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It is known that the Q-factoriality of a nodal quartic 3-fold in P4 implies its
nonrationality. We prove that a nodal quartic 3-fold with at most 8 nodes is
Q-factorial, while one with 9 nodes is not Q-factorial if and only if it contains
a plane. There are nonrational non-Q-factorial nodal quartic 3-folds. In
particular, we prove the nonrationality of a general non-Q-factorial nodal
quartic 3-fold that contains either a plane or a smooth del Pezzo surface of
degree 4.

1. Introduction

All varieties are assumed to be projective, normal and defined over C.
Let X ⊂ P4 be a nodal quartic 3-fold, that is, a hypersurface of degree 4 whose

singular points are ordinary double points. Then X is a Fano 3-fold with terminal
singularities and satisfies −K X ∼ OP4(1)|X . The following result is Theorem 2 in
[Mella 2004] (see also [Iskovskih and Manin 1971; Pukhlikov 1988]):

Theorem 1. Suppose X is Q-factorial. Then X is not birational to either a conic
bundle, a fibration in rational surfaces, or a Fano 3-fold of Picard rank 1 with
terminal Q-factorial singularities that is not biregular to X.

In this paper we prove:

Theorem 2. If |Sing X | ≤ 8, then X is Q-factorial.

Corollary 3. Nodal quartic 3-folds with at most 8 nodes are nonrational.

The conditions of Theorem 2 cannot be weakened:

Example 4. If X is a sufficiently general quartic 3-fold containing a two-dimen-
sional linear subspace 5⊂ P4, then X is nodal, non-Q-factorial, and has 9 nodes,
which are the intersection of two cubic curves in the plane 5.

However, we prove:

Theorem 5. Suppose that |Sing X | = 9. The quartic X is Q-factorial if and only if
it does not contain any two-dimensional linear subspace of P4.
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A general nodal quartic 3-fold with 9 nodes is Q-factorial. A posteriori, the non-
Q-factoriality of the quartic X does not necessarily imply its rationality. Indeed,
we prove the following result (compare with [Mella 2004, Remark 3]):

Theorem 6. A very general quartic 3-fold X containing a two-dimensional linear
subspace of P4 is nonrational.

Nonetheless, rational nodal quartic 3-folds do exist:

Example 7 [Petterson 1998]. Any general determinantal quartic 3-fold X is nodal,
rational, non-Q-factorial, and satisfies |Sing X | = 20.

Remark 8. The quartic X cannot have more than 45 nodes [Varchenko 1983;
Friedman 1986]. It is shown in [de Jong et al. 1990] that there is a unique nodal
quartic 3-fold B4 with 45 nodes, which can be given by the equation

w4
−w(x3

+y3
+z3

+t3)+ 3xyzt = 0

in P4 ∼= Proj
(
C[x, y, z, t, w]

)
. It is known as the Burkhardt quartic [Burkhardt

1891; 1892; Todd 1936; Baker 1946; Finkelberg 1989; Petterson 1998]. This
quartic is determinantal and, moreover, is the unique invariant of degree 4 of the
simple group PSp(4,Z3) of order 25920 [van der Geer 1987; Hunt 1996; Hoffman
and Weintraub 2001; Hulek and Sankaran 2002]. The nodes of B4 correspond
to the 45 tritangents of a smooth cubic surface, and the Weyl group of E6 is a
nontrivial extension of PSp(4,Z3) by Z2.

For a given variety, one of the most substantial questions is to decide whether
it is rational. This question has been considered in depth for smooth 3-folds
[Iskovskih and Manin 1971; Clemens and Griffiths 1972; Beauville 1977; Tyurin
1980; Sarkisov 1980; Shokurov 1983; Alekseev 1987; Corti 1995; Pukhlikov 1998;
Iskovskikh and Prokhorov 1999; Corti 2000]. However, relatively mild singular-
ities can force a 3-fold to be rational. For example, with a few exceptions, all
canonical Gorenstein Fano 3-folds having a non-cDV point are rational [Prokhorov
2004]. In the non-Gorenstein case the situation is different [Corti et al. 2000;
Cheltsov 1997, 2004]. Hence, the rationality of nodal 3-folds is a natural topic
[Pukhlikov 1988; Grinenko 1998a, 1998b; Mella 2004; Cheltsov and Park 2004].

