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ASYMPTOTIC ESTIMATION FOR A p-GINZBURG–LANDAU
TYPE MINIMIZER IN HIGHER DIMENSIONS

YUTIAN LEI

This paper is concerned with the asymptotic behavior of the minimizers uε

of a p-Ginzburg–Landau type functional when ε → 0. First the author
discusses the location of zeros of uε qualitatively. Then the W 1, p estimation
of uε is set up. Finally, the author proves the C1,α convergence of uε.

1. Introduction

Let Br = {x ∈ Rn
; |x | < r}, where n ≥ 2. Denote by uε the minimizer of the

functional

Eε(u)=
1
2

∫
B1

|∇u|
2
+

1
4ε2

∫
B1\B%

(1 − |u|
2)2 +

1
2ε2

∫
B%

|u|
2

in the function space H 1
g (B1, Rn), where the mapping g : ∂B1 → Sn−1 is smooth

and satisfies deg(g, ∂B1) = d 6= 0. The functional Eε(u) with n = 2 is related to
the Ginzburg–Landau model of superconductivity with normal impurity inclusion
such as superconducting-normal junctions [Chapman et al. 1995]. To represent the
domains occupied by the superconducting materials and the normal conducting
materials, we use B1 \ B% and B%, respectively. The minimizer uε is the order
parameter. In the physics literature, uε is called a Higgs field. The parameter ε,
which has the dimension of length, depends on the material and its temperature.
When the temperature is not too close to the critical temperature, ε is extremely
small. The zeros of uε exist in B1 since d 6= 0. They are known as the Ginzburg–
Landau vortices which are of significance in the theory of superconductivity [Du
et al. 1992; Tinkham 1975]. The asymptotic behavior of the minimizer uε was stud-
ied when both ε and % converge to 0, and the vortex-pinning effect was discussed
[Ding et al. 1998].
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Now, we consider the minimizer of

Eε(u, B1)=
1
p

∫
B1

|∇u|
p
+

1
4ε p

∫
B1\B%

(1 − |u|
2)2 +

1
2ε p

∫
B%

|u|
2

with p > 1 and p 6= n in the class W = W 1,p
g (B1, Rn). By means of the calculus

of variations, we can see the existence of minimizers uε. As in [Ding et al. 1998],
we are concerned with the asymptotic behavior of uε when ε and % tend to 0. In
this paper, we discuss the problem in the following cases:

Case I: % ≤ ε or % = O(ε) as ε→ 0;

Case II: % > ε and lim%→0 ε/% = 0.

In Case I, by the same argument proving Theorem III.1 in [Bethuel et al. 1994],
we can easily see that

(1–1) Eε(uε, B1)≤ C(1 + εn−p).

However, in Case II, the proof of (1–1) seems to be difficult. In Section 2, we
will establish the estimation for Eε(uε, B1 \ Bγ %) with γ > 1; see Proposition 2.4.
Based on these results, in Section 3 we describe the vortex-pinning effect, i.e., the
location of the zeros of the minimizer.

Theorem 1.1. Assume uε is a minimizer. Then there are finitely many points
a1, a2, . . . , aN ∈ B1, such that for any η ∈ (0, 1/2), there is h = h(η) > 0 which
is independent of ε, % ∈ (0, ε0) with ε0 sufficiently small, satisfying the following
properties:

In Case I,

(1–2) {x ∈ B1; |uε(x)|< 1 − η} ⊂
⋃N

i=1 B(ai , hε)∪ (Bhε ∪ B%).

If hε < % ≤ ε, then

(1–3) {x ∈ B%; |uε(x)| ≥ η} ⊂ Bhε and |uε(x)|< η, ∀x ∈ B% \ Bhε.

In Case II with p > n, there exists γ > 1 such that

(1–4) {x ∈ B1; |uε(x)|< 1 − η} ⊂
⋃N

i=1 B(ai , hε)∪ Bγ %.

In Case II with n − t < p < n, for t a constant in (0,min{1/2, 4/n}), we have

(1–5) {x ∈ B1; |uε(x)|< 1 − η} ⊂
⋃N

i=1 B(ai , h%(n−1)/nε1/n)∪ Bγ %.

Remark 1. If the vortices (zeros of |uε|) concentrate in some region, we talk of the
pinning effect. According to Theorem 1.1, the vortices converge to {0, a1, . . . , aN }

when both % and ε tend to zero. When hε < % ≤ ε, we investigate a fixed point
x0 ∈ Bhε \ {0} satisfying |uε(x0)| ≥ η. In this situation, the superconductive state
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at x0 appears. Letting ε go to zero, when ε becomes so small that x0 ∈ B% \ Bhε,
the normal conductive state at x0 may appear, since |uε(x0)| < η. As ε becomes
extremely small, x0 ∈ B1/2 \ B%, so |uε(x0)| ≥ 1 − η. Again the superconductive
state at x0 appears. This shows the conductive state is complicated and may change
near the origin when ε and % tend to zero.

Next, we will set up the uniform estimation of ‖uε‖W 1,p . When p>n, the idea in
[Ding et al. 1998] (coming from [Bethuel et al. 1994]) is not valid, since the coeffi-
cients C2 and C3 of εn−p in the upper bounds for Eε(uε, B1) and Eε(uε, B1 \ Bγ %),
respectively, are not sufficiently accurate. (See Propositions 2.3 and 2.4.) The
reason is that the conformal transformation of

∫
|∇uε|p dx is lost when p 6= n.

Although Eε(uε, [B(ai , R) \ B(ai , hε)] ∪ [BR \ Bγ %]) can be bounded below by
C4(ε

n−p
−1), the constant C4 may be smaller than C2 and C3. Thus, it is impossible

to get the uniform estimation of Eε(uε, K ) as we do in the case p = n [Bethuel
et al. 1994; Ding et al. 1998; Han and Li 1996; Hong 1996], where K is an arbitrary
compact subset of B1 \ {0, a1, a2, . . . , aN }. In Section 4, we establish the uniform
estimation by means of induction. However in the proof, there are few results
linking the degrees of the zeros of uε and the singularities of the p-harmonic maps.
Hence, the relation between d and N is still open.

Theorem 1.2. Assume uε is a minimizer. Then |uε| ≤ 1 a.e. on B1. In addition,
in Case I with p ∈ (1, n), there exists a constant C > 0 which is independent of
ε, % ∈ (0, ε0), such that

(1–6) Eε(uε, B1)≤ C.

In Case I with p > n or in Case II, for any compact K ⊂ B1 \ {0, a1, a2, . . . , aN },
there exists C = C(K ) > 0 such that

(1–7) Eε(uε, K )≤ C.

Remark 2. Based on these results, we will set up the following convergences of
the minimizer as % and ε go to 0:

(1) In Case I with p ∈ (1, n), obviously, Eε(uε, B1) ≤ Eε(u∗, B1), where u∗ is a
least map of the energy

∫
B1

|∇u|
p dx on W 1,p

g (B1, Sn−1). In addition, we have

lim
ε→0

1
ε p

∫
B%

|u∗|
2 dx = C(π) lim

ε→0

%n

ε p = 0.

Thus, by the weak lower semicontinuity of
∫

|∇u|
p, there is a subsequence uεk of

uε such that as ε → 0, the subsequence uεk converges strongly to u pin W 1,p(B1),
where u p is a least map of the energy

∫
B1

|∇u|
p dx on W 1,p

g (B1, Sn−1).
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(2) In Case I with p > n or in Case II, according to Theorem 1 in [Misawa
2001], we can conclude that for some subsequence uεk , as k → ∞, the subse-
quence uεk converges weakly to u p in W 1,p(K ), where u p is a p-harmonic map on
B1 \ {0, a1, a2, . . . , aN }. Its proof is also similar to that of Theorem 1.2 in [Hong
1996, pp632-633].

(3) When p > 2n − 2, from [Lei and Wu 2000, §6] we can deduce that for some
subsequence ũk of the regularized minimizer ũε introduced in [Hong 1996], if k
tends to ∞, then ũk → u p in C1,α(K ), α ∈ (0, 1), where u p is a p-harmonic map
on B1 \ {0, a1, a2, . . . , aN }.

Now, we shall loosen the constraint p > 2n −2. The following theorem will be
proved in Section 5.

