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We prove that the Cheng–Yau gradient estimate on positive harmonic func-
tions on manifolds with nonnegative Ricci curvature is globally stable under
certain perturbations of the metric. In some cases, one only needs the con-
dition Ricci(x) ≥ −ε/(1 + d(x)2+δ), with δ > 0 and ε > 0 sufficiently small.

1. Introduction

One of the most useful inequalities in geometric analysis is the Cheng–Yau estimate
on the gradient of positive harmonic functions.

Theorem (Cheng–Yau). Let M be a complete manifold of dimension n ≥ 2 and
Ricci curvature bounded below by −k, with k ≥ 0. Suppose u is any positive
harmonic function in a geodesic ball B(x0, r)⊂ M. Then

(1–1) sup
B(x0,r/2)

|∇u|

u
≤

cn

r
+ cn

√
k,

where cn depends only on the dimension n.

When k = 0 (so M has nonnegative Ricci curvature), the Cheng–Yau estimate
becomes

(1–2) sup
B(x0,r/2)

|∇u|

u
≤

cn

r
,

which is sharp, as we can see by considering the Euclidean case. However, even if
M contains a small compact region where the Ricci curvature is not nonnegative,
estimate (1–1) becomes very different from (1–2) when r is large, because of the
√

k term. Whether estimate (1–2) is stable under perturbation has been an open
question for some time, in light of the known stability results on weaker properties
of harmonic functions, such as the Harnack inequality.

Here we confirm that (1–2) is stable when the nonpositive part of the Ricci
curvature is sufficiently small in an integral sense.
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Some smallness condition for the nonpositive part of the Ricci curvature is surely
necessary for (1–2) to hold. For instance, if the nonpositive part of the Ricci cur-
vature is so large that M admits a bounded nonconstant harmonic function, clearly
(1–2) cannot hold.

Throughout the paper1 is the Laplace–Beltrami operator, d(x, y) is the distance
between x and y, and d(x) is the distance between x and a fixed reference point.
|B(x, r)| denotes the volume of the geodesic ball of radius r centered at x .

We now lay out the basic assumptions required. As will be explained later, these
assumptions are stable under certain perturbations of the metric.

Assumption A. M is a complete noncompact Riemannian manifold of dimension
n ≥ 2 satisfying the volume doubling property

|B(x, 2r)| ≤ 2ν |B(x, r)|

for all x ∈ M , r > 0 and some ν > 0.

Assumption B. The heat kernel G of the Laplace–Beltrami operator satisfies a
Gaussian upper bound

G(x, t; y, 0)≤
B1

|B(x,
√

t)|
exp

−b1d2(x, y)
t

,

for some b1, B1 > 0, and all x, y ∈ M and t > 0.

Several conditions are known to be equivalent to assumptions A and B. For
instance, it was proved in [Grigoryan 1991] that the two assumptions together are
equivalent to:

Faber–Krahn inequality. For any x ∈ M , r>0, and nonempty subset�⊂ B(x,r),

λ1(�)≥
c
r2

(
|B(x, r)|

|�|

)2/ν

.

Here λ1(�) is the first Dirichlet eigenvalue of � and c > 0.

It is also known [Saloff-Coste 1992] that if Assumption A is satisfied, Assump-
tion B is equivalent to:

Assumption B′. The following Sobolev inequality holds for all φ ∈ C∞

0 (B(x, r)),
x ∈ M , r > 0, and a fixed α > 2:(∫

φ2α/(α−2)dy
)(α−2)/α

≤ S0|B(x, r)|−2/α
∫ (

r2
|∇φ|

2
+φ2) dy.
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Also under Assumption A, it is known that Assumption B is implied by a certain
Poicaré inequality [Saloff-Coste 1992; Grigoryan 1991], and by a certain mean-
value inequality [Li and Wang 1999]. There is an extensive literature on mani-
folds satisfying various global conditions including the ones mentioned above; see
[Grigor’yan 1999; Saloff-Coste 2002] and references therein.

There exist many manifolds satisfying assumptions Assumption A and Assump-
tion B, among them is the class of manifolds quasiisometric to manifolds with non-
negative Ricci curvature, and connected sums of two copies of Rn . See [Coulhon
and Saloff-Coste 1995], for example.

Next we introduce the conditions on the nonpositive part of the Ricci curvature
that will imply the global Cheng–Yau estimate (1–2). The conditions, in general
integral form first, will be elucidated in the Corollary below by simple conditions.
Essentially, the nonpositive part of the Ricci curvature is required to be small and
decay sufficiently fast near infinity.

Let λ= λ(x) be the lowest eigenvalue of Ric(x), for x ∈ M . We use the notation

V (x) :=
1
2

(
|λ(x)| − λ(x)

)
Assumption C. The function V lies in L∞(M) and there exist ε0 > 0 and K > 0
such that

N (V )≡ sup
x∈M

∫
∞

0

∫
M

e−d(x,y)2/t

|B(x,
√

t)|
V (y) dy dt < ε0

and ∫
M

V (y)φ2(y) dy <
1

11n

∫
M

|∇φ(x)|2 dx +
K
r2

∫
M
φ2(y) dy

for all φ ∈ C∞

0 (B(x, r)).

