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Volume 226 No. 1 July 2006



PACIFIC JOURNAL OF MATHEMATICS
Vol. 226, No. 1, 2006

CLASSIFICATION OF SINGULARITIES
FOR A SUBCRITICAL FULLY NONLINEAR PROBLEM
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We study isolated singularities for a fully nonlinear elliptic PDE of subcrit-
ical type. This equation appears in conformal geometry when dealing with
the k-curvature of a locally conformally-flat manifold. (The k-curvature
generalizes scalar curvature.) We give a classification result: either the
function is bounded near the singularity, or it has a specific asymptotic
behavior.

1. Introduction

The study of singularities for the subcritical problem

(1-1) −1u = uβ in B\{0}, β ∈

( n
n−2

,
n+2
n−2

)
,

has received a lot of attention. In particular, Gidas and Spruck [1981] gave a
classification result: a positive solution of (1-1) with a nonremovable singularity
at zero must behave like

u(x) =
(
1 + o(1)

) c0

|x |2/(β−1)
near x = 0,

for some c0 = c0(β, n). In this paper, we deal with a more general subcritical
equation, of the form

(1-2) σk(Agv ) = vα in B\{0}, α > 0,

where gv = v−2
|dx |

2 for v > 0 is a locally conformally-flat metric on the unit
ball B ⊂ Rn , with an isolated singularity at the origin. For a general metric g, the
matrix Ag is given by Ag

= g−1 Ãg, where Ãg is the Schouten tensor

Ãg
i j =

1
n−2

(
Rici j −

1
2(n−1)

R gi j

)
,
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while Ric and R denote the Ricci tensor and the scalar curvature of g. In the metric
gv, the Schouten tensor becomes

Agv = v(D2v) −
1
2 |∇v|

2 I.

The curvatures σk are defined as symmetric functions of the eigenvalues λ1, . . . , λn

of the (1, 1)-tensor Ag,

σk := σk(Ag) =
∑

i1<···<ik

λi1 · · · λik .

The scalar curvature is simply

σ1 = λ1 + · · · + λn =
1

2(n−1)
R.

Problem (1-2) for k = 1 becomes the well known (1-1): if we write u4/(n−2)
= v−2

and 1 + (n/2) − β(n − 2)/2 = α, the two problems are equivalent. Note that the
critical exponent is β = (n + 2)/(n − 2), or α = 0.

For a general k, we are dealing with a fully nonlinear equation of second order.
The problem is elliptic in the positive cone

0+

k =
{
v

∣∣ σ1(Agv ), . . . , σk(Agv ) > 0
}
,

but, in general, not uniformly elliptic. However, it still carries an “almost” diver-
gence structure

mσm = v∂j
(
vi T m−1

i j

)
− nT m−1

i j vivj +
n−m+1

2
σm−1|∇v|

2 ,

where T m
i j denotes the Newton tensor (2-1). This was explored in [González

2005b].
Our main result is a classification of the isolated singularities of (1-2):

Theorem 1.1. Let α ∈ (0, k) and n > 2(k + 1). If v is a solution of

(1-3) σk(v) = vα in B\{0},

with v > 0, v ∈ 0+

k , and v−1
∈ C3(B\{0}), then

v−1(x) ≤
C

|x |2k/(2k−α)
near x = 0.

Theorem 1.2. Let v be a solution of (1-3) for α ∈
(
0, 2k/(k+1)

)
and n > 2(k +1),

with v−1
∈ C3(B\{0}). If the function v−1 is not bounded near the origin, then

there exist c1, c2 > 0 such that
c1

|x |2k/(2k−α)
≤ v−1(x) ≤

c2

|x |2k/(2k−α)
near x = 0.
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The local behavior of singularities for the critical problem σk(v) = 1 has been
addressed in [González 2005a]. There, we gave a sufficient condition for the func-
tion to be bounded near the singularity: the finiteness of the volume of the metric
gv (when n > 2k). The same result was obtained by Han [2004] for n = 2k. For
the Laplacian problem (k = 1), a complete classification of solutions was obtained
by Caffarelli, Gidas, and Spruck [1989].

At the time this paper was submitted, it was conjectured that a similar clas-
sification result was true also for σk , where n > 2k. This has now been proved
[Li 2006]. In the case n < 2k, all the singularities are removable [Gursky and
Viaclovsky 2005].

One of the motivations for the study of (1-1) is that it appears in the resolution of
the Yamabe problem (for a very good survey, see [Lee and Parker 1987]). We can
establish an analogous k-Yamabe problem: find the infimum over all the metrics
gv = v−2g0 with v > 0 of the functional

(1-4) Fk(g) =
1

vol(g)(n−2k)/n

∫
M

σk(Ag) dvolg.

This functional was first introduced by Viaclovsky [2000], and it generalizes the
Yamabe functional. Its Euler equation is precisely σk(v) = 1.

The global subcritical problem has been understood by Li and Li [2003]. Indeed,
if v is a positive solution of

σk(v) = vα in Rn, α ≥ 0,

with v−1
∈ C2(Rn), then either v is constant, or α = 0 and

v−1(x) =
a

1 + b2|x − x̄ |2

for some x̄ ∈ Rn and some positive constants a and b.
The methods of Gidas and Spruck [1981] for the problem with k = 1 can be

generalized to our case. The key ingredient in the present paper is to understand
the structure of σk and, in particular, to replace the traceless Ricci tensor by the
traceless k-Newton tensor (2-2).