Theorem 1.3. Assume ũε is a regularized minimizer and let K be any compact
subset of B1 \ {0, a1, a2, . . . , aN }. When p 6= n and p > n − t , for t a constant in
(0,min{1/2, 4/n}), if ε→ 0, then there is a subsequence ũk of ũε such that

ũk → u p in C1,α(K ), α ∈ (0, 1),

where u p is a p-harmonic map on B1 \ {0, a1, a2, . . . , aN }.

Remark 3. Via the uniform estimation in this paper, we prove the convergence
of uε. The compactness only leads to the convergence for some subsequence. If
the limit u p is unique, the convergence can be verified for the whole sequence.
However, the uniqueness of u p is yet to be established.

When p = n, all the results above can still be deduced by analogous arguments
in [Ding et al. 1998; Han and Li 1996; Hong 1996; Lei 2004].

2. Preliminaries

Proposition 2.1. The minimizer uε ∈ W satisfies
(2–1)∫

B1

|∇u|
p−2

∇u∇φ dx −
1
ε p

∫
B1\B%

uφ(1 − |u|
2) dx +

1
ε p

∫
B%

uφ |u|
2 dx = 0,

for all φ ∈ W 1,p(B1, Rn) where φ|∂B1 = 0. Moreover, |uε| ≤ 1 a.e. on B1.

Proof. Using calculus of variations, set u = uε in (2–1) and φ = u(|u|
2
− 1)+,

where (|u|
2
− 1)+ = min(k,max(0, |u|

2
− 1)), for k a positive constant. We then

have∫
B1

|∇u|
p(|u|

2
− 1)+ dx + 2

∫
B1

|∇u|
p−2(u∇u)2 dx

+
1
ε p

∫
B1\B%

|u|
2(|u|

2
− 1)2

+
dx +

1
ε p

∫
B%

|u|
4(|u|

2
− 1)+ dx = 0,
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from which it follows that

1
ε p

∫
B1\B%

|u|
2(|u|

2
− 1)2

+
dx +

1
ε p

∫
B%

|u|
4(|u|

2
− 1)+ dx = 0.

Thus |u| = 0 or (|u|
2
− 1)+ = 0 a.e. on B1, and hence |u| ≤ 1 a.e. on B1. �

Proposition 2.2. Assume that uε ∈ W satisfies (2–1). Then for any ρ > 0, there
exists a positive constant C1 independent of % and ε, such that for x ∈ B(0, 1−ρε),

‖∇uε(x)‖L∞(B(x,ρε)) ≤ C1ε
−1.

Proof. Let y = xε−1 in (2–1) and set v(y)= u(x). Then for any φ ∈ W 1,p
0 (Bε, Rn),

we have

(2–2)
∫

B
ε−1

|∇v|p−2
∇v∇φ dy

=

∫
B
ε−1\B(0,%ε−1)

v(1 − |v|2)φ dy −

∫
B(0,%ε−1)

vφ|v|2 dy.

Taking φ = vζ p for some ζ ∈ C∞

0 (Bε, R), we obtain the inequality∫
B
ε−1

|∇v|pζ p dy ≤ p
∫

B
ε−1

|∇v|p−1ζ p−1
|∇ζ ||v| dy

+

∫
B
ε−1\B(0,%ε−1)

|v|2(1 − |v|2)ζ p dy +

∫
B(0,%ε−1)

|v4
|ζ p dy.

Choose y ∈ B(0, ε−1
−ρ) such that B(y, 4ρ)⊂ Bε−1 . Taking ζ = 1 in B(y, 2ρ)

and ζ = 0 in Bε−1 \ B(y, 4ρ) satisfying |∇ζ | ≤ C(ρ), we have∫
B(y,4ρ)

|∇v|pζ p
≤ C

∫
B(y,4ρ)

|∇v|p−1ζ p−1
+ C.

Using Hölder’s inequality, we can derive that
∫

B(y,2ρ) |∇v|
p
≤ C . Combining this

with [1983, p. 244, lines 19–23] yields that

‖∇v‖
p
L∞(B(y,ρ)) ≤ C

∫
B(y,2ρ)

(1 + |∇v|)p
≤ C.

Setting x = yε in this inequality completes the proof. �

Proposition 2.3. Let uε be a minimizer. Then there is a constant C2 > 0 which is
independent of %, ε ∈ (0, 1), such that

Eε(uε, B1)≤ C2(1 + εn−p) in Case I,

Eε(uε, B1)≤ C2(1 + εn−p
+ %n−1ε1−p) in Case II.
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Proof. In Case I, let y = xε−1. Then

Eε(uε, B1)=
1
2

∫
B
ε−1

|∇uε|p dy +
1
4

∫
B
ε−1\B

ρε−1

(1−|uε|2)2 dy +
1
2

∫
B
ρε−1

|uε|2 dy.

Clearly, there exists u1 ∈ W minimizing

F(u, B1)=
1
2

∫
B1

|∇u|
p dy +

1
4

∫
B1

(1 − |u|
2)2 dy +

1
2

∫
B1

|u|
2 dy.

Define

u2 =

u1, if 0< |y|< 1;

y
|y|
, if 1 ≤ |y| ≤ ε−1.

Noticing that uε is a minimizer of Eε(u, B1), we have

Eε(uε, B1)≤ Eε(u2, B1)= F(u1, B1)+
1
2

∫
B
ε−1\B1

∣∣∣∇ y
|y|

∣∣∣p
dy ≤ C2(1 + εn−p).

In Case II, assume % < 1/4. For any integer 1 ≤ j ≤ |d|, take disjoint balls
{B(xi , R0)} for 1 ≤ i ≤ j in B1 \ B1/2, where R0 is a sufficiently small constant.
Set

w(x)=



v(x), if x ∈ (B1 \ B1/2) \
(⋃ j

i=1 B(xi , R0)
)
;

(x − xi )/|x − xi |, if x ∈ B(xi , R0) \ B(xi , εR0), 1 ≤ i ≤ j;

vi (x), if x ∈ B(xi , εR0), 1 ≤ i ≤ j;

(x/|x |)|d|− j , if x ∈ B1/2 \ B%+ε;

(|x | − %/ε) (x/|x |)|d|− j , if x ∈ B%+ε \ B%;

0, if x ∈ B%,

where (x/|x |)m , for m a positive integer, is the Sn−1-valued map given in n-
dimensional ball coordinates by

(x/|x |)m = (cos mθ1, sin mθ1 cos mθ2, . . . ,

sin mθ1 · · · sin mθn−2 cos mθn−1, sin mθ1 · · · sin mθn−1),

where v ∈ W 1,p
(
(B1 \ B1/2) \

(⋃ j
i=1 B(xi , R0)

)
, Sn−1

)
satisfies

v|∂B1 = g, v|∂B1/2 = (x/|x |)|d|− j , and v|∂B(xi , R0)= x/|x |, 1 ≤ i ≤ j,

and where vi is a minimizer of Eε(u, B(xi , εR0)) in W 1,p(B(xi , εR0), Rn) satis-
fying

vi |∂B(xi , εR0))= (x − xi )/|x − xi |, 1 ≤ i ≤ j.
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By calculating, we have

Eε
(
v, (B1 \ B1/2) \

(⋃ j
i=1 B(xi , R0)

))
≤ C;

Eε
(
w, B(xi , R0) \ B(xi , εR0)

)
≤ C(1 + εn−p);

Eε
(
vi , B(xi , εR0)

)
≤ C(1 + εn−p).

In addition,

Eε(w, B1/2 \ B%+ε)=
1
p

∫
B1/2\B%+ε

∣∣∣∇( x
|x |

)|d|− j ∣∣∣p
dx

=
(n − 1)p/2

p
(|d| − j)p

|Sn−1
|

∫ 1/2

%+ε

rn−p−1 dr ≤ C(1 + εn−p).

Since 0 ≤ (r − %)/ε ≤ 1 on [%, %+ ε], we obtain

Eε(w, B%+ε \ B%)=
1
p

∫
B%+ε\B%

(∣∣∣∇ |x | − %

ε

∣∣∣2 +

(
|x | − %

ε

∣∣∣∇( x
|x |

)|d|− j ∣∣∣2)p/2

dx

+
1

4ε p

∫
B%+ε\B%

(
1 −

(
|x | − %

ε

)2 )2

dx

≤
C
ε p

∫ %+ε

ε

rn−1 dr ≤ Cε−p((%+ ε)n − εn)
≤ C%n−1ε1−p.