Remark 9. Every nodal hypersurface in P4 of degree at least 5 is nonrational.
Every quadric 3-fold in P4 is rational. A nodal cubic 3-fold in P4 is nonrational if
and only if it is smooth. See [Clemens and Griffiths 1972, Theorem 13.12].

There are non-Q-factorial nodal quartic 3-folds that do not contain any two-
dimensional linear subspaces of P4; see [Mella 2004; Ellia and Franco 2000].
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Example 10. Consider a sufficiently general quartic 3-fold X ⊂ P4, passing
through a smooth quadric surface Q ⊂ P4. The quartic X can be given by the
equation

a2(x, y, z, t, w) h2(x, y, z, t, w)= b3(x, y, z, t, w) g1(x, y, z, t, w)

in Proj
(
C[x, y, z, t, w]

)
. Here, a2, h2, b3 and g1 are homogeneous polynomials of

degrees 2, 2, 3 and 1 respectively; the quadric Q ⊂ P4 is given by the equations
h2 = g1 = 0. The 3-fold X is nodal and non-Q-factorial, and it has 12 nodes given
by h2 = g1 = a2 = b3 = 0. Introducing a new variable α = a2/g1, we obtain a
commutative diagram

Y

X
ρ -

ψ

�
V,

φ

-

where ρ is a birational map, φ is an extremal divisorial contraction [Corti 1995,
§3.3.1], the morphism ψ : Y → X is a flopping contraction [Kollár 1989], and V
is a complete intersection

αg1(x, y, z, t, w)− a2(x, y, z, t, w)= αh2(x, y, z, t, w)− b3(x, y, z, t, w)= 0

in P5. Often ρ is called an unprojection of X [Reid 2001]. The variety V is smooth
outside a point P = (0 : 0 : 0 : 0 : 0 : 1), which is a node. The morphism φ contracts
the surface P1

× P1 to P , while ψ contracts the images of 12 lines on V passing
through P to the nodes of X . It is unknown whether X is rational [Iskovskikh and
Pukhlikov 1996; Corti 2000].

There exist nonrational non-Q-factorial nodal quartic 3-folds in P4 that contain
neither planes nor quadric surfaces. In particular, we will prove:

Theorem 11. If X ⊂ P4 is a sufficiently general quartic 3-fold that contains a
smooth del Pezzo surface S ⊂ P4 of degree 4, then X is nodal, non-Q-factorial and
nonrational, and has |Sing X | = 16.

The varieties in Theorems 6 and 11 are the only known examples of nodal,
nonrational and non-Q-factorial quartic 3-folds. We note that the degeneration
technique [Clemens 1975; Beauville 1977; Tyurin 1980; Kollár 1996], together
with either Theorem 6 or Theorem 11, gives another proof that a very general
smooth quartic 3-fold is nonrational.

Remark 12. There are only a few examples of unirational smooth quartic 3-folds
[Iskovskih and Manin 1971; Marchisio 2000], and it is unknown whether a generic
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quartic 3-fold is unirational. However, the quartics in Theorems 6 and 11 are
birational to del Pezzo fibrations of degree 3 or 4, which implies that the quartics
in Theorems 6 and 11 are unirational [Manin 1967].

Theorems 2 and 5 can be considered part of the following conjecture:

Conjecture 13. Let V ⊂ P4 be a nodal hypersurface. If either

• |Sing V |< (deg V − 1)2,

• |Sing V |< 2(deg V − 1)(deg V − 2) and V does not contain planes, or

• |Sing V |≤2(deg V −1)(deg V −2) and V does not contain planes or quadrics,

then V is Q-factorial.

We note that an analogue to Conjecture 13 for smooth surfaces on a nodal hy-
persurface in P4 is proved in [Ciliberto and Di Gennaro 2004]. It is easy to see
that Conjecture 13 holds for quadrics and cubics [Finkelnberg and Werner 1989].

