)



SIDONICITY AND QUASI-INDEPENDENCE FOR ROOTS OF UNITY 341

is quasi-independent in Zn , we have # Ft ≤9(n). Because F =
⋃m−1

t=0 Ft , we also
have # F ≤ m9(n).

To prove that 9(n)≤9(mn), let S be a quasi-independent subset of Zn of size
9(n). By Lemma 4.2, ρ(S) is quasi-independent in Zmn . Since #S = #ρ(S), we
have 9(mn)≥ #ρ(S)=9(n). �

Proof of Theorem 4.1. (1) Let E ⊂ Zn be a quasi-independent set of maximum
size. Let

E ′
=

⋃p
1 E + x j ,

where {Zn +x j } is a maximal set of disjoint cosets of Zn in Znp. Then #E ′
= p#E .

Because (np)̃ = ñ, E ′
∩ (Z ñ + y) is quasi-independent for all y ∈ Znp, since those

intersections are just translates of quasi-independent sets in Zn . The conclusion
now follows from the Square-free Theorem 2.12 and Lemma 4.3.

(2) The assertion is immediate by induction from Theorem 4.1(1).

(3) By Lemma 4.3, one has 9(2n) ≥ 9(n). To see the reverse inequality, let
ρ : Zn → Z2n be defined by ρ(k)= 2k, with range Rn . Then

(4–1) Z2n = {0, n} ⊕ Rn.

Let F ⊂ Z2n . Suppose that k and k + n were in F . Then

e2π i(k+n)/(2n)
= e2π ik/(2n)

· eπ i
= −e2π ik/(2n).

Thus, with f ( j)= 0 for j /∈ {k, k + n} while f (k)= f (n + k)= 1, one has

ψ( f )= e2π ik/(2n)
+ e2π i(k+n)/(2n)

= e2π ik/(2n)
− e2π ik/(2n)

= 0.

Thus F wouldn’t be quasi-independent.
Suppose that # F >9(n). It will be proved that F is not quasi-independent. By

the previous paragraph, one may suppose that F does not contain any pair {k, k+n}.
Thus the elements of F must have distinct Rn coordinates in (4–1) above. Let E
be the set of these coordinates. Since #E > 9(n), there is a quasi-independent
relation f supported on E (Lemma 4.2, and the fact that ρ is one-to-one). Let
g ∈ Q[Z2n] be defined as follows: for k ∈ {0, n} and j ∈ Rn ,

g(k + j)=


0 if k + j /∈ F,

f ( j) if j ∈ F and k = 0,

− f ( j) if n+ j ∈ F and k = n.
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Then

ψ(g)=

∑
w∈Z2n

g(w)e2π iw/(2n)
=

∑
j∈Rn

∑
k∈{0,n}

g(k + j)e2π i( j+k)/(2n)

=

∑
j∈(E∩F)

f ( j)e2π i j/(2n)
+

∑
j∈(E∩(F−n))

(− f ( j))e2π i( j+n)/(2n)

=

∑
j∈E

f ( j)e2π i j/(2n)
= ψ( f )= 0.

Thus F supports a quasi-independent relation g, as desired.

(4) Let m = pn and let Zm = Zn × Z p. For each nonzero coset of t + Zn , 0< t < p,
in Zn , we choose a quasi-independent set Et ⊂ t + Zn with #Et = 9(n). We let
E =

⋃
0<t<p Et . We claim that E is quasi-independent (that #E = (p −1)9(n) is

obvious).
Let ps = p in the ordering of the prime factors p1, . . . , pK of m. Then it

is apparent that E satisfies the hypotheses of Corollary 2.11 (Empty Floor), and
hence is quasi-independent. �

5. Spikes and shadows

The results of this section are included for their intrinsic interest and because some
are needed in the next two sections.

Suppose that n is square-free, that it factors as n = r1 ·r2, and that G = H1 × H2,
where H j has order r j >1, j = 1, 2. A “spike” is a coset of H2. If a set E ⊂ A con-
tains any spike, E is not quasi-independent. More interestingly, E can effectively
contain a spike without actually doing so, as we now show.

Theorem 5.1. Suppose that n is square-free, that n factors as n = r1 · r2, and
that E ⊂ G = H1 × H2, where H j has order r j > 1, j = 1, 2. Suppose that, for
some (fixed) a ∈ H1, for each coset H1 × {c}, c ∈ H2, at least one of the following
happens:

(a, c) ∈ E; or(5–1)

{(a, c)} ∪
(
E ∩ (H1 × {c})

)
is not quasi-independent.(5–2)

Then E is not quasi-independent.

Proof. Let S = {a} × H2. If S ⊂ E , we are done. So, suppose that (a, c) /∈ E for
some c. If E ∩ (H1 × {c}) is not quasi-independent, we are also done (E supports
a nontrivial quasirelation because a subset of E does). So, when (a, c) /∈ E , we
may assume that E ∩ (H1 × {c}) is quasi-independent. However, (5–2) requires
that Bc = {(a, c)} ∪ [E ∩ (H1 × {c})] would fail to be quasi-independent. Hence
Bc is the support of a nontrivial quasirelation, fc. If fc(a, c) = 0, then fc would
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be supported on just E ∩ (H1 ×{c})], which we have ruled out. So fc(a, c)= ±1.
By replacing fc with − fc, if necessary, we may assume that fc(a, c)= −1.

Consider

(5–3) h = χS +

∑
0≤c<r2
(a,c)/∈E

fc.

Each term of h is a quasirelation and hence the sum is in the kernel of ψ (as defined
for Tn).

We claim that h is a nontrivial quasirelation supported on E . Thus h is nonzero at
some point of each coset of the form H1×{c}. To see these things, let 0 ≤ c< r2. If
(a, c)∈ E , only χS among the terms defining h is nonzero on the coset H1×{c}, and
there χS is nonzero only at (a, c) and has the value 1. If, contrariwise, (a, c) /∈ E ,
we have χS(a, c)= 1 and χS = 0 elsewhere in H1 × {c}, while fc is supported on
{(a, c)} ∪ [E ∩ (H1 × {c})] and is −1 at (a, c). All other terms of h are 0 on this
coset. So

h|H1×{c} = (χS + fc)|H1×{c}.