Combining these estimates and noting that uε is a minimizer, we have

Eε(uε, B1)≤ Eε(w, B1)≤ C2(ε
n−p

+ %n−1ε1−p). �

Proposition 2.4. In Case II, for any given γ > 1, there exists C3 > 0 which is
independent of %, ε ∈ (0, 1), such that

Eε(uε, B1 \ Bγ %)≤ C3(1 + εn−p).

Proof. We prove the proposition by means of induction. Set

w1 =


w, if x ∈ B1 \ B1/2;

(x/|x |) |d|− j , if x ∈ B1/2 \ Bε;

(|x |/ε)
(
x/|x |

)|d|− j
, if x ∈ Bε.

For any γ > 1, there exists δ > 0 such that γ − δ > 1. According to Proposition
2.3, we have

(2–3) Eε(uε, B1 \ B(γ−δ+(k−1)n−1δ)%)≤ C(1 + εn−p
+ %n−kεk−p)

with k = 1. Suppose (2–3) holds for k = m with m = 2, 3, . . . , n − 1. Then we
shall verify it for k = m + 1.
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By the mean value theorem, there is σm ∈ (γ−δ+ (m−1)n−1δ, γ−δ+ mn−1δ)

such that∫
Bγ %\B(γ−δ)%

(1 − |uε|2)2 dx =

∫ γ %

(γ−δ)%

(∫
Sn−1

(1 − |uε(r, ζ )|2)2 dζ
)

rn−1 dr

=

∫
Sn−1

(1 − |uε(σm%, ζ )|
2)2dζ ·

∫ γ %

(γ−δ)%

rn−1 dr

= C−1%n
∫

Sn−1
(1 − |uε(σm%, ζ )|

2)2 dζ.

This means that

(2–4)
1
ε p

∫
Sn−1

(1 − |uε(σm%, ζ )|
2)2dζ = C%−nε−p

∫
Bγ %\B(γ−δ)%

(1 − |uε|2)2 dx

≤ C%−n(1 + εn−p
+ %n−mεm−p),

by applying (2–3) with k = m. Define

u(r)=

(
1

|Sn−1|

∫
Sn−1

|u(r, ζ )|2 dζ
)1/2

for r ∈ [0, 1].

Using Hölder’s inequality, we easily get

(1 − |u(r)|2)2 ≤
1

|Sn−1|

∫
Sn−1

(1 − |u(r, ζ )|2)2 dζ for r ∈ [0, 1],(2–5) ∣∣∣∣du(r)
dr

∣∣∣∣2 ≤
1

|Sn−1|

∫
Sn−1

∣∣∣∣∂u(r, ζ )
∂r

∣∣∣∣2 dζ a.e. r ∈ [0, 1].(2–6)

Let

Wm =


w1, if x ∈ B1 \ Bσm%+ε;

(|x | − σm%/ε) (1 − u(σm%))+ u(σm%)w1, if x ∈ Bσm%+ε \ Bσm%;

uw1, if x ∈ Bσm%.

Obviously,

(2–7)
∫

B1

|∇w1|
p
+ Eε(w1, B1 \ Bσm%+ε)≤ C(1 + εn−p).

From (2–4), (2–5), and ε%−1
≤ 1, it follows that

Jm :=
1
ε p

∫ σm%+ε

σm%

(1 − |u(σm%)|
2)2rn−1 dr

≤ C%−n(1 + εn−p
+ %n−mεm−p)

∫ σm%+ε

σm%

rn−1 dr

≤ C%−n(1 + εn−p
+ %n−mεm−p)ε%n−1

≤ C(1 + εn−p
+ %n−m−1εm+1−p).
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So since 0 ≤ (r − σm%)/ε ≤ 1 for r ∈ [σm%, σm%+ ε], by (2–7) we have

(2–8) Eε(Wm, Bσm%+ε \ Bσm%)

≤ C
∫

Bσm%+ε\Bσm%

(
|∇w1|

p
(
|u(σm%)| +

|x | − σm%

ε
(1 − |u(σm%)|)

)p

+

(1 − |u(σm%)|

ε

)p
|∇|x ||

p
)

dx

+
1

4ε p

∫
Bσm%+ε\Bσm%

(
1 −

(
|u(σm%)| +

|x | − σm%

ε
(1 − |u(σm%)|)

)2
)2

≤ C
∫

Bσm%+ε\Bσm%

|∇w1|
p
+ C Jm ≤ C(1 + εn−p

+ %n−m−1εm+1−p).

Next, by the definition of w1 and Wm and from (2–5) and (2–6), it follows that

(2–9) Eε(Wm, Bσm% \ Bε)≤ Eε(uε, Bσm% \ Bε).

Finally, on Bε,

(2–10) (|∇u|
2
+|u|

2
|∇w1|

2)p/2
= (|∇u|

2
+|u|

2 |x |
2

ε2

∣∣∣∇( x
|x |

)|d|− j ∣∣∣2+
1
ε2 |u|

2)p/2.

Using the mean value theorem, we see that on Bε,(
|∇u|

2
+ |u|

2 |x |
2

ε2

∣∣∣∇( x
|x |

)|d|− j ∣∣∣2 +
1
ε2 |u|

2
)p/2

− (|∇u|
2)p/2

=
p|u|

2

2

( 1
ε2 +

(|d| − j)2

ε2

) ∫ 1

0

(
s
(
|∇u|

2
+ |u|

2 |x |
2

ε2

∣∣∣∇( x
|x |

)|d|− j ∣∣∣2 +
1
ε2 |u|

2
)

+ (1 − s)(|∇u|
2)

)(p−2)/2

ds

=
p|u|

2

2
1 + (|d| − j)2

ε2 I.

From Proposition 2.2 and (2–6), it follows that I ≤ Cε2−p. Substituting this into
the preceding equality and combining with (2–10), we obtain

Eε(uw1, Bε)=
1
p

∫
Bε

(
|∇u|

2
+ |u|

2
|∇w1|

2)p/2 dx +
1

2ε p

∫
Bε
w2

1|u|
2 dx

≤ Eε(u, Bε)+ Cε2−p
∫ ε

0
|u|

2 1
ε2 rn−1 dr.

By the definition of u and (2–6), we have at last that

(2–11) Eε(uw1, Bε)≤ Eε(uε, Bε)+ Cεn−p.
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Since uε is a minimizer, it follows from (2–7)-(2–9) and (2–11) that

Eε(uε, B1)≤ Eε(Wm, B1)≤ C(1 + εn−p
+ %n−m−1εm+1−p)+ Eε(uε, Bσm%).

Observing that Eε(uε, B1 \ B(γ−δ+mn−1δ)%)≤ Eε(uε, B1 \ Bσm%), we see that (2–3)
holds with k = m + 1. Proposition 2.4 follows by taking k = n in (2–3). �

3. Location of zeros

At first, we will show that there is no zero of uε near the boundary ∂B1.

Theorem 3.1. There is a constant ρ > 0, such that for x ∈ B1 \ B1−2ρε,

|uε(x)| ≥ 1/2.

Proof. Scaling y = xε−1 in (2–1) yields (2–2). According to the results of the Cα-
estimation of v (see, for example, Theorem 1 and lines 19-21 on p. 104 of [Chen
and DiBenedetto 1989]), there exist C>0 and α∈ (0, 1), such that for any ρ∈ (0, 1)
and y0 ∈ ∂Bε−1 , we have |v(y)− v(y0)| ≤ C |y − y0|

α for all y ∈ Bε−1 ∩ B(y0, 4ρ).
Taking ρ = 1/(8C), we obtain |v(y)| ≥ |v(y0)|−C |y − y0| ≥ 1/2. Letting x = yε,
easily implies the theorem. �

Proposition 3.2. Let uε be a minimizer of Eε(u, B1). There exists a constant C > 0
which is independent of %, ε ∈ (0, ε0) with ε0 sufficiently small, such that

1
εn

∫
B1\B%

(1 − |uε|2)2 +
1
εn

∫
B%

|uε|2 ≤ C in Case I,(3–1)

1
ε%n−1

∫
B1\B%

(1 − |uε|2)2 +
1

ε%n−1

∫
B%

|uε|2 ≤ C in Case II.(3–2)

Furthermore, in Case II with p > n, for any γ > 1, there is C > 0 independent of
%, ε ∈ (0, ε0) such that

(3–3)
1
εn

∫
B1\Bγ %

(1 − |uε|2)2 ≤ C.

