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CHRISTOPHER ALLDAY AND VOLKER PUPPE

In our book on cohomological methods in transformation groups the mini-
mal Hirsch–Brown model was used to good effect. The construction of the
model there, however, was rather abstract. Here, for smooth compact con-
nected Lie group actions on smooth closed manifolds, we give a much more
explicit construction of the minimal Hirsch–Brown model using operators
from classical Hodge theory and the Cartan model.

1. Introduction

The minimal Hirsch–Brown model is described in detail and used to good effect
in [Allday and Puppe 1993, §§1.3, 1.4, 4.4, 4.6]. The construction of the minimal
Hirsch–Brown model there, however, is rather abstract. Our purpose here is to give
a more explicit construction of the model for smooth compact connected Lie group
actions on closed smooth manifolds using operators from classical Hodge theory.
Two of our main results, Theorem 3.7 and Corollary 3.8, are particularly nice in
view of their relation to [Alekseev and Meinrenken 2005].

In Section 2 we introduce our notation, and describe how Hodge theory applies
to the Cartan model for computing equivariant cohomology. Section 3 gives the
explicit construction of the minimal Hirsch–Brown model. Section 4, as an ex-
ample, discusses the familiar product structure in the equivariant cohomology of
a Hamiltonian circle action on CPn . We compute the deformation of the product
(going from ordinary to equivariant cohomology) in terms of the moment map in
two different ways.

2. Notation and review

Let G be a compact connected Lie group acting smoothly on a closed smooth
manifold M . Suppose that M has an invariant Riemannian metric r . If one does
Hodge theory with respect to r , then all the usual operators, for example, ∗, d∗,
the projection onto the harmonic forms πH, the Laplacian1, and Green’s operator
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G are invariant. Since the Lie group G is connected, it acts trivially on the coho-
mology of M , so all harmonic forms are invariant. Let �inv(M) or �(M)G denote
the cochain complex of invariant (i.e., fixed) forms. For α ∈ �(M), the standard
Hodge decomposition is

α = πH(α) + 1G(α) = πH(α) + dd∗G(α) + d∗dG(α).

Since we are using an invariant Riemannian metric, if α ∈ �inv(M), then each of
πH(α), dd∗G(α), and d∗dG(α) is in �inv(M). For an introduction to Hodge theory,
see [Warner 1983].

In this paper we shall always assume that the Lie group G, the manifold M , and
the Riemannian metric are as in the paragraph above.

We shall construct the Hirsch–Brown model from the Cartan model for com-
puting equivariant cohomology H∗

G(M; R). Recall that the Cartan model, denoted
CG(M), is

(S(g∗) ⊗ �(M))G

with differential dG = d−∂ . Here, ∂ =
∑n

j=1 t j ⊗ i j , where n = dim(G), the t j

form a basis for the dual g∗ of the Lie algebra of G, and i j for 1 ≤ j ≤ n is the inner
product with the vector field induced by the dual basis element of g corresponding
to t j . (See [Guillemin and Sternberg 1999, §4.2].)

In the paragraph above, we abbreviated I ⊗ d by d. Throughout this paper we
shall abbreviate operators such as I ⊗ πH, I ⊗ d∗, I ⊗ 1 and I ⊗ G on CG(M)

simply as πH, d∗, 1 and G.
We shall also let RG = S(g∗)G ∼= H∗(BG; R), and let H ⊆ �inv(M) denote the

subspace of harmonic forms.

Lemma 2.1. In CG(M), there is the Hodge decomposition

CG(M) = (S(g∗) ⊗ H)G
⊕ (S(g∗) ⊗ d�(M))G

⊕ (S(g∗) ⊗ d∗�(M))G

= RG ⊗ H ⊕ dCG(M) ⊕ d∗CG(M).

