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The relation type question, raised by C. Huneke, asks whether for a com-
plete equidimensional local ring R there exists a uniform number N such
that the relation type of every ideal I ⊂ R generated by a system of pa-
rameters is at most N . Wang gave a positive answer to this question when
the non-Cohen–Macaulay locus of R (denoted by NCM(R)) has dimension
zero. In this paper, we first present an example, due to the first author,
which gives a negative answer to the question when dim NCM(R) ≥ 2. The
major part of our work is to investigate the remaining situation, i.e., when
dim NCM(R) = 1. We introduce the notion of homology multipliers and
show that the question has a positive answer when R/A(R) is a domain,
where A(R) is the ideal generated by all homology multipliers in R. In a
more general context, we also discuss many interesting properties of homol-
ogy multipliers.

1. Introduction

Throughout this paper by “ring” we mean a commutative Noetherian ring with
identity.

The existence of “uniform bounds” in Noetherian rings is an interesting and
important question. By uniform bounds we mean statements which give some
numerical bounds not just for one ideal, but for all (or an infinite set of) ideals
simultaneously.

In Noetherian rings we have an obvious finiteness condition, i.e., that every ideal
is finitely generated; there are, however, deeper forms of finiteness which can be
expressed in terms of uniform behavior.

Several types of uniform behavior have been demonstrated recently. See for
instance [Huneke 1992; O’Carroll 1987] (uniform Artin–Rees), [Raghavan 1991]
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(uniform annihilation of local cohomology), and [Lai 1995; Wang 1997a; 1997b]
(uniform bounds on relation type). This is by no means a complete list.

In this paper we wish to extend the results of Lai and Wang concerning uniform
bounds on relation type of parameter ideals in the papers cited above. We are able
to extend the class of rings for which such uniform behavior exists. Moreover, we
show that, in general, such uniform behavior should not be expected.

Let R be a Noetherian ring, and let I = (x1, . . . , xn) be an ideal of R. The Rees
algebra R[I t] of I is a quotient of a polynomial ring over R. More precisely, there
is a canonical surjection φ : R[T1, . . . , Tn] → R[I t] given by Ti 7→ xi t . By giving
degree 0 to elements of R and degree 1 to t and Ti (for 1 ≤ i ≤ n), we have that
φ is a homogeneous map, and so the kernel Q of φ is a homogeneous ideal of
R[T1, . . . , Tn]. The relation type of I is defined to be

rt(I ) = min{k| Qk = Q},

where Qk denotes the subideal of Q generated by forms of degrees ≤ k. The
relation type is independent of the choice of the generating set of I .

Let F ∈ R[T1, . . . , Tn] be a homogeneous form of degree δ. It can be seen that

φ(F) = F(x1t, . . . , xnt) = tδ F(x1, . . . , xn).

Thus, F ∈ Q if and only if F(x1, . . . , xn) = 0. Therefore, by saying a relation on
x1, . . . , xn we mean a homogeneous form in Q.

An ideal of relation type 1 is said to be of linear type. Huneke [1980, The-
orem 3.1] and Valla [1980, Theorem 3.15] proved that if I is generated by a d-
sequence, then I is of linear type. In particular, an ideal generated by a regular
sequence is of linear type. Buchsbaum rings are precisely the rings for which
every parameter ideal is of linear type.

If I is generated by a system of parameters (s.o.p.) in the local ring R we say
that I is a parameter ideal. The following question was raised by C. Huneke.

Question 1.1 (The relation type question). Let R be a complete equidimensional
Noetherian ring of dimension d. Does there exist an uniform number N such that
for every system of parameters x1, . . . , xd of R, rt(x1, . . . , xd) ≤ N?

If such a uniform bound exists, we will say that R satisfies bounded relation
type, or equivalently, R has a uniform bound on relation type of parameter ideals.

Question 1.1 is closely connected to the strong uniform Artin–Rees property.
Let M ⊆ N be two finitely generated R-modules. The pair (M, N ) is said to have
the strong uniform Artin–Rees property if there exists an integer k (depending on
M and N ), such that for all R-ideals I and all n ≥ k,

I n M ∩ N = I n−k(I k M ∩ N ).
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There are several cases in which the strong uniform Artin–Rees property holds
[O’Carroll 1987; 1991; Duncan and O’Carroll 1989; Huneke 1992; Planas-Vila-
nova 2000], but Wang [1997b] has shown that it does not hold in general. See
[Planas-Vilanova 2006] for a recent summary and explication of results relating to
uniform Artin–Rees theorems.

Being a weaker version of the strong uniform Artin–Rees property [Lai 1995],
Question 1.1 has attracted a great deal of attention.

If R is Cohen–Macaulay (CM) any system of parameters forms a regular se-
quence and so the relation type of any parameter ideal is 1. CM rings are char-
acterized by the property that the local cohomology modules H i

m(R) vanish for
i < dim R. The next step was to consider local rings R such that H i

m(R) is finitely
generated (therefore of finite length) for all i < dim R. Such rings are called
generalized Cohen–Macaulay or rings with finite local cohomology (f.l.c.). Lai
showed in [Lai 1995] that bounded relation type holds for rings with finite local
cohomology under the assumption that the residue field is finite. In [Wang 1997b]
Wang showed that every 2-dimensional Noetherian local ring satisfies bounded
relation type. Later he showed in [Wang 1997a] that bounded relation type holds
for rings with finite local cohomology without any restriction on the residue field.

The first main result in this paper is to show that bounded relation type does
not hold in general. A counterexample, due to the first author, has been known for
some time and is presented in Example 2.1. In this example the non-CM locus of R
has dimension two (and the counterexample easily generalizes to give counterex-
amples in rings of arbitrarily high dimensional non-CM locus). On the other hand,
as observed at the beginning of Section 6, if R is a complete equidimensional
Noetherian ring, then R has finite local cohomology if and only if R has zero
dimensional non-CM locus.

The rest of the paper is devoted to studying the remaining case, i.e., when the
non-CM locus of R has dimension one. The methods of [Wang 1997a] cannot
be extended to this case. Wang uses strongly in his proof that if R has f.l.c. and
x ∈ R is a parameter, then R/x R has f.l.c., and, moreover, the length of the lower
local cohomology modules in R/x R can be bounded in terms of the lengths of
the lower local cohomology modules of R. When R is not generalized CM then
there is no uniform bound on the length of the local cohomology modules of R/x R
as x varies among parameters in R. Hence, the starting point of our work is an
alternative proof of bounded relation type for rings with finite local cohomology
which can be generalized. We present this proof in Theorem 6.4. We make use of
“homology multipliers”, defined in Section 3, and of a “Ramsey number” combi-
natorial lemma, stated in Section 5.

By a homology multiplier we mean an element in R which annihilates all homol-
ogy of complexes satisfying the standard rank and height conditions. We denote by
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A(R) the ideal of R generated by homology multipliers. It follows from a result of
Hochster and Huneke that under mild conditions on the ring R, A(R) is, up to rad-
ical, the defining ideal of the non-CM locus in R (see Corollary 3.6). An important
property of homology multipliers that we repeatedly use throughout the paper is the
fact that, upon multiplying by a homology multiplier colons of monomial ideals
in parameters behave as if the parameters were variables (see Remark 3.5). We
obtain several interesting results relating relation type and homology multipliers.
We show that if an element of an s.o.p. is “adjusted” by a homology multiplier
(and results in a new s.o.p.) then the relation type is unchanged (see Theorem 4.3).
This result generalizes a result of Lai. Also, the above process does not affect
superficiality (see Lemma 4.4).

We show in Section 2 that there are rings where dim(R/A(R)) ≥ 2 which fail
to satisfy bounded relation type. Hence our attention is focused on the case that
dim R/A(R) = 1.

The new class of rings satisfying bounded relation type is given by this theorem:

Theorem 7.2. Let (R, m, k) be a formally unmixed local ring of dimension d such
that A(R̂) is a prime ideal of dimension one in the completion R̂ of R. Then R has
a uniform bound on relation type of parameter ideals.

We outline the proof briefly. Our hypotheses allow us to assume that R is com-
plete. Let I = (x1, . . . , xd) be a parameter ideal of R, and let α be a homology
multiplier. Theorem 4.3 shows that if x1, x2, . . . , xd +α is a system of parameters,
then rt(x1, . . . , xd) = rt(x1, x2, . . . , xd + α). This allows us to “modify xd in a
convenient way”. In particular, we replace xd by wt x ′

d where w is a reduction of
mR/A(R) and x ′

d is in a uniformly bounded small power of mR/A(R). We do
not have that H i

m(R) has finite length for all i < d (as in the generalized CM case),
but since the ring R/A(R) is a complete one-dimensional domain we can obtain
uniform bounds for the lengths of lower local cohomology modules of R/x ′

d R.
Given a relation F(T1, . . . , Td) on x1, . . . , xd−1, xd = wt x ′

d we look at larger
and larger “partial sums” and use homology multipliers and uniformly bounded
length of local cohomology modules of R/x ′

d R to find a relation G(T1, . . . , Td) of
uniformly bounded degree such that the initial monomial of G divides the initial
monomial of F . Inductively, we obtain a bound (which does not depend on the
given system of parameters) on the highest degree of a minimal generator of a
relation on the system of parameters.

The general argument given is rather subtle, and certainly complicated. How-
ever, the basic ideas in the general argument are already present in the argument
for two parameters, in which case, the algorithm is transparent. We urge the reader
to start with this case by reading Theorem 6.1.

In Corollary 7.4 we apply this theorem just discussed to F-pure rings.
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2. Bounded relation type does not hold in general

In this section, we will present an example showing that bounded relation type does
not hold in general. In our example, the ring has non-CM locus of dimension 2,
but it is possible to generalize to rings with non-CM locus of any dimension ≥ 2.

Example 2.1. Let R = k[[x, y, z, w]] where w2
= wz = 0. Then, R does not have

bounded relation type.

Proof. Let In = (xn−1 y+zn, xn, yn)= (u1, u2, u3). Clearly, In is a parameter ideal
for all n ≥ 1. We will show that for every n ∈ N, the ideal In has relation type at
least n.

We order monomials of R[T1, T2, T3] using lex and T1 > T2 > T3. Consider the
relation wT n

1 − wT n−1
2 T3 on u1, u2, u3 in R. Suppose that wT n

1 − wT n−1
2 T3 can

be written as a combination of relations on u1, u2, u3 of degree less than n. Then
there exists a relation F(T1, T2, T3) on u1, u2, u3 of the form

F(T1, T2, T3) = wT n−1
1 + smaller terms.

Let F̄ be the image of F in (R/wR)[T1, T2, T3]. Since F̄ is a relation on u1, u2, u3

in R/wR, and R/wR = k[[x, y, z]] is Cohen–Macaulay, we can write F̄ = H̄1 K̄1 +

H̄2 K̄2 + H̄3 K̄3, where

K1 = −u2T1 + u1T2, K2 = −u3T1 + u1T3, K3 = −u3T2 + u2T3

are the Koszul relations on u1, u2, u3 in R, K̄1, K̄2, K̄3 are the Koszul relations on
u1, u2, u3 in R/wR, and H̄1, H̄2, H̄3 are polynomials with coefficients in R/wR.
Hence F − H1K1 − H2K2 − H3K3 ∈ (w)R[T1, T2, T3]. Write

F − H1K1 − H2K2 − H3K3 = wF ′,

where F ′(T1, T2, T3) ∈ R[T1, T2, T3]. Notice that F ′ contains the term T n−1
1 .

Since wF ′(u1, u2, u3) = 0 in R, we have F ′(u1, u2, u3) ∈ 0 :R w = (w, z)R.
Hence the image of F ′ in (R/(w, z))[T1, T2, T3] = k[[x, y]][T1, T2, T3] is a relation
on xn−1 y, xn, yn in k[[x, y]]. This implies that

(xn−1 y)n−1
∈ (xn, yn)(xn, yn, xn−1 y)n−2,

a contradiction (see also [Wang 1997b, Example 6.1]). �

Note that the ring R has an embedded prime of dimension two. It would be of
interest to find a ring with unbounded relation type which is a domain.

Remark 2.2. Notice that in Example 2.1 the non-CM locus of R is defined by
(z, w) and so it has dimension 2.
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In a similar fashion, we can construct examples of rings with unbounded relation
type and non-CM locus of any dimension ≥ 2. Let S = k[[t1, . . . , tm, z, w]] where
w2

= wz = 0 and m ≥ 2. The proof of Example 2.1 shows that

rt(tn−1
1 t2 + zn, tn

1 , tn
2 , t3, . . . , tm) ≥ n

for every n ≥1. The non-CM locus of S is defined by (z, w) and so it has dimension
m.