Proof. When p> n, (3–1)-(3–3) are corollaries of Proposition 2.3 and Proposition
2.4 by multiplying by ε p−n or ε p−1%1−n . When 1 < p < n, the idea of the proof
comes from [Struwe 1993]. Set ν[ε] = inf{Eε(u, B1); u ∈ W }. For fixed u ∈ W ,
the map ε→ Eε(u, B1) is nonincreasing, and

−
∂

∂ε
Eε(u, B1)=

p
4ε p+1

∫
B1\B%

(1 − |uε|2)2 +
p

2ε p+1

∫
B%

|uε|2.
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Noting ν[ε+ δ] ≤ Eε+δ(uε, B1)≤ Eε(uε, B1)= ν[ε], we have

(3–4)
1

4ε p+1

∫
B1\B%

(1 − |uε|2)2 +
1

2ε p+1

∫
B%

|uε|2

= lim
δ→0

Eε(uε, B1)− Eε+δ(uε, B1)

δ
≤ limδ→0

ν[ε] − ν[ε+ δ]

δ
= −ν ′

[ε].

We claim that there exists a constant M > 0 independent of ε and % such that when
both % and ε tend to zero,

− ε p+1−nν ′
[ε] ≤ M in Case I;

− ε p%1−nν ′
[ε] ≤ M in Case II.

(3–5)

Otherwise, we can find ε1>0, such that if ε, %∈ (0, ε1), then −ν ′
[ε]>Mεn−p−1 in

Case I, and −ν ′
[ε]>Mε−p%n−1 in Case II. Now, let M = 2(n− p)(C2 +1)ε p−n

1 in
Case I and M = 2(C2+1)(p−1) in Case II. Here, C2 is the constant in Proposition
2.3. Integrating from ε to ε1, we obtain

ν[ε] ≥ ν[ε1] −

∫ ε1

ε

ν ′
[ε]dε > ν[ε1] + 2C2 + 1 in Case I;

ν[ε] ≥ ν[ε1] −

∫ ε1

ε

ν ′
[ε]dε > ν[ε1] + (2C2 + 1)ε1−p%n−1 in Case II.

These contradict Proposition 2.3. Substituting (3–5) into (3–4), we can find a
sufficiently small ε0 > 0 , such that (3–1) and (3–2) hold with C = M + 1. �

Hereafter, we assume ε, % ∈ (0, ε0). For any γ > 1, set

A = B1−ρε \ Bγ % in Case II,

A = B1−ρε \ B% in Case I.

Proposition 3.3. Let uε be a minimizer of Eε(u, B1). Then for any η ∈ (0, 1/2),
there exist positive constants λ,µ which are independent of %, ε, such that

(1) In Case I or in Case II with p > n, if

(3–6)
1
εn

∫
A∩B( · ,2lε)

(1 − |uε|2)2 ≤ µ,

for B( · , 2lε) a ball of radius 2lε with l ≥ λ, then |uε(x)| ≥ 1 − η for all x ∈

A ∩ B( · , lε).

(2) In Case I, if

(3–7)
1
εn

∫
B%∩B( · ,2lε)

|uε|2 ≤ µ,

then |uε(x)| ≤ η for all x ∈ B% ∩ B( · , lε).



114 YUTIAN LEI

Proof. Observe that there exists a constant C3 > 0 which is independent of % and
ε, such that for 0< r ≤ 1, if x is in B1, then |B1 ∩ B(x, r)| ≥ |A∩ B(x, r)| ≥ C3rn .
Let λ= η/(2C1) and µ= C3η

2λn/4.
Suppose that there is a point x0 ∈ A ∩ B( · , lε) such that |uε(x0)| < 1 − η.

According to Proposition 2.2, we have

(3–8) |uε(x)− uε(x0)| ≤ C1ε
−1

|x − x0| = C1λ= η/2 for all x ∈ B(x0, λε),

and hence (1 − |uε(x)|2)2 > η2/4 for all x ∈ B(x0, λε). Thus∫
B(x0,λε)∩A

(1 − |uε|2)2 > (η2/4) |A ∩ B(x0, λε)| ≥ C3η(λε)
n/4 = µεn.

Since x0 ∈ B( · , lε)∩ A and (B(x0, λε)∩ A)⊂ (B( · , 2lε)∩ A), it follows that∫
B( · ,2lε)∩A

(1 − |uε|2)2 > µεn,

which contradicts (3–6). This proves (1), and the proof of (2) is analogous. �

In Case II with p ∈ (1, n), Proposition 2.2 is not sufficient to deduce Propo-
sition 3.3. The reason is that in Case II, the estimation (3–2) is not accurate as
(3–1), which forces us to investigate (3–8) on the larger ball B(x0, λε

1/n%1−1/n).
Proposition 2.2 is invalid since it only holds on the smaller ball B(x0, λε). To
obtain Proposition 3.3, we instead use Proposition 3.4, though it only holds for p
sufficiently close to the dimension n.

Proposition 3.4. Assume uε is a minimizer of Eε(u, B1). Then in Case II with
p ∈ (n − t, n) where t ∈ (0,min{1/2, 4/n}), there exists a constant C > 0 such that
for any x, x0 ∈ A,

|uε(x)− uε(x0)| ≤ C |x − x0|
α for some α ∈

(
0, 1−n/(p + t)

)
.

Proof. By the Reverse Hölder inequality (Proposition 3.5) and Proposition 2.4, we
have ‖∇uε‖L p+t (A) ≤ C‖∇uε‖L p(A) ≤ C for some t ∈ (0,min{1/2, 4/n}).

Since |uε| ≤ 1 a.e. on B, we obtain ‖uε‖W 1,p+t (A) ≤ C . When p ∈ (n − t, n), by
the embedding theorem we see that |uε(x)−uε(x0)|≤ C |x −x0|

α for any x, x0 ∈ A,
for some α ∈ (0, 1 − n/(p + t)). �

Proposition 3.5 (Reverse Hölder inequality). Assume p > 1 and uε is a minimizer
of Eε(u, B1). Then there exist constants t ∈ (0,min{1/2, 4/n}), R0 ∈ (0, 1/2) and
C > 0 which are independent of ε and % such that for any B( · , R) ⊂ B1 with
2R < R0,(∫

B( · ,R)
|∇uε|q dx

)1/q

≤C
(∫

B( · ,2R)
(|∇uε|2+1)p/2 dx

)1/p

for q ∈[p, p+2t).

The proof is completely analogous to that of Proposition 2.1 in [Lei 2004].
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Proposition 3.6. Assume uε is a minimizer. Then in Case II with p ∈ (n − t, n)
where t is the constant in Proposition 3.5, for any η ∈ (0, 1/2), there exist positive
constants λ,µ which are independent of %, ε, such that if

1
ε%n−1

∫
A∩B( · ,2lε1/n%(n−1)/n)

(1 − |uε|2)2 ≤ µ,

where B( · , 2lε1/n%(n−1)/n) is some ball of radius 2lε1/n%(n−1)/n with l ≥ λ, then

|uε(x)| ≥ 1 − η for all x ∈ A ∩ B( · , lε1/n%(n−1)/n).

The proof is like that of Proposition 3.3; the only difference is that we apply
Proposition 3.4. instead of Proposition 2.2.

To find the zeros of uε in Case I or in Case II with p> n, we may take (2–1) as
a ruler to distinguish the ball of radius λε which contains the zeros. Given γ > 1,
let λ,µ be the same constants as in Proposition 3.3. If

1
εn

∫
B(xε,2λε)∩A

(1 − |uε|2)2 ≤ µ,

then B(xε, λε) is called a good ball. Otherwise it is called a bad ball. Now suppose
that {B(xεi , λε), i ∈ I } is a family of balls satisfying the following conditions:

(i) xεi ∈ A for i ∈ I .

(ii) A ⊂
⋃

i∈I B(xεi , λε).

(iii) B(xεi , λε/4)∩ B(xεj , λε/4)= ∅ for i 6= j .

Set Jε = {i ∈ I ; B(xεi , λε) is a bad ball}.

Proposition 3.7. There exists an integer N independent of ε exceeding the number
Card Jε of bad balls.

Proof. Since (iii) implies that every point in A can be covered by a finite number m
of balls where m is independent of ε and %, from (3–1) or (3–3) and the definition
of bad ball, we have

µεn Card Jε ≤

∑
i∈Jε

∫
B(xεi ,2λε)∩A

(1 − |uε|2)2

≤ m
∫
⋃

i∈Jε B(xεi ,2λε)∩A
(1 − |uε|2)2 ≤ m

∫
B1\B%

(1 − |uε|2)2 ≤ mCεn.