Proof. By the standard Hodge decomposition, �(M)=H⊕d�(M)⊕d∗�(M). So
the first form of the Hodge decomposition of CG(M) follows since H, d�(M) and
d∗�(M) are G-invariant. As H ⊆�(M)G , it follows that (S(g∗)⊗H)G

= RG ⊗H.
Now let S(g∗)⊗�(M) = C for brevity. Since d and d∗ are G-equivariant, they

preserve the decomposition of C into the kernel and image of the G-averaging
operator. Hence (dC)G

= dCG
= dCG(M), and similarly for d∗. �

Next we define two operators on CG(M) which play an important role in our de-
scription of the minimal Hirsch–Brown model and its relation to the Cartan model.

Definition 2.2. On CG(M), let P = d∗G∂ and Q = ∂d∗G.
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Remarks 2.3. (1) Since d∗ and G commute, P Q = Q P = 0.
(2) Since P and Q lower degrees in �(M), the operators I − P and I − Q are

invertible.

3. The minimal Hirsch–Brown model

We now consider the commutative diagram given by restricting I − Q to dCG(M).

Lemma 3.1. The following diagram commutes, where the top arrow is the inclu-
sion.

d∗CG(M) - CG(M)

dCG(M)

d

? I−Q - CG(M)

dG

?

To put it another way, dGd∗G
∣∣dCG(M) = (I − Q)

∣∣dCG(M).

Proof. (I − Q)d
∣∣d∗CG(M) = (d − ∂d∗dG)

∣∣d∗CG(M) = dG
∣∣d∗CG(M), because

d∗dG is the identity on the image of d∗. �

Definition 3.2. (1) On CG(M), set D = (I − Q)−1dG(I − Q).
(2) On RG ⊗ H, define the Hirsch–Brown differential dHB = πH D

∣∣RG ⊗ H.

It is clear that D2
= 0. That d2

HB = 0 follows from

Lemma 3.3. The following diagram commutes.

CG(M)
(I−Q)−1

- CG(M)
πH - RG ⊗ H

CG(M)

dG

?

(I−Q)−1
- CG(M)

D

?

πH

- RG ⊗ H

dHB

?

Proof. It is enough to show that πH D(α) = 0 for any α ∈ d�(M)⊕d∗�(M). This
follows from Lemma 3.4. �

Lemma 3.4. (1) On RG ⊗ H, D = −(I − Q)−1∂ = −∂(I − P)−1.
(2) On dCG(M), D = 0.
(3) On d∗CG(M), D = d.

Proof. (1) On RG ⊗ H, both d = 0 and Q = 0. So

D = (I − Q)−1dG(I − Q) = (I − Q)−1dG = −(I − Q)−1∂.

This part then follows since Q∂ = ∂ P .
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(2) From Lemma 3.1, (I − Q)|dCG(M) = dGd∗G|dCG(M). Hence we have
dG(I − Q)|dCG(M) = 0.

(3) On d∗CG(M), we have Q = 0. Thus D = (I − Q)−1dG = (I − Q)−1((I − Q)d)

on d∗CG(M) by Lemma 3.1. �

Definition 3.5. The minimal Hirsch–Brown model for H∗

G(M; R) is the differential
RG-module (RG ⊗ H, dHB) = (H∗(BG; R) ⊗ H∗(M; R), dHB).

Lemma 3.6. H(RG ⊗ H, dHB) ∼= H∗

G(M; R), where the H on the left means
(co)homology with respect to the differential dHB .

Proof. Since I − Q is an isomorphism, (I − Q)−1 induces an isomorphism on
cohomology. By Lemma 3.4 (2) and (3), dCG(M)⊕d∗CG(M) = ker πH is acyclic
with respect to D. So πH also induces an isomorphism in cohomology. �

The Hirsch–Brown differential can be written in a very useful way:

Theorem 3.7. On RG ⊗ H,

dHB = (I − P)dG(I − P)−1.