2. The proof of Theorems 2 and 5

The Q-factoriality of nodal 3-folds is studied in [Clemens 1983; Schoen 1985;
Werner 1987; Dimca 1990; Borcea 1990; Endraß 1999; Cynk 2001].

Let X ⊂ P4 be a nodal quartic 3-fold. It is well known [Werner 1987; Dimca
1990; Cynk 2001] that the following conditions are equivalent:

• The quartic X is Q-factorial.

• Every Weil divisor on X is a Cartier divisor.

• Every Zariski local ring of the quartic X is UFD, that is, X is factorial.

• The group H4(X,Z) is generated by the class of a hyperplane section.

• dim H4(X,Z)= dim H 2(X,Z)= 1.

• The nodes of X impose independent linear conditions on cubic hypersurfaces
in P4.

Suppose X does not contain planes and |Sing X | ≤ 9. We show that the nodes
of the quartic X impose independent linear conditions on cubic hypersurfaces in
P4.

Definition 14. The points of a set 0 ⊂ P4 are in general position if

• at most 3 points of 0 can lie on a line,

• at most 6 points of 0 can lie on a conic, and

• at most 8 points of 0 can lie on a plane.

Proposition 15. The nodes of the quartic X are in general position.



NONRATIONAL NODAL QUARTIC THREEFOLDS 69

Proof. Let L ⊂ P4 be a line and 5 ⊂ P4 a sufficiently general two-dimensional
linear subspace passing through L . We have 5 6⊂ X , and 5∩ X = L ∪ S for some
plane cubic curve S. Moreover,

Sing X ∩ L ⊂ L ∩ S,

but |L ∩ S| ≤ 3. Thus, at most 3 nodes of the quartic X can lie on a line in P4.
Let C ⊂P4 be a smooth conic and Y ⊂P4 a sufficiently general two-dimensional

quadric cone over the conic C . We have Y 6⊂ X , and Y ∩ X = C ∪ R for some curve
R of degree 6. As above, we have the inclusion

Sing X ∩ C ⊂ C ∩ R.

However, the curves C and R lie in the smooth locus of Y and the intersection C ·R
in Y equals 6. Thus, the inequality |C ∩ R| ≤ 6 holds, and at most 6 nodes of the
3-fold X can lie on a smooth conic in P4.

Let 6 ⊂ P4 be a plane. The intersection T =6∩ X is a possibly reducible and
nonreduced plane quartic, and Sing X ∩6 ⊂ Sing T . In case T is nonreduced, we
have |Sing X ∩6| ≤ 6, as we already proved that at most 3 nodes of X can lie on
a line and at most 6 nodes can lie on a conic. Moreover, |Sing T | ≤ 6 whenever T
is reduced. Therefore, at most 6 nodes of X can lie on a plane in P4. �

Proposition 16. Let 5 ⊂ P4 be a two-dimensional linear subspace such that
Sing X is contained in 5. The nodes of X impose independent linear conditions
both on cubic curves in 5∼= P2 and on cubic hypersurfaces in P4.

Proof. We must show that, for any subset6( Sing X and any point p ∈Sing X \6,
there exist a cubic curve in 5 and a cubic hypersurface in P4 passing through the
points of 6 but not through p. Let π : V →5 be a blow-up of points in 6. Then,
owing to Proposition 15, V is a weak del Pezzo surface of degree 9 − |6| ≥ 2.

The linear system |−KV | does not have base points [Demazure 1980, §IV, The-
orem 1; Bese 1983, Theorem 2]. Thus, there exists a curve C in |−KV | that does
not pass through the point π−1(p). The cubic curve π(C) passes through all the
points of 6 but not through p. Let Y be a cone in P4 over π(C), with vertex on
a sufficiently general line of P4. The cubic hypersurface Y passes through all the
points of 6 but not through p. �

Lemma 17 [Cheltsov and Park 2004]. Let 1 ⊂ Pn be a subset and p ∈ Pn
\1 a

point such that {p}∪1⊂ Pn is not contained in any linear subspace of dimension
r. There exists a linear subspace H ⊂ Pn of dimension r that contains at least r +1
points of 1 but not p.