Here is the key result in this paper.

Main Theorem. Suppose M satisfies Assumptions A and B. There exists ε0 > 0,
depending only on the parameters in those assumptions, so that if Assumption C
on the Ricci curvature holds, the following statement holds.

Let u be a positive harmonic function in the ball B(x, r). Then

sup
y∈B(x,r/2)

|∇u(y)|
u(y)

≤
C0

r
,

where C0 depends only on the assumptions’ parameters ν, b1, B1, ε0, K and n.

Remark 1. In many cases, the condition on V in the theorem simply means that

Ric(x)≥ −
ε

1 + d(x)2+δ

for some small enough ε > 0 and δ > 0. This is indicated in the Corollary below.
In general, the first equation in Assumption C is a Kato-type condition and the
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second condition takes the form of Hardy’s inequality; that is, for f ∈ C∞

0 (R
n)

(n ≥ 3), we have
(n − 2)2

4

∫
Rn

1
|x |2

f (x)2 dx ≤

∫
Rn

|∇ f |
2(x) dx .

For versions of Hardy’s inequality in manifolds, see [Carron 1997; Ancona 1990].
In many situations the first item implies the second, as we now see:

Corollary. Suppose that M satisfies the Sobolev inequality Assumption B′ with
α= n and that |B(x, r)| is comparable with rn , for n> 2, meaning that there exists
a> 0 such that a−1rn

≤ |B(x, r)| ≤ arn for all x ∈ M and r > 0. Then the gradient
bound (1–2) holds if

Ric(x)≥ −
ε

1 + d(x)2+δ

for a sufficiently small ε > 0 and δ > 0. Here ε depends only on b1, B1, δ, a, n.
In particular, if M is a small compact perturbation of Rn , where n ≥3, Equation

(1–2) holds.
Likewise, (1–2) holds if M is a small compact perturbation of a manifold of

dimension at least 3 that has nonnegative Ricci curvature and maximum volume
growth (that is, |B(x, r)| ∼ rn).

Proof. Since M satisfies the extra conditions in the volume of geodesic balls in the
corollary, it is easy to see that

N (V )= sup
x∈M

∫
∞

0

∫
M

e−d(x,y)2/t

|B(x,
√

t)|
V (y) dy dt ≤ c sup

x∈M

∫
M

d(x, y)2

|B(x, d(x, y))|
V (y) dy.

Write

K (V )≡ sup
x∈M

∫
M

d(x, y)2

|B(x, d(x, y))|
V (y) dy.

By direct calculation we see that V (x)≤ ε/(1 + d(x)2+δ) implies

K (V )≤ sup
x∈M

∫
d(x,y)≥d(y)/2

d(x, y)2

|B(x, d(x, y))|
V (y) dy

+ sup
x∈M

∫
d(x,y)≤d(y)/2

d(x, y)2

|B(x, d(x, y))|
V (y) dy

≤ Cε.

Next, given φ ∈ C∞

0 (B(x0, r)),∫
M

V (x)φ2(x) dx ≤

(∫
M

V n/2(x) dx
)2/n (∫

M
φ2n/(n−2)(x) dx

)(n−2)/n

.
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By the Sobolev inequality,∫
M

V (x)φ2(x) dx ≤ S0

(∫
M

V n/2(x) dx
)2/n(∫

M
|∇φ|

2(x) dx +
k
r2

∫
M
φ2(x) dx

)
.

A simple calculation then shows that∫
M

V (x)φ2(x) dx ≤ CεS0

(∫
M

|∇φ|
2(x) dx +

k
r2

∫
M
φ2(x) dx

)
.

Hence all the conditions of the Main Theorem are satisfied when ε is sufficiently
small.

There are plenty of examples of such manifolds due the stability of G(x, t; y, 0)
under perturbation of the metric. For instance, let M be Rn equipped with a metric
coming from a small perturbation of the Euclidean metric. Here n ≥ 3. Then by
standard results B1 and b1 can be chosen to be close to 1/(2

√
π)n and 1/4, the

Euclidean constants. At the same time, the nonpositive part of the Ricci curvature
can be arbitrarily small. Therefore the above quantity N (V ) can be arbitrarily
small while ε0, depending only on B1, b1 and the doubling constant, is bounded
away from zero. Thus N (V ) < ε0.

The last statement in the corollary is proved in the same manner. �

Remark 2. The constant ε0 and C0 in the Main Theorem can be estimated explic-
itly, as indicated in the proof. The assumption V ∈ L∞(M) is not necessary. But
we will not seek the full generality.

It is not clear whether the current method can show the Li–Yau gradient estimate
on caloric functions [1986] is stable.