Proof. Let a ∈ RG ⊗H. By Lemma 3.4(1) and the Hodge Decomposition Theorem,

dHB(a) = πH D(a) = −πH∂(I − P)−1(a)

= −∂(I − P)−1(a) + 1G∂(I − P)−1(a).

In general, though, 1G∂ = d∗Gd∂ + dd∗G∂ = d P − Pd, that is, [d, P] = 1G∂ .
So

1G∂(I − P)−1(a) = d P(I − P)−1(a) − Pd(I − P)−1(a)

= d(I − (I − P))(I − P)−1(a) − Pd(I − P)−1(a)

= d(I − P)−1(a) − Pd(I − P)−1(a),

where the last equality follows since d(a) = 0. Finally, as P∂ = 0, we have

dHB(a)=−∂(I − P)−1(a)+(I − P)d(I − P)−1(a)= (I − P)dG(I − P)−1(a). �

Corollary 3.8. The following diagram commutes, where iH is the inclusion.

RG ⊗ H
iH - CG(M)

(I−P)−1
- CG(M)

RG ⊗ H

dHB

?

iH

- CG(M)

(I−P)dG(I−P)−1

?

(I−P)−1
- CG(M)

dG

?
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Furthermore, πH(I − Q)−1(I − P)−1iH = I .

Proof. Since both πH P = 0 and QiH = 0, we have πH(I − P)−1
= πH and

(I − Q)−1iH = iH. Also P and Q commute.
So πH(I − Q)−1(I − P)−1iH = πH(I − P)−1(I − Q)−1iH = πHiH = I . �

Remark 3.9. Corollary 3.8 shows that πH(I − Q)−1 is a fibration of differential
RG-modules in the sense of [Allday and Puppe 1993, Definition B.1.5]. It follows
that πH(I −Q)−1 is a homotopy equivalence of differential RG-modules by [Allday
and Puppe 1993, Propositions B.1.8, B.1.9].

Definition 3.10. As in [Allday 2005], we use the letters CEF to abbreviate “coho-
mology extension of the fibre”, meaning that the map

i∗
: H∗

G(M; R) → H∗(M; R)

is surjective, where i : M → MG is the inclusion of the fibre in the Borel construc-
tion bundle MG → BG.

The term “cohomology extension of the fibre” is traditional [Spanier 1966].
Our use of CEF here is intended as a compromise between the term “totally non-
homologous to zero” (TNHZ), which has been used in the cohomology theory of
transformation groups for a very long time, and the more recent term “equivariantly
formal”, which, we feel, should mean more than just CEF. (See [Lillywhite 2003].)

Theorem 3.7 reproves the main result of [Allday 2005], as we show next.

Corollary 3.11. Let G be any compact connected Lie group and suppose that there
is a CEF. Let α ∈ �inv(M) be a harmonic form. Then (I − P)−1(α) is a canonical
equivariant extension of α. That is

i∗(I − P)−1(α) = α and dG(I − P)−1(α) = 0 .

Proof. Since i∗ is surjective, it follows that

H∗

G(M; R) ∼= RG ⊗ H∗(M; R)

as a RG-module. Hence dHB = 0. Thus by Theorem 3.7, dG(I − P)−1(α) = 0, for
all α ∈ H. �

The operators used above, P, Q, πH, 1 and G, for example, are not multiplica-
tive, so the product in the Cartan model does not carry over in a simple way to the
minimal Hirsch–Brown model. We shall not discuss products in the Hirsch–Brown
model in a general context in this paper. When a CEF exists however, dHB = 0, so

RG ⊗ H ∼= H∗

G(M; R).

In this case, we shall take the product in RG ⊗ H to be the usual cup product in
H∗

G(M; R) via the isomorphism above.



46 CHRISTOPHER ALLDAY AND VOLKER PUPPE

When G is the circle group S1, and there is a CEF, then the cup product in
H∗

G(M; R) is a deformation of the cup product in H∗(M; R). More generally, for
compact connected G, when there is a CEF, the cup product in equivariant coho-
mology can be viewed as a deformation of the cup product in ordinary cohomology
over the parameter space RG .