Proof. We prove the claim by induction on n. For n =2 the claim is trivial. Suppose
that n > 2 and r < n. By assumption, there are r+1 points {q1, . . . , qr+1} ⊂ 1

such that their linear span T has dimension r .
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We assume p ∈ T , since otherwise we are done. There is a point q ∈ 1 \ T ,
because {p} ∪1⊂ Pn is not contained in any linear subspace of dimension r . By
induction, there exists a linear subspace S ⊂ T of dimension r−1 that contains r
points from among {q1, . . . , qr+1} but not p.

Consider a cone H ⊂ Pn over T with vertex q . The cone H is a linear subspace
of dimension r that contains at least r+1 points of 1 but not p. �

Proposition 18. Let 0 ⊂ P4 be a hyperplane such that Sing X is contained in 0.
The nodes of X impose independent linear conditions both on cubic surfaces in
0 ∼= P3 and on cubic hypersurfaces in P4.

Proof. Let 6 ( Sing X be any subset and let p ∈ Sing X \6 be a point. We must
show that there is a cubic surface in 0 and a cubic hypersurface in P4 passing
through 6 and not passing through p. As in the proof of Proposition 16, it is
enough to find a cubic surface in 0 that passes through all the points of 6 but
not through p. A general cone over such a cubic surface will then give a cubic
hypersurface in P4 passing through all the points of 6 and not passing through p.

Without loss of generality, we can assume that |Sing X | = |6| + 1 = 9.
Let r ≥ 2 be the maximal number of points of 6 that, together with p, belong to

a two-dimensional linear subspace 5 in 0. Then, by Proposition 15, r ≤ 7. Write

6 = {p1, . . . , p8}

so that the points p1, . . . , pr , together with p, are contained in the plane 5. The
points p and p1, . . . , pr do not lie on any one line, since otherwise we could find a
hyperplane in 0 containing more than r points of 6. We prove the statement case
by case.

Suppose r = 2. Divide the set 6 into three, possibly overlapping, subsets such
that each subset contains three points of 6 and that their union is the whole 6.
The hyperplane in 0 generated by each subset does not contain p, because r = 2.
Hence the union of these three hyperplanes is the required cubic surface.

Suppose r = 3. By Lemma 17, we can find three points of 6 outside 5, say
p4, p5, p6, such that they generate a hyperplane in 0 not passing though p. By
Proposition 15, the four points {p, p1, p2, p3} do not lie on any one line. Therefore
there is a line passing through two points of the set {p1, p2, p3}, say through p1

and p2, and not passing through p. The union of a hyperplane passing through
p4, p5, p6, a hyperplane passing through p7, p1, p2, and a sufficiently general hy-
perplane passing through p3 and p8 gives a cubic surface in 0 ∼= P3 that passes
through all the points of 6 but not through p.

Suppose r = 4. There are two lines in 5, say L1 and L2, such that the line L1

contains p1 and p2, the line L2 contains p3 and p4, and neither line passes through
p. At most two points among {p5, p6, p7, p8} lie on a line passing through p.
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Therefore, there are two points, say p5 and p6, such that the line passing through
p5 and p6 does not pass through p. The union of a hyperplane passing through
L1 and p7, a hyperplane passing through L2 and p8, and a sufficiently general
hyperplane passing through p5 and p6 gives the required cubic surface.

Suppose r = 5. There are two lines in 5, say L1 and L2, such that p 6∈ L1 ∪ L2

and L1 ∪ L2 contains four points of 6 ∩5, say p1, p2, p3 and p4. The union
of a hyperplane passing through L1 and p7, a hyperplane passing through L2 and
p8, and a sufficiently general hyperplane passing through p5 and p6 gives a cubic
surface in 0 passing through all the points of 6 but not through p.