Note that χS + fc vanishes at (a, c) and hence (within this coset) is supported on
E ∩ (H1×{c}). Also, since a single point such as (a, c) cannot be the sole support
of a nontrivial quasirelation, fc is nonzero for at least one member of E∩(H1×{c}).
Finally, since χS is nonzero only at (a, c) in this coset, adding χS to fc changes
fc only at (a, c) (making the value of the sum there 0). Thus h on this coset
continues to have range values among {0,±1}, and has at least one nonzero value
there. Hence, h is a nontrivial quasirelation supported on E . �

In the situation above, we shall say that E shadows the spike, S = {a} × H2.
Theorem 5.1 has two generalizations, as follows.

Corollary 5.2. Let E ⊂ H1 × H2, and let S be any non-quasi-independent set that
meets each coset of H1 in exactly one point (ac, c). Suppose that, for each coset
H1 × {c}, c ∈ H2, at least one of (5–1) and (5–2) holds with (ac, c) in the rôle of
(a, c). Then E is not quasi-independent.

Sketch of proof. We adapt the proof of Theorem 5.1 as follows. The function χS

is replaced by a quasirelation supported on S, and a weighted sum replaces (5–3),
the weights being 0,±1. �

Corollary 5.3. Let E ⊂ H1 × H2, and let the set S be any non-independent set that
meets each coset of H1 in exactly one point (ac, c). Suppose that, for each coset
H1 × {c}, c ∈ H2, either (5–1) holds with (ac, c) in the rôle of (a, c) or

(5–4) {(ac, c)} ∪ [E ∩ (H1 × {c})] is not independent

holds. Then E is not independent.
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Sketch of proof. We replace “quasi-independent” with “independent” in the proof of
Theorem 5.1. The function χS in that proof is replaced by a relation RF supported
on S, and a weighted sum replaces (5–3). In this case, the weight for RS is the
least common multiple k of the (integer) values | fc(ac, c)|, and the weight for each
fc is given by −k/ fc(ac, c). �

Here is another application of Theorem 5.1: the sets constructed using Corollary
2.11 are maximal quasi-independent sets.

Corollary 5.4. Let E, n, s, H be as in Corollary 2.11, but with E ∩ (t + H) maxi-
mally quasi-independent as a subset of t + H , for each 0< t < ps . If E ( F ⊂ Zn ,
then F is not quasi-independent.

Proof. Suppose 0 < t < ps . If F ∩ (t + H) 6= E ∩ (t + H), then F ∩ (t + H) is
not quasi-independent, so F is not quasi-independent. Hence, we may assume that
F ∩ H 6= ∅. Let x ∈ F ∩ H 6= ∅. Then it is easy to see that F shadows the spike
{x} × Z ps , so F is not quasi-independent by Theorem 5.1. �

We now develop more elaborate criteria for a set to be quasi-independent.
The general situation is that of Lemma 2.10: we suppose that K ≥ 2 and j ∈

{1, . . . , K }. We let m = n/p j .
We recall the notation RN (E) and β(E) (see (1–6) and the paragraph preceding).

We use SN (E) to denote the set of functions f on Zn with support contained in E
and integer range [−N , N ]. Hence, RN (E)⊂ SN (E).

Theorem 5.5. Suppose that K ≥ 2, j ∈ [1, . . . , K ], and n j = 1. Let m = n/p j .
For s ∈ [0, . . . , p j − 1], let Js be the characteristic function of Zm + s (the s-th
layer). Let E ⊂ Zn . For s ∈ {0, . . . , p j − 1} let E (s) = E ∩ (Zm + s) and set
M = inf{β(E (s)) : 1 ≤ s ≤ p j − 1}. Then

(1) β(E)≤ M.

Moreover, the following are equivalent:

(2) β(E) < N ≤ M.

(3) There is some nonzero f : E (0) → [−N , . . . , N ] such that

(Js g + R∞(Zm + s))∩ SN (E (s)) 6= ∅ for each 1 ≤ s ≤ p j − 1,

where
g =

∑
y∈E (0)

f (y)χZ p j +y .

Remarks 5.6. (i) The relations in (3) provide the recipe for construction of a
nontrivial N -relation on E . This is essentially linear algebra.

(ii) It is not always possible to replace SN with RN above: the E (s) can be inde-
pendent, without E being even quasi-independent.
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(iii) We can rephrase the theorem: β(E) < N ≤ M if and only if there is some
nonzero f : E (0) → [−N , . . . , N ] which specifies a “set of spikes” parallel to the
j-th direction (namely, g in the theorem) such that every E (s) with s 6=0 “shadows”
the set of spikes. By “shadowing” we mean that, using a relation supported on the
s-th level, we can additively modify Js g to obtain a function on that level with the
proper range and support, so that the overall effect is to produce a function with
values in [−N , . . . , N ] that’s supported only on E .

(iv) Equivalently, β(E) ≥ N for some N ≤ M if and only if, for every nonzero
f : E (0) → [−N , . . . , N ], there is some s 6= 0 such that E (s) “blocks” the set
of spikes (g in the theorem) determined by f . That is, Js g + R∞(Zm + s) and
SN (E (s)) are disjoint. Hence there is no relation supported on Zm + s such that
we can additively modify Js g to be supported only on E (s) and have range in
[−N , . . . , N ].

(v) The previous paragraph contains the method used by our computer programs
to search for E with a specified β(E). Each choice of a candidate E (0) determines
a supply of nonzero functions f : E (0) → [−N , . . . , N ]. Each such f specifies a
set of spikes as a challenge to be “blocked”. One attempts to find E (s) for s 6= 0 so
that, hopefully, each of these sets of spikes is blocked.

Proof of Theorem 5.5. (1) is obvious.

(2) ⇒ (3). We shall use the basis provided by Lemma 2.10. We are assuming there
is some nonzero q ∈ RN (E). Lemma 2.10 shows there are coefficients ay in Q and
hs ∈ R∞(E (s)) such that

(5–5) q =

∑
y∈Zm

ayχZ p j +y +

∑
s∈Z p j , s 6=0

hs .

Multiplying by J0, we have J0q supported on E (0), J0χZ p j +y = δy for y ∈ Zm , and
J0hs = 0 for s ∈ Z p j such that s > 0. Therefore J0q =

∑
y∈Zm

ayδy . Thus, for
y ∈ Zm , ay = (J0q)(y)= q(y). Let f be the restriction of J0q to E (0) = E ∩ Zm .
Then, for all y ∈ E (0), ay = q(y)= f (y). We first assume that f 6= 0.