Definition 3.12. (1) In the CEF case, let ∧̃ denote the product in the minimal
Hirsch–Brown model. In particular, if α, β ∈ H ⊆ �inv(M), then α∧̃β is the
product of α and β in RG ⊗H, whereas of course, α∧β is the product in �inv(M).

(2) For α ∈ �(M), abbreviate (I − P)−1(α) by α̂.

We now have the following description of the cup product in H∗

G(M; R) in the
CEF case. Of course, as RG-modules, H∗

G(M; R) ∼= RG ⊗ H. Since H∗

G(M; R) is
a RG-algebra, it is enough to describe ∧̃ on H.

Proposition 3.13. Suppose that there is a CEF. Then, for α, β ∈ H,

α∧̃β = πH(1 − Q)−1(α̂β̂
)
.

Proof. Let θ =πH(1−Q)−1. Since dHB =0, Corollary 3.11 implies that α̂ and β̂ are
cycles in CG(M). As the Cartan model is multiplicative, the product α̂β̂ in CG(M)

represents [α̂]
[
β̂

]
, the product in H∗

G(M; R). Although θ is not multiplicative, θ∗

is an isomorphism, so we have

α∧̃β = θ∗([α̂])θ∗
(
[β̂ ]

)
= θ∗

(
[α̂][β̂ ]

)
= θ∗

(
[α̂β̂ ]

)
=

[
θ(α̂β̂ )

]
= θ(α̂β̂ ),

where the first and last equalities hold since dHB = 0. �

Remarks 3.14. (1) Since α̂ = (I − P)−1(α), for α, β ∈ H, under the conditions of
Proposition 3.13,

α∧̃β = πH(α ∧ β) modulo R̄G ⊗ H,

where R̄G is the augmentation ideal of elements of positive degree in RG and
πH(α ∧ β) is the product of α and β in H ∼= H∗(M; R).

(2) Let a compact connected Lie group G act on a closed manifold M , and let
T ⊆ G be a maximal torus with Weyl group W . Then there is a homomorphism of
complexes jT : CG(M) → CT (M)W that induces an isomorphism in cohomology
[Guillemin and Sternberg 1999, §6.8]. It is easy to see that CT (M)W is a free RG-
module. Thus jT (I − P)−1iH : RG ⊗ H → CT (M)W is a homotopy equivalence
of differential RG-modules [Allday and Puppe 1993, Remark B.1.10, Propositions
B.1.11, B.1.7].

(3) If (M, ω) is a closed symplectic manifold and the action of a compact con-
nected Lie group G on M is symplectic, then the action is Hamiltonian if and only
if [ω] ∈ H∗(M; R) is in the image of i∗. This follows directly from the Cartan
model [Guillemin and Sternberg 1999, §9.1]. The latter holds for G if and only if
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it holds for any maximal torus T of G. By [Frankel 1959], if the action of T is
Hamiltonian, there is a CEF for every subcircle of T . By standard results from the
cohomology theory of transformation groups, such as [Hsiang 1975] or [Allday
and Puppe 1993, Theorem 3.10.4], if there is a CEF for every subcircle, then there
is a CEF for T (by choosing a subcircle C ⊆ T such that MC

= MT ). And, by (2)
above, there is a CEF for G if and only if there is a CEF for T . So there is a CEF
for G if and only if the action is Hamiltonian. Before the Cartan model was well
understood, this result was obtained by Kirwan [1984] using different methods.

(4) An argument very similar to the proof of Theorem 3.7 shows that for any
α ∈ �inv(M),

(I − P)dG(I − P)−1(α) = πHdG(I − P)−1(α) + dα.

(Briefly, πHdG(α̂) = −πH∂(α̂) = −∂(α̂) + 1G∂(α̂) = −∂(α̂) + d P(α̂) − Pd(α̂)

= −∂(α̂) + d(α̂ − α) − Pd(α̂) = dG α̂ − PdG(α̂) − dα.)