3. Homology multipliers and superficial sequences

In this section, we introduce the notion of homology multipliers and investigate
a number of properties that will be used later on. We shall also briefly recall the
notion of filter-regular and superficial sequences. The proof for some of the results
(such as Lemma 3.3 and Corollary 3.4) would be simpler if the ring contains a
field. Our arguments work for rings of mixed characteristics as well.

Let R be a Noetherian ring, and let G• be a complex of finitely generated free
modules

G• : 0 → Gn → Gn−1 → · · · → Gi → · · · → G1 → G0 → 0.

Denote by αi the map from Gi to Gi−1. Let bi denote the rank of Gi , and let
ri =

∑n
t=i (−1)t−i bi for 1 ≤ i ≤ n, while rn+1 = 0. Let It(αi ) be the ideal generated

by the t × t minors of αi .
Recall that a complex G• as above satisfies the standard rank and height con-

ditions if rank αi = ri for 1 ≤ i ≤ n, and height Iri (αi ) ≥ i whenever 1 ≤ i ≤ n
[Hochster and Huneke 1990; 1992]. For simplicity, we denote Iri (αi ) by Ii (G•).
If G• is acyclic, then Ii (G•) is an invariant of H0(G•), and localizes properly.

Definition 3.1. Let R be a Noetherian ring. We say that z ∈ R is a homology
multiplier if for every finite complex G• satisfying the standard rank and height
conditions, z annihilates the homology Hi (G•), for every i ≥ 1. We denote by
A(R) the ideal of R generated by homology multipliers.

The notion of homology multipliers is a generalization of Cohen–Macaulay
multipliers [Hochster and Huneke 1990; 1992]. Recall that R is equidimensional
if dim R/p = dim R for all minimal prime ideals of R. The following result is due
to Hochster and Huneke.

Theorem 3.2 [Hochster and Huneke 1990, Theorem 11.8]. Let R be an equidi-
mensional local ring which is a homomorphic image of a Gorenstein ring. Let z
be an element of R such that Rz is Cohen–Macaulay. Then z has a fixed power z′

such that z′ is a homology multiplier.

Homology multipliers are introduced to handle colons of monomial ideals in
parameters (see Remark 3.5 for a precise statement). To see this, we need:
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Lemma 3.3. Let

R = Z[Y1, Y −1
1 , . . . , Yt , Y −1

t ][X1, . . . , Xd ],

where Y1, . . . , Yt , X1, . . . , Xd are variables. Let I be an ideal generated by mono-
mials in X1, . . . , Xd .

(1) There exists a resolution F• of R/I of length ≤ d. Furthermore, for every
1 ≤ i ≤ d, ∏

1≤ j1<···< ji ≤d

(X j1, . . . , X ji ) ⊆

√
Ii (F•).(3–1)

(2) As a consequence, (3–1) holds for every resolution F• of R/I .

Proof. First we show the existence of a resolution of R/I of length ≤ d. This is
clear if d = 1, so we can assume that d > 1. We use induction on the number of
generators µ(I ) of I . The claim is trivial if µ(I ) = 1. Assume that I = (I ′, m)

where m is a monomial with the largest possible exponent of Xd , and I ′ is a mono-
mial ideal with µ(I ′) ≥ 1. Then I ′

: m is a monomial ideal in X1, . . . , Xd−1. We
have a short exact sequence

0 → R/m(I ′
: m) → R/I ′

⊕ R/m R → R/I → 0.

By induction on µ(I ) we have that R/I ′
⊕ R/m R has a resolution of length ≤ d .

By induction on d we see that R/m(I ′
: m) has a resolution of length ≤ d − 1.

Hence the mapping cone is a resolution of R/I of length ≤ d . In particular this
shows that if G• is any resolution of R/I , then Id+1(G•) = R.

Next we show that (X1, . . . , Xd) ⊆
√

Id(F•). This is clear if Id(F•) = R, so we
can assume that Id(F•) is a proper ideal. If there exists i , with 1 ≤ i ≤ d, such that
X i /∈

√
Id(F•), then localizing at X i we obtain a contradiction to the existence of

a resolution of length ≤ d − 1 in the ring

Z[Y1, Y −1
1 , . . . , Yt , Y −1

t , X i , X−1
i ][X1, . . . , X i−1, X i+1, . . . , Xd ].

Now let 1 ≤ i ≤ d − 1 and let 1 ≤ j1 < · · · < ji ≤ d − 1. Localize at the d − i
variables {X1, . . . , Xd} \{X j1, . . . , X ji } and conclude as above. This finishes the
proof of (1).

Part (2) follows form (1) since the ideals Ii (F•) do not depend on the resolution
of R/I . �

Corollary 3.4. Let R be an equidimensional catenary local ring of dimension d
and let x1, . . . , xd be a system of parameters of R. Let φ : Z[X1, . . . , Xd ] → R
be the ring homomorphism from a polynomial ring over Z to R sending X i to xi

for all i . Suppose J is a monomial ideal in Z[X1, . . . , Xd ] and G• is a resolution
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of Z[X1, . . . , Xd ]/J of length at most d. Let F• = G• ⊗ R be the complex ob-
tained from G• by base change. Then, F• satisfies the standard rank and height
conditions.

Proof. By Lemma 3.3, for 1 ≤ i ≤ d ,∏
1≤ j1<···< ji ≤d

(X j1, . . . , X ji ) ⊆

√
Ii (G•).

This implies that
∏

1≤ j1<···< ji ≤d(xj1, . . . , xji ) ⊆
√

Ii (F•). Since F• is obtained by
tensoring G• with R, the ri ’s are unchanged. Also, since R is equidimensional and
catenary, we have

height
∏

1≤ j1<···< ji ≤d

(xj1, . . . , xji ) ≥ i.

Hence, F• satisfies the standard rank and height conditions since G• certainly does.
�

The following remark will be used very often in the rest of the paper.

Remark 3.5. Let R be an equidimensional catenary local ring of dimension d and
let x1, . . . , xd be a system of parameters of R. Let S = Z[X1, . . . , Xd ] be a poly-
nomial ring over Z, and let φ be as in Corollary 3.4. For a d-uple of nonnegative
integers n = (n1, . . . , nd), we denote by Xn the monomial Xn1

1 . . . Xnd
d , and by xn

the monomial xn1
1 . . . xnd

d . Let I = (Xn1, . . . , Xnt ) and let Xm be any monomial in
S such that Xm

6∈ I . By considering the minimal free resolution of I + (Xm),

· · · → Sl ∂2
→ St+1

→ S →
S

I +(Xm)
→ 0,

it can be seen that the colon ideal I : (Xm) is generated by elements of the last row
of the matrix of ∂2. Thus, as a consequence of Corollary 3.4, for any homology
multiplier z ∈ R, we have

z(I R :R xm) = (I :S Xm)R.

More generally, if J = (Xm1, . . . , Xms ) is another monomial ideal in S, and
a = I R = (xn1, . . . , xnt ) and b = J R = (xm1, . . . , xms ), then z(a :R b) = (I :S

J )R. Hence, up to multiplying by a homology multiplier, colons of monomials in
x1, . . . , xd behave as if the elements x1, . . . , xd were variables.

Let R be an equidimensional catenary local ring with maximal ideal m and
let z ∈ A(R). Let x1, . . . , xk be a sequence of elements of m that is part of a
system of parameters of R. Then z annihilates all the higher Koszul homology
Hi (x1, . . . , xk, R), i ≥ 1. In particular,

z((x1, . . . , xk−1)R :R xk R) ⊆ (x1, . . . , xk−1)R;



HOMOLOGY MULTIPLIERS AND THE RELATION TYPE OF PARAMETER IDEALS 9

that is, z is a Cohen–Macaulay multiplier [Hochster and Huneke 1990; 1992].
The next corollary shows that up to radical, A(R) is the defining ideal of the

non-Cohen–Macaulay locus in R.

Corollary 3.6. Let R be an equidimensional local ring which is a homomorphic
image of a Gorenstein ring. Let z ∈ R. Then z ∈

√
A(R) if and only if Rz is

Cohen–Macaulay.

Proof. One direction is Theorem 3.2. Conversely, let z ∈
√

A(R), and let x1/1, . . . ,

xn/1 be a system of parameters of Rp, where p is a prime ideal of R such that z /∈ p.
There exists a power z′ of z such that z′((x1, . . . , xk−1)R :R xk R)⊆ (x1, . . . , xk−1)R
for every 1 ≤ k ≤ n. Hence x1/1, . . . , xn/1 form a regular sequence in Rp. �

We conclude this section recalling two definitions that we will use later on.

Definition 3.7. Let S be a standard N-graded algebra over a local ring S0 (i.e.,
S = S0[S1]). The sequence of elements z1, . . . , zn ∈ S is called filter-regular if, for
each i ≥ 1, ((z1, . . . , zi−1) : zi )n = (z1, . . . , zi−1)n for n � 0.

When S0 has infinite residue field, any homogeneous ideal of S may be gener-
ated by a filter-regular sequence, by [Trung 1987, Lemma 3.1]. If z1, . . . , zn is a
filter-regular sequence, the Koszul homology modules Hi (z1, . . . , zn; S) vanish in
sufficiently high degree; see [Aberbach and Huneke 1993, Lemma 4.7].

We will be most interested in the case where S is the associated graded ring of
an ideal generated by a system of parameters.

Definition 3.8. Let (R, m) be a local ring with infinite residue field and let I be an
ideal. Recall that x ∈ I is a superficial element for I if for some integer c and all
n � 0, (I n

: x) ∩ I c
= I n−1. Let S = G(I ), the associated graded ring of I . Let

x ∈ I and let z = x + I 2
∈ S1. Notice that x is a superficial element for I if and

only if z is a filter-regular element. Let I = (x1, . . . , xd) and let zi = xi + I 2
∈ S1

for 1 ≤ i ≤ d . If the sequence z1, . . . , zd is filter-regular, we say that the sequence
x1, . . . , xd is a superficial sequence for I .

Remark 3.9. If x1, . . . , xd is a superficial sequence for I then there exists an integer
c′ such that, if 1 ≤ i ≤ d and r1x1 +· · ·+ ri xi ∈ I n with n ≥ c′ and r1, . . . , ri ∈ I c′

then we have r1x1 + · · · + ri xi = r ′

1x1 + · · · + r ′

i xi with r ′

1, . . . , r ′

i ∈ I n−1. Notice
that the converse is not true in general.

Given any set of generators a1, . . . , ad for I , there is a Zariski-open set U of
(R/m)d2

such that setting xi =
∑d

j=1 ui j aj with (ui j )1≤i, j≤d ∈ U , where ui j is the
image of ui j in R/m, gives a superficial sequence generating I .
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4. An application of homology multipliers to relation type

In this section, we shall investigate two interesting properties of homology multi-
pliers. First, we show that when an element of a system of parameters is changed
by a homology multiplier (such that we still have an s.o.p.), the relation type is not
changed (see Theorem 4.3). This provides a nice tool for studying relation type by
modifying s.o.p.’s in a “convenient” way, which we will apply in Sections 6 and
7. Secondly, we prove that superficiality is also preserved by changing an element
of an s.o.p. by a homology multiplier (see Lemma 4.4).

Throughout this section, R is an equidimensional catenary local ring of dimen-
sion d and 〈x1, . . . , xd〉 denotes an s.o.p. of R.

For a tuple n = (n1, . . . , nd), let |n|= n1+· · ·+nd and let xn denote xn1
1 · · · xnd

d .
From now on, we shall always use graded reverse lex monomial ordering. Suppose

F(T1, . . . , Td) =

∑
|n|=n,n≤n0

rnT n

is a homogeneous form of degree n in R[T1, . . . , Td ] with leading term rn0 T n0

which provides a relation on x1, . . . , xd , i.e. F(x1, . . . , xd) = 0 (if a monomial T n

does not appear in F , we shall take rn = 0). Let A be a new variable and write

F(T1, . . . , Td) = F(T1 + A, T2, . . . , Td) − AG(T1 + A, T2, . . . , Td).

Lemma 4.1. Let R be an equidimensional catenary local ring of dimension d.
Suppose x = 〈x1, . . . , xd〉 and y = 〈y1, x2, . . . , xd〉 are s.o.p.’s such that α =

y1 − x1 ∈ A(R) is a homology multiplier. Then using the notation as above,

αG(y1, x2, . . . , xd) ∈ ( ym
| m < n0).