Since q is supported on E , we have ay = 0 for y ∈ Zm\E (0). Since the range of
q is a subset of [−N , . . . , N ], the same holds for f . Let

(5–6) g =

∑
y∈E (0)

f (y)χZ p j +y =

∑
y∈E (0)

ayχZ p j +y .

Then, from (5–5) and the fact that ay = 0 for y 6∈ E (0),

(5–7) q = g +

∑
s∈Z p j , s 6=0

hs .
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Consider any s ∈ {1, . . . , p j − 1}. Then Jsq ∈ SN (E (s)). Therefore,

Jsq = Js g + Js

∑
1≤t≤p j −1

ht = Js g + hs ∈ SN (E (s)).

Thus, the relations in (3) hold.
Only one task remains: to show f 6= 0. Suppose that f = 0. Because f is the

restriction to Zm of J0q , J0q = 0. From (5–6), we also have g = 0. Therefore, q
is an N -relation supported on the nonzero cosets of Zm . By Lemma 2.10, Jsq ∈

RN (E (s)). (That is stronger than Jsq ∈ SN (E (s))). Since N ≤ M ≤ β(E (s)) for
s 6= 0, RN (E (s)) = {0}. Therefore Jsq = 0. This holds for all s 6= 0. Thus
q =

∑n j −1
s=0 Jsq = 0. But q 6= 0. So f 6= 0. That completes the proof of implication

(2) ⇒ (3) of Theorem 5.5.

(3) ⇒ (2). Assume (3) to be true. For s ∈ [1, . . . , p j − 1], let

qs ∈ (Js g + RN (E (s)))∩ SN (E (s)).

Note that qs is supported on E (s). Let

(5–8) q = g +

n j −1∑
s=1

(qs − Js g).

We claim that q ∈ RN (E). First, note that qs − Js g ∈ RN (E (s)) by our choice
of qs when s 6= 0. Thus, (5–8) is just an expansion using spikes and layers, so
q ∈ R∞(Zn).

We check that the support of q is E and the range is in [−N , . . . , N ], one layer
at a time.

For s = 0, since J0qs = 0 and J0 Js g = 0 for s 6= 0,

J0q = J0g =

∑
y∈E (0)

f (y)J0χZ p j +y =

∑
y∈E (0)

f (y)δy .

Thus, on the 0-th level, which is Zm , q is supported on E (0) ⊂ E and the range
of q is a subset of the union of {0} and the range of f . Since 0 ∈ [−N . . . N ] and
range( f ) ⊂ [−N . . . N ], q on Zm has values in [−N . . . N ]. Note that f is the
restriction of q to E (0). Since f is nonzero, q is nonzero.

For s ∈ [1, . . . , p j − 1] and p /∈ {0, s}, we have Js(qp − Jpg)= 0. Therefore

Jsq = Js g + Js(qs − Js g)= Js g + (qs − Js g)= qs ∈ SN (E (s)).

Thus the restriction of q to Zm + s is supported on E (s) and the range on the s-
th level is a subset of [−N , N ]. Since this holds for all s ∈ [0, . . . , p j − 1], and
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Zn =
⋃p j −1

s=0 Zm + s, q is supported on E and its range is a subset of [−N . . . N ].
Since q is nonzero and in RN (E), we have β(E) < N . �

6. When n = pq and n = 15 p

Assume n = pq for distinct, positive primes p and q. Then Zn = H1 ⊕ H2, where

(6–1) Hi = {kp j : 0 ≤ k < pi }, with p j 6= pi .

We now describe the subsets of Zn which support a nontrivial quasi-independent
relation. We give characterizations of (quasi-)independent sets of Z pq in Theorem
6.4, where we also show that every quasi-independent set in Z pq is independent
(p 6= q being odd primes).

Lemma 6.1 (The Tartan Lemma). A subset E ⊂ Zn equals the support of a quasi-
independent relation if and only if there are sets E1 ⊂ H1 and E2 ⊂ H2 such that

(6–2) E = (E1 + E2)∪
(
(H1\E1)+ (H2\E2)

)
.

(Here E = ∅ is allowed as the support of the trivial relation f ≡ 0.)

Proof. Sufficiency will be proved first, because it is easier. Let E satisfy (6–2).
Consider f : Zn → Q defined by

f ( j)=


1 if j ∈ (E1 + E2),

−1 if j ∈ (((H1\E1)+ (H2\E2)),

0 elsewhere.

Recall from the proof of Lemma 2.1 that, for any coset U of H1 or H2,∑
v∈U

ω(v)= 0.

Thus, for any t ∈ Zn ,
∑

v∈(H2\E2)
ω(t + v)= −

∑
v∈E2

ω(t + v), and therefore

ψ( f )=

∑
x∈E

f (x)ω(x)=

∑
x∈(E1+E2)

(+1)ω(x)+
∑

x∈((H1\E1)+(H2\E2))

(−1)ω(x)

=

∑
x∈(E1+E2)

ω(x)−
∑

t∈(H1\E1)

∑
v∈(H2\E2)

ω(t + v)

=

∑
t∈E1

∑
v∈E2

ω(t + v)−
∑

t∈(H1\E1)

(
−

∑
v∈E2

ω(t + v)

)
=

∑
v∈E2

∑
t∈H1

ω(t + v)=

∑
v∈E2

0 = 0.

(An empty sum of 0’s is considered equal to 0.) That proves sufficiency.
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For the proof of necessity, let f be in the kernel of ψ such that f is supported
on E and the range of f is a subset of {0,±1}. Let S = {1}. We use the basis of
relations given in Example 2.9. Then for some set of rational coefficients at and
bw, one has

(6–3) f =

p1−1∑
t=0

atχtp2+H2
+

p2−1∑
w=1

bwχwp1+H1
,

(using the fact that Zn = H1 ⊕ H2). Because every point of Zn has the form
tp2 + wp1 for some 0 ≤ t < p1 and 0 ≤ w < p2, and the pair (t, w) is unique,
each point of Zn is the member of each of a unique pair of cosets tp2 + H2 and
wp1 + H1, with 0 ≤ t < p1 and 0 ≤ w < p2. We set b0 = 0 (to formally allow the
zero coset of H2). This means that

(6–4) f (tp2 +wp1)= at + bw, for all 0 ≤ t < p1, 0 ≤ w < p2.