2. Proof of the Main Theorem

Let u be a positive solution of 1u = 0. The proof is carried out in several steps.

2.1. Derivation of an equation for log u. In this initial step we follow [Yau 1975]
and [Cheng and Yau 1975]. Set f = log u; then 1 f = −|∇ f |

2. Define

F ≡ |∇ f |
2.

By Bochner’s identity, F obeys

(2–1) 1F ≥ −2∇ f ∇F +
2
n

F2
− 2V F.

Here V = V (x) is the absolute value of the negative part of the lowest eigenvalue
of Ric(x).
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2.2. Preparing the ground for a bound on F. From here on our proof is different
from those in [Yau 1975] and [Cheng and Yau 1975], where the maximum principle
was used. We will use certain integral estimates motivated by the De Giorgi–Nash–
Moser theory on linear elliptic and parabolic equations.

The idea is to convert (2–1) into a linear inequality and prove that the heat
kernel of the corresponding operator satisfies a global Gaussian upper bound when
N (V ), defined in Assumption C, is sufficiently small. Then one can use the local
representation formula for solutions and the Hölder inequality to derive an L∞

bound for F . However, it is not clear that the linear operator

−1− 2∇ f ∇ +
2
n

F − 2V

associated with (2–1) is positive definite. Hence there is no hope of proving a
global Gaussian upper bound for the corresponding heat kernel.

To overcome the difficulty, we consider the function

w = Fm, where m = 5n.

By direct calculation, one easily finds using (2–1) that

1w+ 2∇ f ∇w− 10Fw+ 10nVw ≥ 0.

We define the operators L1 and L2 by

(2–2)

L1 =1+ 2∇ f ∇ − 10F,

L2 =1+ 2∇ f ∇ − 10F + 10nV,

and their corresponding heat kernels by G1 and G2. We will eventually prove that
G2 has a global Gaussian upper bound when N (V ) is small. More importantly,
the coefficients in the Gaussian upper bound should be independent of f , which
is not a fixed function. This is achieved by exploiting the special structure of the
operator L1.

First, we have to show that G1 satisfies a global Gaussian upper bound. This is
the longest part of the proof, and we do it in the next two sections.

2.3. A mean-value inequality. Set

L3 =1+ 2∇ f ∇ − 8F.

We will prove an L2 mean-value inequality for positive solutions of

(2–3) L3w−wt ≥ 0.
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Let Qr (x, t) (or simply Qr ) denote B(x, r) × [t − r2, t]. The inequality to be
proved is

(2–4) sup
Qr/2(x,t)

w2
≤

C7

B(x, r)r2 ‖w‖
2
L2(Qr (x,t))

.

Notice that the order-zero term in L3 is −8Fw instead of −10Fw in L1. This
makes L3 a “bigger” operator than L1.

Fix σ > 1. Let η : R → R be a cutoff function supported in
(
t − (σr)2, t

)
and

such that η(s)=1 for s ∈[t−r2, t] and |η′
|≤2/((σ−1)r)2 for 0≤η≤1. Similarly,

let φ : Rn
→ [0, 1] be a function supported in B(x, σr) and such that φ(y)= 1 for

y ∈ B(x, r) and

|∇φ| ≤
A

(σ − 1)r
, with A > 0.

Then set ψ(y, s)= φ(y)η(s). Using wψ2 as a test function in (2–3), one obtains∫
Qσr

(
1w− 2∇ f ∇w− 8Fw− ∂sw

)
wψ2 dy ds ≥ 0.

Integrating by parts, one deduces

(2–5)
∫

Qσr

∇(wψ2)∇w dy ds ≤

∫
Qσr

2∇ f ∇w(wψ2) dy ds

−

∫
Qσr

8Fw2 dy ds −

∫
Qσr

(∂sw)wψ
2 dy ds.

By direct calculation,∫
Qσr

∇(wψ2)∇w dy ds =

∫
Qσr

∇
(
(wψ)ψ

)
∇w dy ds

=

∫
Qσr

(
∇(wψ)(∇(wψ)− (∇ψ)w)+wψ∇ψ∇w

)
dy ds

=

∫
Qσr

(
|∇(wψ)|2 − |∇ψ |

2w2) dy ds.

Substituting this in (2–5), we obtain

(2–6)
∫

Qσr

|∇(wψ)|2 dy ds

≤

∫
Qσr

2∇ f ∇w(wψ2) dy ds −

∫
Qσr

8Fw2 dy ds

−

∫
Qσr

(∂sw)wψ
2 dy ds +

∫
Qσr

|∇ψ |
2w2 dy ds.
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Next, notice that∫
Qσr

(∂sw)wψ
2 dy ds =

1
2

∫
Qσr

(∂sw
2)ψ2 dy ds

= −

∫
Qσr

w2φ2η∂sη dy ds +
1
2

∫
B(x,σr)

w2(y, t)φ2(y) dy.