The paper is structured as follows: in Section 2 we give some properties of σk

that will be crucial in the proofs. We use the divergence structure of σk (2-5), an
inductive process (2-7), and the properties of the traceless Newton tensor (2-2).

In Section 3 we establish the expression that will allow us to obtain the neces-
sary L p estimates, through a generalization of an argument due to Obata and very
successfully used by Chang, Gursky, and Yang [2002] and by Li and Li [2002].
In particular, we give a more refined formula (3-1) that is precisely the missing
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ingredient for the critical problem. The L p estimates are in Section 4, while in the
last two sections we prove the theorems.

Remark 1.3. We believe that the theorems are also true for n = 2k + 1, but, as in
the case of [Gidas and Spruck 1981], one needs different estimates in (4-12).

Remark 1.4. We make the regularity assumption v−1
∈ C3(B\{0}). However,

many of the arguments use integral estimates and only require that v−1 is in some
suitable Sobolev space; for instance, the whole of Section 4.

2. Algebraic properties of σk

For a general n × n matrix A, take its eigenvalues λ1, . . . , λn and construct the
symmetric functions σk , as well as the k-th Newton tensor

(2-1) T k
:= σk − σk−1 A + · · · + (−1)k Ak

= σk I − T k−1 A

and the traceless Newton tensor

(2-2) Lk
:=

n−k
n

σk I − T k .

Remark 2.1. Take σ0 := 1 and T 0
i j := δi j . Although the standard notation for a

(1,1)-tensor is A j
i , we write both indices as subindices without risking confusion.

Lemma 2.2 [Gårding 1959; Reilly 1973].

(1) (n − k)σk = trace T k ;

(2) (k + 1)σk+1 = trace(AT k);

(3) trace Lk
= 0;

(4) if σ1, . . . , σk > 0, then T m is positive definite for m = 1, . . . k − 1;

(5) if σ1, . . . , σk > 0, then σk ≤ Cn,k(σ1)
k.

In particular, if A = Agv for gv = v−2
|dx |

2, then the Schouten tensor becomes

(2-3) Ai j = vi jv −
1
2
|∇v|

2δi j ,

while the traceless Ricci tensor (strictly speaking, a constant multiple of the actual
traceless Ricci tensor) is now

(2-4) Ei j := L1
i j = vvi j −

1
n
v1vδi j .

Lemma 2.3 [Viaclovsky 2000]. Let gv = v−2
|dx |

2. The Newton tensor T m for
m ≤ n − 1 is divergence-free with respect to this metric; that is,∑

j
∂̃j T m

i j = 0, for all i.
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As a consequence, ∑
j

∂̃j Lm
i j =

n−m
n

∂iσm(Agv ),

where ∂̃j is the j-th covariant derivative with respect to the metric gv, while ∂j

denotes the usual Euclidean derivative.

The following two lemmas were proved in [González 2005b]. Expression (2-6)
shows the ‘almost’ divergence structure of σm , while (2-7) is an inductive formula
allowing us to handle the nondivergence terms (of order m−1) that appear in (2-6).

Lemma 2.4. In this setting,∑
j

∂j T m
i j = −(n − m)σmviv

−1
+ n

∑
i

T m
i j viv

−1 for each i;(2-5)

mσm(Agv ) = v
∑
i, j

∂j (vi T m−1
i j ) − n

∑
i, j

T m−1
i j vivj +

n−m+1
2

σm−1|∇v|
2 .(2-6)

Lemma 2.5. Let U be a domain in Rn , v−1
∈ C∞(U ), and ϕ ∈ C∞

0 (U ) a smooth
cutoff function. For any integers 1 ≤ s ≤ k ≤ n and real number γ ,

(2-7)
∫

U

∑
i, j

T k−s
i j vivj |∇v|

2(s−1)ϕ2kv−γ dx

=

(
1 +

k−s
2s

) ∫
U

σk−s |∇v|
2s ϕ2kv−γ dx

+
s+n+1−γ

2s

∫
U

∑
i, j

T k−s−1
i j vivj |∇v|

2s ϕ2kv−γ dx

−
n−k+s+1

4s

∫
U

σk−s−1|∇v|
2(s+1)ϕ2kv−γ dx

+
k
s

∫
U

∑
i, j

T k−s
i j vjϕi |∇v|

2(s−1)ϕ2k−1v1−γ dx .

In Section 3 we will need a similar formula for the traceless Newton tensor:

Corollary 2.6. For any fixed i ,

(2-8)
∑

j

∂j (Lm
i j ) =

n−m
n

∂iσk + n
∑

j

Lm
i jviv

−1

Proof. Follows easily from (2-5) and (2-2). �

Lemma 2.7. If σ1, . . . , σm > 0 and m ≤ n, then

‖T m−1
i j ‖ ≤ Cm,n σm−1.