Since the range of f is contained in {0,±1},

(6–5) f (tp2 +wp1)= at + bw ∈ {0,±1}, for all 0 ≤ t < p1, 0 ≤ w < p2.

Thus, for w = 0 we have f (tp2)= at + b0 = at for 0 ≤ t < p1, and the at ’s are in
{0,±1}.

Case I: there are t and t ′ such that at = 1 while at ′ = −1. By (6–5),

at + bw = 1 + bw ∈ {0,±1} and at ′ + bw = −1 + bw ∈ {0,±1},

so
bw ∈ {−2,−1, 0}, while bw ∈ {0, 1, 2}, for all w.

Thus bw = 0 for all w. Therefore the support of f consists only of cosets of H2.
In this case, the support has the form

(E1 + H2)∪ ((H1\E1)+ ∅)),

which proves the lemma in this case.

Case II: at = 0 for all t . Then the support of f consists only of cosets of H1, and
has the form

(6–6) (H1 + E2)∪ (∅ + (H2\E2)),

which proves the lemma in this case.

Case III: at = 1 for all t . Then f (tp2 +wp1)= 1 + bw for all points in Zn . Then
the support of f again has the form of has the same form as in Case II, with E2

equal to the set of wp1 such that bw ∈ {−2, 0}.
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Case IV: some at =0 and some at ′ =1. By (6–5), we have at+bw=0+bw∈{0,±1}

and at ′ + bw = −1 + bw ∈ {0,±1}, so

bw ∈ {1,−1, 0}, while bw ∈ {0,−1,−2}, for all w,

that is bw ∈ {−1, 0}. Let E1 be the set of tp2 where at = 1 and E2 the set of wp1

where bw = 0. On E1 + E2, f (tp2 +wp1)= 1 + 0 = 1. On (H1\E1)+ (H2\E2),
f (tp2 + wp1) = 0 − 1 = −1. On E1 + (H2\E2), f (tp2 + wp1) = 1 − 1 = 0.
Likewise, on (H1\E1)+ E2, f (tp2 +wp1)= 0 + 0 = 0. Therefore, the support of
f has the desired form.

Case V: at ∈ {0,−1} for all t . Note that − f is also in the kernel of ψ , and can be
expanded in terms of the basis with at replaced by −at and bw by −bw. Also, the
range of − f is still a subset of {0,±1}. We apply the previous four cases to − f
to conclude that the support of − f has the correct form. Since the support of − f
is the same as the support of f , that completes the proof. �

The lemma says that for F ⊂ Zn to be quasi-independent, it is necessary and
sufficient for F + E for any nonempty E as in (6–2). This means that F can contain
a full coset of neither H1 nor H2 (a fact also easily seen from Lemma 2.1). Subject
to that modest condition, one can now give many examples of quasi-independent
sets.

Lemma 6.2. Let S1 ⊂ H1 and S2 ⊂ H2 such that |#S1 −#S2| = 2. Let a denote the
smaller of #S1 and #S2. If S ⊂ (S1 + S2) such that #S ≥ a2 and a > 0, then there
is a nonempty set E ⊂ S of the form

E = (E1 + E2)∪ (F1 + F2),

with Ei and Fi a disjoint partition of Si , i = 1 and i = 2.

Proof. This will be proved by induction on a. Let a = 1. Without loss of generality
assume that #S1 = a. Since #S 6= 0, there is some t ∈ S1 and w ∈ S2 such that
t + w ∈ S. So, with E1 = S1, F1 = ∅, E2 = {w}, and F2 = S2\{w}, one has
S ⊃ {t +w} = (E1 + E2)∪ (F1 + F2). Next, let a = 2. Again, assume without loss
of generality that #S1 = a. Then #S2 = 4 and #S ≥ 4. Consider the two cases:
either there is somew∈ S2 such that (S1+w)∩S =∅, or there is no suchw. If such
w exist, there is at least one v ∈ S2 such that S ⊃ (S1 + v) (otherwise, S contains
at most one element of the three sets S1 +v, v ∈ S2, v 6=w, so #S ≤ #S2 −1 = 3).
Thus, S ⊃ E = (S1 + {v})∪ (∅ + (S2\{v}). It is clear that E 6= ∅. Now consider
the case of no such w. Then for all v ∈ S2, (S1 +v)∩ S 6= ∅. Let S1 = {t1, t2}. Set
E1 = {t1} and F1 = {t2}. Let E2 consist of all w ∈ S2 such that t1 +w ∈ S. Then
S ⊃ E = (E1 + E2) ∪ (F1 + (S2\E2)). Here E2 6= ∅ or (S2\E2) 6= ∅. In either
case, E 6= ∅.
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For an induction hypothesis, assume that Lemma 6.2 is true for all a′< a, a ≥ 3.
Again, without losing generality, assume #S1 = a and #S2 = a + 2. There will be
two cases to the argument: there is some w ∈ S2 such that S1 +w ⊂ S, or there
is no such w. In the former case, S ⊃ E = (S1 + {w})∪ (∅ + (S2\{w}). Clearly
E 6= ∅. In the latter case, we estimate the number

b = #
(
{w ∈ S2 : #((S1 +w)∩ S)= a − 1}

)
.

Then, because no “sections” of S1 have a elements in S, b sections have exactly
a−1, and the rest (a+2−b) have at most a − 2, we have

a2
≤ #S ≤ b(a − 1)+ (a + 2 − b)(a − 2).

Thus, a2
≤ b + (a+2)(a−2)= b+a2

−4, and hence b ≥ 4. So there is a subset T
of S2 such that #T = 4 and, for w ∈ T , #

(
(S1 +w)∩ S

)
= a − 1. Let S′

2 = S2\T .
Then

#
(
S ∩ (S1 + S′

2)
)
≥ a2

− 4(a − 1)= (a − 2)2.

Note that #S′

2 = a−2 ≥ 3−2 = 1. By induction, there is a disjoint partition E1 and
F1 of S1, and E ′

2 and F ′

2 of S2\T , such that S∩(S1+S′

2)⊃ E ′
=(E1+E ′

2)∪(F1+F ′

2),

with E ′
6= ∅. Now let E2 = E ′

2 ∪ {w ∈ T : E1 +w ⊂ S } and F2 = F ′

2 ∪ {w ∈ T :

F1 +w ⊂ S }. Since E1 and F1 are a disjoint partition of S1, and each w ∈ T has
(S1 +w)∩ S = a − 1 = #S1 − 1, each w ∈ T is in E2 or F2 but not both. Thus E2

and F2 disjointly partition S2. Clearly, S ⊃ E = (E1 + E2)∪ (F1 + F2). Because
E ⊃ E ′

6= ∅, the induction argument is complete. �

Theorem 6.3. If the positive integer n has exactly two distinct, positive prime
factors, then 9(n)= φ(n).