Proof. Let JT =
(
T n ∣∣ |n| = n, n ≤ n0

)
⊆ Z[T1, . . . , Td ] and J =

(
xn
∣∣ |n| =

n, n ≤ n0
)
= JT ⊗ R ⊆ R. Then, JT is a stable ideal in the sense of [Eliahou and

Kervaire 1990] if we reverse the order of variables, i.e., if we list the variables as
Td , . . . , T1, and so it admits an Eliahou–Kervaire graded free resolution. Notice
that [Eliahou and Kervaire 1990] in fact provided a graded free resolution of JT

rather than of Z[T1, . . . , Td ]/JT ; there is, therefore, a shift of one index in our
resolution compared to that given in [Eliahou and Kervaire 1990]. By base change,
R/J admits the following complex

F• : · · · → F2
∂2
→ F1

∂1
→ R → R/J → 0,

where Fi ’s are free R-modules, and ∂2 is given by a matrix M = M(F) where each
column has exactly 2 nonzero entries and is of the form

[0 · · · − xj · · · xi · · · 0]
T for some i < j.(4–1)
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It follows from Corollary 3.4 that F• satisfies the standard rank and height con-
ditions. Since F(x1, . . . , xd) = 0, we have

[rn0 · · · rn · · · ]
T

∈ ker ∂1,

where [rn0 · · · rn · · · ]
T is the column vector of coefficients in F . Since α annihi-

lates H1(F•), we have

α[rn0 · · · rn · · · ]
T

∈ im ∂2.

Let K = K (F) be the number of columns of M and let C1, . . . , CK be the columns
of M . We then can write

α[rn0 · · · rn · · · ]
T

= b1C1 + · · · + bK CK ,(4–2)

where b1, . . . , bK ∈ R.
Consider an arbitrary term rnT n

= rnT n1
1 . . . T nd

d of F(T1, . . . , Td). We have

rnT n
= rn(T1 + A − A)n1 T n2

2 . . . T nd
d

= rn(T1 + A)n1 T n2
2 . . . T nd

d + rnT n2
2 . . . T nd

d

( n1∑
l=1

(−1)l
(n1

l

)
(T1+A)n1−l Al

)
= rn(T1 + A)n1 T n2

2 . . . T nd
d + Arn

T n

T n1
1

( n1∑
l=1

(−1)l
(n1

l

)
(T1+A)n1−l Al−1

)
.

Thus, we have

AG(T1 + A, T2, . . . , Td) = ∑
rnT n is a term in

F(T1,...,Td )

Arn
T n

T n1
1

( n1∑
l=1

(−1)l
(n1

l

)
(T1 + A)n1−l Al−1

)
.

This implies that
(4–3)

αG(y1, x2, . . . , xd) =

∑
rn xn is a term in

F(x1,...,xd )

αrn
xn

xn1
1

( n1∑
l=1

(−1)l
(n1

l

)
(x1 + α)n1−lαl−1

)
.

It follows from (4–2) that αrn ∈ (b1, . . . , bK )R. Hence, αG(y1, x2, . . . , xd) can be
written as a combination of b1, . . . , bK with coefficients in R.

Let el be the l-th unit vector of Nd and suppose C1 =[0 · · · −xj · · · xi · · · 0]
T

for some fixed i < j . Now, consider the contribution to αG(y1, x2, . . . , xd) coming
from b1C1 after substituting (4–2) to (4–3). It follows from (4–2) that this contri-
bution results from rm+ei xm+ei − rm+ej xm+ej of F(x1, . . . , xd), where ei > ej . If
i > 1, in which case j > i > 1, then in (4–3), terms coming from rm+ei xm+ei and
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rm+ej xm+ej cancel each other since they have the same power of x1. Suppose that
j > i = 1. Substituting (4–2) to (4–3), rm+e1 xm+e1 = rm+e1 xm1+1

1 xm2
2 . . . xmd

d gives

−b1xj
xm

xm1
1

( m1+1∑
l=1

(−1)l
(m1+1

l

)
(x1 + α)m1+1−lαl−1

)
,

and rm+ej xm+ej gives

b1x1
xmxj

xm1
1

( m1∑
l=1

(−1)l
(m1

l

)
(xl + α)m1−lαl−1

)
.

Thus these two terms of F(x1, . . . ,xd) contribute b1
xmx j

xm1
1

S to αG(y1,x2, . . . ,xd),
where

S :=

m1∑
l=1

(−1)l
(m1

l

)
(x1 +α)m1−lαl−1x1 −

m1+1∑
l=1

(−1)l
(m1+1

l

)
(x1 +α)m1+1−lαl−1.

Note that
(m1+1

l

)
=

(m1
l

)
+

(m1
l−1

)
. Therefore,

S =

m1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1−lαl−1x1 −

m1+1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1+1−lαl−1

−

m1+1∑
l=1

(−1)l
(m1

l−1

)
(x1 + α)m1+1−lαl−1

=

m1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1−lαl−1x1 −

m1+1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1+1−lαl−1

+

m1∑
l=0

(−1)l
(m1

l

)
(x1 + α)m1−lαl

=

m1∑
l=1

(−1)l
(m1

l

)(
(x1 + α)m1−lαl−1x1 + (x1 + α)m1−lαl

)
+ (x1 + α)m1

−

m1+1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1+1−lαl−1.

We eventually get

S =

m1+1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1+1−lαl−1

−

m1+1∑
l=1

(−1)l
(m1

l

)
(x1 + α)m1+1−lαl−1

+ (x1 + α)m1

= (x1 + α)m1 .

Hence, in αG(y1, x1, . . . , xd), the term with factor b1 is b1 ym+ej . Since ym+ej <

yn0 , we have b1 ym+ej ∈ ( ym
| m < n0). A similar analysis works for the contribu-

tion to αG(y1, x2, . . . , xd) coming from b2C2, . . . , bK CK . �
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Suppose x =〈x1, . . . , xd〉 and y=〈y1, x2, . . . , xd〉 are s.o.p.’s such that y1−x1 =

α ∈ A(R). As before, let F(T1, . . . , Td) be a homogeneous form of degree N with
leading term rn0 T n0 that gives a relation on x. Let M = M(F), K = K (F) and
C1, . . . , CK be as in Lemma 4.1. Suppose Cj1, . . . , Cjs are the columns that contain
x1, i.e. for i ≤ l ≤ s, Cjl has the form

Cjl = [0 · · · − xjl · · · x1 · · · 0]
T.

Suppose that in (4–2), αrnl , for each l = 1, . . . , s, lie in the same row as x1. It
follows from the proof of Lemma 4.1 that, for each choice of b1, . . . , bK in (4–2),
we can write

0 = F(x1, . . . , xd) = F(y1, x2, . . . , xd) +

s∑
l=1

bjl ynl .

Set

F̃b1,...,bK (T1, . . . , Td) = F(T1, . . . , Td) +

s∑
l=1

bjl T
nl .

Then, for each choice of b1, . . . , bK in (4–2), F̃b1,...,bK (T1, . . . , Td) provides a rela-
tion on y. Notice that for any b1, . . . , bK , F̃b1,...,bK (T1, . . . , Td) and F(T1, . . . , Td)

always have the same leading term. We shall denote by 8α,b1,...,bK the func-
tion which sends a relation F(T1, . . . , Td) on x = 〈x1, . . . , xd〉 to the relation
F̃b1,...,bK (T1, . . . , Td) on y = 〈y1, x2, . . . , xd〉.

Lemma 4.2 (compare [Lai 1995, Theorem 3.6]). Let x = 〈x1, . . . , xd〉 be an s.o.p.
and α ∈ A(R).

(1) Suppose F(T1, . . . , Td) is a relation on x and 1 ≤ l ≤ d. Let K = K (F) and
K ′

= K (Tl F). For any choice of b1, . . . , bK there exist b′

1, . . . , b′

K ′ such that

8α,b′

1,...,b
′

K ′
(Tl F(T1, . . . , Td)) = Tl8α,b1,...,bK (F(T1, . . . , Td)).

(2) Suppose F(T1, . . . , Td) and H(T1, . . . , Td) are two relations on x of the same
degree. Let K ′

= K (F), K ′′
= K (H) and K = K (F + H). There exist choices

of b1, . . . , bK , and b′

1, . . . , b′

K ′ and b′′

1, . . . , b′′

K ′′ such that

8α,b1,...,bK (F + H) = 8α,b′

1,...,b
′

K ′
(F) + 8α,b′′

1 ,...,b′′

K ′′
(H).

(3) Suppose F(T1, . . . , Td) is a relation on x and P(T1, . . . , Td) is any polyno-
mial. Let K = K (F) and K ′

= K (P F). There exist choices of b1, . . . , bK ′

and c1, . . . , cK such that

8α,b1,...,bK ′ (P(T1, . . . , Td)F(T1, . . . , Td))

= P(T1, . . . , Td)8α,c1,...,cK (F(T1, . . . , Td)).
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Proof. It is easy to see that (3) is a consequence of (1) and (2). We shall first prove
(1). Suppose

F(T1, . . . , Td) =

∑
n≤n0

rnT n,

with leading monomial T n0 . Let M = M(F) and M ′
= M(Tl F) be the presentation

matrices associated to relations F and Tl F , respectively, as obtained in Lemma 4.1.
Suppose C =[0 . . . −xj . . . xi . . . 0]

T is a column of M whose entries −xj and xi

give the relation between monomials xn1 and xn2 of F(x1, . . . , xd). Then, in M ′,
there is a corresponding column C ′

= [0 . . . − xj . . . xi . . . 0]
T (with more 0’s)

whose −xj and xi entries give the relation between monomials xn1+el = xl xn1 and
xn2+el = xl xn2 of xl F(x1, . . . , xd). By reindexing, if necessary, we may assume
that C ′

1, . . . , C ′

K are columns in M ′ corresponding to columns C1, . . . , CK of M .
Now, in the presentation obtained from the relation Tl F(T1, . . . , Td) similar to
(4–2), we may pick b′

i = bi for i = 1, . . . , K and b′

i = 0 for i = K +1, . . . , K ′. (1)
then follows from the construction of 8.

It remains to prove (2). Without loss of generality, we may assume that K ′
≥ K ′′.

If the leading terms of F and H do not cancel each other (which implies K = K ′),
then (2) follows from the construction of functions 8α,b1,...,bK by taking the tuple

(b1, . . . , bK ) = (b′

1, . . . , b′

K ′) + (0, . . . , 0︸ ︷︷ ︸
K ′−K ′′

, b′′

1, . . . , b′′

K ′′).

Suppose now that F(T1, . . . , Td) =
∑

m≤n0
rmT m and H =

∑
m≤n0

r ′
mT m, and

rn1 T n1 and r ′
n1

T n1 are the highest terms in F and H that do not cancel (with
n1 < n0). In this case, K < K ′

= K ′′ To prove (2), we only need to show that there
are choices of b1, . . . , bK and b′

1, . . . , b′

K ′ and b′′

1, . . . , b′′

K ′′ such that the leading
term of 8α,b′

1,...,b
′

K ′
(F)+8α,b′′

1 ,...,b′′

K ′′
(H) is the same as that of 8α,b1,...,bK (F + H),

which is (rn1 + r ′
n1

)T n1 .
Let C1, . . . , CK ′ (K ′

= K ′′) be the columns of the matrix of ∂2’s correspond-
ing to F and H as in Lemma 4.1. Suppose b′

1, . . . , b′

K ′ and b′′

1, . . . , b′′

K ′′ are the
coefficients in equalities of the form (4–2) corresponding to F and H . We have

0
...

α(rn0+r ′
n0

)
...

α(rn1+r ′
n1

)
...


= (b′

1 + b′′

1)C1 + · · · + (b′

K ′ + b′′

K ′′)CK ′ .(4–4)

Suppose in (4–4), C1, . . . , CL are columns that have at least a nonzero entry higher
than α(rn1 + r ′

n1
). Then, b′

1 + b′′

1 = · · · = b′

L + b′′

L = 0. It can be easily seen that
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K = K ′
− L . We can now pick b1 = b′

L+1 + b′′

L+1, . . . , bK = b′

K ′ + b′′

K ′′ and the
required equality follows from (4–4). The lemma is proved. �

Theorem 4.3 (compare [Lai 1995, Theorem 3.1]). Let (R, m, k) be a local ring.
Assume that x = 〈x1, . . . , xd〉 and y = 〈y1, x2, . . . , xd〉 are both s.o.p.’s such that
α = y1 − x1 ∈ A(R). Then

rt(x1, . . . , xd) = rt(y1, x2, . . . , xd).