Proof. Because of Lemma 2.2, T m−1 is positive definite. To estimate its norm we
just need to look at its biggest eigenvalue. We are done, because

trace T m−1
= (n − m)σm−1. �
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Lemma 2.8. For any 1 ≤ k ≤ n−1, if we have a metric g = v−2
|dx |

2 in the positive
cone 0+

k , then ∑
i, j

Lk
i j Ei j ≥ 0,

with equality if and only if E = 0.

Proof. Because Ei j is traceless,∑
i, j

Lk
i j Ei j = −

∑
i, j

T k
i j Ei j .

Using

Ei j = −
1
n
σ1δi j + Ai j , (k + 1)σk+1 = T k

i j Ai j , T k
i jδi j = (n − k)σk,

we see that ∑
i, j

T k
i j Ei j = −

n−k
n

σk σ1 + (k + 1)σk+1.

The result follows by the general inequality for matrices in the positive cone 0+

k :

σk+1 ≤
n−k

n(k+1)
σ1 σk,

with equality if and only if E ≡ 0. �

3. An Obata-type formula

Obata’s original result [1962] states that, if we have a metric g on the unit sphere
Sn that is conformal to the standard metric gc and of constant scalar curvature, then
E ≡ 0; that is, g is the standard metric gc or is obtained from it by a conformal
diffeomorphism of the sphere. His method uses crucially the traceless Ricci tensor
Ei j = vvi j − (1/n) v1vδi j and the Bianchi identity ∇

i Ei j = ∇
j R. Indeed, his

main step is to prove that ∫
Sn

∑
i, j

Ei j Ei jv
−1dvolgc = 0,

and thus establish that g is an Einstein metric on Sn .
This same argument was generalized for constant σk (instead of constant R) by

Viaclovsky [2000], with the role of E played now by Lk and the Bianchi identity
replaced by (2-8). If the metric is defined on Rn instead of Sn , an analogous
argument works; however, a cutoff function η is introduced and, in order to get
the same conclusion, a careful estimate of the error terms is needed. We should
also mention the work of Chang, Gursky, and Yang [2002; 2003] and of Li and Li
[2002].
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However, we are interested in the subcritical-problem approach of Gidas and
Spruck [1981]; they have refined the computation of

0 ≤

∫
B

∑
i, j

Ei j Ei jv
−δη dx = · · ·

for any δ∈R. The main result of this section is the corresponding refinement for σk :

Proposition 3.1. Let α > 0 and n > 2k. Take a solution v of σk(v) = vα in U , with
v ∈ 0+

k , v > 0, and v−1
∈ C3(U ), where U is a domain in Rn . Pick η ∈ C∞

0 (U )

and a big positive integer θ . There exist constants dk−s such that

(3-1)
∫

U

∑
i, j

Lk
i j Ei jv

−δηθ
+

(n−k
n

α−(1+n−δ)
k(n+2)

2n

)∫
U

vα
|∇v|

2v−δηθ

+(1+n−δ)

k∑
s=1

dk−s

∫
U

σk−s |∇v|
2(s+1)v−δηθ

= E1(η),

where

(3-2) E1(η) .

∣∣∣∣∫
U

∑
i, j

Lk
i jviηjv

1−δηθ−1
∣∣∣∣+ k∑

s=1

∣∣∣∣∫
U

∑
i, j

T k−s
i j vjηj |∇v|

2s v1−δηθ−1
∣∣∣∣.

In addition, if δ is smaller than but close enough to n + 1, all the coefficients in
front of the integrals in (3-1) are positive.

Proof. One uses the inductive method developed in [González 2005b; 2005a] and
the properties of Lk . In view of (2-4), integrate over U to get∫ ∑

i, j

Lk
i j Ei jv

−δηθ
=

∫ ∑
i, j

Lk
i jvi jv

1−δηθ
−

1
n

∫ ∑
i, j

Lk
i j (1v)v1−δδi jη

θ .

The last term vanishes since Lk is trace-free. Integrating by parts and using (2-8),∫ ∑
i, j

Lk
i j Ei jv

−δηθ

= −

∫ ∑
i, j

(∂i Lk
i j )vjv

1−δηθ
− (1−δ)

∫ ∑
i, j

Lk
i jvivjv

−δηθ
−

∫ ∑
i, j

Lk
i jviηjv

1−δηθ−1

= −
n−k

n

∫ ∑
i

(∂iσk)viv
1−δηθ

− (1+n−δ)

∫ ∑
i, j

Lk
i jvivjv

−δηθ

−

∫ ∑
i, j

Lk
i jviηjv

1−δηθ−1.
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Group in E1(η) all the terms containing derivatives of η. Now compute, using
(2-1), (2-2), and (2-3):

(3-3)
∫ ∑

i, j

Lk
i jvivjv

−δηθ
=

n−k
n

∫
σk |∇v|

2v−δηθ
−

∫ ∑
i, j

T k
i jvivjv

−δηθ

= −
k
n

∫
σk |∇v|

2v−δηθ
+

∫ ∑
i, j,l

T k−1
il Al jvivjv

−δηθ

= −
k
n

∫
σk |∇v|

2v−δηθ
+

∫ ∑
i, j,l

T k−1
il vl jvivjv

1−δηθ

−
1
2

∫ ∑
i, j

T k−1
i j vivjv

−δηθ .