Suppose r = 6. Now we have six points in 6∩5 and two points, say p7 and p8,
of 6 outside 5. By Proposition 16, we can find a cubic curve C on 5 that passes
through the points of 6 ∩5 but not through p. A sufficiently general hyperplane
in 0 passing through the points p7 and p8 meets the curve C in three points. Let q
and q ′ be two of those points, and let O be an intersection point of the lines 〈p7, q〉

and 〈p8, q ′
〉. Then the cone in 0 over the cubic curve C with vertex O is a cubic

surface that passes through all the points of 6 but not through p.
Suppose r = 7. By Proposition 16, we can find a cubic curve C on5 that passes

through the seven points of 6∩5 and does not pass through the point p. The cone
in 0 ∼= P3 over the cubic curve C with vertex p8 is a cubic surface that passes
through 6 but not through p. �

Proposition 19. The nodes of X impose independent linear conditions on cubic
curves in P4.

Proof. We must show that, for any subset6( Sing X and any point p ∈Sing X \6,
there exists a cubic hypersurface in P4 passing through 6 but not through p.

Without loss of generality, we may assume that |Sing X | = |6| + 1 = 9.
Let r ≥ 3 be the maximal number of points in 6 that, together with p, belong

to a hyperplane 4⊂ P4. By Proposition 18, we may assume r ≤ 7. Write

6 = {p1, . . . , p8}

so that the points p1, . . . , pr , together with the point p, are contained in 4. We
prove the claim case by case.

The points p and p1, . . . , pr do not belong to a two-dimensional linear subspace
in P4, since otherwise we could find a hyperplane passing through r+1 points of
the set 6.

Suppose r = 3. Divide the set 6 into three, possibly overlapping, subsets such
that each subset contains exactly four points of 6. The hyperplane generated by
each subset does not contain the point p, because r = 3. The union of these three
hyperplanes is the required cubic hypersurface.
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Suppose r = 4. There are two lines L1 and L2 in 4 such that the line L1

passes through p1 and p2, the line L2 passes through p3 and p4, and neither line
passes through p. There are at most two points of {p5, p6, p7, p8} that lie on a
line containing p. Hence, there are two points, say p5 and p6, such that the line
passing through p5 and p6 does not pass through p. The union of two sufficiently
general hyperplanes, one passing through L1 and p7, the other through L2 and p8,
and a sufficiently general hyperplane passing through the points p5 and p6 gives
the required cubic hypersurface in P4.

Suppose r = 5. As in the previous case, there are two lines L1 and L2 in 4
such that the line L1 passes through p1 and p2, the line L2 passes through p3 and
p4, and neither line passes through p. The union of two general hyperplanes, one
passing through the L1 and p7, one through L2 and p8, and a sufficiently general
hyperplane passing through the points p5 and p6 gives a cubic hypersurface in P4

that passes through all the points of 6 but not through p.
Suppose r = 6. There are six points in 6∩4 and two points, say p7 and p8, of

6 outside 4. By Proposition 18, there is a cubic surface S ⊂4 that passes through
the six points of 6 ∩4 and does not pass through p. A general two-dimensional
linear subspace passing through the points p7 and p8 meets S in three different
points. From these, choose two points q and q ′. Let O be an intersection of the
lines 〈p7, q〉 and 〈p8, q ′

〉. The required cubic hypersurface is the cone in P4 over
the cubic surface S with vertex O .

Suppose r = 7. By Proposition 18, we can find a cubic surface S ⊂4 that passes
through the seven points of 6 ∩5 and does not pass through p. The cone in P4

over S with vertex p8 passes through all the points of 6 but not through p. �

This concludes the proof of Theorems 2 and 5. The same method can be applied
to any nodal hypersurface in P4. The following result is implied by Theorem 24
(see [Werner 1987; Dimca 1990; Ciliberto and Di Gennaro 2004]).

Theorem 20. A nodal hypersurface V ⊂ P4 is Q-factorial whenever

|Sing V | ≤ 2 deg V − 4.

This bound on nodes is not sharp, except for hyperquadrics.