Proof. The case of even n is handled by Theorem 4.1(3).
So assume that n is odd (and hence pi ≥ 3). Without loss of generality, p1< p2.

Let S ⊂ Zn such that #S > φ(n). It will be shown that S contains a nonempty set
E of the form given by (6–2), and so E is not quasi-independent, by Lemma 6.1.
There are two cases: for some w ∈ H2, (H1 +w) ⊂ S, or there is no such w. In
the former case, let E1 = H1, and E2 = {w}. Then

E = (E1 + E2)∪ ((H1\E1)+ (H2\E2))

= (H1 +w)∪ (∅ + (H2\{w}))= H1 +w ⊂ S,

and clearly E 6= ∅. That disposes of the first case. (Alternatively, one notes that if
(H1 +w)⊂ S, then S contains a nontrivial coset, so cannot be quasi-independent.)

In the second case, let x denote the number of w ∈ H2 such that H1 +w has
exactly p1 − 1 elements of S. Then

(p1 − 1)(p2 − 1)+ 1 ≤ #S ≤ x(p1 − 1)+ (p2 − x)(p1 − 2).
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This implies that x ≥ p2 − (p1 − 2). Let T consist of p2 − (p1 − 2) elements w of
H2 such that H1+w has exactly p1−1 elements of S. Let S1 = H1 and S2 = H2\T .
Then, with S′

= S ∩ (S1 + S2), one has

#S′
≥ (p1 − 1)(p2 − 1)+ 1 − [p2 − (p1 − 2)](p1 − 1)= (p1 − 2)2.

Note that #S2 = p1−2, while #S1 =# H1 = p1. Because p1 is an odd, positive prime,
p1 − 2 > 0. So, by Lemma 6.2, there is a nonempty set E ′

⊂ S1 + S2 of the form
E ′

= (E1 + E ′

2)∪(F1 + F ′

2), where E1 and F1 partition H1 and E ′

2 and F ′

2 partition
S2. For each w ∈ T , S ⊃ (E1+w) or S ⊃ (F1+w) but not both. In the former case,
adjoin such w’s to E ′

2 to form E2. In the latter case, adjoin them to F ′

2 to form F2.
Then F2 = H2\E2, F1 = H1\E1 and S ⊃ E = (E1 + E2)∪ ((H1\E1)+ (H2\E2),

with E ⊃ E ′
6= ∅. �

Quasi-independent sets in Z pq . To discuss the case Z pq , we need a generalization
of shadowing, as follows. Suppose E ⊂ Zn , and that Zn = H × L . Let h ∈ H , and
let F ⊂ ({h} × L). We say that E shadows the spikes rising from F if, for every
k ∈ H, k 6= h,

(6–7) either (F + (k − h, 0)) ⊂ E ∩ ({k} × L)

or (F + (k − h, 0))∪ (E ∩ ({k} × L)) = {k} × L .

Theorem 6.4. Let p 6= q be odd primes. Then E ⊂ Z pq is quasi-independent if
and only if all of the following hold. For t ∈ Z p and v ∈ Zq , let E (t) = E ∩ (Zq + t)
and E(v) = E ∩ (Z p + v).

(1) The intersection of E with each coset of Z p is quasi-independent.

(2) The intersection of E with each coset of Zq is quasi-independent.

(3) For every t ∈ Z p and nonempty subset F ⊆ E (t), the spikes rising from F are
not shadowed by E.

(4) For every v ∈ Zq and nonempty subset F ⊆ E(v), the spikes rising from F are
not shadowed by E.

Furthermore, E is independent if and only if E is quasi-independent.

Proof. Suppose E does not satisfy the conditions. We shall construct a quasirel-
ation supported on E . If either the first or second condition fails, then there is
automatically a quasirelation supported on the intersection concerned, and we are
done.

The fourth condition is dealt with just as we do for the third. So suppose that
the third condition fails. Let t ∈ Z p and let the nonempty subset F ⊆ E (t) have
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spikes rising from F shadowed by E . We define a quasirelation:

f =

∑
`∈F

χZ p+` −

∑
m∈Z p, m 6=t,

(F+m−t)∪E (m)=Zq+m

χZq+m .

Then f is supported in E for the following reasons. On F ⊆ E ∩ (Zq + t), we
have exactly the sum of characteristic functions of some of the cosets of Z p that
meet that intersection, so f = 1 on F . Likewise, if (F + m − t)∪ E (m) 6= Zq + m
and m 6= t , then f is 1 on F + m − t and 0 otherwise in Zq + m. By (6–7),
F + m − t ⊂ E and thus f is supported on E (and has values 0 and 1 there).

Finally, suppose (F + m − t) ∪ E (m) = Zq+m for some m 6= t . Consider an
element x of such a coset Zq + m. If x 6∈ F + m − t , then x ∈ E (because E
shadows the spikes rising from F). Also, f (x)= −1.

If x ∈ F + m − t then f (x)= 0, since f (x) is a difference of the characteristic
functions of the two cosets that meet at x . Thus, f is supported on E . Hence, E
is not quasi-independent.

Now suppose that E does satisfy the four conditions. We must show that E
supports no nonzero relations. We suppose the contrary.

Consider the set of relations f supported on E . Let N ( f ) be the minimal
nonzero cardinality of the intersections of the support of f with cosets of Z p,
assuming that there are f ’s with nonempty intersections. Choose f with minimal
N ( f ). By replacing f and E with translates, we may assume that the support of
f has smallest intersection with Z p:

F = {x ∈ E ∩ Z p : f (x) 6= 0}.

We are assuming that #F 6= 0. We write

f =

∑
s∈Z p∩E

bsχZq+s +

∑
u∈Zq
u 6=0

cuχZ p+u .