Hence Card Jε ≤ mC/µ≤ N . �

Proof of Theorem 1.1. Based on Proposition 3.7, by applying Theorem IV.1 of
[Bethuel et al. 1994], we may modify the family of bad balls so that the new



116 YUTIAN LEI

family, denoted {B(xεi , hε); i ∈ J }, satisfies⋃
i∈Jε B(xεi , λε)⊂

⋃
i∈J B(xεi , hε), Card J ≤ Card Jε,

and

(3–9) |xεi − xεj |> 8hε, i, j ∈ J, i 6= j,

where h is a constant satisfying λ≤ h = h(η)≤ λ9N
= 9Nη/(2C1). Choose η > 0

sufficiently small so that h < 1. Condition (3–9) implies that no two balls in the
new family intersect. Thus the points x where |uε(x)| ≤ 1 − η are contained in
these finite, disjoint bad balls {B(xi , hε)}N

i=1 and Bhε ∪ Bγ %. Combining this with
Theorem 3.1, we obtain (1–2).

Similarly, (1–3) is obtained by applying (3–1) and Proposition 3.3(2); (1–4) is
obtained by applying (3–3) and Proposition 3.3(1); lastly, (1–5) is obtained by
applying (3–2) and Proposition 3.6. �

For each i = 1, 2, . . . ,Card J , there exists a sequence εk → 0 such that the
centers xεk

i approach either 0 or some ai ∈ B1. There may be more than one such
subsequence xεk

i converging to the same point. We denote by 0, a1, a2, . . . , aN the
distinct points in {0, ai }

Card J
i=1 .

From the discussion above, we also see that for any σ > 0,

(3–10) |uε(x)| ≥ 1/2 for all x ∈ B1 \

( Card J⋃
j=1

B(a j , σ )∪ Bσ
)
.

4. Uniform estimation

Let uε be a minimizer of Eε(u, B1). When p ∈ (1, n), Propositions 2.3 and 2.4
imply (1–6) and (1–7), respectively. In this section we shall prove (1–7) when
p > n.

Theorem 4.1. Let R> 0 be small enough that B(x, 2R)b B1 \{0, a1, a2, . . . , aN }.
Then there are constants C > 0 and R j = 2R − j R/([p] + 1) such that

(4–1) Eε(uε, B j )≤ Cε j−p

for j = n, n + 1, . . . , [p], where ε ∈ (0, ε0) and B j = B(x, R j ).

For j = n, the inequality (4–1) is a corollary of Proposition 2.4. Suppose that
(4–1) holds for all j ≤ m. Then, in particular,

(4–2) Eε(uε, Bm)≤ Cεm−p.

Suppose m < [p]. We want to prove (4–1) for j = m + 1.
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According to Proposition 2.1 and (3–10), we have 1/2 ≤ |uε(x)| ≤ 1 for all
x ∈ B(x, 2R). As in the derivation of (2–4), by (4–2) and the mean value theorem,
there is r ∈ [Rm+1/2, Rm] such that

(4–3)
∫
∂B(x,r)

|∇uε|p dξ +
1
ε p

∫
∂B(x,r)

(1 − |uε|2)2 dξ ≤ Cεm−p.

Here ξ is the integration variable on ∂B(x, r).

Proposition 4.2. Denote B(x, r) by B. If ρm is a minimizer of the functional

E(ρ, B)=
1
p

∫
B
(|∇ρ|

2
+ 1)p/2

+
1

2ε p

∫
B
(1 − ρ)2

on W 1,p
|uε| (B, R+

∪ {0}), then E(ρm, B)≤ Cεm−p+1.

Proof. Obviously, the minimizer ρm exists and satisfies

(4–4) − div(v(p−2)/2
∇ρ)= 1/ε p(1 − ρ) on B,

and

(4–5) ρ|∂B = |uε|,

where v= |∇ρ|
2
+1. Since 1/2 ≤ |uε| ≤ 1, from the maximum principle it follows

that

(4–6) 1/2 ≤ ρm ≤ 1 on B.

Applying (4–2) we see easily that

(4–7) E(ρm, B)≤ E(|uε|, B)≤ C Eε(uε, B)≤ Cεm−p.

Multiplying (4–4) by (ν · ∇ρ), where ρ denotes ρm , and integrating over B, we
have

(4–8) −

∫
∂B
v(p−2)/2(ν · ∇ρ)2 dξ +

∫
B
v(p−2)/2

∇ρ · ∇(ν · ∇ρ)

=
1
ε p

∫
B
(1 − ρ)(ν · ∇ρ),

where ν denotes the unit outside norm vector on ∂B. Using (4–7) we obtain

(4–9)
∣∣∣ ∫

B
v(p−2)/2

∇ρ · ∇(ν · ∇ρ)

∣∣∣≤ Cεm−p
+

1
p

∣∣∣ ∫
B
ν · ∇(v p/2)

∣∣∣
≤ Cεm−p

+
1
p

∫
∂B
v p/2 dξ.
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Combining (4–3), (4–5), and (4–7) we also have∣∣∣ 1
ε p

∫
B
(1 − ρ)(ν · ∇ρ)

∣∣∣≤ 1
2ε p

∣∣∣ ∫
B
(1 − ρ)2 div ν−

∫
∂B
(1 − ρ)2 dξ

∣∣∣≤ Cεm−p.

Substituting this and (4–9) into (4–8) yields

(4–10)
∣∣∣ ∫
∂B
v(p−2)/2(ν · ∇ρ)2 dξ

∣∣∣≤ Cεm−p
+

1
p

∫
∂B
v p/2 dξ.

Applying (4–5), (4–3) and (4–10), we obtain for any δ ∈ (0, 1),∫
∂B
v p/2 dξ =

∫
∂B
v(p−2)/2

(
1 +

n−1∑
i=1

(τi · ∇ρ)2 + (ν · ∇ρ)2
)

dξ

≤ C(δ)εm−p
+ (1/p + 2δ)

∫
∂B
v p/2 dξ,

where τi , i = 1, 2, . . . , n − 1, denotes the unit tangent vector on ∂B and τi⊥τ j

when i 6= j . Choosing δ > 0 sufficiently small yields

(4–11)
∫
∂B
v p/2 dξ ≤ Cεm−p.

Multiplying both sides of (4–4) by (1 − ρ) and integrating over B, we have∫
B
v(p−2)/2

|∇ρ|
2
+

1
ε p

∫
B
(1 − ρ)2 = −

∫
∂B
v(p−2)/2(ν · ∇ρ)(1 − ρ) dξ.

Thus, applying Hölder’s inequality, (4–3), (4–5), (4–6) and (4–11), we obtain

(4–12) E(ρm, B)≤ Cε(m−p)(p−1)/p
∣∣∣ ∫
∂B
(1 − |uε|)2 dξ

∣∣∣1/p
≤ Cεm−p+1. �

Remark 4. Comparing (4–12) with (4–7), we see that the exponent of ε in the
upper bound of E(ρm, B) is improved. We shall use ρm as a comparison function
to improve the exponent of ε in the upper bound of Eε(uε, B).

Proposition 4.3. Set h = |uε|. Then for any δ ∈ (0, 1/2), there is C > 0 such that

1
p

∫
B

|∇h|
p
+

1
4ε p

∫
B
(1 − h2)2 ≤ Cεm−p+1

+ δ

∫
B

|∇uε|p

+ C
(∫

B(x,2r)
|∇uε|p

+ 1
)(∫

B
(1 − h2)2

)t/(p+t)

.

Here t is the constant in Proposition 3.5.

Proof. Let Uε = ρmw on B and Uε = uε on B1 \ B, where w = uε/|uε|. Since uε
is a minimizer of Eε(u,G), we have

Eε(uε,G)≤ Eε(Uε, B1)= Eε(ρmw, B)+ Eε(uε, B1 \ B).
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This means Eε(uε, B)≤ Eε(ρmw, B). Noting that∫
B
(|∇ρm |

2
+ ρ2

m |∇w|
2)p/2 dx −

∫
B
(ρ2

m |∇w|
2)p/2 dx =

p
2

∫
B

∫ 1

0

(
(|∇ρm |

2
+ρ2

m |∇w|
2)(p−2)/2s+(ρ2

m |∇w|
2)(p−2)/2(1−s)

)
ds|∇ρm |

2 dx

≤ C
∫

B
(|∇ρm |

p
+ |∇ρm |

2
|∇w|

p−2) dx,

and using Hölder’s inequality, (4–6), and (4–12), we have, for any δ ∈ (0, 1),

Eε(uε, B)≤ Eε(ρmw, B)

≤
1
p

∫
B
(ρ2

m |∇w|
2)p/2

+ C
∫

B

(
|∇ρm |

p
+ |∇ρm |

2
|∇w|

p−2)
+

1
4ε p

∫
B
(1 − ρ2

m)
2

≤
1
p

∫
B

|∇w|
p
+ Cεm+1−p

+ δ

∫
B

|∇uε|p.