3. The proof of Theorem 11

Let X ⊂ P4 be a sufficiently general (that is, from the complement of a Zariski
closed subset in moduli) quartic 3-fold containing a smooth del Pezzo surface S ⊂

P4 of degree 4. The quartic X can be given by the equation

a2(x, y, z, t, w) h2(x, y, z, t, w)+ b2(x, y, z, t, w) g2(x, y, z, t, w)= 0
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in Proj
(
C[x, y, z, t, w]

)
. Here, a2, b2, h2 and g2 are homogeneous polynomials of

degree 2 such that S is defined by the equations h2 = g2 = 0. The quartic X is nodal
and non-Q-factorial; it has 16 nodes given by the equations h2 = g2 = a2 = b2 = 0.

Lemma 21. The divisor class group Cl(X) is Z ⊕ Z.

Proof. Let f :U →P4 be a blow-up of the surface S, let E be an exceptional divisor
of the birational map f , and let H = f ∗

(
OP4(1)

)
. The linear system |2H − E |

does not have base points, because the del Pezzo surface S ⊂ P4 is a complete
intersection of two quadrics. In particular, the divisor 2H −E is nef and the divisor
4H − E is ample.

Let X̃ ⊂ U be a proper transform of the quartic X . Then X̃ is rationally equiva-
lent to the divisor 4H − E on the 4-fold U . The restriction f |X̃ : X̃ → X is a small
resolution and X̃ is smooth. Therefore, by the Lefschetz theorem [Andreotti and
Frankel 1959; Bott 1959],

H 2(X̃ ,Z
)
∼= H 2(U,Z)∼= Z ⊕ Z,

which implies the claim of the lemma. �

The pencil generated by the quadrics a2 = 0 and b2 = 0 cuts on X the del Pezzo
surface S together with a pencil M whose general element is a smooth del Pezzo
surface of degree 4. Let τ : V → X be a small resolution such that the pencil
H = τ−1(M) does not have base points. We have

V = Proj
(⊕

i≥0 OX (−S)⊗i
)
,

and τ is a natural projection to X [Kawamata 1988]. The 3-fold V is smooth and
projective, we have Pic(V )= Z ⊕ Z, and the pencil H gives a morphism

ξ : V → P1

whose general fiber is a del Pezzo surface of degree 4.

Corollary 22 [Alekseev 1987; Iskovskikh 1996a]. The 3-fold V is birational to a
conic bundle.

The generality of the choice of X implies that ξ is standard in the sense of
[Alekseev 1987]; that is, every fiber of ξ is normal and Pic(V )= Z ⊕ Z.

Theorem 23 [Alekseev 1987, Theorem 2]. Let γ : Y → P1 be a standard del Pezzo
fibration of degree 4. If the topological Euler characteristic of Y is not 0, −4 or
−8, then Y is nonrational.

Therefore, in order to prove Theorem 11, we must calculate the topological
Euler characteristic of the 3-fold V .
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Theorem 24 [Cynk 2001, Theorem 2]. Let W be a projective smooth 4-fold, and
Y an ample reduced and irreducible divisor on W such that the only singularities
of Y are nodes and such that

h2(�1
W )= h3(�1

W ⊗ OW (−Y )
)
= h1(OW )= h2(OW )= 0.

If Ỹ is a small resolution of Y , then

h1(OỸ )= h2(OỸ )= 0,

h1(�1
Ỹ
)= h1(�1

W )+ δ,

h2(�1
Ỹ
)= h0(KW ⊗ OW (2Y )

)
+ h3(OW )− h0(KW ⊗ OW (Y )

)
− h3(�1

W )− h4(�1
W ⊗ OW (−Y )

)
− |Sing Y | + δ,

where δ is the number of dependent equations that are imposed on the global sec-
tions of the line bundle KW ⊗OW (2Y ) by the vanishing at the nodes of Y ; that is, δ
is the defect of the 3-fold Y .

The topological Euler characteristic χ(V ) of the 3-fold V is 6 − 2h2(�1
V ). The

twisted Euler exact sequence and Serre duality imply that h3
(
�1

P4 ⊗OP4(−4)
)
= 0

and h4
(
�1

P4 ⊗ OP4(−4)
)
= 5. Thus, by Theorem 24,

h2(�1
V ) = h0(OP4(3)

)
− h3(�1

P4)− h4(�1
P4 ⊗ OP4(−4)

)
− |Sing X | + 1 = 15.