The middle term can be handled similarly to [González 2005b, Section 4]:

(3-4)
∫ ∑

i, j,l

T k−1
il vl jvivjv

1−δηθ
=

1
2

∫ ∑
i,l

∂l(|∇v|
2)T k−1

il viv
1−δηθ

= −
δ−1

2

∫ ∑
i,l

T k−1
il vivl |∇v|

2v−δηθ
−

1
2

∫ ∑
i,l

∂l(T k−1
il vi )|∇v|

2v1−δηθ

−
1
2

∫ ∑
i,l

T k−1
il viηl |∇v|

2v1−δηθ−1.

To eliminate the term ∂l(T k−1
il vi ) from (3-4), just use the equality (2-5) and then

substitute (3-4) into (3-3):

(3-5)
∫ ∑

i, j

Lk
i jvivjv

−δηθ

= −k n+2
2n

∫
σk |∇v|

2v−δηθ
−

2+n−δ

2

∫ ∑
i, j

T k−1
i j vivj |∇v|

2v−δηθ

+
n−k+1

4

∫
σk−1|∇v|

4v−δηθ
+ E1(η)

= −k n+2
2n

∫
σk |∇v|

2v−δηθ
+ Bk−1 + E1(η),

where we have defined, for k fixed and s = 1, . . . , k − 1,

Bk−s =

−
s+1+n−δ

s+1

∫ ∑
i, j

T k−s
i j vivj |∇v|

2s v−δηθ
+

n−k+s
2(s+1)

∫
σk−s |∇v|

2(s+1)v−δηθ .
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The computations in (3-4) can be redone for T k−s , and thus

(3-6) Bk−s = d̃k−s

∫
σk−s |∇v|

2(s+1)v−δηθ
+ c̃k−s−1Bk−s−1 + E1(η),

with

d̃k−s = −
s+n+1−δ

s+1

(
1+

k−s
2(s+1)

)
+

n−k+s
2(s+1)

, c̃k−s =
(s+n+1−δ)(s+2)

2(s+1)2 .

The last step is

B1 = d̃1

∫
σ1|∇v|

2k v−δη + c̃1d̃0

∫
|∇v|

2(k+1)v−δη.

Substitute (3-6) into (3-5), inductively. This proves (3-1) for some constants ck−s

and dk−s obtained from c̃k−s and d̃k−s . Note that ck−s > 0 if δ < n + 1. We also
want dk−s > 0 for s = 1, . . . , k, and this is achieved when δ is close enough to
n + 1 because n > 2k. �

Lemma 3.2. With the same hypothesis as in the previous lemma,

(3-7)
∫

U
vα/k−γ ηθ .

(
−1+γ−

n
2

)∫
U
σk |∇v|

2v−γ ηθ
+ E2(η), where

E2(η) .

∣∣∣∣∫
U

∑
i

viηiv
1−γ ηθ−1

∣∣∣∣.
Proof. Since σk(v) = vα and σk ≤ C(n, k)σ k

1 (Lemma 2.2), we get σ1(v) & vα/k .

It is easy to see that∫
σ1v

−γ ηθ
=

(
−1+γ−

n
2

)∫
|∇v|

2v−γ ηθ
+ E2(η),

and the lemma is proved. �

4. Main estimates

Here we obtain the needed L p estimate, as a consequence of (3-1). The terms on
the left-hand side of (3-1) will be “good” terms, and we will give an estimate of
the error terms.

Proposition 4.1. Take n > 2k, α ∈ (0, k), and let v be a solution of (1-3). We have

(4-1)
∫

ρ<|x |<Mρ

vα(k+1)/k−δ . 1
ρ2(k+1)

∫
Aρ∪AMρ

v2(k+1)−δ
+

1
ρ2

∫
Aρ∪AMρ

v2+α−δ,

for δ smaller than but close enough to n + 1, and for Aρ =
{ 1

2ρ < |x | < ρ
}

and
AMρ =

{
Mρ < |x | < 2Mρ

}
; the constants depend on M but not on ρ.



92 MARÍA DEL MAR GONZÁLEZ

Proof. If we take α−δ = −γ , then −1−
1
2 n+γ > 0, and the preceding lemma

allows us, in (3-1), to replace∫
|∇v|

2vα−δηθ by
∫

vα(k+1)/k−δηθ
+ E2(η).

Let η be a smooth cutoff function such that

η =

{
1 if ρ < |x | < Mρ,

0 if 0 < |x | < 1
2ρ and 2Mρ < |x |,

|∇η| . 1/ρ, and |D2η| . 1/ρ2. The error E1(η) in (3-2) is of one of these two
types:

E11(η) .

∣∣∣∣∫
Aρ∪AMρ

∑
i, j

Lk
i jviηjv

1−δηθ−1
∣∣∣∣, or

E12(η) .
k∑

s=1

∣∣∣∣∫
Aρ∪AMρ

∑
i, j

T k−s
i j vjηj |∇v|

2s v1−δηθ−1
∣∣∣∣.

These will be handled as in the proof of [González 2005a, Theorem 1.1], but here
we present a clearer proof for this particular cutoff.

To understand E11, substitute Lk
= (1 − k/n) σk I − T k , so that

(4-2) E11(η) .
∫

Aρ∪AMρ

σkviηiv
1−δηθ−1

+

∫
Aρ∪AMρ

T k
i jviηjv

1−δηθ−1.