Combining this with (2–6), we see that

(2–7)
∫

Qσr

|∇(wψ)|2 dy ds +
1
2

∫
B(x,σr)

w2(y, t)φ2(y) dy

≤

∫
Qσr

(|∇ψ |
2
+ η∂sη)w

2 dy ds +

∫
Qσr

2∇ f ∇w(wψ2) dy ds

−

∫
Qσr

8Fw2 dy ds.

The first term on the right in (2–7) is already in good shape. We estimate the second
as follows:∫

Qσr

2∇ f (∇w)(wψ2) dy ds

= 2
∫

Qσr

∇ f
(
∇(wψ)−w∇ψ

)
wψ dy ds

= 2
∫

Qσr

∇ f ∇(wψ)wψ dy ds − 2
∫

Qσr

(wψ∇ f )w∇ψ dy ds

≤
1
2

∫
Qσr

|∇(wψ)|2 dy ds + 4
∫

Qσr

|∇ f |
2(wψ)2 dy ds

+

∫
Qσr

|∇ f |
2(wψ)2 dy ds +

∫
Qσr

w2
|∇ψ |

2 dy ds.

Recall that |∇ f |
2
= F . Hence this inequality becomes∫

Qσr

2∇ f (∇w)(wψ2) dy ds

≤
1
2

∫
Qσr

|∇(wψ)|2 dy ds + 5
∫

Qσr

F(wψ)2 dy ds +

∫
Qσr

w2
|∇ψ |

2 dy ds.

Substituting this on the right-hand side of (2–7), we deduce that∫
Qσr

|∇(wψ)|2 dy ds +
1
2

∫
B(x,σr)

w2(y, t)φ2(y) dy

≤ 2
∫

Qσr

(2|∇ψ |
2
+ η∂sη)w

2 dy ds.
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Thus the terms containing F drop out. For later use we remark that if w satisfies
L3w−wt+h ≥0 for some function h, we obtain, using exactly the same calculation,

(2–8)
∫

Qσr

|∇(wψ)|2 dy ds +
1
2

∫
B(x,σr)

w2(y, t)φ2(y) dy

≤ 2
∫

Qσr

(2|∇ψ |
2
+ η∂sη)w

2 dy ds +

∫
Qσr

hwψ2 dy ds.

By direct calculation it is easy to see that, for any p > 1,

L3w
p
=1w p

+ 2∇ f ∇w p
− 8Fw p

− (w p)t

≥ p(p − 1)|∇w|
2w p−2

+ 8F(p − 1)w p
≥ 0.

Hence, by repeating the argument above, we obtain, for any p > 1,∫
Qσr

|∇(w pψ)|2 dy ds +
1
2

∫
B(x,σr)

(w p(y, t))2φ2(y) dy

≤ 2
∫

Qσr

(2|∇ψ |
2
+ η∂sη)(w

p)2 dy ds.

Therefore

(2–9)
∫

Qσr

|∇(w pψ)|2 dy ds +
1
2

∫
B(x,σr)

(w p(y, t))2φ2(y) dy

≤
C
r2

∫
Qσr

(w p)2 dy ds.

Equation (2–9) and the Sobolev inequality lead to the following mean-value
inequality via Moser iteration:

(2–10) sup
Qr

w2
≤

B
|Qr |

∫
Q2r

w2 dy ds.

By keeping track of the constants in the computation, we can show that the constant
B is independent of f or F . For the sake of completeness we give a sketch of the
proof. Hölder’s inequality,∫∫

(w pψ)2(1+(2/α)) dy ds ≤

∫ (∫
(w pψ)2α/(α−2)dy

)(α−2)/α(∫
(w pψ)2

)2/α

ds.

Using the Sobolev inequality of Assumption B′, one obtains∫∫
(w pψ)2(1+(2/α)) dy ds ≤

S0|B(x, r)|−2/α sup
s∈[t−σr2,t]

(∫
(w pψ)2 dy

)2/α∫∫ (
r2

|∇(w pψ)|2 + (w pψ)2 dy ds
)
.
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This, together with (2–9), implies that

(2–11)
∫

Qσ ′r (x,t)
w2pθ

≤

(
C5S0λ(r)−1

∫
Qσr (x,t)

w2p
)θ
,

where θ = 1 + 2/α, τ = σ − σ ′ and

λ(r)= |B(x, r)|2/(2+α)(rτ)4/(2+α).

We now set

τi = 2−i−1, σ0 = 1, σi = σi−1 − τi = 1 −6i
1τ j , p = θ i .

Inequality (2–11) then yields

∫
Qσi+1 (x,t)

w2θ i+1
≤ C

(
C i+1

6 λ(r)−1
∫

Qσi r (x,t)
w2θ i

)θ
.