It will be enough to show that F does not have minimal cardinality. To show
that it will be enough to delete one element from F . Since E does not shadow
the spikes rising from F , there exists u ∈ Zq such that neither F + u ⊂ E(u) nor
(F + u)∪ E(u) = Z p + u. Let w ∈ Z p be such that w+ u 6∈ (F + u)∪ E(u) and let
s ∈ F be such that s + u 6∈ E (u). Then

cu + bw = f (u +w)= 0 = f (u + s)= cu + bs .

Now, since w+ u 6∈ (F + u)∪ E (u), bw = 0. Hence both bs = 0 and cu = 0, which
contradicts the definition of F . Therefore E supports only the zero relation and is
independent.
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We see that we have shown that if the four conditions fail, then E is not quasi-
independent, and that if the four conditions hold, then E supports no nonzero
relation. Since independence implies quasi-independence, it now follows that E is
quasi-independent if and only if E is independent. �

By similar methods one can prove the following results.

Theorem 6.5. Let E ⊂ Z pq . Then the only relations supported on E are sums of
quasirelations each of which is supported on E.

Theorem 6.5 does not say that there are no relations on E . If we specify that a
relation must have a certain value (e.g., 1) at an element of E , then it may be the
case that there are no quasirelations supported on E with that property; blocking
is concerned with this phenomenon.

Let E ⊂ Z pq be the support of a relation f . We write

(6–8) f =

∑
t∈Zq∩E

btχZ p+t +

∑
v∈Z p
v>0

cvχZq+v.

Theorem 6.6. Let f be a relation on Z pq .

(1) We have f =
∑

k∈Q fk, where

fk =

∑
t∈Zq∩E
|bt |=k

btχZ p+t +

∑
v∈Z p

t>0, |cv |=k

cvχZq+v,

and each fk has support contained in the support of f .

(2) If the support of f is minimal among the relations supported on E , then the
nonzero coefficients in (6–8) have equal absolute values.

Remark 6.7. We can draw several conclusions:

(i) If all the coefficients of f have the same sign, then the support of f includes a
coset of a subgroup, and so E contains a coset.

(ii) If, in (6–8), all of the bt = 1 and all of the cv = −1 then | f | ≤ 1, and f is
a quasirelation. If the coefficients in (6–8) are integers with some nonzero bt and
some nonzero cv of the same sign, then sup | f | ≥ 2. We can see this by noting that
the cosets of Z p run “perpendicular” to the cosets of Zq .

(iii) In (6–8), suppose that: E does not contain any coset of Z p; E does not contain
coset of Zq ; and that f is a quasirelation.

Note that (6–8) forces bt = f (t)∈ {±1} (in (6–8), E is the support of the relation).
If all the cv are zero, then E is a nonempty, finite union of cosets of Z p. So, at
least one cv 6= 0. We have bt + cv ∈ {0,±1} for all bt . If some bt = 1, then
cv ∈ {−2,−1, 0}; if some bt = −1, then cv ∈ {0, 1, 2}. Thus having some bt ’s of
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different sign forces cv = 0. So, all the bt ’s are equal. Finally, since Zq is not a
subset of E , there is some x ∈ Zq\E and f (x +w) = cw ∈ {0,±1} for all w > 0
in Z p. So each cw is an integer. By (ii), each nonzero cw has sign opposite to that
of any bt .

Thus, given that E is the support of a quasirelation but E does not contain any
coset of Z p or of Zq , then all the bt equal 1, with every cw ∈ {0,−1} and at least
one cv 6= 0; or all the bt equal −1, with every cw ∈ {0, 1} and at least one cv 6= 0.

7. 9(105)

Simple estimates. We estimate 9(105) in a number of related, and improving,
ways, eventually obtaining 9(105)= 52.

Let p < q < r be distinct odd primes and let n = pqr , Then

(7–1) 9(n)≤ r(p − 1)(q − 1).

In particular, 9(105)≤ 56.
This is easy: let E ⊂ Tpqr be quasi-independent. A coset of ωTpq , where ω =

e2π ik/r , can contain at most (p−1)(q−1) elements of E , by Theorem 6.3 and
Lemma 4.2. There are r such cosets, so #E ≤ r(p − 1)(q − 1).

We can improve the estimate (7–1) slightly to show that

(7–2) 9(pqr) < (p−1)(q−1)r − 1,

for distinct odd primes p, q, r . In particular, 9(105) < 55.
Here is the argument. Suppose that E ⊂ Tpqr had (p−1)(q−1)r − 1 elements.

Let a denote the number of cosets of Tpq that have (p − 1)(q − 1) elements of E .
Then a = r − 1. Let F be the coset with the smallest number of elements of E .
Then #(E ∩ F) = (p−1)(q−1)− 1. We let w ∈ F ∩ E . Then w ∈ F , so (5–1)
holds for wTpq . At all the other cosets of Tpq the intersection of E with the coset
has (p−1)(q−1) elements, so either (5–1) holds, or (5–2) holds: we cannot add
an element without getting a non-quasi-independent set. Hence, E shadows wTr ,
so E cannot be quasi-independent.

We now give an extension lemma, a simple version of [Ramsey and Graham
2006, Theorem 1.2.2].

Lemma 7.1. When 2< p<q<r< s are prime,9(pqr)+(s−r)9(pq)≤9(pqs).

Proof. We will construct a quasi-independent subset of Z pqs whose cardinality is
9(pqr)+ (s − r)9(pq).

Let E ⊂ Z pqr be a quasi-independent set such that #E =9(pqr) and F ⊂ Z pq

a quasi-independent set such that #F =9(pq).
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Let a mapping of sets

j : Z pqr ∪ (Z pq × [r, . . . , s))→ Z pqs

be given by j (a, b, c) = (a, b, c) for 0 ≤ a < p, 0 ≤ b < q and 0 ≤ c < s, where
we identify Z pqr with [0, p)×[0, q)×[0, r) and Z pqs with [0, p)×[0, q)×[0, s).
Let E ′

= j (E ∪ (F ×[r, s)). Then #E ′
=9(pqr)+ (s − r)9(pq). We claim that

E ′ is quasi-independent. Suppose that f is a quasirelation on Z pqs supported on
E ′. We write f using the basis of (2–5) and (2–6), so for some rational numbers
at and bh ,

f =

∑
t∈Z pq

atχt+Zs +

∑
1≤ j<s
L∈L j

bLχL ,

where L j denotes the cosets in L that are contained in Z pq + j, 1 ≤ j < s. Let g
be the characteristic function of Z pq × [0, r)⊂ Z pqs . Then

(g f ) ◦ j =

∑
t∈Z pq

atχt+Zr +

∑
1≤ j<r
L∈L j

bLχL

is a quasirelation on Z pqr . Of course, the support of (g f )◦ j is E , so (g f )◦ j = 0.
In particular, at = 0 for all t and bL = 0 for all L ∈ L j , 1 ≤ j < r . Hence, the
support of our original f excludes Z pq × [0, r), that is, Supp f ⊂ j (F × [r, s)).
Then Corollary 2.11 (Empty Floor) implies that j (F ×[r, s)) is quasi-independent
and thus f = 0. Hence E ′ is quasi-independent. �

Lemma 7.2. Let p ≥ 7 be any prime. Then 9(15p) ≤ φ(15p)+ 4. In particular,
9(105)≤ 52.