It follows that χ(V ) = −24. By Theorem 23, the quartic 3-fold X is nonrational,
which proves Theorem 11.

4. The proof of Theorem 6

Let X ⊂ P4 be a very general (that is, from the complement of a countable union
of Zariski closed subsets in moduli) quartic 3-fold containing a plane5⊂ P4. The
quartic X can be given by the equation

x h3(x, y, z, t, w)+ y g3(x, y, z, t, w)= 0

in Proj
(
C[x, y, z, t, w]

)
. Here, h3 and g3 are homogeneous polynomials of degree

3, while the plane 5 is defined by the equations x = y = 0. The quartic X is nodal
and has 9 nodes given by

x = y = h3 = g3 = 0.

Lemma 25. The divisor class group Cl(X) is Z ⊕ Z.

Proof. By Theorem 24, the lemma’s assertion is equivalent to the statement nodes
of the quartic X imposes 8 independent linear conditions on cubic hypersurfaces
in P4. That is, we must show that the defect of X is 1.
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During the proof of Theorem 2, we showed that any 8 nodes of X impose 8
independent linear conditions on cubic hypersurfaces in P4. The nodes of X cannot
impose 9 independent linear conditions on cubic hypersurfaces in P4, because in
this case, by Theorem 24, the 3-fold X must be Q-factorial, which is absurd. �

Theorem 26 [Kollár 1996, §IV, Theorem 1.8.3]. Let ξ : Y → Z be a flat proper
morphism with irreducible and reduced geometric fibers. There are countably
many closed subvarieties Zi ⊂ Z such that, for an arbitrary closed point s ∈ Z , the
fiber ξ−1(s) is ruled if and only if s ∈

⋃
Zi .

Consider a sufficiently general quartic 3-fold V ⊂ P4, given by the equation

x h̄3(x, y, z, t, w)+ y ḡ3(x, y, z, t, w)= 0,

such that

h̄3(x, y, z, t, w)= x a2(x, y, z, t, w)+ y b2(x, y, z, t, w)+ f1(z, t, w)h2(z, t, w)

and

ḡ3(x, y, z, t, w)= x c2(x, y, z, t, w)+ y d2(x, y, z, t, w)+ f1(z, t, w)g2(z, t, w),

where a2, b2, c2, d2, h2 and g2 are homogeneous polynomials of degree 2, and f1

is a homogeneous polynomial of degree 1. The quartic V contains the plane 5.
The singularities of the 3-fold V consist of 4 nodes given by the equations

x = y = h2 = g2 = 0

and a single double line L ⊂5 given by the equations x = y = f1 = 0.

Remark 27. The resolution of singularities of V is rationally connected by [Kollár
1996, §IV, Corollary 5.7.1]. Hence, the 3-fold V is rational if and only if it is ruled.
However, the 3-fold V is a flat degeneration of the 3-fold X . Thus, by Theorem
26, the nonrationality of V implies the nonrationality of X .

To prove Theorem 6 it is enough to prove the nonrationality of V .

Remark 28. The nonrationality of a sufficiently general quartic 3-fold with a
double line is proved in [Conte and Murre 1977] by using the method of the inter-
mediate Jacobian [Clemens and Griffiths 1972; Beauville 1977; Tyurin 1980].

Let π : U → P4 be a blow-up of the line L ⊂ P4, let E be an exceptional divisor
of the birational morphism π , and let V̄ ⊂ U be a proper transform of the 3-fold V .
The linear system ∣∣π∗

(
OP4(1)

)
− E

∣∣
does not have base points and gives a P2-bundle ψ : U → P2.
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We have the commutative diagram

V̄ ⊂ - U

V

π̌

?
⊂ - P4

π

?
η - P2,

ψ

-

where η is the projection from the line L . The 3-fold V̄ is smooth in the neighbor-
hood of the exceptional divisor E , while the singularities of V̄ consist of 4 nodes
that are the images of the nodes of V .