Proof. It is enough to show that rt(x1, . . . , xd) ≤ rt(y1, x2, . . . , xd) (since we
then can apply the inequality for −α). Suppose that r = rt(y1, x2, . . . , xd). Let
F(T1, . . . , Td) be a relation on x1, . . . , xd of degree N > r . Let K = K (F) and let
F̃b1,...,bK (T1, . . . , Td) = 8α,b1,...,bK (F(T1, . . . , Td)) for some choice of b1, . . . , bK .
Then, as shown before, F̃b1,...,bK gives a relation on y = (y1, x2, . . . , xd). Since
F̃b1,...,bK has degree N > r , it can be written as

F̃b1,...,bK (T1, . . . , Td) =

m∑
i=1

Pi (T1, . . . , Td)Hi (T1, . . . , Td),

where the Pi ’s are polynomial in T1, . . . , Td and the Hi ’s provide relations on
y = (y1, x2, . . . , xd) with deg Hi ≤ r for all i . For i = 1, . . . , m, let Ki = K (Hi ).
It follows from Lemma 4.2 that there exist choices of c1, . . . , cK and bi1, . . . , bi Ki

such that

8−α,c1,...,cK (F̃b1,...,bK ) =

m∑
i=1

Pi (T1, . . . , Td)8−α,bi1,...,bi Ki
(Hi (T1, . . . , Td)).

By the definition, 8−α,bi1,...,bi Ki
(Hi (T1, . . . , Td)) gives a relation on x1, . . . , xd for

each i , and
deg 8−α,bi1,...,bi Ki

(Hi (T1, . . . , Td)) ≤ r.

Moreover, since F̃b1,...,bK and F have the same leading term, 8−α,c1,...,cK (F̃b1,...,bK )

and F also have the same leading term. Thus, we can write

F(T1, . . . ,Td)=

m∑
i=1

Pi (T1, . . . ,Td)8−α,bi1,...,bi Ki
(Hi (T1, . . . ,Td))+F ′(T1, . . . ,Td),

where F ′(T1, . . . , Td) gives a relation on x1, . . . , xd and has a smaller leading term
than that of F(T1, . . . , Td). Repeating this process, we eventually will get to the
situation when F ′(T1, . . . , Td) = 0, or equivalently, when F(T1, . . . , Td) is a com-
bination of relations on x1, . . . , xd with degrees at most r . Hence, rt(x1, . . . , xd) ≤

r = rt(y1, x2, . . . , xd). The theorem is proved. �

Now recall from Definition 3.8 the notion of a superficial sequence.
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Lemma 4.4. Let x = 〈x1, . . . , xd〉 be an s.o.p. such that xd is superficial for (x).
Suppose y = 〈x1, . . . , xd−1, yd〉 is an s.o.p. such that α = yd − xd ∈ A(R). Then
yd is superficial for ( y).

Proof. Suppose c ∈ N is an integer such that [(x)n
: xd ] ∩ (x)c

= (x)n−1 for all
n > c. Also, let k ∈ N be an integer given by the Artin–Rees lemma for the modules
xd R ⊆ R and the ideal (x1, . . . , xd−1), i.e., for m ≥ k we have

(x1, . . . , xd−1)
m

∩ (xd) ⊆ xd(x1, . . . , xd−1)
m−1.

We first observe that (0 : xd)⊆ H 0
m(R) since if xdu = 0 we have xd(x)cu = 0 ⊆ (x)n

for all n > c. By superficiality, (x)cu ∈ (x)n−1 for all n � 0, so by the Krull
intersection theorem, (x)cu = 0. Since (x) is m-primary, u ∈ H 0

m(R). We let t ∈ N

be such that mt
∩ H 0

m(R) = 0.
We will now show that if s ∈ ( y)c+k+t and yds ∈ ( y)m for m > c + k + t then

s ∈ ( y)m−1. Since we then have yd(s − s ′) ∈ (x1, . . . , xd−1)
m where s ′

∈ ( y)m−1, it
suffices to assume that s ∈ (x1, . . . , xd−1)

m
: yd . Since α is a homology multiplier,

we then have αs ∈ (x1, . . . , xd−1)
m . Thus,

sxd = syd − αs ∈ (x1, . . . , xd−1)
m .(4–5)

From the Artin–Rees lemma we see that

sxd ∈ (x1, . . . , xd−1)
m

∩ (xd) ⊆ xd(x1, . . . , xd−1)
m−k

;

hence s ∈ [(x1, . . . , xd−1)
m−k

+ (0 : xd)] ∩ ( y)t . If we write s = s1 + s2 where
s2 ∈ (0 : xd), then s2 ∈ (0 : xd) ∩ mt

⊆ H 0
m(R) ∩ mt

= 0 (since m − k ≥ t). Thus
s ∈ (x)c, and since xd is superficial for (x), we must have s ∈ (x1, . . . , xd)m−1. Set

s =

∑
|n|=m−1

anxn.

We can now write (4–5) as∑
|n|=m−1

anxnxd −

∑
|n|=m

dnxn
= 0,(4–6)

where Q(x1, . . . , xd−1) =
∑

|n|=m dnxn
∈ (x1, . . . , xd−1)

m . Let P(x1, . . . , xd) =∑
|n|=m−1 anxn. Then, (4–6) gives a relation on x1, . . . , xd of degree m, namely

H(T1, . . . , Td) = Td P(T1, . . . , Td) − Q(T1, . . . , Td−1).

Let rm0 T m0 (where |m0| = m) be the leading term of H(T1, . . . , Td). It follows
from Lemma 4.1 that

H(x1, . . . , xd) − H(x1, . . . , xd−1, yd) ∈ ( ym
| m < m0).
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Moreover,

H(x1, . . . , xd)−H(x1, . . . , xd−1, yd)= xd P(x1, . . . , xd)−yd P(x1, . . . , xd−1, yd).

Thus

xd P(x1, . . . , xd) − yd P(x1, . . . , xd−1, yd) ∈ ( ym
| m < m0).(4–7)

Since the calculation done in Lemma 4.1 is formal on the coefficients of the relation
F(T1, . . . , Td), in our situation it is formal on the coefficients of Td P(T1, . . . , Td),
which are exactly the same as those of P(T1, . . . , Td). Therefore, the same calcula-
tion as in (4–7) would hold for P(x1, . . . , xd). Hence, for m′

0 = m0−(0, . . . , 0, 1),
we have

P(x1, . . . , xd) − P(x1, . . . , xd−1, yd) ∈ ( ym
| m < m′

0).

It follows from this that

s = P(x1, . . . , xd) ∈ (x1, . . . , xd−1, yd)m−1. �

Lemma 4.5. Let x and y be as in Lemma 4.4 in a local ring (R, m) with infinite
residue field. There exist y′

1, . . . , y′

d−1 such that (y′

1, . . . , y′

d−1, yd) = ( y), and
yd , y′

d−1, . . . , y′

1 is a superficial sequence.

Proof. Take y′

1, . . . , y′

d−1 to be general linear combinations of x1, . . . , xd−1. �

5. Ramsey numbers

In this section, we provide a “Ramsey number” combinatorial lemma which will
be used to establish uniform bounds on relation type of parameter ideals in the next
two sections.

For a set S, and a positive integer l, we denote by [S]
l the set of all subsets of

l elements of S. We shall use the following infinite version of Ramsey’s theorem
[1929] (see also [Adhikari 2002, Theorem 3.4]).

Lemma 5.1. Let n and l be two given positive integers. Let T = {x1, x2, . . . } be an
infinite countable set. Then for any way of coloring [T ]

l using n colors, there is an
infinite subset U of T with all its subsets of l elements having the same color.

For any d-uple A = (a1, . . . , ad) of nonnegative integers, we denote by |A|

the sum
∑d

j=1 aj . For two d-uples of nonnegative integers A = (a1, . . . , ad) and
B = (b1, . . . , bd), we write A � B if and only if aj ≤bj for all j =1, . . . , d . A chain
of length l is a sequence of d-tuples of nonnegative integers A1 � A2 � · · · � Al .
For a d-uple A = (a1, . . . , ad) and a number t ∈ {1, . . . , d}, we use A(t) to denote
the t-th entry at of A.
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Lemma 5.2. Suppose d and l are given positive integers, and k is a nonnega-
tive integer. Then, there exists a positive number M = M(d, k, l) such that for
any sequence of d-uples of nonnegative integers A = 〈A1, A2, . . . , AM〉, in which
|Ai | = k + i , we can always find a chain Ai1 � Ai2 � · · · � Ail of length l with
1 ≤ i1 < i2 < · · · < il ≤ M.

Proof. By contradiction, suppose the assertion is not true. That is, for any M ≥ k,
there is a sequence AM = 〈AM,1, AM,2, . . . , AM,M〉 of d-uples of nonnegative
integers such that |AM,i | = k + i for i = 1, . . . , M , which has no subchain of
length l.

We shall first inductively construct an infinite sequence of infinite subsets M1 ⊇

M2 ⊇ · · · ⊇ Mn ⊇ · · · of N as follows. Since |AM,1| = k + 1 for all M ≥ k,
there must be an infinite subset M1 of N such that for any M, N ∈ M1, we have
AM,1 = AN ,1. Suppose M1, . . . , Mi (i ≥ 1) have been constructed. Since for each
M ∈ Mi , |AM,i+1| = k + i + 1, there must be an infinite subset Mi+1 of Mi such
that for any M, N ∈ Mi+1, we have AM,i+1 = AN ,i+1.

Let A = 〈A1, A2, . . . 〉 be the sequence defined by letting Ai = AM,i , where M
is an arbitrary element of Mi . Clearly, by definition, |Ai | = k + i .

Claim 5.3. The sequence A = 〈A1, A2, . . . 〉 does not have a subchain of length l.

Proof of Claim. Indeed, if B1 � B2 � · · · � Bl is a subchain of A, and Bl = As ,
then for any M ∈ Ms , the sequence AM = 〈AM,1, AM,2, . . . 〉 contains the subchain
B1 � B2 � · · · � Bl of length l. This is a contradiction. �

Now consider a coloring of [A]
2 using (d +1) colors as follows. Suppose i < j .

If Ai � Aj , then we color {Ai , Aj } by 0. Otherwise, there must be an integer
t ∈ {1, . . . , n} such that Ai (s) ≤ Aj (s) for any s < t and Ai (t) > Aj (t), and we
color {Ai , Aj } by t . Clearly, this is a valid (d + 1)-coloring of [A]

2. By Ramsey’s
theorem (Lemma 5.1), there exists an infinite subset U = {U1, U2, . . . } of A such
that [U]

2 has one color. Suppose [U]
2 is colored by c. If c > 0, then we obtain an

infinite sequence of nonnegative integers U1(c)>U2(c)>. . . , which is impossible.
Thus, c = 0, and so U1 � U2 � . . . is a chain of infinite length in A. But this is
impossible by the Claim.

Hence, we always get a contradiction. The lemma is proved. �

6. Relation type in generalized Cohen–Macaulay rings

The goal of this section will be to give a new argument that rings of finite lo-
cal cohomology have uniformly bounded relation type. Throughout this section,
(R, m, k) will denote a local ring R with maximal ideal m and residue field k.

We recall that a Noetherian local ring R of dimension d is said to have finite local
cohomology (f.l.c.) if H i

m(R) is finitely generated for i = 0, . . . , d − 1 (and hence
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is of finitely length). Rings with finite local cohomology are called generalized
Cohen–Macaulay. We observe that R has f.l.c. if and only if R̂ has f.l.c. if and only
if dim R̂/p = dim R̂ for every minimal prime p of R̂, and R̂p is Cohen–Macaulay
for all p 6= m̂.

Notice that if a Noetherian local ring R has f.l.c. then A(R) is m-primary.
We shall start with a result in two dimensions, through which the argument in

the general situation becomes more transparent. (The bound l1 + l0 in this special
case improves the bound 2l1 + l0 of [Wang 1997a, Theorem 4.1].)

Theorem 6.1. Let (R, m, k) be an equidimensional local ring of dimension 2 such
that λ(H 0

m(R)) = l0 < ∞ and λ(H 1
m(R)) = l1 < ∞. Then R has a uniform bound

l1 + l0 on relation type of parameter ideals.