(5) Assuming that there is a CEF, from Corollary 3.8 it follows similarly that,
for any α, β ∈ H, there is γ ∈ CG(M) such that

(I − P)−1iH(α∧̃β) = α̂β̂ + dGγ.

(6) Similar results hold for products of three or more elements.

4. An example

Let M be a closed symplectic 2n-manifold with symplectic form ω. Suppose that
a compact connected Lie group G is acting on M in a Hamiltonian way. Then
we may choose an invariant Riemannian metric on M that is compatible with ω

[McDuff and Salamon 1995, Lemma 5.49]. So, if r is the metric, and V1 and V2 are
any two vector fields on M , then r(V1, V2) = ω(V1, J V2), where J is an invariant
compatible almost-complex structure on M . It follows that ω j is harmonic for
0 ≤ j ≤ n, and

∗

(
ω j

j !

)
=

ωn− j

(n − j)!
,

for 0 ≤ j ≤ n. In particular, ωn/n! is the volume form.
As remarked above, in the Hamiltonian case, M has a CEF, so in the minimal

Hirsch–Brown model, dHB = 0. Thus the remaining problem is to determine the
product structure in H∗

G(M; R). In this section we shall do this in the familiar
situation where G = S1 and M = CPn . The results are not new, although they may
be assembled in a somewhat novel way.

First, however, consider a Hamiltonian action of G = S1 on any closed sym-
plectic manifold (M, ω). Let µ be the moment map and suppose that µ has been
chosen to have average value zero on M , that is,

∫
M µωn/n! = 0. Let V be the
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vector field defined by the circle action: for any x ∈ M ,

Vx =
d

du
exp(2π iu)x |u=0.

In the Cartan model then, the differential dG = d−tiV , where t ∈ H 2(BG; R) is the
polynomial generator. In the Hodge decomposition µ=d∗dGµ, since the harmonic
part πH(µ) is the average value. Thus P(ω)= tµ, because d∗GiV (ω)=d∗Gdµ=µ.
Hence ω̂ = ω + tµ, the standard equivariant extension of ω.

From now on, we denote the average value of a function f ∈ �(M) by Av( f ).
Let M = CPn with symplectic form ω and Hamiltonian action of G = S1. Let µ

be the moment map; but we do not assume that Av(µ) = 0. Let w equal [ω+ tµ]G

in H 2
G(M; R). The product structure in H∗

G(M; R) is completely determined by
expressing wn+1 in terms of lower powers of w. Let

wn+1
=

n+1∑
i=1

ciw
n+1−i t i , ci ∈ R.

One way to find the ci is the following: for j ≥ 0,

wn+1+ j
=

n+1∑
i=1

ciw
n+1+ j−i t i .

So integrating over the fibre M in the Borel construction bundle MG → BG gives(
n + 1 + j

1 + j

)
t1+ j

∫
M

µ1+ jωn
=

1+ j∑
i=1

ci

(
n + 1 + j − i

1 + j − i

)
t1+ j

∫
M

µ1+ j−iωn.

Thus (
n + 1 + j

1 + j

)
Av(µ1+ j ) =

1+ j∑
i=1

ci

(
n + 1 + j − i

1 + j − i

)
Av(µ1+ j−i ).

Since this holds for all j ≥ 0, one can easily solve for each ci in terms of the
average values of the powers of µ. For example, if j = 0 then c1 = (n + 1)Av(µ)

and putting j = 1,

c2 =

(
n + 2

2

)
Av(µ2) − (n + 1)2 Av(µ)2.

Equally, one can solve for each Av(µ j ) in terms of c1, . . . , c j . This is reasonable
because there are other familiar ways to find the ci s. Let the fixed point set

MG
=

s⋃
i=1

Fi ,
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where the component Fi has dimension 2ri . By the equality of Euler character-
istics,

∑s
i=1(ri + 1) = n + 1. Let νi be the value of µ on Fi , and let µ j = νi

for
i−1∑
k=1

(rk + 1) + 1 ≤ j ≤

i∑
k=1

(rk + 1).