After iteration, this implies

(∫
Qσi+1 (x,t)

w2θ i+1
)θ−i−1

≤ C6θ− j−1
C−6( j+1)θ− j−1

6 (λ(r)−1)6θ
− j

∫
Qr (x,t)

w2,

where j ranges from 0 to i . Letting i go to ∞ and noticing that 6∞

j=0θ
− j

=

(α+ 2)/2, we arrive at

sup
Qr/2(x,t)

w2
≤

C7

B(x, r)r2 ‖w‖
2
L2(Qr (x,t))

.

This proves the mean-value inequality for w satisfying L3w−wt ≥ 0.

2.4. A Gaussian upper bound for G1. The proof of the upper bound is done by
modifying the standard method due to E. B. Davies [1989]. To prove a bound that
is independent of f or F , we have to use the special structure of the operator L1.

For a fixed λ ∈ R and a fixed bounded function ψ such that |∇ψ | ≤ 1, we write

q(y)= eλψ(y)
∫

G1(y, s; z, 0)e−λψ(z)h(z) dz,
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where h is a smooth compactly supported function. Then

(2–12) ∂s‖q‖
2
2 = 2

∫
M

q(y, s)∂sq(y, s)

= 2
∫

M
eλψ(y)q(y, s)

∫
M
∂s G1(y, s; z, 0)e−λψ(z)h(z) dz dy

= 2
∫

M
eλψ(y)q(y, s)

∫
M
(1yG1 + 2∇y f ∇yG1 − 10FG1)

× e−λψ(z)h(z) dz dy

= 2I1 + 4I2 − 20I3,

where we have set

I1 =

∫
M

∫
M

eλψ(y)q(y, s)1yG1e−λψ(z)h(z) dz dy,

I2 =

∫
M

∫
M

eλψ(y)q(y, s)∇y f ∇yG1e−λψ(z)h(z) dz dy,

I3 =

∫
M

∫
M

eλψ(y)q(y, s)FG1e−λψ(z)h(z) dz dy.

Integrating by parts and employing standard arguments, we get

(2–13) I1 ≤ −

∫
M

|∇q(y, s)|2 dy + cλ2
∫

M
q2(y, s) dy.

Next observe that

I2 =

∫
M

eλψ(y)q(y, s)∇y f
∫

M
∇yG1e−λψ(z)h(z) dz dy

=

∫
M

eλψ(y)q(y, s)∇y f ∇y

∫
M

G1(y, s; z, 0)e−λψ(z)h(z) dz dy

=

∫
M

eλψ(y)q(y, s)∇y f ∇y
(
e−λψ(y)q(y, s)

)
dy

=
1
2

∫
M

e2λψ(y)
∇y f ∇y

(
(e−λψ(y)q(y, s))2

)
dy

= −λ

∫
M

q2(y, s)∇yψ∇y f dy −
1
2

∫
M

q2(y, s)1y f dy.

Since |∇ψ | ≤ 1 and 1y f = −|∇ f |
2
= −F , it follows that

I2 ≤
λ2

2

∫
M

q2(y, s) dy +
1
2

∫
M

q2(y, s)|∇y f |
2 dy +

1
2

∫
M

q2(y, s)|1y f | dy;
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that is,

I2 ≤
λ2

2

∫
M

q2(y, s) dy +

∫
M

q2(y, s)F dy.

Notice also that

I3 =

∫
M

q2(y, s)F dy.

Substituting (2–13) and the last two relations in (2–12), we see that the terms
containing F are negative. Hence

∂s‖q( · , s)‖2
2 ≤ c0λ

2
‖q( · , s)‖2

2,

which implies

‖q( · , s)‖2
2 ≤ ec0λ

2s
‖h‖

2
2.

Now consider the function

u(y, s)= e−λψ(y)q(y, s),

which is a solution to L1u − us = 0 in M × (0,∞). Hence

L3u − us = L1u − us + 2Fu ≥ 0,

where L3 is defined at the start of Section 2.3. By the mean-value inequality of
(2–10) with Q√

t/2(x, t)= B(x,
√

t/2)× (3t/4, t), we obtain

u(x, t)2 ≤
C

|Q√
t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

u2.

It follows that

e2λψ(x)u(x, t)2 ≤ e2λψ(x) C
|Q√

t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

u2

=
C

|Q√
t/2(x, t)|

∫ t

3t/4

∫
B(x,

√
t/2)

e2λ(ψ(x)−ψ(z))q2

≤ e2λ
√

t C
|B(x,

√
t)|

ec0λ
2t
‖h‖

2
2.