Proof. Let I = (x, y) be a parameter ideal of R. By [Wang 1997a, Lemma 2.2] we
can assume that H 0

m(R) = 0 and show that rt(I ) ≤ l1. Suppose

F(T1, T2) = rN T N
1 + rN−1T N−1

1 T2 + · · · + r0T N
2 ,

with N > l1, provides a relation on (x, y). That is,

rN x N
+ rN−1x N−1 y + · · · + r0 yN

= 0.(6–1)

We may assume that rN 6= 0, otherwise we can factor out a power of T2.
Let γ ∈ A(R) be a homology multiplier which is part of an s.o.p. (in particular,

γ is not a zero-divisor). Let l = λ(H 0
m(R/γ R)). By [Wang 1997a, Lemma 3.7]

we have that l ≤ l1. It follows from (6–1) that rN ∈ y : x N . Thus, since γ is a
homology multiplier, we have

γ rN ∈ (y).

Similarly, (6–1) implies that rN x + rN−1 y ∈ y2
: x N−1, and so

γ (rN x + rN−1 y) ∈ (y2).

Proceeding in this way, we obtain a sequence of relations as follows.

(6–2)
γ rN = s1 y, γ (rN x + rN−1 y) = s2 y2, . . . ,

γ (rN x N−1
+ rN−1x N−2 y + · · · + r1 yN−1) = sN yN ,

where s1, . . . , sN ∈ R.
For every 1 ≤ j ≤ N , from (6–2) we have sj ∈ (γ : y j ) ⊆ H 0

m(R/γ R). Since
N > l1, there exists p ≤ l1 such that

sp+1 ∈ (γ, s1, . . . , sp).

Write
sp+1 = aγ + b1s1 + · · · + bpsp.
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Substituting this into the relation γ (rN x p
+rN−1x p−1 y+· · ·+rN−p y p)= sp+1 y p+1

in (6–2), we obtain

γ (rN x p
+ rN−1x p−1 y + · · · + rN−p y p) = (aγ + b1s1 + · · · + bpsp)y p+1

= aγ y p+1
+ b1s1 y p+1

+ · · · + bpsp y p+1,

that is,

γ
(
rN x p

+ rN−1x p−1 y + · · · + (rN−p − ay)y p)
= (b1 y p)s1 y + (b2 y p−1)s2 y2

+ · · · + (bp y)sp y p.

Using (6–2), replace each term (bj+1 y p− j )sj+1 yj+1 on the right-hand side with
γ
(
(rN bj+1 y p− j )x j

+ · · · + (rN− j bj+1 y p− j )y j
)
. Moving everything to the left-

hand side and observing that (rN bj+1 y p− j )x j
= (rN bj+1)x j y p− j < rN x p, for each

j = 1, . . . , p − 1, we obtain, upon factoring out γ ,

γ
(
rN x p

+ smaller terms
)
= 0.

But γ is not a zero-divisor, so

rN x p
+ smaller terms = 0.

We thus get a new relation on (x, y),

G(T1, T2) = rN T p
1 + smaller terms

which has the same leading coefficient as F(T1, T2) but is of lower degree.
Now, write F = T N−p

1 G(T1, T2) + T2 H(T1, T2). Then, clearly H(T1, T2) also
provides a relation on (x, y) and is of smaller degree than F(T1, T2). That is,
F(T1, T2) can be written as a combination of relations of lower degrees. This
proves our result. �

To prove the result for generalized CM rings of any dimension, we shall need
the following lemma of Schenzel (see [Wang 1997a, Theorem 3.2]).

Lemma 6.2. Let (R, m, k) be a d-dimensional Noetherian ring having finite local
cohomology. Let (x1, . . . , xs) be part of an s.o.p. in R. Then,

λ
(
(x2, . . . , xs) : x1

(x2, . . . , xs)

)
≤

s−1∑
i=0

(s−1
i

)
λ
(
H i

m(R)
)
.

Remark 6.3. Under the assumptions of Lemma 6.2, we have

H 0
m

(
R/(x2, . . . , xs)

)
=

(x2, . . . , xs) : x∞

1
(x2, . . . , xs)

=
(x2, . . . , xs) : xn

1
(x2, . . . , xs)

,
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for some positive integer n. Since if (x1, . . . , xs) is part of an s.o.p. then so is
(xn

1 , x2, . . . , xs), Lemma 6.2 now gives

λ
(
H 0

m(R/(x2, . . . , xs))
)
≤

s−1∑
i=0

(s−1
i

)
λ
(
H i

m(R)
)
.

Our result for generalized CM rings of any dimension is stated as follows.

Theorem 6.4. Let (R, m, k) be a local ring of dimension d such that λ(H i
m(R)) <

∞ for 0 ≤ i ≤ d − 1. Then R has a uniform bound on relation type of parameter
ideals.

Proof. By [Wang 1997b, Lemma 4.1], since our hypotheses pass to the completion,
we may assume that R is complete. By [Wang 1997a, Lemma 2.2], we may also
assume that H 0

m(R) = 0. Next, by passing to a faithful extension of R if necessary,
we may assume that k is infinite; see the proof of [Wang 1997a, Theorem 4.4].

Let I = (x1, . . . , xd) be a parameter ideal in R. We can pick xd , xd−1, . . . , x1

to form a superficial sequence and xd not to be a zero-divisor. We will use graded
reverse lex monomial ordering with x1 > x2 > · · · > xd and T1 > T2 > · · · > Td .
For q = 2, . . . , d, let

Lq =

( d−q+1∑
i=0

(d−q+1
i

)
λ
(
H i

m(R)
))

+ 1.

Set L = (L2 − 1)+· · ·+ (Ld − 1)+ 1. Let M(d, k, l) denote the Ramsey number
determined as in Lemma 5.2, and set K1 = M(d, 1, L) = N1. We recursively
construct three sequences of finite numbers: for i ≥ 2, let

Mi =

Ki−1∑
l=0

(l+i−2
i−2

)
be the number of all (i − 1)-tuples of nonnegative integers whose sum is at most
Ki−1; then let Ni = M(d, 2Ki−1, Mi (L − 1) + 1) and Ki = 2Ki−1 + Ni .

To get the conclusion, it suffices to prove that any relation on x1, . . . , xd of
degree greater than Kd−1 can be written as a combination of relations of smaller
degrees. Consider an arbitrary relation of degree N > Kd−1 in x1, . . . , xd :

F = F(T1, . . . , Td) =

∑
|n|=N

rnT n.

That is,

(6–3) F(x1, . . . , xd) =

∑
|n|=N

rnxn
= 0.
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We can assume that Td does not divide the leading term of F , since otherwise we
can factor out Td and get a relation of smaller degree (since xd is not a zero-divisor).
Let ordi (T n) be the i-th component of n, and let ord< j (T n) =

∑
i< j ordi (T n). We

shall show that for any 1 ≤ j ≤ d − 1, if F contains a term rmT m (say m =

(m1, . . . , md)) with ord< j+1(T m) > Kj then we can write

F(T1, . . . , Td) = H(T1, . . . , Td)G(T1, . . . , Td) + F ′(T1, . . . , Td),

where H is a monomial divisible by
∏

i> j T mi
i , G and F ′ both provide rela-

tions in x1, . . . , xd , the leading term rkT k of G satisfies rkT k∣∣rmT m, and further
ord< j+1(T k) ≤ Kj and ordj+1(T k) = · · · = ordd(T k) = 0 (in particular, the degree
of G is bounded by Kj ), and all terms rn1 T n1 of F ′ with ord< j+1(T n1) > Kj are
smaller than rmT m. By taking j = d −1, and successively eliminating terms rnT n

of F with ord<d(T n) > Kd−1, we then prove our theorem.
Suppose our assertion is not true. Let j be the smallest index for which our

assertion fails. Let F be a relation such that our assertion fails for this value of j .
In particular, F contains a term rnT n such that ord< j+1(T n) > Kj . Let rn0 T n0 be
the largest term of F for which ord< j+1(T n0) > Kj . Among all such relations F’s
for which our assertion fails for j , we shall pick F such that rn0 T n0 is smallest
possible. Let n0 = (n01, . . . , n0d). For simplicity, we write r for rn0 . We shall
derive a contradiction.

From the choice of j , we may assume that

K =

j−1∑
i=1

n0i ≤ Kj−1.

We first observe that

n0 j > Kj − Kj−1 = Kj−1 + Nj .(6–4)

Let J denote the set of all monomials in T1, . . . , Td that appear in the expression
of F(T1, . . . , Td). Let

P(T1, . . . , Td) :=

∏
i> j

T n0i
i

(
r T n0∏

i> j
T n0i

i
+

∑
n∈J, n 6=n0,∏

i> j T
n0i

i |T n

rn
T n∏

i> j
T n0i

i

)

be the sum of all terms of F divisible by
∏

i> j T n0i
i . We first observe that if n > n0,

then from the choice of rn0 T n0 , we must have ord< j+1(T n) ≤ Kj = ord< j+1(T n0),
whence

(6–5)
∑
i> j

ordi (T n) >
∑
i> j

ordi (T n0).
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This implies that for all T n
∈ J such that n > n0, we must have

∏
i> j T n0 j

i - T n,
i.e. rnT n is not in P(T1, . . . , Td). It now follows from (6–3) that

(6–6) r xn0∏
i> j

xn0i
i

+

∑
n∈J, n<n0,∏

i> j x
n0i
i |xn

rn
xn∏

i> j
xn0i

i

=
P(x1, . . . , xd)∏

i> j
xn0i

i
∈

( ∑
n∈J,∏

i> j x
n0i
i |dxn

rnxn

)
:

∏
i> j

xn0i
i .

Since R is generalized Cohen–Macaulay (so A(R) is m-primary), there exists a
positive integer q ′

j such that xq ′

j
j ∈ A(R). Take B = (xj+1, . . . , xd). It can be seen

that if n < n0 and
∏

i> j T n0 j
i - T n then there exists l > j such that ordl(T n) >

ordl(T n0). On the other hand, if n > n0 then it follows from (6–5) that there also
exists l > j such that ordl(T n) > ordl(T n0). Thus, from (6–6), we have

x
q ′

j
j

(
r xn0∏

i> j
xn0i

i
+

∑
n∈J, n<n0,∏

i> j x
n0i
i |xn

rn
xn∏

i> j
xn0i

i

)
∈ B.(6–7)

Since xd , . . . , x1 form a superficial sequence, (6–7) and Remark 3.9 imply there
exists an integer qj such that

(6–8) xqj
j

(
r xn0∏

i> j
xn0i

i
+

∑
n∈J, n<n0,∏

i> j x
n0i
i |xn

rn
xn∏

i> j
xn0i

i

)
∈ B(x1, . . . xd)qj +K+n0 j −1.

Write this as

(6–9) r xn01
1 . . . xn0( j−1)

j−1 xn0 j +qj
j +

∑
|m|=qj +K+n0 j ,

m<(n01,...,n0 j +qj ,0,...,0)

umxm
= 0,

and let

(6–10) Q(T1, . . . , Td) = rT n01
1 . . . T n0( j−1)

j−1 T n0 j +qj
j +

∑
|m|=qj +K+n0 j ,

m<(n01,...,n0 j +qj ,0,...,0)

umT m

= r T m0 +

∑
|m|=qj +K+n0 j ,

m<m0

umT m,

where m0 = (m01, . . . , m0d) = (n01, . . . , n0( j−1), n0 j + qj , 0, . . . , 0). Then,
Q(T1, . . . , Td) gives a new relation on x1, . . . , xd .

Let A be the collection of all terms of Q that are smaller than r T m0 . For a
term umT m

∈ A, we observe the following. If ordi (T m) = 0 for all i > j then
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we must have ordj (T m) > ordi (T m0) = m0 j , and so ord< j (T m) ≤ K . Otherwise,
suppose there exists l > j such that ordl(T m) > 0. If ord< j (T m) > Kj−1 then from
the choice of j , we may write Q(T1, . . . , Td) = H(T1, . . . , Td)G(T1, . . . , Td) +

Q′(T1, . . . , Td) where H is a monomial divisible by Tl (since ordl(T m) > 0), G
and Q′ are relations on x1, . . . , xd , G has the form

(6–11) G(T1, . . . , Td) = vk0 T k0 +

∑
k<k0, |k|=|k0|

vkT k,

with vk0 T k0
∣∣umT m, ord< j (T k0) ≤ Kj−1 and ordj (T k0) = · · · = ordd(T k0) = 0.