Combining this with Jensen’s inequality we obtain

(4–13)
1
p

∫
B

|∇h|
p
+

1
p

∫
B
(h p

− 1)|∇w|
p
+

1
4ε p

∫
B
(1 − h2)2

≤ Eε(uε, B)−
1
p

∫
B

|∇w|
p
≤ Cεm−p+1

+ δ

∫
B

|∇uε|p.

In view of (3–10) and Proposition 3.5, we get

1
p

∫
B
(1 − h p)|∇wε|

p
≤

2p

p

∫
B
(1 − h p)h p

|∇wε|
p

(4–14)

≤ C(R)
(∫

B(x,2r)
|∇uε|p

+ 1
)(∫

B
(1 − h2)2

)t/(p+t)

.

Substituting this into (4–13) yields

(4–15)
1
p

∫
B

|∇h|
p
+

1
4ε p

∫
B
(1 − h2)2 ≤ Cεm−p+1

+ δ

∫
B

|∇uε|p

+C
(∫

B(x,2r)
|∇uε|p

+ 1
)(∫

B
(1 − h2)2

)t/(p+t)

. �

Proof of Theorem 4.1. Step 1. Using (3–10) we may writew=uε/|uε| on B(x, 3R).
Substituting this into (2–1) yields that∫

B(x,3R)
|∇u|

p−2(w∇h + h∇w)∇ψ =
1
ε p

∫
B(x,3R)

hwψ(1 − h2)
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or div(|∇u|
p−2(w∇h + h∇w))+ 1/ε phw(1 − h2) = 0 in the distribution sense.

Taking ψ =wζ where ζ ∈ W 1,p
0 (B(x, 3R)), and noting thatw∇w=

1
2∇(|w|

2)= 0,
we obtain

(4–16)
1
ε p

∫
B(x,3R)

h(1 − h2)ζ =

∫
B(x,3R)

|∇u|
p−2(∇h∇ζ + h|∇w|

2ζ ).

In addition, we also have div(|∇u|
p−2(w∇h + h∇w))∧w = 0 in the distribution

sense. Together with |w| = 1, this implies∫
B(x,3R)

|∇u|
p−2h(w∧ ∇w)∇ζ = 0.

Using this with Theorem 6.1 (which will be proved in Section 6), we can deduce
that

(4–17)
∫

B
|∇u|

p−2h2
|∇w|

2
≤ C

(∫
B(x,2r)

|∇u|
p
)1−2/p

.

Applying (4–17) and Hölder’s inequality we have, for any δ ∈ (0, 1),∫
B

|∇u|
p
=

∫
B

|∇u|
p−2(h2

|∇w|
2
+ |∇h|

2)(4–18)

≤ C
(∫

B(x,2r)
|∇u|

p
)1−2/p

+ δ

∫
B

|∇u|
p
+ C(δ)

(∫
B

|∇h|
p
)
.

Substituting (4–15) into (4–18) and choosing δ > 0 sufficiently small we see that

(4–19)
∫

B
|∇u|

p
≤ C

(∫
B(x,2r)

|∇u|
p
)1−2/p

+ Cεm−p+1

+ C
(∫

B(x,2r)
|∇uε|p

+ 1
)(∫

B
(1 − h2)2

)t/(p+t)

.

From (4–2) it follows that
∫

B(x,2r) |∇u|
p

≤ Cεm−p. Substituting this into (4–19)
yields

(4–20)
∫

B
|∇u|

p
≤ C(εm−p)1−2/p

+Cεm−p+1
+Cεm−p+mt/(p+t)

=: I1 + I2 + I3.

Step 2. If m ≤ p/2, then m + 1 − p ≤ (m − p)(1 − 2/p). Now, I1 ≤ I2. Let k0 be
an integer such that m + 1 ≤ (1 + t/(p + t))k0m.
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Assume ζ is in C∞

0 (B(x, 2R), [0, 1]) and satisfies |∇ζ | ≤ C and ζ = 1 on
Bm+1/2. Taking the test function as hζ(1 − h) in (4–16), we have

1
ε p

∫
B

h2(1 − h2)ζ(1 − h)+
∫

B
|∇u|

p−2
|∇h|

2hζ

=

∫
B

|∇u|
p−2

∇h∇ζh(1 − h)+
∫

B
|∇u|

pζ(1 − h)≤ C
∫

B
|∇u|

p.

Noting that ζ = 1 on Bm+1/2 and applying (4–20), we obtain

(4–21)
∫

Bm+1/2

(1 − h2)2 ≤ Cεm(1+t/(p+t)) for ε ∈ (0, ε0).

On the other hand, as in the derivation of (4–13), for Bm+1/2 we rewrite Propo-
sition 4.3 and still conclude that for any δ > 0,

(4–22)
1
p

∫
Bm+1/2

|∇h|
p
+

1
4ε p

∫
Bm+1/2

(1 − h2)2

≤ Cεm−p+1
+

1
p

∫
Bm+1/2

(1 − h p)|∇w|
p
+ δ

∫
Bm+1/2

|∇uε|p.

To estimate the second term of the right-hand side of (4–22), we apply (4–21) to
obtain

1
p

∫
Bm+1/2

(1 − h p)|∇w|
p
≤ Cε(m+

t
p+t m) t

p+t +m+
t

p+t m−p
= Cεm(1+t/(p+t))2−p

by a similar derivation to (4–14). Substituting this into (4–22) yields

1
p

∫
Bm+1/2

|∇h|
p
≤ C(εm−p+1

+ εm(1+t/(p+t))2−p)+ δ

∫
Bm+1/2

|∇uε|p.

Using this instead of (4–15) and choosing δ > 0 sufficiently small we can improve
(4–20) to∫

Bm+1/2

|∇uε|p
≤ C + C(εm−p+1

+ εm(1+t/(p+t))2−p)≤ Cεm(1+t/(p+t))2−p.

We have improved the exponent m(1+ t/(p+ t))− p of ε to m(1+ t/(p+ t))2 − p,
though the integral domain B has shrunk to Bm+1/2. By induction, it can be derived
in k0 steps that∫

B
m+1−1/2k0−1

|∇uε|p
≤ C + C(εm−p+1

+ εm(1+t/(p+t))k0−p).
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Noting the definition of k0, we obtain (4–2) for j = m + 1:∫
Bm+1

|∇uε|p
≤

∫
B

m+1−1/2k0−1

|∇uε|p
≤ C(εm−p+1

+ 1).

Step 3. If m > p/2, then (m − p)(1 − 2/p) < m + 1 − p. Let k ≥ 3 be an integer
such that (m − p)(1 − 2/p)k ≤ m + 1 − p < (m − p)(1 − 2/p)k+1. Now (4–20)
becomes ∫

B
|∇u|

p
≤ C(εm−p)1−2/p

+ Cεm−p+mt/(p+t).

Proceeding as in Step 2, we improve the exponent m − p + mt/(p + t) of ε to
(m − p)(1 − 2/p), since we can find k0 ∈ Z such that m(1 + t/(p + t))k0 − p
is greater than (m − p)(1 − 2/p). At the same time, the integral domain B(x, r)
shrinks. Namely, there is a constant r1 ∈ (Rm+1, r) such that

(4–23)
∫

B(x,r1)

|∇uε|p
≤ Cε(m−p)(1−2/p).

Hence as in the derivation of (4–21),∫
B(x,r)

(1 − h2)2 ≤ Cε(m−p)(1−2/p)+p.

Substituting these into (4–19) we have∫
B(x,r1/2)

|∇uε|p

≤ Cεm+1−p
+ C

(∫
B(x,r)

|∇uε|p
)1−

2
p

+ C
∫

B(x,r)
|∇uε|p

(∫
B(x,r)

(1 − h2)2
) t

p+t

≤ Cεm+1−p
+ Cε(m−p)(1−2/p)2

+ Cε(m−p)(1−2/p)+((m−p)(1−2/p)+p)(t/(p+t))

≤ Cε(m−p)(1−2/p)2
+ Cε(m−p)(1−2/p)+((m−p)(1−2/p)+p)t/(p+t).