Taking the supremum over all h ∈ L2(B(y,
√

t)) with ‖h‖ = 1, we find that

e2λ(ψ(x)−ψ(y))
∫

B(y,
√

t/2)
G1(x, t; z, 0)2 dz ≤ Ce4λ

√
t+c0λ

2t 1
|B(x,

√
t)|
.
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Using the mean-value inequality on the second entries of the heat kernel G1 back-
ward in time in the cube B(y,

√
t/2)× [0, t/4], we have

G1(x, t; y, 0)2 ≤
C

|Q√
t/2(y, t)|

∫ t/4

0

∫
B(y,

√
t/2)

G1(x, t; z, s)2 dz ds

≤
C

|B(x,
√

t)| |B(y,
√

t)|
exp

(
4λ

√
t + c0λ

2t − 2λ(ψ(x)−ψ(y))
)

Here we remark that the second entries of G1 satisfies the conjugate equation of
L1u − us = 0. That is, if v(z, s)= G1(x, t; z, s), then

1v− 2∇ f ∇v− 21 f v− 10Fv+ vs = 0.

Recall that 1 f = −F . Hence v satisfies

L3v+ vs =1v− 2∇ f ∇v− 8Fv+ vs = 0.

From Section 2.3 it is clear that the mean-value inequality still holds on the
backward parabolic cube.

Choosing λ= d(x, y)/(c0t) and ψ such that ψ(x)−ψ(y)= d(x, y), we reach

G1(x, t; y, 0)2 ≤
C

|B(x,
√

t)| |B(y,
√

t)|
exp

(
−

d(x, y)2

2c0t

)
.

This proves the Gaussian upper bound for G1.

2.5. A Gaussian upper bound of G2 by perturbation. Using the bound for G1 and
a perturbation argument in [Zhang 1997], we will prove a Gaussian upper bound
for G2 when N (V ) is small.

By Duhamel’s formula,

G2(x, t; y,0)= G1(x, t; y,0)+10n
∫ t

0

∫
M

G1(x, t; z, τ )V (z)G2(z, τ ; y,0)dz dτ.

From Section 2.4 we know that, for some c1,C1 > 0,

G1(x, t; z, τ )≤
C1

|B(x,
√

t − τ)|
exp

(
−

c1d(x, z)2

t − τ

)
.

Also, by standard perturbation argument (since V is bounded), there is Mτ > 0
such that

G2(z, τ ; y,0)≤
Mτ

|B(z,
√
τ)|

exp
(

−
c1d(z, y)2

τ

)
≤

Mτ

|B(z,
√
τ)|

exp
(

−
c1d(z, y)2

2τ

)
.

We need to prove that Mτ can be chosen independent of time.
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Therefore

G2(x, t; y, 0)

≤
C1e−c1d(x,y)2/t

|B(x,
√

t)|
+ C1

∫ t

0

∫
M

e−c1d(x,z)2/(t−τ)

|B(x,
√

t − τ)|
V (z)

Mτ e−c1d(z,y)2/(2τ)

|B(z,
√
τ)|

dz dτ.

Let mt be the minimum of the constants Mτ such that

G2(z, τ ; y, 0)≤
mτ

|B(z,
√
τ)|

e−c1d(z,y)2/(2τ)

for all τ ∈ (0, t] and y, z ∈ M . Then

G2(x, t; y, 0)

≤
C1e−c1d(x,y)2/t

|B(x,
√

t)|
+ C1mt

∫ t

0

∫
M

e−c1d(x,z)2/(t−τ)

|B(x,
√

t − τ)|
V (z)

e−c1d(z,y)2/(2τ)

|B(z,
√

s)|
dz dτ.

By [Zhang 1997, Lemma 4.1, p. 1003], there exists a constant c5, depending only
on the doubling constant ν, such that∫ t

0

∫
M

e−c1d(x,z)2/(t−τ)

|B(x,
√

t − τ)|
V (z)

e−c1d(z,y)2/(2τ)

|B(z,
√
τ)|

dz dτ

≤ c5 M(V )
1

|B(x,
√

t)|
e−c1d(x,y)2/(2t),

where

M(V )≡ sup
x∈M

∫
∞

0

∫
M

e−c1d(x,z)2/(2t)

|B(x,
√

t)|
V (z) dz dt.

In the lemma quoted above, the constant in the exponential term of M(V ) was not
given explicitly. However, by tracking the proof, one immediately concludes that
the coefficient −c1/2 above works. We caution that it is not clear that one can
choose the original constant −c1, except in the Euclidean case. We mention that
the bound above for the integral is the parabolic counterpart of the basic inequality,
for n ≥ 3,∫

Rn

1
|x − z|n−2 |V (z)|

1
|z − y|n−2 dz ≤ C sup

w

∫
Rn

|V (y)|
|y −w|n−2

1
|x − y|n−2 dy,

which can be found in many places, including, for instance, [Simon 1982].
Scaling the time variable suitably and use the volume doubling property, we see

that

M(V )≤ cN (V )= c sup
x∈M

∫
∞

0

∫
M

e−d(x,z)2/t

|B(x,
√

t)|
V (z) dz dt.
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Hence

G2(x, t; y, 0)≤
C1e−c1d(x,y)2/t

|B(x,
√

t)|
+ C1c5mt N (V )

1
|B(x,

√
t)|

e−c1d(x,y)2/(2t).