Notice that since H is divisible by Tl , all terms in H(T1, . . . , Td)G(T1, . . . , Td)

are smaller than r T m0 . By replacing Q by Q′ and repeating the process to succes-
sively remove all terms umT m

∈ A such that ord< j (T m) > Kj−1 from Q, we may
assume that in our relation Q(T1, . . . , Td), every term umT m satisfies the condition
ord< j (T m) ≤ Kj−1.

Let γ ∈ A(R) be a homology multiplier such that (γ, x1, . . . , x̂j , . . . , xd) is an
s.o.p. Since γ is part of an s.o.p. and H 0

m(R) = 0, γ is not a zero-divisor. Let
M denote the set of all monomials appearing in Q. Recall that K =

∑
i< j n0i =∑

i< j m0i ≤ Kj−1 and B = (xj+1, . . . , xd).

Let F1(T1, . . . , Td) be the sum of all terms of Q that are divisible by T m0 j −Kj−1
j :

F1(T1, . . . , Td) = T m0 j −Kj−1
j

(
r T m0

T m0 j −Kj−1
j

+

∑
m∈M,m<m0,

T
m0 j −Kj−1

j |T m

um
T m

T m0 j −Kj−1
j

)
.

Let G1(T1, . . . , Td) =
F1(T1, . . . , Td)

T m0 j −Kj−1
j

. Then, (6–9) gives

G1(x1, . . . , xd) ∈
(
xm

∈ M
∣∣ m < m0, ordj (xm) < m0 j − Kj−1

)
: xm0 j −Kj−1

j

=
(
xm

∈ M
∣∣ ordj (xm) < m0 j − Kj−1 and∑

i> j ordi (xm) > K
)
: xm0 j −Kj−1

j .

This is because∑
i> j ordi (xm) >

∑d
i=1 ordi (xm) − ord< j (xm) − (m0 j − Kj−1)

=
∑d

i=1 ordi (xm0) − ord< j (xm) − (m0 j − Kj−1)

≥ K + m0 j − Kj−1 − (m0 j − Kj−1) = K .

Therefore, since γ is a homology multiplier, we have

γ G1(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+1.
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Similarly, let F2(T1, . . . , Td) be the sum of all terms of Q that are divisible by
T m0 j −Kj−1−1

j , i.e.,

F2(T1, . . . , Td) = T m0 j −Kj−1−1
j

(
r T m0

T m0 j −Kj−1−1
j

+

∑
m∈M, m<m0,

T
m0 j −Kj−1−1

j |T m

um
T m

T m0 j −Kj−1−1
j

)
,

and let G2(T1, . . . , Td) =
F2(T1, . . . , Td)

T m0 j −Kj−1−1
j

, we then have

G2(x1, . . . , xd) ∈
(
xm

∈ M
∣∣m < m0, ordj (xm) < m0 j − Kj−1 − 1

)
: xm0 j −Kj−1−1

j

=
(
xm

∈ M
∣∣ ordj (xm) < m0 j − Kj−1 − 1 and∑

i> j ordi (xm) > K + 1
)
: xm0 j −Kj−1−1

j .

This is because∑
i> j ordi (xm) >

∑d
i=1 ordi (xm) − ord< j (xm) − (m0 j − Kj−1 − 1)

=
∑d

i=1 ordi (xm0) − ord< j (xm) − (m0 j − Kj−1 − 1)

≥ K + m0 j − Kj−1 − (m0 j − Kj−1 − 1) = K + 1.

Thus, again since γ is a homology multiplier, we get

γ G2(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+2.

Proceeding in this way, we obtain:

(6–12)

γ G1(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+1,

γ G2(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+2, . . . ,

γ G p(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+p, . . . ,

γ Gm0 j −Kj−1+1(x1, . . . , xd) ∈ (x1, . . . , x̂j , . . . , xd)Kj−1 BK+m0 j −Kj−1+1,

where

G p(T1, . . . , Td) =
Fp(T1, . . . , Td)

T m0 j −Kj−1−p+1
j

= rT m01
1 . . . T m0( j−1)

j−1 T Kj−1+p−1
j + smaller terms

and Fp(T1, . . . , Td) is the sum of all terms in Q that are divisible by T m0 j −Kj−1−p+1
j ,

for 1 ≤ p ≤ m0 j − Kj−1 + 1.
Observe that G p(x1, . . . , xd) has degree Kj−1+K + p−1 in x1, . . . , x̂j , . . . , xd .

Let C p = (x1, . . . , x̂j , . . . , xd)Kj−1 BK+p. It follows from the relations (6–12) that,
for each 1 ≤ p ≤ m0 j −Kj−1+1, we can write γ G p(x1, . . . , xd)= Hp(x1, . . . , xd),
where Hp(x1, . . . , xd) ∈ C p is a polynomial of degree Kj−1+K + p on x1, . . . , x̂j ,

. . . , xd . From now on, we shall write G p for G p(x1, . . . , xd), and likewise for Hp.
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We order the terms in Hp with respect to our monomial ordering (graded reverse
lex), and let sp be the leading coefficient of Hp. That is,

(6–13)

γ G1 = s1xm1 +
∑

m<m1
smxm,

γ G2 = s2xm2 +
∑

m<m2
smxm, . . . ,

γ G p = sp xmp +
∑

m<mp
smxm, . . . ,

γ Gm0 j −Kj−1+1 = sm0 j −Kj−1+1xmm0 j −Kj−1+1
+
∑

m<mm0 j −Kj−1+1
smxm,

where xmp ∈ C p and |mp| = Kj−1 + K + p. In the p-th equality of (6–13), among
all different ways of writing γ G p = Hp where G p is a polynomial expression in
x1, . . . , xd of degree Kj−1+K + p−1 and leading term r xm01

1 . . . xm0( j−1)

j−1 x Kj−1+p−1
j

and Hp is a polynomial expression in x1, . . . , xd of degree Kj−1+K +p, we choose
the one with smallest possible leading term sp xmp on the right-hand side.

Claim 6.5. There exists an integer p ≤ Nj such that Hp = 0.

Proof of Claim. From (6–4) we have m0 j −Kj−1+1 ≥ n0 j −Kj−1+1 ≥ Nj +1. By
contradiction, suppose the assertion is false. That is, s1, . . . , sNj are all nonzero.
Fix an integer 1 ≤ p ≤ m0 j − Kj−1 +1, and suppose the xi ’s that appear in xmp are
in {xi | i ≥ h}\{xj } (and h is chosen to be the largest integer with this property).
Then

sp ∈
(
γ, {xm

∈ C p
∣∣ m < mp}

)
: xmp

=
(
γ, {xm

∈ C p | ordi (xm) > ordi (xmp) for some i ≥ h + 1}
)
: xmp .

Choose α ∈ A(R) such that
(
γ, {xh+1, . . . , xd}\{xj }, α

)
is part of an s.o.p. (since

xh divides xmp , we have h 6= j , so this choice is possible). Then,

αsp ∈
(
γ, {xh+1, . . . , xd}\{xj }

)
, that is, sp ∈

(
γ, {xh+1, . . . , xd}\{xj }

)
: α.

Since R is a generalized Cohen–Macaulay ring and
(
γ, {xh+1, . . . , xd}\{xj }, α

)
is

part of an s.o.p., α avoids all associated primes of
(
γ, {xh+1, . . . , xd}\{xj }

)
except

possibly m. Hence, we have

sp ∈ H 0
m

(
R
/(

γ, {xh+1, . . . , xd}\{xj }
))

,

where sp denotes the image of sp in R
/(

γ, {xh+1, . . . , xd}\{xj }
)
.

Consider the sequence {m1, m2, . . . , mNj }. Since

Nj = M(d, 2Kj−1, Mj (L − 1) + 1) ≥ M(d, Kj−1 + K , Mj (L − 1) + 1)

and |m1|= Kj−1+K +1, it follows from Lemma 5.2 that there exists an increasing
subsequence of length V = Mj (L − 1) + 1, say ml1 � ml2 � · · · � mlV , with 1 ≤

l1 < l2 < · · · < lV ≤ Nj ≤ m0 j − Kj−1. Since C p = (x1, . . . , x̂j , . . . , xd)Kj−1 BK+p,
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we have ord< j (xmp) ≤ Kj−1 for any 1 ≤ p ≤ m0 j − Kj−1 + 1. Thus, since Mj

is the number of ( j − 1)-tuples of nonnegative integers whose sum is at most
Kj−1, we can choose from the sequence ml1 � ml2 � · · · � mlV a subsequence
of length L , mi1 � mi2 � · · · � miL such that they have the same j − 1 first
components, i.e., for any 1 ≤ a, b ≤ L we have (ord1(xmia ), . . . , ordj−1(xmia )) =

(ord1(xmib ), . . . , ordj−1(xmib )). Since L = (L2 − 1) + · · · + (Ld − 1) + 1, we can
choose from this sequence yet another subsequence mp1 � mp2 � · · · � mpLq

, for
some 2 ≤ q ≤ d , such that

spt ∈ H 0
m

(
R
/(

γ, {xq+1, . . . , xd}\{xj }
))

,

for any t = 1, 2, . . . , Lq . It follows from Remark 6.3 that

λ
(
H 0

m

(
R
/(

γ, {xq+1, . . . , xd}\{xj }
)))

< Lq ,

so we can write

spLq
=

∑
i>q,i 6= j

ai xi + ajγ +

Lq−1∑
i=1

bi spi .

Substitute this into the equality γ G pLq
= HpLq

to get

(6–14) γ (G pLq
− aj xmpLq ) =

∑
i>q,
i 6= j

ai xi xmpLq +

Lq−1∑
i=1

bi spi x
mpLq +

∑
m<mpLq

smxm

=

∑
i>q,
i 6= j

(ai xq)
xmpLq xi

xq
+

Lq−1∑
i=1

(
bi

xmpLq

xmpi

)
spi x

mpi

+

∑
m<mpLq

smxm.

Since xmpLq ∈ C pLq
, we have (after absorbing extra powers into the coefficient if

necessary) aj xmpLq < r xm01
1 . . . xm0( j−1)

j−1 x
Kj−1+pLq −1
j . Also,

xmpLq xi
xq

< xmpLq for i > q.

Furthermore, since mpLq
and mpi have the same j − 1 first components, we have

xmpLq /xmpi ∈(x j+1,. . .,xd), which then implies that all terms of bi (xmpLq/xmpi )G pi

are smaller than r xm01
1 . . . xm0( j−1)

j−1 x
Kj−1+pLq −1
j . Thus, after using (6–13) to replace

spi x
mpi by

(
γ G pi −

∑
|m|=|mpi |,m<mpi

smxm) in (6–14) and moving terms involving
γ to the left-hand side, we get a relation

γ
(

G pLq
+ terms smaller than r xm01

1 . . . xm0( j−1)

j−1 x
Kj−1+pLq −1
j

)
= H ′

pLq
.
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That is,

γ
(
r xm01

1 . . . xm0( j−1)

j−1 x
Kj−1+pLq −1
j + smaller terms

)
= H ′

pLq
,(6–15)

where the leading term of H ′
pLq

is strictly smaller than spLq
xmpLq , which is the

leading term of HpLq
. This contradicts the way (6–13) was chosen. Our claim is

proved. �

We have just shown that there exists an integer p ≤ Nj such that the p-th equality
in (6–13) is γ G p = 0. Thus, since γ is not a zero-divisor, G p = 0. That is,

r xm01
1 . . . xm0( j−1)

j−1 x Kj−1+p−1
j + smaller terms = 0.

This gives a relation on x1, . . . , xd , which by abusing language we shall denote by
G p:

G p(T1, . . . , Td) = rT m01
1 . . . T m0( j−1)

j−1 T Kj−1+p−1
j + smaller terms

= rT n01
1 . . . T n0( j−1)

j−1 T Kj−1+p−1
j + smaller terms.

Observe that Kj−1 + p − 1 ≤ Kj−1 + Nj − 1 < n0 j by (6–4). We now can write

F(T1, . . . , Td) =

[
T n0 j −Kj−1−p+1

j

∏
i> j

T n0i
i

]
G p(T1, . . . , Td) + F ′(T1, . . . , Td),

where both G p and F ′ are relations on x1, . . . , xd . It is clear that every term rnT n

of F ′ with ord< j+1(T n) > Kj is smaller than rn0 T n0 . We obtain a contradiction.
Hence, the theorem is proved. �

7. Relation type in rings with non-Cohen–Macaulay locus of dimension one

This section is devoted to treating the unknown situation where the ring R has
non-CM locus of dimension 1. Our main theorem shows that R satisfies bounded
relation type provided A(R̂) is a prime ideal in the completion R̂ of R. As before,
throughout the section, (R, m, k) shall denote a local ring R with maximal ideal m

and residue field k.