Again by an argument analogous to Step 2, we improve the exponent of ε in the
last term to (m − p)(1−2/p)2. Namely, there is a constant r2 ∈ (Rm+1, r1/2) such
that ∫

B(x,r2)

|∇uε|p
≤ Cε(m−p)(1−2/p)2 .

By induction, it follows that∫
B(x,rk−1)

|∇uε|p
≤ Cε(m−p)(1−2/p)k .



ASYMPTOTIC ESTIMATION FOR A p-GINZBURG–LANDAU MINIMIZER 123

Combining this with (4–19), and noting the definition of k, we obtain∫
B(x,rk−1/2)

|∇uε|p

≤ Cεm+1−p
+ Cε(m−p)(1−2/p)k+1

+ Cε(m−p)(1−2/p)k+((m−p)(1−2/p)k+p)(t/(p+t))

≤ Cεm+1−p
+ Cε(m−p)(1−2/p)k+((m−p)(1−2/p)k+p)(t/(p+t)) .

By the same discussion as in Step 2, we may also improve the exponent of ε to
m+1− p, and the integral domain shrinks. Namely, we have (4–2) with j = m+1:∫

B(x,rk−1/2)
|∇uε|p

≤ Cεm+1−p. �

Theorem 4.4 (Uniform estimation). For any compact K ⊂ B1\{0, a1, a2, . . . , aN },
there exists a constant C > 0 independent of ε such that Eε(uε, K )≤ C.

Proof. We only prove the theorem for the ball B(x, R) in B1 \ {0, a1, a2, . . . , aN }.
Theorem 4.1 shows that

(4–24) Eε(uε, B[p])≤ Cε[p]−p.

The integral mean value theorem and (4–24) imply that there exists a constant
r ∈ [R[p], R[p]+1/2] such that

(4–25)
∫
∂B(x,r)

|∇uε|p dξ +
1
ε p

∫
∂B(x,r)

(1 − |uε|2)2 dξ ≤ Cε[p]−p.

Consider the functional

E(ρ, B)=
1
p

∫
B
(|∇ρ|

2
+ 1)p/2

+
1

2ε p

∫
B
(1 − ρ)2,

where B = B(x, r). It is easy to see the existence of the minimizer ρ[p] of E(ρ, B)
on W 1,p

|uε| (B, R+
∪ {0}). Similar to the proof of Proposition 4.2, from (4–24) and

(4–25) we can deduce E(ρ[p], B)≤ Cε[p]−p+1. Thus, for any δ ∈ (0, 1),

Eε(uε, B)≤ Eε(ρ[p]w, B)≤
1
p

∫
B

|∇w|
p
+ Cε[p]+1−p

+ δ

∫
B

|∇uε|p.

As in the derivation of (4–8), it follows that

(4–26)
1
p

∫
B

|∇h|
p
+

1
4ε p

∫
B
(1 − h2)2

≤ Cε[p]+1−p
+ δ

∫
B

|∇uε|p
+

1
p

∫
B
(1 − h p)|∇w|

p.

To estimate the third term of the right-hand side, we shall do as in the proof of
(4–14) and (4–15) and apply (1/ε p)

∫
B(1 − h2)2 ≤ Cε[p]−p, which is implied by
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(4–24). As a result, there exists t ∈ (0, 1/2) such that

1
p

∫
B
(1 − h p)|∇w|

p
≤ Cε[p]+[p]t/(p+t)−p.

Substituting this into (4–26) yields

1
p

∫
B

|∇h|
p
+

1
4ε p

∫
B
(1 − h2)2 ≤ C(ε[p]+1−p

+ ε[p]+[p]t/(p+t)−p)+ δ

∫
B

|∇uε|p.

Combining this with (4–18) and choosing δ sufficiently small, we obtain∫
B

|∇uε|p
≤ Cε[p]−p+1

+ Cε[p]−p+tm/(p+t)
+ Cε([p]−p)(1−2/p)

+ C.

By a same argument of Steps 2 and 3, we may improve the exponents of ε in the
second and the third terms of the right hand side to [p] − p + 1. Thus, for some
shrinking domain B[p]+1 ⊂ B, there exists C > 0 independent of ε ∈ (0, ε0), such
that ∫

B[p]+1

|∇uε|p
≤ C + Cε[p]+1−p

≤ C. �

5. Convergence

There may be several minimizers of Eε(u, B1). One of them, denoted by ũε, can be
obtained as the limit of a subsequence uτk

ε of the minimizers uτε of the regularized
functionals

Eτε (u,G)=
1
p

∫
G
(|∇u|

2
+ τ)p/2 dx +

1
4ε p

∫
G
(1 − |u|

2)2 dx, for τ ∈ (0, 1)

in W 1,p
g (B1, Rn) as τk → 0, namely

(5–1) lim
τk→0

uτk
ε = ũεin W 1,p(B1, Rn).

We call ũε the regularized minimizer of Eε(u, B1). For the regularized minimizer
we shall establish the C1,α convergence when p > n − t and p 6= n.

It is not difficult to see that the minimizer uτε of Eτε (u, B1) solves

(5–2) − div
(
(|∇u|

2
+ τ)p−2

∇u
)
=

1
ε p u(1 − |u|

2) on B1

and satisfies |uτε | ≤ 1 on B1. As (3–10) and Theorem 1.2 hold for uτε , the following
results are also true: for any compact subset K of B1 \ {0, a1, a2, . . . , aN }, there is
C > 0 such that

(5–3) |uτε (x)| ≥ 1/2 for all x ∈ K
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and

(5–4) Eτε (u
τ
ε , K )≤ C.

Proposition 5.1. Assume p>n−t and p 6=n, where t is the constant in Proposition
3.5. Then for any compact subset K ⊂ B1 \{0, a1, a2, . . . , aN } and arbitrary l > 1,
there exists a constant C > 0 which is independent of ε, τ , such that

(5–5) ‖∇uτε‖Ll (K ,Rn) ≤ C = C(K , l).

Proof. Step 1. Write v = |∇u|
2
+ τ in (5–2). Differentiating (5–2) with respect to

x j , we obtain

(5–6) −(v(p−2)/2uxi )xi x j =
1
ε p (u(1 − |u|

2))x j .

Take R>0 so that B=B( · , 3R)bB1\{0, a1, a2, . . . , aN }. Let ζ ∈C∞

0 (B, [0, 1])

be a function such that ζ = 1 on B( · , R) and ζ = 0 on B( · , 3R)\ B( · , 2R), with
|∇ζ | ≤ C on B( · , 3R). Now integrate over B( · , 3R) the inner product of the both
sides of (5–6) with ux jv

bζ 2(b ≥ 0) to obtain∫
B
(v(p−2)/2uxi )x j (ζ

2ux j )xi =
1
ε p

∫
B
(1−|u|

2)ζ 2(ux j )
2vb

−
1

2ε p

∫
B
ζ 2((|u|

2)x j )
2vb.

Summing over j = 1, 2, . . . , n and computing the term of the left hand side yields

(5–7)
∫

B
ζ 2v(p+2b−2)/2

n∑
j=1

|∇ux j |
2
+

p + 2b − 2
4

∫
B
ζ 2v(p+2b−4)/2

|∇v|2

+
b(p − 2)

2

∫
B
v(p+2b−6)/2(∇u · ∇v)2

≤
1
ε p

∫
B
(1 − |u|

2)ζ 2vb+1
+ 2

∣∣∣∣ n∑
j=1

∫
B
(v(p−2)/2

∇u)x j ux jv
bζ∇ζ

∣∣∣∣.
From (5–2) and (5–3), it follows that

(5–8)
1
ε p (1 − |u|

2)=
−u
|u|2

div(v(p−2)/2
∇u).

Applying Young’s inequality, we derive that for any δ ∈ (0, 1),

(5–9)
1
ε p

∫
B
(1 − |u|

2)ζ 2vb+1
≤ C(δ)

∫
B
ζ 2v(p+2b+2)/2

+ δ

∫
B
ζ 2v(p+2b−4)/2

|∇v|2 + δ

∫
B
ζ 2

n∑
j=1

|∇ux j |
2v(p+2b−2)/2,
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where ε, τ ∈ (0, ε0). Using the Young inequality again, for any δ ∈ (0, 1)

(5–10)
∣∣∣∣ n∑

j=1

∫
B
(v(p−2)/2

∇u)x j ux jv
bζ∇ζ

∣∣∣∣
≤ δ

∫
B
v(p+2b−4)/2

|∇v|2ζ 2
+ C(δ)

∫
B
v(p+2b)/2

|∇ζ |2.