For a point x ∈ L , the intersection

π−1(x)∩ V̄ ⊂ π−1(x)∼= P2

is a smooth conic if x is not a zero of h2 or g2, and is a union of two different lines
otherwise; that is, there are 4 reducible fibers of the morphism π |E∩V̄ .

Let 5̄ ⊂ U be a proper transform of 5. Then ψ(5̄) = O is a point. The
restriction

ψ |V̄ : V̄ → P2

is a morphism whose fibers over the points in P2
\ O are conics, while over O is

the surface 5̄⊂ V̄ .
Let γ : W → U be a blow-up of 5̄, let G be a γ -exceptional divisor, and let

Ṽ ⊂ W be a proper transform of V̄ . The linear system
∣∣γ ∗

(
π∗(OP4(1))−E

)
− G

∣∣
has no base points, while the linear system

∣∣γ ∗
(
2
(
π∗(OP4(1))−E

))
− G

∣∣ gives a
morphism φ : W → F1 such that the diagram

Ṽ ⊂ - W

V̄

γ |Ṽ

?
⊂ - U

γ

?
F1

φ

-

V

π̌

?
⊂ - P4

π

?
η - P2

α

?

ψ

-

is commutative, where α : F1
→ P2 is the blow-up of the point O . The 3-fold Ṽ is

smooth, and the birational morphism γ |Ṽ is a small resolution of the 3-fold V̄ .

Lemma 29. The Picard group of the 3-fold Ṽ is Z ⊕ Z ⊕ Z.
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Proof. The divisor Ṽ ⊂ W is rationally-equivalent to a divisor

γ ∗
(
π∗(OP4(4))−2E

)
− G

∼ γ ∗
(
π∗(OP4(1))−E

)
− G + γ ∗

(
π∗(OP4(1))−E

)
+ (π ◦ γ )∗

(
OP4(2)

)
that is ample on the 4-fold W . Hence,

H 2(Ṽ ,Z)∼= H 2(W,Z)

by the Lefschetz theorem [Andreotti and Frankel 1959; Bott 1959], which implies
the claim of the lemma. �

Corollary 30 [Sarkisov 1980]. The restriction φ̃ = φ|Ṽ : Ṽ → F1 is a standard
conic bundle.

Let 1 ⊂ F1 be a degeneration divisor of the standard conic bundle φ̃. Then 1
is a reduced divisor with at most simple normal crossings [Beauville 1977; Tyurin
1980; Sarkisov 1980, 1982; Shokurov 1983; Corti 2000].

Lemma 31. Let s∞ be an exceptional section of the ruled surface F1, and let ` be
a fiber of the natural projection of the surface F1 to P1. We have

1∼ 5s∞+ 8` and 2KF1
+1∼ s∞+ 2`.

Proof. Set 1 ∼ as∞+ b` for some integers a and b. Consider a general divisor
H in the linear system |φ̃∗(`)| and take the surface 5̃ = ψ−1(s∞). By Bertini’s
theorem, H is smooth. The surface 5̃ is smooth as well, because

γ |5̃ : 5̃ → 5̄∼=5

is a blow-up of the four points on 5∼= P2 given by h2 = g2 = 0.
The birational map γ |5̃ resolves the base points of the pencil of conics generated

by the conics h2 = 0 and g2 = 0, which induces the restriction morphism φ|5̃. The
surface H is a cubic surface whose image on the quartic V is a cubic surface
residual to the plane 5. Hence, K 2

H = 3 and K 2
5̃

= 5, and thus 1 · ` = 5 and
1 · s∞ = 3. �

The following result is a special case of a conjectured rationality criterion for
standard three-dimensional conic bundles [Iskovskikh 1987; 1991; 1996b].

Theorem 32 [Shokurov 1983, Theorem 10.2]. Let ξ :Y → Z be a conic bundle such
that Y is a smooth 3-fold, Z is either P2 or a ruled surface Fr , and Pic(Y/Z)=Z. If
Y is rational and D is a degeneration divisor of ξ , then the linear system |2KZ +D|

is empty.

Therefore, by Theorem 32, the 3-fold Ṽ is nonrational, which proves Theorem 6.
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