Lemma 7.1. Let (R, m, k) be a complete unmixed local ring of dimension d ≥ 3.
Assume that A(R)= P is a dimension one prime. Then λ(H 1

m(R))<∞. Let xd ∈ R
be a non-zero-divisor such that its image in R/P is in mR/P − mr R/P for some
positive integer r. Then for any system of parameters x1, . . . , xd and any integer
1 < j ≤ d there is a bound on λ

(
H 0

m(R/(xj , . . . , xd))
)
, depending only on r and j .

Proof. The assertion that λ(H 1
m(R))<∞ follows by duality. Let S ⊆ R be a Goren-

stein ring with R module-finite over S. Then H 1
m(R) is dual to Extd−1

S (R, S). For
any nonmaximal prime Q ⊆ R of height h, let q = Q∩S. Then (Extd−1

S (R, S))Q =
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Extd−1
Sq

(RQ, Sq) is dual to H h−d+1
Q RQ

(RQ). If h < d −1 this clearly vanishes. Other-
wise h = d −1, and the assumption that R is unmixed gives H 0

Q RQ
(RQ) = 0. Thus

λ(H 1
m(R)) = λ(Extd−1

S (R, S)) < ∞.
For simplicity of notation let xd = x . We next observe that the hypotheses give

the non-CM locus of R is {P, m}. Since x /∈ P , the ring R/x R is generalized CM.
Thus, if we can bound the lengths of H i

m(R/x R) for 0 ≤ i ≤ d −2, depending only
on i and r then Schenzel’s result (Lemma 6.2) may be applied.

Since P = A(R) annihilates H i
m(R) for 0 ≤ i ≤ d − 1, we see that H i

m(R) is
an Artinian R/P module. Let E = ER/P(R/m) be an injective hull. For each
1 < i < d there is an exact sequence 0 → H i

m(R) → E ti → Ci → 0 (and Ci

is Artinian). From the snake lemma applied to multiplication of this short exact
sequence by x we get an exact sequence

0 → AnnH i
m(R) x → (AnnE x)ti → AnnCi x → H i

m(R)/x H i
m(R) → E ti /x E ti = 0.

(7–1)

We also have, from the sequence 0 → R
x

→ R → R/x R → 0, the long exact
sequence in local cohomology, which gives

0 → H i
m(R)/x H i

m(R) → H i
m(R/x R) → AnnH i+1

m (R) x → 0.(7–2)

From (7–1) and (7–2) we see that it suffices to bound λ
(
H i

m(R)/x H i
m(R)

)
and

λ
(
AnnH i+1

m (R) x
)

for i ≤ d − 2, and hence to bound λ(AnnE x) depending only on
r (using the fact that each Ci embeds in a finite direct sum of E’s). By duality,
λ(AnnE x) = λ

(
R/(P + x R)

)
.

Thus the problem reduces to showing that if (S, m) is a one dimensional com-
plete domain and x ∈ m − mr then there is a bound on λ(S/x S) which depends
only on r. Let T be the integral closure of S, and set N to be the degree of the
extension of fraction fields. Then λS(S/x S) ≤ NλT (T/xT ). By Rees’s strong
valuation theorem, there is an integer k such that ordT (x) ≤ ordS(x) + k [Rees
1988]. This shows that λS(S/x S) ≤ N (r + k). �

Theorem 7.2. Let (R, m, k) be a formally unmixed local ring of dimension d such
that A(R̂) is a prime ideal of dimension one in the completion R̂ of R. Then R has
a uniform bound on relation type of parameter ideals.

Proof. By [Wang 1997b, Lemma 4.1], since our hypotheses pass to the completion,
we may assume that R is complete. By [Wang 1997a, Lemma 2.2], we may also
assume that H 0

m(R) = 0. Observe further that we can assume k is infinite. Indeed,
let S = R[y]m R[y]. Then the residue field of S is infinite. Since R ↪→ S is smooth,
for c ∈ R, Rc is CM if and only if Sc is CM. Thus, A(R)S ⊆ A(S). Moreover, for
any prime ideal P ⊆ R, P S is prime. This implies that if A(S) properly contains
A(R)S then it is primary to the maximal ideal of S, and so S has f.l.c. It then
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follows that R has f.l.c., a contradiction. Hence, A(R)S = A(S). We may pass
from R to S and assume that k is infinite.

Let I = (x1, . . . , xd) be a parameter ideal in R. We may pick xd , xd−1, . . . , x1

to form a superficial sequence. If d = 2, the theorem is true by [Wang 1997b].
Suppose d ≥ 3. Since dim R/A(R) = 1, in R/A(R), m+ A(R) has a principal

minimal reduction w. Let r be the reduction number of m+A(R) in R/A(R), and
let w be a representative of w in R. Suppose y ∈ R. Then, there exists an integer
ty ≥ 0 such that y ∈ mty − mty−1 in R/A(R). Observe that if ty ≥ r + 1, then we
can write y = y′wl

+α where y′
∈ mr, l = ty − r and α ∈ A(R). If ty ≤ r, we can

write y in the same form y = y′wl
+ α by letting y′

= y, l = 0 and α = 0.
By replacing xd by a generic combination of x1, . . . , xd−1, we may first assume

that txd = min{txi | 1 ≤ i ≤ d} (since being superficial is an open condition, after re-
placing xd by a generic combination of x1, . . . , xd−1, the sequence xd , xd−1, . . . , x1

is still superficial). We will now use Theorem 4.3 to modify our parameter ideal
as follows. If txd ≥ r + 1 then we write xd = x ′

dwt
+ α where x ′

d ∈ mr, t = txd − r

and α ∈ A(R). We may choose w, x ′

d and α such that (x1, . . . , xd−1, w) and
(x1, . . . , xd−1, x ′

d) are s.o.p.’s. That is, (x1, . . . , xd−1, x ′

dwt) is an s.o.p. Let yi = xi

for 1 ≤ i ≤ d − 1, and yd = x ′

dwt . It follows from Theorem 4.3 that

rt(x1, . . . , xd) = rt(y1, . . . , yd).

If txd ≥ r, then we let (y1, . . . , yd) = (x1, . . . , xd) and x ′

d = xd . The theorem will
be proved if we can show that rt(y1, y2, . . . , yd) is uniformly bounded. By Lemma
4.5, we may assume that yd , . . . , y1 form a superficial sequence.

It follows from Lemma 7.1 that for 2 ≤ q ≤ d there exists a uniform bound Bq

(depending only on q and r) with the following property: if zq−1, . . . , zd−1 ∈ R
are such that (zq , . . . , zd−1, x ′

d) is part of an s.o.p., then

λ
(
H 0

m(R/(zq−1, . . . , zd−1, x ′

d))
)
< Bq .

For q = 2, . . . , d , set
Lq = max{Bq , Bq+1}.

By considering the exact sequence 0 → R
γ
→ R → R/(γ ) → 0, for any non-zero-

divisor γ ∈ A(R) which is part of an s.o.p., it also follows from Lemma 7.1 that
there exists a uniform bound Ld+1 not depending on γ such that

λ
(
H 0

m(R/(γ ))
)
< Ld+1.

Let L = (L2 −1)+· · ·+(Ld+1 −1)+1. Let M(d, k, l) be the Ramsey number de-
termined by Lemma 5.2. Similar to what was done in Theorem 6.4, we recursively
construct the following sequence of finite numbers: let K1 = M(d, 1, L) = N1;
and for i ≥ 2, let Mi =

∑Ki−1
l=0

(l+i−2
i−2

)
, Ni = M(d, 2Ki−1, Mi (L − 1) + 1) and

Ki = 2Ki−1 + Ni .
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Our proof now proceeds along a very similar line of argument (with some mod-
ification at the end) as in Theorem 6.4. Use graded reverse lex monomial ordering
with y1 > y2 > · · · > yd and T1 > T2 > · · · > Td , and consider an arbitrary relation
in y1, . . . , yd of degree N

F(T1, . . . , Td) =

∑
|n|=N

rnT n
= 0.(7–3)

As in Theorem 6.4, it suffices to show that for any 1 ≤ j ≤ d − 1, if F contains a
term rmT m (say m = (m1, . . . , md)) with ord< j+1(T m) > Kj we can write

F(T1, . . . , Td) = H(T1, . . . , Td)G(T1, . . . , Td) + F ′(T1, . . . , Td),

where H is a monomial divisible by
∏

i> j T mi
i , G and F ′ both provide rela-

tions in x1, . . . , xd , the leading term rkT k of G satisfies rkT k∣∣rmT m, and further
ord< j+1(T k) ≤ Kj and ordj+1(T k) = · · · = ordd(T k) = 0 (in particular, the degree
of G is bounded by Kj ), and all terms rn1 T n1 of F ′ with ord< j+1(T n1) > Kj are
smaller than rmT m.

Suppose our assertion is not true. As before, let j be the smallest index for which
there is a relation F contradicting our assertion. Suppose rn0 T n0 is the largest term
of F for which ord< j+1(T n0) > Kj . We shall pick F such that rn0 T n0 is smallest
possible. Let n0 = (n01, . . . , n0d). For simplicity, we write r for rn0 . We shall
derive a contradiction.

From the choice of j , we may assume that K = ord< j (T n0) ≤ Kj−1. Again, we
first observe that

n0 j > Kj − Kj−1 = Kj−1 + Nj .(7–4)

Let B = (yj+1, . . . , yd). We proceed along the same line of argument used in going
from (6–4) to (6–7), with the exception that instead of having A(R) we now have

A(R)+ (yd) being m-primary. Hence, y
q ′

j
j − cyd ∈ A(R) for some positive integer

q ′

j and c ∈ R, and so

(y
q ′

j
j − cyd)

(
r yn0∏

i> j
yn0i

i
+

∑
n∈J, n<n0,∏

i> j y
n0i
i | yn

rn
yn∏

i> j
yn0i

i

)
∈ B.

Since yd ∈ B, we get an equality similar to (6–7):

y
q ′

j
j

(
r yn0∏

i> j
yn0i

i
+

∑
n∈J, n<n0,∏

i> j y
n0i
i | yn

rn
yn∏

i> j
yn0i

i

)
∈ B.
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By a similar argument as in Theorem 6.4 again (as to get (6–10) and the condition
in the next paragraph), we obtain a new relation in y1, . . . , yd :

Q(T1, . . . , Td) = rT n01
1 . . . T n0( j−1)

j−1 T n0 j +qj
j +

∑
|m|=qj +K+n0 j ,

m<(n01,...,n0 j +qj ,0,...,0)

umT m

= r T m0 +

∑
n<m0

umT m,

where m0 = (m01, . . . , m0d)= (n01, . . . , n0( j−1), n0 j +qj , 0, . . . , 0), and each term
umT m in Q satisfies ord< j (T m) ≤ Kj−1.

Let γ ∈ A(R) be a homology multiplier in R such that (γ, y1, . . . , ŷj , . . . , yd)

is an s.o.p. We also pick γ such that yd is not in any associated primes of γ .
Since γ is part of an s.o.p. and H 0

m(R) = 0, γ is not a zero-divisor. Recall that
K = ord< j (T n0) = ord< j (T m0) ≤ Kj−1. For each 1 ≤ p ≤ m0 j − Kj−1 + 1, let
Fp(T1, . . . , Td) be the sum of all terms in Q that are divisible by T m0 j −Kj−1−p+1

j ,
and let

G p(T1, . . . , Td)=
Fp(T1, . . . , Td)

T m0 j −Kj−1−p+1
j

=rT m01
1 . . . T m0( j−1)

j−1 T Kj−1+p−1
j + smaller terms.

We can continue in the same line of argument as in Theorem 6.4, up to (6–13), to
get a system of equalities which is similar to (6–13):

(7–5)

γ G1 = s1 ym1 +
∑

m<m1
sm ym,

γ G2 = s2 ym2 +
∑

m<m2
sm ym, . . . ,

γ G p = sp ymp +
∑

m<mp
sm ym, . . . ,

γ Gm0 j −Kj−1+1 = sm0 j −Kj−1+1 ymm0 j −Kj−1+1
+
∑

m<mm0 j −Kj−1+1
sm ym,

where ym
p ∈ C p = (y1, . . . , ŷj , . . . , yd)Kj−1 BK+p, |mp| = Kj−1 + K + p, and G p

denotes G p(y1, . . . , yd), for 1 ≤ p ≤ m0 j − Kj−1 + 1. Let Hp = Hp(y1, . . . , yd)

be the right-hand side of the p-th equality in (7–5). As before, among all possible
system of the form (7–5) associated to the relation Q(T1, . . . , Td), we choose one
such that all the leading terms on the right-hand side are minimal.