We cannot use the standard trick — to estimate the norm ‖T k
‖ . σk as in Lemma

2.7 — because we cannot conclude that T k is positive definite from the information
on σ1, . . . , σk , and we need to write everything in terms of smaller T k−s’s. An
inductive process is needed.

Substitute T k
i j = σkδi j − Ail T k−1

l j and Ail = vvil −
1
2 |∇v|

2δil in (4-2). Together
with Lemma 2.7, we have

(4-3) E11(η) .
∫

σk |∇v| |∇η|v1−δηθ−1
+

∫
σk−1|∇v|

3
|∇η|v1−δηθ−1

+

∣∣∣∣∫ T k−1
l j vilviηjv

2−δηθ−1
∣∣∣∣.

For the last term, proceed as in (3-4):

(4-4)
∫

T k−1
l j vilviηjv

2−δηθ−1
=

1
2

∫
∂l

(
|∇v|

2)
T k−1

l j ηjv
2−δηθ−1

= −
1
2

∫
(∂l T k−1

l j )|∇v|
2ηjv

2−δηθ−1
−

1
2

∫
T k−1

l j |∇v|
2ηl jv

2−δηθ−2

−
2−δ

2

∫
T k−1

l j ηlvj |∇v|
2v1−δηθ−1.
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Note that (2-5) helps to compute ∂l T k−1
l j , and thus, from (4-4) and Lemma 2.7,

(4-5)
∣∣∣∣∫ T k−1

l j vilviηjv
2−δηθ−1

∣∣∣∣
.

∫
σk−1|D2η||∇v|

2v2−δηθ−2
+

∫
σk−1|∇v|

3
|∇η|v1−δηθ−1.

Young’s inequality for a small ε, together with (4-3) and (4-5), gives

(4-6) E11(η) . ε

∫
σk |∇v|

2ηθv−δ
+

Cε

ρ2

∫
Aρ∪AMρ

σkv
2−δηθ−2

+ ε

∫
σk−1|∇v|

4ηθv−δ
+

Cε

ρ4

∫
Aρ∪AMρ

σk−1v
4−δηθ−4.

To finish the estimate, we just need (4-7) from the next lemma, applied iteratively:

E11(η) . ε

k∑
s=0

∫
σk−s |∇v|

2(s+1)ηθv−δ
+

Cε

ρ2(k+1)

∫
Aρ∪AMρ

v2(k+1)−δ.

The estimate for E12(η) follows in a similar manner. For the error in E2(η),
defined in 3-7, we use Young’s inequality with p = q = 2:

E2(η) .
∫

|∇v| |∇η|v1−γ ηθ−1 . ε

∫
|∇v|

2vα−δηθ
+

Cε

ρ2

∫
Aρ∪AMρ

v2+α−δ.

Putting it all together in (3-1), and taking into account that
∑
i, j

Lk
i j Ei j ≥ 0,∫

ρ<|x |<Mρ

vα(k+1)/k−δ
≤

∫
vα(k+1)/k−δηθ

. 1
ρ2(k+1)

∫
Aρ∪AMρ

v2(k+1)−δ
+

1
ρ2

∫
Aρ∪AMρ

v2+α−δ. �

Lemma 4.2. For all ε > 0 and s = 0, . . . , k − 1, and for θ a big positive integer,

(4-7) 1
ρ2(s+1)

∫
σk−sv

2(s+1)−δηθ−2(s+1)

≤ ε

∫
σk−s−1|∇v|

2(s+2)ηθv−δ
+

Cε

ρ2(s+2)

∫
{|∇η| 6=0}

σk−s−1 ηθ−2(s+2)v2(s+2)−δ.
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Proof. First use the “divergence” formula (2-6) for σk−s with integration by parts:

(4-8) (k−s)
∫

σk−sv
2(s+1)−δηθ−2(s+1)

=
n−k+s+1

2

∫
σk−s−1|∇v|

2ηθ−2(s+1)v2(s+1)−δ

− (n+2(s+1)−δ+1)

∫
T k−s−1

i j vivjη
θ−2(s+1)v2(s+1)−δ

−

∫
T k−s−1

i j viηjη
θ−2(s+1)−1v2(s+1)−δ+1.

Use Lemma 2.7 again to bound the norm of the Newton tensor in (4-8):

(4-9)
∫

σk−sv
2(s+1)−δηθ−2(s+1) .

∫
σk−s−1|∇v|

2ηθ−2(s+1)v2(s+1)−δ

+
1
ρ

∫
σk−s−1|∇v|ηθ−2(s+1)−1v2(s+1)−δ+1.

Young’s inequality with ε and p = s + 2, q = (s+2)/(s+1) now reads

(4-10)
∫

σk−s−1|∇v|
2ηθ−2(s+1)v2(s+1)−δ

. ερ2(s+1)

∫
σk−s−1|∇v|

2(s+1)ηθv−δ
+

Cε

ρ2

∫
σk−s−1η

θ−2(s+2)v2(s+2)−δ.