Now it follows that

G2(x, t; y, 0)≤
(
C1 + C1c5mt N (V )

) 1
|B(x,

√
t)|

e−c1d(x,y)2/(2t).

By the definition of mt we have mt ≤ C1 + C1c5mt N (V ). Hence, if N (V ) <
1/(C1c5), then

mt ≤
C1

1 − C1c5 N (V )
,

for all t > 0. Therefore

G2(x, t; y, 0)≤
C1

1 − C1c5 N (V )
1

|B(z,
√
τ)|

e−c1d(x,y)2/(2t)

This proves the global upper bound for G2(x, t; y, 0).

2.6. An L2 estimate of F = |∇ log u|2. Let φ= φ(x) be a smooth cutoff function
defined in B(x, 2r) such that 0 ≤ φ ≤ 1, φ(y) = 1 in B(x, r) and φ(y) = 0 in
B(x, 2r)c. Then∫

B(x,2r)
Fφ2 dy =

∫
B(x,2r)

∇u∇u
u2 φ2 dy = −

∫
B(x,2r)

u div
(

∇u
u2 φ

2
)

dy

= −

∫
B(x,2r)

u
1u
u2 φ

2 dy −

∫
B(x,2r)

u∇u∇

(
φ2

u2

)
dy

= 2
∫

B(x,2r)

u∇u∇u
u3 φ2 dy − 2

∫
B(x,2r)

u∇u
φ∇φ

u2 dy

= 2
∫

B(x,2r)
Fφ2 dy − 2

∫
B(x,2r)

u∇u
φ∇φ

u2 dy.

Therefore ∫
B(x,2r)

|∇u|
2

u2 φ2 dy ≤ 2
∫

B(x,2r)

|∇u|

u
φ |∇φ| dy.

Hence ∫
B(x,2r)

|∇u|
2

u2 φ2 dy ≤ 4
∫

B(x,2r)
|∇φ|

2 dy.

This implies that

(2–14)
∫

B(x,r)
F(y) dy =

∫
B(x,r)

|∇u|
2

u2 dy ≤ 4
|B(x, 2r)|

r2 .
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2.7. A mean-value inequality for solutions of L2w − wt ≥ 0. (See (2–2) for the
definition of L2.)

Let ψ be the smooth cutoff function defined on page 385, with σ = 2. Take r
there to be r/2. Since ψ is supported in Qr (x, t), we know that

1(wψ)+ 2∇ f ∇(wψ)− 10F(wψ)+ 10nV (wψ)− (wψ)t
≥ 2(∇ f ∇ψ)w+ (1ψ)w−wψt + 2∇ψ∇w.

Since G2 is the fundamental solution of the left-hand side, we have

w(x, t)≤ −2
∫

Qr (x,t)
G2(x, t; y, s)(∇ f ∇ψ)w dy ds

−

∫
Qr (x,t)

G2(x, t; y, s)
(
(1ψ)w−wψt

)
dy ds

−

∫
Qr (x,t)

G2(x, t; y, s)2∇ψ∇w dy ds.

After integration by parts, this becomes, setting v = v(y, s)= G2(x, t; y, s):

(2–15) w(x, t)≤ −2
∫

Qr (x,t)
v∇ f ∇ψw dy ds +

∫
Qr (x,t)

vwψt dy ds

+

∫
Qr (x,t)

∇yv∇ψw dy ds −

∫
Qr (x,t)

v∇ψ∇w dy ds

≡ J1 + J2 + J3 + J4.

We estimate each integral separately.
Since (x, t) is bounded away from the supports of the functions ∇ψ and ψt by

a parabolic distance of r , we have

(2–16) v ≤
C

|B(x, r)|

in all the integrals on the right-hand side of (2–15). Hence (2–15) implies

|J1 + J2| ≤
C

|B(x, r)|

(∫
Qr (x,t)

|∇ f |
2 dy ds

)1/2(∫
Qr (x,t)

w2 dy ds
)1/2

+
C

r2|B(x, r)|

∫
Qr (x,t)

w dy ds.

Using |∇ f |
2
= F = |∇u|

2/u2, by (2–14), we deduce

w(x, t)

≤

(
C

r2|B(x, r)|

∫
Qr (x,t)

w2 dy ds
)1/2

+
C

r2|B(x, r)|

∫
Qr (x,t)

w dy ds + |J3| + |J4|.
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This shows, by Hölder’s inequality,

(2–17) w(x, t)≤

(
C

r2|B(x, r)|

∫
Qr (x,t)

w2 dy ds
)1/2

+ |J3| + |J4|.

In the next two steps we will find a bound for the last integrals in (2–17).

2.8. Controlling the remaining integrals. There remains to control the terms

J3 =

∫
Qr (x,t)

∇yv∇ψw dy ds

and

(2–18) J4 =

∫
Qr (x,t)

v∇ψ∇w dy ds.