The following claim is similar to Claim 6.5.

Claim 7.3. There exists an integer p ≤ Nj such that Hp = 0.

Proof. By (7–4), we have m0 j − Kj−1 + 1 ≥ Nj + 1. By contradiction, suppose
the assertion is false. That is, s1, . . . , sNj are all nonzero. Fix an integer 1 ≤ p ≤

m0 j − Kj−1 + 1, and suppose the yi ’s that appear in ymp are in {yi | i ≥ h}\{yj }

(and h is chosen to be the largest integer with this property).
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If h < d , we have

sp ∈
(
γ, { ym

∈ C p
∣∣m < mp}

)
: ymp

=
(
γ, {xm

∈ C p
∣∣ ordi ( ym) > ordi ( ymp) for some i ≥ h + 1}

)
: ymp .

Choose α ∈ A(R) such that the images of (γ, {yh+1, . . . , yd−1}\{yj }, α) form a
part of an s.o.p. in R/(x ′

d) (this is possible because h 6= j and d ≥ 3). Then,

αsp ∈
(
γ, {yh+1, . . . , yd}\{yj }

)
⊆
(
γ, {yh+1, . . . , yd−1}\{yj }, x ′

d
)
,

i.e.,
sp ∈

(
γ, {yh+1, . . . , yd−1}\{yj }, x ′

d
)
: α.

Let m̃, s̃p, γ̃ , ỹi (i = 1, . . . , d), and α̃ be the images of m, sp, γ, yi (i = 1, . . . , d),
and α in R/(x ′

d). Since x ′

d is part of an s.o.p., R/(x ′

d) is a generalized Cohen–
Macaulay ring. Since (γ̃ , {ỹh+1, . . . , ỹd−1}\{ỹj }, α̃) is part of an s.o.p., α̃ avoids
all associated primes of (γ̃ , {ỹh+1, . . . , ỹd−1}\{ỹj }) except possibly m̃. Thus, we
have

s̃p ∈ H 0
m̃

(
R/(γ̃ , {ỹh+1, . . . , ỹd−1}\{ỹj })

)
,

whence
sp ∈ H 0

m

(
R/(γ, {yh+1, . . . , yd−1}\{yj }, x ′

d)
)
,

here sp denotes the image of sp in R/
(
γ, {yh+1, . . . , yd−1}\{yj }, x ′

d

)
.

If h = d , then the p-th equality of (7–5) is

γ G p = sp ym p
d ,(7–6)

where mp = (0, . . . , 0, m p). Since γ was chosen such that yd is not in any associ-
ated primes of γ , we must have

sp ∈ H 0
m(R/(γ )).

Consider the sequence {m1, m2, . . . , mNj }. Since

Nj = M(d, 2Kj−1, Mj (L − 1) + 1) ≥ M(d, Kj−1 + K , Mj (L − 1) + 1),

it follows from Lemma 5.2 that there exists an increasing subsequence of length
V = Mj (L − 1) + 1, mj1 � mj2 � · · · � mjV , with 1 ≤ j1 < j2 < · · · < jV ≤ Nj ≤

m0 j − Kj−1. Since C p = (y1, . . . , ŷj , . . . , yd)Kj−1 BK+p, we have ord< j ( ymp) ≤

Kj−1 for any 1 ≤ p ≤ m0 j − Kj−1 + 1. Thus, since Mj is the number of ( j − 1)-
tuples of nonnegative integers whose sum is at most Kj−1, we can choose from the
sequence mj1 � mj2 � · · · � mjV a subsequence of length L , mi1 � mi2 � · · · � miL

such that they have the same j − 1 first components, i.e. for any 1 ≤ a, b ≤ L
we have (ord1( ymia ), . . . , ordj−1( ymia )) = (ord1( ymib ), . . . , ordj−1( ymib )). Since
L = (L2−1)+· · ·+(Ld+1−1)+1, we can choose from this sequence a subsequence
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mp1 � mp2 � · · · � mpLq
, for some 2 ≤ q ≤ d + 1, with the following property: if

q ≤ d then
spt ∈ H 0

m

(
R/(γ, {yq+1, . . . , yd−1}\{yj }, x ′

d)
)
,

for all t = 1, . . . , Lq , and if q = d +1 then spt ∈ H 0
m(R/(γ )) for all t = 1, . . . , Lq .

Notice that when q = d + 1, as in (7–6), for all t = 1, . . . , Lq , the pt -th equality
of (7–5) is

γ G pt = spt ym pt
d ,

where mpt = (0, . . . , 0, m pt ).
If q = d + 1, it follows from the choice of Lq that we can write

spLq
=

Lq−1∑
i=1

bi spi + aγ.

Substituting this into the equality γ G pLq
= HpLq

, we get

γ
(
G pLq

− ay
m pLq
d

)
=

Lq−1∑
i=1

(
bi y

m pLq
−m pi

d

)
spi y

m pi
d .(7–7)

We can now use the p1-th, . . . , pLq−1-th equalities in (7–5) to simplify the right-
hand side of (7–7) as we did in the 2-dimensional case (Theorem 6.1), bringing all
terms with γ to the left-hand side and absorbing extra powers into the coefficient
if necessary, to get

γ
(

G pLq
+ terms smaller than r ym01

1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j

)
= 0.

This contradicts the fact that the right-hand side of (7–5) was chosen to be minimal.
Consider the case q ≤ d. By the choice of Lq , we can write

spLq
=

∑
q<i<d

i 6= j

ai yi + ajγ + ad x ′

d +

Lq−1∑
i=1

bi spi .

Substituting this into the equality γ G pLq
= HpLq

, we get

(7–8) γ (G pLq
− aj ympLq )

=

∑
q<i<d,

i 6= j

ai yi ympLq + ad x ′

d ympLq +

Lq−1∑
i=1

bi spi ympLq +

∑
m<mpLq

sm ym

=

∑
q<i<d,

i 6= j

(ai yq)
ympLq yi

yq
+

Lq−1∑
i=1

(
bi

ympLq

ympi

)
spi ympi + ad x ′

d ympLq +

∑
m<mpLq

sm ym.
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Since ympLq ∈ C pLq
, we obtain aj ympLq < r ym01

1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j (after ab-

sorbing extra powers into the coefficient if necessary). Also,

ympLq yi
yq

< ympLq for q < i < d.

Since ympLq and ympi have the same j −1 first components, we have ympLq/ ympi ∈

(yj+1, . . . , yd), which then implies that all terms of bi
(

ympLq/ ympi
)

G pi are smaller

than r ym01
1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j . Thus, after using (7–5) to replace spi ympi by[

γ G pi −
∑

|m|=|mpi |,m<mpi
sm ym] in (7–8), we get a relation

(7–9) γ
(

G pLq
+ terms smaller than r ym01

1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j

)
= H ′

pLq
+ ad x ′

d ympLq ,

where the leading term of H ′
pLq

is strictly smaller than spLq
xmpLq , which is the

leading term of HpLq
.

If x ′

d = xd (that is, xd is in a small power of m), then

ad x ′

d ympLq = (ad yq)
ympLq x ′

d
yq

.

Thus, by absorbing yq into the coefficient, ad x ′

d ympLq gives a term strictly smaller
than ympLq . We can rename H ′

pLq
+ ad x ′

d ympLq in (7–9) as H ′
pLq

. This contradicts
the way (7–5) was chosen.

Suppose now that yd = x ′

dwt . Write yq = x ′
qwt

+ β for some β ∈ A(R) (this
is possible since txq ≥ txd ). Write ympLq =

∏
i≥q,i 6= j yli

i . Then, since all terms of
H ′

pLq
are smaller than ympLq , it follows from (7–9) that

ad ∈
(
γ, {yli +1

i | i > q, i 6= j}
)
: x ′

d ympLq

⊆
(
γ, {yli +1

i | q < i < d, i 6= j}, (wt)ld+1)
: x ′

d ympLq .

Therefore,

βad ∈
(
γ, {yi | q < i < d, i 6= j}, wt).(7–10)

We also have

(7–11) ad x ′

d ympLq = ad x ′

d(x ′

qwt
+ β)ylq−1

q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld =
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= ad x ′

d x ′

qwt ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld + βad x ′

d ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld

= (ad x ′

q)(x ′

dwt)ld+1 ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
+ βad x ′

d ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld

= (ad x ′

q)ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld+1

d + βad x ′

d ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld .

By (7–10), we can write

βad = cjγ +

∑
q<u<d

i 6= j

cu yu + cdwt .

Substituting this into (7–11), we get

(7–12) ad x ′

d ympLq

= (ad x ′

q)ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld+1

d + cjγ x ′

d ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld

+

∑
q<u<d

i 6= j

(cu x ′

d)yu ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld

+ cd(x ′

dwt)ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
(x ′

dwt)ld

= (ad x ′

q)ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld+1

d + cjγ x ′

d ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld

d

+

∑
q<u<d

i 6= j

(cu x ′

d)yu ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld

d + cd ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld+1

d .

Observe that since ympLq ∈ (y1, . . . , ŷj , . . . , yd)Kj−1 BK+pLq , we have

ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld

d =
ympLq

yq
∈ (y1, . . . , ŷj , . . . , yd)Kj−1 BK+pLq −1,

that is,

(cj x ′

d)ylq−1
q

( ∏
q<i<d

i 6= j

yli
i

)
yld

d < r ym01
1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j .
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Hence, substituting (7–12) into (7–9), bringing terms with γ to the left-hand side,
we get

γ
(

G pLq
+ terms smaller than r ym01

1 . . . ym0( j−1)

j−1 y
Kj−1+pLq −1
j

)
= H ′′

pLq
,(7–13)

where the leading terms of H ′′
pLq

is strictly smaller than ympLq which is the leading
term of HpLq

. This contradicts the way (7–5) was chosen. Our claim is proved. �

We have just shown that there must exist an integer p ≤ Nj such that

γ G p = 0.

Thus, since γ is not a zero-divisor, we have G p = 0. That is,

r ym01
1 . . . ym0( j−1)

j−1 yKj−1+p−1
j + smaller terms = 0.

This gives a new relation in y1, . . . , yd , which by abusing language we also denote
by G p,

G p(T1, . . . , Td) = rT m01
1 . . . T m0( j−1)

j−1 T Kj−1+p−1
j + smaller terms

= rT n01
1 . . . T n0( j−1)

j−1 T Kj−1+p−1
j + smaller terms.

Once again, observe that Kj−1 + p−1 ≤ Kj−1 + Nj −1 < n0 j by (7–4). Therefore,
we can write

F(T1, . . . , Td) =

[
T n0 j −Kj−1−p+1

j

∏
i> j

T n0i
i

]
G p(T1, . . . , Td) + F ′(T1, . . . , Td),

where G p(T1, . . . , Td) and F ′(T1, . . . , Td) are relations in y1, . . . , yd . Again, it is
clear that every term rnT n of F ′ with ord< j+1(T n) > Kj is smaller than rn0 T n0 .
We obtain a contradiction. Hence, the theorem is proved. �

Let R be a ring of positive prime characteristic p. We denote the eth power of
the Frobenius endomorphism f : R → R sending x 7→ x p by f e. For q = pe, a
power of p, and I ⊆ R we let I [q]

= (iq
|i ∈ I ). The ideal I ⊆ R is called Frobenius

closed if whenever xq
∈ I [q] then x ∈ I . The ring R is called F-pure if f is a pure

morphism and cyclically F-pure if all ideals of R are Frobenius closed. When R
is excellent these conditions are equivalent [Hochster 1977].

Also, when R = S/J is the image of a regular local ring (S, n), Fedder [1983]
has given a criterion for F-purity in terms of J : namely, R is F-pure if and only if
J [p]

:S J 6⊆ n[p].
When (R, m) is an excellent local ring then R is F-pure if and only if R̂ is F-

pure. Moreover, in an F-pure ring, the ideal A(R) is radical. We may thus apply
Theorem 7.2 to obtain:
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Corollary 7.4. Let (R, m) be an complete local equidimensional F-pure ring such
that the defining ideal of the non-CM locus is a dimension one prime ideal. Then
R has a uniform bound on relation type of parameter ideals.
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