For the second part in (4-9), take p = 2(s + 2) and q =
2(s+2)

2(s+2)−1
:

(4-11) 1
ρ

∫
σk−s−1|∇v|ηθ−2(s+2)−1v2(s+1)−δ+1

. ερ2(s+1)

∫
σk−s−1|∇v|

2(s+2)ηθv−δ
+

Cε

ρ2

∫
σk−s−1η

θ−2(s+2)v2(s+2)−δ.

The lemma is proved by substituting (4-10) and (4-11) into (4-9). �

Proposition 4.3. For n ≥ 2(k + 1), α ∈ (0, k), and v a solution of (1-3), we have

(4-12)
∫

ρ<|x |<Mρ

vα(k+1)/k−δ
≤ Cρn−(δ−α(k+1)/k)/(1−α/2k),

where C depends on M and δ, but not on ρ.

Proof. Use Hölder’s inequality with

p =
δ − α(k + 1)/k
δ − 2(k + 1)

and q =
p

p − 1
to get

(4-13) 1
ρ2(k+1)

∫
Aρ∪AMρ

v2(k+1)−δ
≤ ε

∫
Aρ∪AMρ

vα(k+1)/k−δ
+ Cερ

n−2(k+1)q ,
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for some small ε, to be chosen later. Also, a Hölder estimate with

p̃ =
δ − α(k + 1)/k

δ − 2 − α
and q̃ =

p̃
p̃ − 1

gives

(4-14) 1
ρ2

∫
Aρ∪AMρ

v2+α−δ
≤ ε

∫
Aρ∪AMρ

vα(k+1)/k−δ
+ Cερ

n−2q̃ .

When α ∈ (0, k) and δ is close enough to n +1, then p, p̃ > 1. Look at the powers
of ρ in (4-13) and (4-14):

n − 2(k+1)q = n − 2q̃ = n −
δ − α(k + 1)/k

1 − α/2k
.

Choosing ε small enough, we conclude from (4-1) that∫
ρ<|x |<Mρ

vα(k+1)/k−δ
≤ Cρn−(δ−α(k+1)/k)/(1−α/2k). �

5. Proof of Theorem 1.1

The next proposition is similar to the study of the critical problem in [González
2005a]. In particular, a volume finiteness condition gives regularity near the sin-
gularity.

Proposition 5.1. Take α ∈ (0, k) and n > 2k, and let v be a solution of (1-3) on
Bρ(x0) ⊂ B, with v > 0 and v ∈ 0+

k . If∫
Bρ(x0)

v(α−2k)n/(2k)
≤ a

for some small enough a (not depending on ρ), then

(5-1) sup
Bρ/2(x0)

|v−1
| ≤

C
ρn/p ‖v−1

‖L p(Bρ(x0))

for all p > (n−2k)k/(k+1). In particular, if

(5-2)
∫

ε<|x |<1
v(α−2k)n/(2k) < C < ∞

for some constant C independent of ε, the function v is bounded near the origin.

Proof. The argument is similar to [González 2005a, Theorem 1.2] for the critical
problem. Condition (5-2) is analogous to its volume smallness condition. �

Proof of Theorem 1.1. Fix x0 small enough and take 2R = |x0|. First, note that
Hölder estimates with

r =
δ − (k + 1)/k

(2k − α)n/(2k)
> 1 and 1 =

1
r

+
1
s
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give, independently of x0,

(5-3)
∫

BR(x0)

v(α−2k)n/(2k)
≤

(∫
R≤|x |≤3R

v(k+1)/k−δ

)1/r

εn/s

. R
(

n−
δ−α(k+1)/k

1−α/(2k)

) 1
r

n
s . R0 < ∞.

We cannot apply Proposition 5.1 directly to v. However, we could have started
with the function ṽ(y) = A2k/(2k−α)v(y/A) that still satisfies the same equation
σk(ṽ) = ṽα, for some A big enough and of the form

A = (constant)
∫

R≤|x |≤3R
v(α−2k)n/(2k).

Since we are interested only in the local behavior near zero, we can assume that
(5-1) gives an estimate for v,

sup
BR/2(x0)

|v−1
| ≤

C
Rn/p ‖v−1

‖L p(BR(x0))

for all p > (n−2k)k/(k + 1), and with C depending on∫
R≤|x |≤3R

v(α−2k)n/(2k).

This estimate is uniformly bounded by a constant, independently of R, because of
(5-3). It is also true that

(5-4) sup
BR/2(x0)

|v−1
| ≤

C
|x0|n/p ‖v−1

‖L p({R≤|x |≤3R})

for all p > (n−2k)k/(k + 1). Set p = δ − α(k + 1)/k; this choice is valid when
α ∈ (0, k) and n > 2k. Use (4-12) again:∫

R≤|x |≤3R
v−p

≤ C |x0|
n−

p
1−α/(2k) ,

and thus, from (5-4), we arrive at

v−1(x0) ≤
C

|x0|2k/(2k−α)
,

as desired. �

Corollary 5.2 (Harnack). Under these hypotheses, there exists M0 > 0 such that,
for all ρ > 0 and M ≤ M0,

(5-5) sup
ρ≤|x |≤ρM

v−1
≤ C inf

ρ≤|x |≤ρM
v−1,

where C is independent of v, ρ, and M.
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Proof. Once we get a supremum estimate (5-4) for a ball, standard elliptic theory
yields the infimum estimate. If we write v−2

= u2/(n−2), then u is a superharmonic
function. To finish, use a covering argument for the annulus {ρ ≤ |x | ≤ ρM}. �

Corollary 5.3. If v is a solution of (1-3), then either v−1 is bounded near the
origin, or v−1(x) → ∞ as x → 0.