Proof. We view T15p as Z3×Z5×Z p. Let E ⊂T15p have φ(15p)+5=8(p−1)+5=

8p − 3 elements. We will show that E is not quasi-independent.
If, for any coset wT15, Ew = E ∩ (wT15) is not quasi-independent, we are done

(E is not quasi-independent because a subset is not quasi-independent). So we may
assume that Ew is quasi-independent for all w. In particular, if # Ew > 8 for any w,
Ew cannot be quasi-independent. So, #Ew ≤ 8 for all w. Let a be the number of
distinct cosets wT15 in T15p such that #Ew = 8. Then 8p−3 ≤ a(8)+(p−a)(7)=
a + 7p, so a ≥ p − 3. Let ti T15, for 1 ≤ i ≤ p, enumerate the distinct cosets of
T15 in T15p so that (with Eti shortened to Ei ) #Ei = 8 for integers i ∈ [4, p]. Then
F = E1 ∪ E2 ∪ E3 satisfies # F = #(E1 ∪ E2 ∪ E3) = (8p − 3)− 8(p − 3) = 21.
Among the 5 cosets of T3p in T15p, at least one has at least 5 elements of F . Let
such a coset be labeled L . Note that L ∩ ti T15 is a coset of T3; label it Ri . Thus
5 ≤ #(F ∩ L)= #

(⋃3
i=1(E ∩ Ri )

)
. Suppose that some E ∩ Ri has three elements.

Then E contains a full coset of Z3 and hence is not quasi-independent. So assume
that each E ∩ Ri has at most two elements. Together, R1, R2 and R3 have at least
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5 elements of E ; so at least two of them have exactly two elements of E and the
third has at least one. By relabeling the cosets t1T15, t2T15 and t3T15, we may
assume that R1 and R2 have exactly two elements of E and R3 at least one — say
w ∈ E ∩ R3. (It is important that only one of the sets R1, . . . , R3 have only one
element of F .)

By applying a group translation to Z15p, we may assume that w = t3 = 0,
since composition with a group translation clearly preserves basis elements of the
relations and group translations map quasi-independent sets into quasi-independent
sets. (See [Ramsey and Graham 2006, Theorem 3.1.2] for a characterization of
those permutations of Zn that preserve (quasi-)independent sets.)

We claim that Tp is a (vertical) spike shadowed by the set E . Note that t3 ∈ R3 ⊂

L . The intersection Tp ∩ ti T15 contains but a single point zi for each 1 ≤ i ≤ p,
and that point is a member of Ri .

We now check the conditions (5–1) and (5–2) of Theorem 5.1. For i ∈ [4, p],
E ∩ ti T15 has 8 elements and hence is maximally quasi-independent within that
coset. If zi /∈ E , then {zi } ∪ (E ∩ ti T15) has 9 elements and thus is not quasi-
independent. For i = 1 and i = 2, if zi /∈ E , then {zi }∪(E ∩ Ri )= Ri is a full coset
of T3 and hence not quasi-independent. Note that E ∩ Ri ⊂ E ∩ ti T15. For i = 3,
zi = 0 ∈ E . Thus E shadows a coset of Tp, and hence is not quasi-independent. �

Example 7.3 (9(105) ≥ 52). Here is a 52-element quasi-independent subset of
Z105, given by the 7 layers:

Layer 0: {1, 2, 3, 6, 9, 12, 15} Layer 1: {2, 3, 4, 6, 8, 9, 15}

Layer 2: {1, 3, 4, 6, 7, 8, 15} Layer 3: {1, 2, 4, 7, 9, 10, 13}

Layer 4: {2, 3, 4, 5, 6, 12, 13, 14} Layer 5: {1, 3, 4, 5, 8, 10, 12, 14}

Layer 6: {1, 2, 3, 4, 10, 11, 12, 14}

We have identified the elements on each layer lexicographically, not group the-
oretically (this makes the computer programming easier). The properties of this
52-element set have been verified by two very different computer programs, one
based on a linear programming principles and the other a direct search for efficient
blocking of sets of spikes. We believe that9(105) is at least 52 because a logically
complex, months-long computer search told us so. (See the Appendix for details
on the computer program used for n = 165 and 195, which is an adaptation of the
one used for n = 105.)

Theorem 7.4. If n = 15p, where p ≥ 7 is a prime, then 9(n)= φ(n)+ 4.

Proof. By Lemma 7.1, Example 7.3 and computation, we see that p ≥ 7 implies
9(15p) ≥ 9(105) + (p − 7)9(15) = 4 + φ(15p). By Lemma 7.2, 9(15p) ≤

4 +φ(15p). �
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Only 2 or 3 independent sets are needed for n = pqr. When n is the product of 3
distinct, odd (positive) prime numbers, Tn is the union of 3 independent sets. With
the exceptions of p1 = 3, p2 = 5 and 7 ≤ p3 ≤ 13, this can be reduced to two
independent sets:

Proposition 7.5. Let n = p1 p2 p3 with each pi a positive prime number and p3 >

p2 > p1 ≥ 3.

(1) If p1 ≥ 5, or p1 = 3 and p2 ≥ 7, or p1 = 3, p2 = 5 and p3 ≥ 17, then Zn is
the union of two independent sets.

(2) If p1 = 3, p2 = 5 and p3 = 11 or p3 = 13, then Zn is the union of three
independent sets, but not of two independent sets.

(3) If p1 = 3, p2 = 5 and p3 = 11 or p3 = 13, then Zn is the union of two quasi-
independent sets.

(4) If p1 = 3, P2 = 5 and P3 = 7, then Zn is the union of 3 independent sets and
not the union of two quasi-independent sets.