We deal with J3 first. Using (2–16) and Hölder’s inequality, we get

(2–19) |J3| ≤
C
r

(∫
Qr (x,t)−Qr/2(x,t)

|∇yv|
2 dy ds

)1/2(∫
Qr (x,t)

w2 dy ds
)1/2

.

What remains is to estimate the first factor on the right-hand side.
Since G2 is the heat kernel of L2, in other words the fundamental solution of

the operator

1+ 2∇ f ∇ − 10F + 10nV − ∂s,

we know that v = G2(x, t; y, s) is a solution of the conjugate of L2 −∂s , except at
(x, t):

1v− 2∇ f ∇v− 21 f v− 10Fv+ 10nV v+ vs = 0.

Since 1 f = −F , this becomes

(2–20) 1v− 2∇ f ∇v− 8Fv+ 10nV v+ vs = 0,

that is, L3v+ vs + 10nV v = 0.
Take a suitable cutoff function ψ1 and use ψ2

1v as a test function on (2–20)
and h = 10nV v in (2–8). We can follow the argument between (2–3) and (2–8)
verbatim to obtain∫

Qr (x,t)−Qr/2(x,t)
|∇yv|

2 dy ds

≤
C
r2

∫
Q2r (x,t)−Qr/4(x,t)

v2 dy ds + 10n
∫

Q4r (x,t)−Qr/4(x,t)
V v2 dy ds.
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It follows that (recalling that v = G2(x, t; y, s))∫
Qr (x,t)−Qr/2(x,t)

|∇yv|
2 dy ds ≤

C
r2

∫
Q2r (x,t)−Qr/4(x,t)

v2 dy ds

+10n sup
(y,s)∈

Q4r (x,t)−Qr/4(x,t)

G2(x, t; y, s)
∫

Q4r (x,t)−Qr/4(x,t)
V v dy ds.

Using the Gaussian bound on G2 and the assumption on V we get∫
Qr (x,t)−Qr/2(x,t)

|∇yG2(x, t; y, s)|2 dy ds ≤ C
1 + N (V )
|B(x, r)|

,

where we have used the inequality∫
Q4r (x,t)−Qr/4(x,t)

V G2(x, t; y, s) dy ds ≤ N (V ),

which comes from the Gaussian upper bound of G2 and rescaling in time; see
Assumption C. Inserting the L2 estimate for the gradient of G2 in (2–19) we obtain

(2–21) |J3| ≤

(
C

r2|B(x, r)|

∫
Q4r (x,t)

w2 dy ds
)1/2

.

Next we turn our attention to the last remaining integral, defined in (2–18).
Using (2–16) and Hölder’s inequality we reach

(2–22)

|J4| ≤
C
r

(∫
Qr (x,t)−Qr/2(x,t)

G2(x, t; y, s)2 dy ds
)1/2(∫

Qr (x,t)
|∇w|

2 dy ds
)1/2

≤ C
(

1
|B(x, r)|

∫
Qr (x,t)

|∇w|
2 dy ds

)1/2

.

Recall that L2w−ws ≥ 0, and hence

L3w−ws + 10nVw ≥ 0,

where L3 is defined at the start of Section 2.3.
Taking h = 10nVw and σ = 2 in (2–8), we obtain∫

Q2r (x,t)
|∇(ψ2w)|

2 dy ds ≤
C
r2

∫
Q2r

w2 dy ds + 10n
∫

Qσr

V (wψ2)
2 dy ds.
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Here ψ2 is the cutoff function in (2–8) with σ = 2. By Assumption C for V we
have, for a constant C ′,∫

Qr (x,t)
|∇w|

2 dy ds ≤

∫
Q2r (x,t)

|∇(ψ2w)|
2 dy ds ≤

C ′

r2

∫
Q2r

w2 dy ds.

From this and (2–22), we get

(2–23) J4 ≤ C
(

1
r2|B(x, r)|

∫
Q2r (x,t)

w2 dy ds
)1/2

.

Substituting this and (2–21) to (2–17), we reach

w(x, t)≤

(
C

r2|B(x, r)|

∫
Q4r (x,t)

w2 dy ds
)1/2

.

2.9. Completion of the proof. Recall that w = F5n and that w is independent of
time. Hence (2–21) becomes

(2–24) F(x)≤

(
C

|B(x, r)|

∫
B(x,2r)

F10ndy
)1/(10n)

By a modification of a well known trick [Li and Schoen 1984], this inequality
implies

(2–25) F(x)≤
C

|B(x, r)|

∫
B(x,2r)

Fdy

(In that paper it was shown that an L2 mean-value inequality implies an L1 mean-
value inequality. Applying the same method, one can deduce (2–25) from (2–24)
without difficulty.)

Combining (2–25) with (2–14), we have

|∇u|
2

u2 = F(x)≤
C

|B(x, r)|

∫
B(x,2r)

Fdy ≤
C
r2 .

This finishes the proof of the global gradient bound, and of the theorem.
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