Proof. The argument follows the steps of [Gidas and Spruck 1981, Corollary 3.3],
by using the second part of Proposition 5.1. �

6. Proof of Theorem 1.2

We have proved the estimate

(6-1) v−1(x) ≤
C

|x |2k/(2k−α)

Now we would like to get the opposite inequality. Suppose that

lim
x→0

inf |x |
2k/(2k−α)v−1(x) = 0.

From the Harnack estimate (5-5) follows that

(6-2) lim
x→0

|x |
2k/(2k−α)v−1(x) = 0.

We want to see that in this case the function v−1 is bounded near the origin and
thus that the theorem follows. It suffices to establish (5-2).

Let’s review two results from [González 2005a]:

Proposition 6.1. Let v be a solution with v−1
∈ C3(U ), v > 0, v ∈ 0+

k , and n > 2k.
For all ϕ ∈ C∞

0 (U ) and θ a big positive integer,

(6-3)
∫

U
σkϕ

θv−γ
≥

k∑
s=1

ck−s(γ )

∫
U

σk−s |∇v|
2s ϕθv−γ

+ E(ϕ),

where

(6-4) E(ϕ) .
k∑

s=1

∣∣∣∣∫
U

∑
i, j

T k−s
i j vjϕi |∇v|

2(s−1)ϕθ−1v1−γ

∣∣∣∣,
and where the coefficients ck−s(γ ) are positive for all γ with

(6-5) γ > n −
n − 2k
k + 1

.

Proposition 6.2. For all ε > 0, the error term (6-4) can be estimated by

E(ϕ) ≤ ε

k∑
s=1

∫
σk−s |∇v|

2s ϕθv−γ
+ Cε

∑
Uk

∫
Uk(ϕ)ϕθ−αk v2k−γ ,
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where the Uk(ϕ)’s are groups of derivatives of ϕ of order 2k, and αk ∈ R are
constants depending on each of the Uk’s. These concepts are defined inductively in
the following manner:

• For a fixed s = 1, . . . , k, the starting point is

Us(ϕ)ϕαs = |∇ϕ|
2s ϕ−2s .

• For each integer l = 0, 1, . . . and m = s + l, and once given Umϕαm , the
following step is of one of these three shapes:

(6-6) Um+1ϕ
−αm+1 =


U (m+1)/m

m ϕ−αm(m+1)/m,∣∣∇Um
∣∣ 2(m+1)

2(m+1)−1 ϕ
−αm

2(m+1)
2(m+1)−1 ,(

|∇ϕ|
2Um

)
ϕ−αm−2.

• The ending point is when m = s + l reaches k.

We will use (6-3) for a suitable cutoff function. Take ϕ = ηr with η ∈ C∞

0 (B\{0}),
such that

η =

{
1 if ε < |x | < R,

0 if |x | < 1
2ε and |x | > 2R,

and so that the derivatives have a good bound on 1
2ε < |x | < ε and R < |x | < 2R.

The value of γ will be chosen later. Rewrite (6-3) as

(6-7)
∫

σkv
−γ ϕθ &

k∑
s=1

∫
σk−s |∇v|

2s v−γ ϕθ
−

∫
T k−1

i j viϕjϕ
θ−1v1−γ

+ Ẽ(ϕ),

with

Ẽ(ϕ) .
k∑

s=2

∣∣∣∣∫ T k−s
i j viϕj |∇v|

2(s−1)ϕθ−1v1−γ

∣∣∣∣,
since we will look more carefully at the term in T k−1. Integration by parts gives

−

∫ ∑
i, j

T k−1
i j viϕjϕ

θ−1v1−γ
= −

1
2−γ

∫ ∑
i, j

T k−1
i j ∂i (v

2−γ )ϕjϕ
θ−1

=
1

2−γ

∫ ∑
i, j

T k−1
i j ϕi jϕ

θ−1v2−γ
+

1
2−γ

∫ ∑
i, j

∂i (T k−1
i j )ϕjϕ

θ−1v2−γ

+
θ−1
2−γ

∫ ∑
i, j

T k−1
i j ϕiϕjϕ

θ−2v2−γ .
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Substituting (2-5) into this, we get

−(n+2−γ )

∫ ∑
i, j

T k−1
i j viϕjϕ

θ−1v1−γ
=

∫ ∑
i, j

T k−1
i j ϕi jϕ

θ−1v2−γ

− (n−k+1)

∫ ∑
i

σk−1viϕiϕ
θ−1v1−γ

+ (θ−1)

∫ ∑
i, j

T k−1
i j ϕiϕjϕ

θ−2v2−γ .

Now substitute this into (6-7):

(6-8)
∫

σkϕ
θv−γ &

k∑
s=1

∫
σk−s |∇v|

2s ϕθv−γ
+

1
n+2−γ

∫ ∑
i, j

T k−1
i j ϕi jϕ

θ−2v2−γ

+
θ−1

n+2−γ

∫ ∑
i, j

T k−1
i j ϕiϕjϕ

θ−2v2−γ

−
n−k+1
n+2−γ

∫ ∑
i

σk−1viϕiϕ
θ−1v1−γ

+ Ẽ(ϕ).