The integers n are 165 and 195 in cases (2)–(3): and 105 in case (4).

Proof. We use Proposition 1.2 without comment here.

(1) We need only show that φ(n)/n ≥
1
2 . When p1 ≥ 5,

φ(n)
n

=
p1 − 1

p1
·

p2 − 1
p2

·
p3 − 1

p3
≥

4
5

·
6
7

·
10
11
> 0.62>

1
2
.

When p1 = 3 and p2 ≥ 7,

φ(n)
n

≥
2 · 6 · 10
3 · 7 · 11

> .519>
1
2
.

When p1 = 3 and p2 = 5 and p3 ≥ 17,

φ(n)
n

≥
2 · 4 · 16
3 · 5 · 17

> 0.501>
1
2
.

(2) As long as p3 > p2 > p1 ≥ 3:

φ(n)
n

≥
2 · 4 · 6
3 · 5 · 7

> 0.45>
1
3
.

When p1 = 3, p2 = 5 and p3 ≤ 13, we have φ(n)/n< 0.493, so three independent
sets are needed.

(3) For both n = 165 and n = 195 a computer search (see the Appendix) produced
a pair of quasi-independent sets with union the entire group.

(4) n = 105, 3φ(105)= 3 · 48> 105, and 105
2 > 52 = φ(105)+ 4. �
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The first n for which Zn is not a union of 3 independent sets is 111546435, the
product of the first 8 odd primes. To show by our methods that there are three
quasi-independent sets covering Zn seems impossible.

Appendix

We list here the elements of two quasi-independent sets whose union gives us the
165th roots of unity, and briefly discuss the computing method used to find these
set. Further details are available on request.

We view the 165th roots of unity as Z5 × Z3 × Z11 and list the elements in
lexicographic order; each line corresponds to a horizontal layer (coset of Z5 × Z3).

layer Elements of 1st set Elements of 2nd set

0 {1, 2, 3, 4, 6, 10, 12} {5, 7, 8, 9, 11, 13, 14, 15}

1 {2, 3, 4, 6, 7, 13, 15} {1, 5, 8, 9, 10, 11, 12, 14}

2 {1, 3, 4, 6, 7, 13, 15} {2, 5, 8, 9, 10, 11, 12, 14}

3 {1, 2, 4, 6, 8, 14, 15} {3, 5, 7, 9, 10, 11, 12, 13}

4 {1, 2, 3, 7, 10, 13, 14} {4, 5, 6, 8, 9, 11, 12, 15}

5 {3, 4, 5, 6, 8, 9, 11, 12} {1, 2, 7, 10, 13, 14, 15}

6 {1, 2, 5, 6, 8, 9, 12, 14} {3, 4, 7, 10, 11, 13, 15}

7 {1, 2, 3, 7, 9, 13, 14, 15} {4, 5, 6, 8, 10, 11, 12}

8 {2, 3, 5, 6, 9, 10, 11, 12} {1, 4, 7, 8, 13, 14, 15}

9 {2, 3, 4, 7, 10, 11, 13, 15} {1, 5, 6, 8, 9, 12, 14}

10 repeat any layer

The same example works for 195th roots of unity: the first 10 layers are the
same, layers labeled from 0 through 9, and the last three layers can be a repeat of
any earlier layer. When repeating a layer, keep both the part in the first set and the
part in the second set.

These examples have been verified by two independent computer programs:

• With one program, one picks a layer and generates all the nonzero sets of vertical
spikes that are supported within that layer. Then, successively through the layers,
one finds which sets of vertical spikes are still shadowed by each layer. By the
10th layer, one finds that none are left. Hence all these sets of spikes are blocked;
also, the subset within each layer is quasi-independent. It follows that the entire
set is quasi-independent.

• A program based upon linear programming principles finds, directly, that no
nontrivial quasi-independent relation is supported on the set.

Although we stopped after generating one example, we believe there are many
because the search process succeeded too easily. The search was often “greedy”,
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sometimes optimizing locally when a choice had to be made. At other times, a
random choice was made to reduce the search possibilities to manageable propor-
tions. Usually, in this subject, greediness and randomness do not produce the best
results but they were good enough in this application. Several things helped this
search substantially:

• A necessary condition is that the intersection of each set with a layer must be
quasi-independent, which limits the size to eight within any layer. If the set’s
complement is to enjoy the same property, its size can be at most 8 as well. Thus,
within each layer, the set can have 7 or 8 elements. By an exhaustive search, there
are exactly 1440 subsets of Z5 × Z3 that are quasi-independent, have size 7, and
have a quasi-independent complement with respect to Z5 × Z3. This bounds the
search to 144011 or 144013, approximately 5.5 · 1034 or 1.1 · 1041.

• Modulo permutations of the rows and columns of Z5×Z3, there are only 4 quasi-
independent subsets of size 7 whose complements are also quasi-independent. This
gives a further reduction. We can assume that the 0-layer of the 1st set is one of
these 4. That reduces the search by a factor that is approximately 0.0028. The
example given above was found working with the first of these 4 possibilities.

• We generated the 1093, unique modulo multiplication by −1, nonzero sets of
vertical spikes that were supported within the 0-layer by the size-7 set we chose
there for the first set. It is a fact that some sets of vertical spikes are shadowed by
every quasi-independent set of size 8. This is even more true, if we restrict the size-
8 sets to have complements that are quasi-independent sets. Here there were 29
sets of spikes that were shadowed by every candidate size-8 set. We then searched
for the minimum number of candidate size-7 sets that would block these 29. We
found that we needed to use four 7-sets in addition to the 7-set in the 0-layer. Here
there were many choices; we worked with the first one that we found, giving us
the 2nd through the 5th layers of the first set. At the this point, using these first
five layers, only 4 sets of vertical spikes survived.

• We then generated the 3280 unique (modulo multiplication by −1) nonzero sets
of vertical spikes that were supported within the 0-layer by the complement of what
the first set had in that layer. We then determined which of these were shadowed
by the complements of what the first set had in layers 2 through 4. There were 316
of these.

• We then proceeded with a greedy algorithm: for layers 6 through 10, a 7-set was
chosen to block the most sets of spikes that survive all layers before it. Given more
than one 7-set that fits this role, then a 7-set was chosen whose complement blocks
the most of the (at most 4) heretofore surviving spikes of the first set.
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