So the distinct values of µ appear with multiplicity, each νi appearing with multi-
plicity ri + 1. (If MG is finite, then s = n + 1, and µi = νi for 1 ≤ i ≤ n + 1.) In
terms of these values we have

s∏
i=1

(w − νi t)ri +1
=

n+1∏
i=1

(w − µi t) = 0.

This follows from the Localization Theorem of Borel, Hsiang and Quillen. For
details of this example see [Hsiang 1975, Theorem IV.3] or [Mukherjee 2005,
Example 1.3.12]. Thus, for 1 ≤ i ≤ n + 1, ci = (−1)i+1σi , where σi is the i th
elementary symmetric polynomial in µ1, . . . , µn+1.

Now suppose that MG is finite. Thus s = n + 1 and ri = 0 for all i . Let
Ui =

∏
j 6=i (w −µ j t). So Ui restricts to

∏
j 6=i (µi −µ j )tn at Fi and zero at all the

other fixed points. Let the equivariant Euler class at Fi be εi tn , normalized so that
εi is an integer (the product of the weights). Integrating Ui over the fibre gives

(4–1)
∫

M
ωn

=
1
εi

∏
j 6=i

(µi − µ j )

by the integration formula [Atiyah and Bott 1984, 3.8]. (See [Bredon 1972, VIII,
Theorem 5.5] (based on the original example of W.-Y. Hsiang), [Petrie 1972] for
many related results, or [Mukherjee 2005, Example 1.4.15] for an elementary treat-
ment.)

Meanwhile the Duistermaat–Heckman formula gives∫
M

eµt ω
n

n!
=

n+1∑
i=1

eµi t

εi tn .

Thus

(4–2)
(

n + j
j

)
Av(µ j ) =

n+1∑
i=1

µ
n+ j
i∏

k 6=i (µi − µk)
.

The last formula is homogeneous in µ, and hence not sensitive to such matters as
the parametrization of the circle (exp(2π i t) or exp(i t)), the sign for µ (dµ= iV (ω)

or dµ = −iV (ω)), or the sign for t (dG = d − tiV or dG = d + tiV ).
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The right hand side of Equation (4–2) is a polynomial in µ1, . . . , µn+1, as can
be seen from a calculation with Vandermonde determinants or from the fact that
each ci is a polynomial in the µ j ’s.

Given a particular linear action, one can use Equation (4–1) to find each µi , and
hence, each ci . For example, let S1 act on CP2 by z[z0, z1, z2] = [z0, zaz1, zbz2],
where a and b are integers such that 0 < a < b. Let

∫
M ω2

= A. Choose µ so that
Av(µ) = 0. Then one gets

6Av(µ2) =
1
3 A(a2

− ab + b2) = c2,

10Av(µ3) =
1
27 A

√
A (2a3

− 3a2b − 3ab2
+ 2b3) = c3.

Thus

w3
=

1
3(a2

− ab + b2)Awt2
+

1
27(2a3

− 3a2b − 3ab2
+ 2b3)A

√
A t3.

(For example, c3 = µ1µ2µ3 = −
1
27 A

√
A(a + b)(2a − b)(2b − a).)

Remark 4.1. As is easily seen, any symplectic form on CP2 which is invariant
under the linear action above is, up to a nonzero constant multiple, the standard
symplectic form plus an invariant exact form. Hence the moment map has the same
values at fixed points as does the standard moment map. The latter is

µ([z0, z1, z2]) =
a |z1|

2
+ b |z2|

2

|z0|2 + |z1|2 + |z2|2
+ c,

where a and b are as above and c is any constant. (See [Audin 1991, IV, 4.1.1].)
The final formulas are then easy to obtain directly.
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