Group all the error terms into

E(ϕ) .
k∑

s=1

∫
σk−s |∇ϕ| |∇v|ϕθ−1v1−γ .

Compute

ϕi =
xi

r
η + E1(ϕ),

ϕi j = r−1
(
−

xi xj

r2 +δi j

)
η + E1(ϕ),∑

i, j
T k−1

i j ϕi j = r−1
(
−

∑
i, j

T k−1
i j

xi xj

r2 +(n−k+1)σk−1

)
η + E1(ϕ).

Since T k−1 is positive definite and trace T k−1
= (n−k+1)σk−1, as long as we keep

1 < θ we have∑
i, j

T k−1
i j

(
ϕi j +(θ−1)ϕiϕjr−θ

)
≥ C(θ)σk−1r−1η2

+ E1(ϕ),

for some C(θ) > 0. If we keep γ < n+2, we can conclude from (6-8) that

(6-9) E(ϕ) + E1(ϕ) +

∫
σkϕ

θv−γ

&
k∑

s=1

∫
σk−s |∇v|

2s ϕθv−γ
+

∫
σk−1r−2ϕθv2−γ .
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We have not been very precise with the errors E1(ϕ); however, they are of a similar
type to E(ϕ) and can be treated in the same manner. Note that, in the positive cone,

σk−1 & σ
(k−1)/k
k = vα(k−1)/k,

so, with (6-9) we have actually proved

(6-10) E(ϕ) &
∫ (

vα(k−1)/k+2−γ r−2
− vα−γ

)
ϕθ

+

k∑
s=1

∫
σk−s |∇v|

2s ϕθv−γ .

To handle E(ϕ), we need to control the error terms that appear in Proposition 6.2.
Using Lemma 6.3 below,

(6-11)
∫

Uk(ϕ)ϕθ−αk v2k−γ

.
∫

r−2kϕθv2k−γ
+

1
ε2k

∫
ε/2<|x |<ε

r θv2k−γ
+

1
R2k

∫
R<|x |<2R

r θv2k−γ

Looking one-by-one at the terms above, notice that

1
ε2k

∫
ε/2<|x |<ε

r θv2k−γ
→ 0 as ε → 0,

by using the previous estimate (6-1) and the definition of η, and as soon as

(6-12) γ > n − α
(n−2k

2k

)
.

A similar argument gives
1

R2k

∫
R<|x |<2R

r θv2k−γ
≤ C.

The other integral in (6-11) is bounded by∫
r−2kϕθv2k−γ .

∫ (
vα(k−1)/k+2−γ r−2)(v−α(k−1)/k−2+2kr2−2k)ϕθ .

Our assumption (6-2) yields

v−α(k−1)/k−2+2k r2−2k
= o(1),

and thus from (6-10) we obtain

C &
∫ (

vα(k−1)/k+2−γ r−2
− vα−γ

)
ϕθ .

Again, because of (6-2), we have

r2vα/2−k
= o(1).

Theorem 1.1 gives
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vα−γ .
(
vα(k−1)/k+2−γ r−2)(r2v(α−2k)/2).

Comparing the orders, we quickly obtain

(6-13)
∫

vα(k−1)/kr−2v2−γ ϕθ < ∞.

This is precisely the term (5-2) that we need to estimate, because∫
ε≤|x |≤R

v(α−2k)n/(2k)
=

∫
vα(k−1)/k+2−γ v−α(k−1)/k−n+αn/(2k)−2+γ ηθ(6-14)

.
∫

vα(k−1)/k+2−γ r
(
−α k−1

k −n+α n
2k −2+γ

)(
2k

2k−α

)
ηθ

=

∫
vα(k−1)/k+2−γ r−2 ϕθ ,

after using Theorem 1.1 and choosing θ and γ so that

(6-15)
(
−α

k−1
k

− n + α
n
2k

− 2 + γ
)( 2k

2k−α

)
= −2 + θ,

that is, picking
γ = n − α

(n−2k
2k

)
+ θ

(
1 −

α

2k

)
.

This is an admissible value for γ because, when α < 2k/(k + 1), it can be chosen
to satisfy (6-5), (6-12), γ < n + 2, and θ > 1.

Lemma 6.3. For the cutoff ϕ = rη constructed in the previous proof ,

Uk(ϕ)ϕθ−αk . r−2kϕθ
+ ε−2kr θχ

{ε/2≤|x |<ε} + R−2kr θχ
{R≤|x |<2R}

Proof. The definition of the Uk was given in Proposition 6.2. We are just interested
in the orders of r and ε. For fixed s = 1, . . . , k, the initial step is

Us(ϕ)ϕθ−2s
= |∇ϕ|

2s ϕθ−2s

. |∇r |
2s ϕθ−2sη2s

+ |∇η|
2s r2sϕθ−2s . r−2sϕθ

+ ε−2sr θη2s .

Next, assume that the result is true for m = s + l:

Um(ϕ)ϕθ−αm . r−2mϕθ
+ ε−2mr θη2m .

The proof for m + 1 follows easily from (6-6). �
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