Substituting (5–9)– (5–10) into (5–7) and choosing δ small enough yields

(5–11)
∫

B
ζ 2v(p+2b−2)/2

n∑
j=1

|∇ux j |
2
+

p + 2b − 2
4

∫
B
ζ 2v(p+2b−4)/2

|∇v|2

+
b(p − 2)

2

∫
B
v(p+2b−6)/2(∇u · ∇v)2

≤ C
∫

B
ζ 2v(p+2b+2)/2

+ C
∫

B
v(p+2b)/2

|∇ζ |2.

Step 2. When p > 2, all the terms of the left-hand side of (5–11) are nonnegative.
When 1< p < 2, first observe that

v(p+2b−2)/2
n∑

j=1

|∇ux j |
2
≥

1
4v
(p+2b−4)/2

|∇v|2.

Next, the third term of the left-hand side of (5–11) is not positive. However,

b(p − 2)
2

∫
B
ζ 2v(p+2b−6)/2(∇u · ∇v)2 ≥

b(p − 2)
2

∫
B
ζ 2v(p+2b−4)/2

|∇v|2.

Hence, we can derive from (5–11) that

(5–12)
∫

B
ζ 2v(p+2b−4)/2

|∇v|2 ≤ C
∫

B
ζ 2v(p+2b+2)/2

+ C
∫

B
v(p+2b)/2

|∇ζ |2.

To estimate
∫

B ζ
2v(p+2b+2)/2, we take φ = ζ 2/qv(p+2b+2)/2q in the interpolation

inequality

(5–13) ‖φ‖Lq ≤ C‖∇φ‖
α
Lκ‖φ‖

1−α

L1 , q ∈ (1, nκ/(n − κ)),

where

α =

(
1 −

1
q

)(
1 −

n−κ

nκ

)−1
∈ (0, 1).
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Thus,

(5–14)
∫

B
ζ 2v

p+2b+2
2

≤ C
(∫

B
ζ

2
q v

p+2b+2
2q

)q(1−α)

×(∫
B
ζ
κ( 2

q −1)
|∇ζ |κv

κ
p+2b+2

2q +
p+2b+2

2q

(∫
B
ζ 2v

p+2b−4
2 |∇v|2

)κ
2

×

(∫
B
ζ

2κ
2−κ

( 2
q −1)

v
2κ

2−κ
( p+2b+2

2q −
p+2b

4 )
)1−

κ
2
)qα
κ

.

Step 3. Since p > n − t and p 6= n, we can choose κ such that 1 < κ < 2 and
κ ∈ (2n(2 − t)/(2(p + 2b + 2)− nt), 2n/(n + 2)). Using κ , fix q in the interval
(2t (p + 2b + 2)/(2(p + 2b + t)− κt), nκ/(n − κ))⊂ (1, 2). Thus, qα/2< 1 and

(5–15)
p + 2b + 2

2q
,
κ(p + 2b + 2)

2q
,

2κ
2 − κ

( p + 2b + 2
2q

−
p + 2b

4

)
≤

p + 2b + t
2

.

Let b = 0. From Hölder’s inequality, Proposition 3.5 and (5–4) it follows that∫
B
ζ 2/qv(p+2)/2q

+

∫
B
ζ κ(2/q−1)

|∇ζ |κvκ(p+2)/(2q)
≤ C

(∫
B
v(p+t)/2

)(p+2)/((p+t)q)

≤ C
(∫

B
v p/2

)(p+2)/(pq)

≤ C.

Substituting this into (5–14), and again using Hölder’s inequality, Proposition 3.5
and (5–4), we obtain that for any δ ∈ (0, 1),∫

B
ζ 2v(p+2)/2

≤ C +C
(∫

B
ζ 2v(p−4)/2

|∇v|2
)qα/2

≤ C(δ)+δ
∫

B
ζ 2v(p−4)/2

|∇v|2,

since qα/2< 1. Substituting this into (5–12), we see that
∫

B ζ
2v(p−4)/2

|∇v|2 ≤ C
or
∫

B ζ
2
|∇w|

2
≤ C, where w= v p/4. Since (5–4) implies

∫
B ζ

2
|w|

2
≤ C, we have

‖ζw‖
2
H1(B,R) ≤ C, and thus the embedding inequality implies (5–5) when n = 2.

If n ≥ 3, the embedding inequality gives

(5–16)
(∫

B
(ζw)r

)1/r

≤ C‖ζw‖H1(B,R) ≤ C,

where r ≤ 2n/n − 2. Now we set Gi = B(x0, R + R/2i ). Take ζ such that ζ = 1
on G1 and ζ = 0 on B(x0, 3R) \ B(x0, 2R). Noting that p > n − t and t < 4/n,
choose r = 2 + 8/(np) in (5–16). Since ζ = 1 on G1, we see that ∇u ∈ Ls1(G1)
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where s1 = p + 4/n, and

(5–17)
∫

G1

|∇u|
s1 ≤ C.

Step 4. To prove (5–5), we will choose b > 0 and proceed in the same way as in
Steps 1,2 and 3. However, Proposition 3.5 can not be applied, since it is only a
result on the regularized functional

∫
B1
v p/2 dx and is not valid on

∫
B1
vs/2 dx for

s> p. On the other hand, if we take b ≥2/n from now on, the inequalities p>n−t
and t < 4/n imply that κ can be taken in (2(2−t)n/(2p+4b+4−nt), 2n/(n+2))
with t = 0. In view of this, suppose t = 0 in the following calculation when
proceeding as in Step 3.

Write w = v(p+2b)/4. Set b = 2/n and take ζ = 1 on G2 and ζ = 0 on B1 \ G1.
Then from (5–17), ∫

G1

w2
=

∫
G1

v(p+4/n)/2
=

∫
G1

|∇u|
s1 ≤ C.

Noting (5–15) with t = 0, we use Hölder’s inequality to estimate the terms of the
right-hand side of (5–14). Combining with (5–12), we have, for any δ ∈ (0, 1),∫

G1

ζ 2v(p+2b−4)/2
|∇v|2 ≤ C(δ)

(
1 +

∫
G1

w2
)λ

+ δ

∫
G1

ζ 2v(p+2b−4)/2
|∇v|2,

where λ> 0 only depends on n, p and b. Choosing δ sufficiently small, we obtain
‖ζw‖

2
H1(G1)

≤ C(1 +
∫

G1
w2)λ ≤ C . Applying the embedding theorem to ζw and

using that ζ = 1 on G2, we obtain

(5–18)
∫

G2

|∇u|
s2 ≤ C,

where s2 = s1 + 4(n + 2)/n2
= p + 4/n + 4(n + 2)/n2

= p + 8/n + 8/n2.

Step 5. Reset b and ζ again. Applying (5–18) and following the same logic as Step
4, we can improve s2 to s3 > s2. For any l > 1, proceeding inductively, we may at
last find si for some i such that si > l and∫

Gi

|∇u|
si ≤ C,

where Gi ⊂ BR . Thus (5–5) is proved. �

We can extend Proposition 5.1 by means of Moser iteration.

Proposition 5.2. Assume p > n − t and p 6= n. Then for any compact subset
K ⊂ B1 \ {0, a1, a2, . . . , aN }, there exists a constant C = C(K ) > 0 independent
of ε, τ , such that

‖∇uτε‖L∞(K ,Rn) ≤ C.
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Proof. Given any x0 ∈ B( · , 3R)⊂ B1 \{0, a1, a2, . . . , aN }, let r > 0 be small such
that B(x0, 2r)⊂ B( · , 2R). Denote Qm = B(x0, rm) where rm = r +r/2m . Choose
ζm ∈ C∞

0 (Qm, R) such that ζm = 1 on Qm+1 and |∇ζm | ≤ Cr−12m,m = 1, 2, . . . .
Integrate over Qm the inner product of the both sides of (5–6) with ζ 2

mv
bux j , b ≥ 1.

Then, as in the derivation of (5–12), we see that

(5–19)
∫

Qm

ζ 2
mv

(p+2b−4)/2
|∇v|2 ≤C

∫
Qm

v(p+2b)/2
|∇ζm |

2
+C

∫
Qm

ζ 2
mv

(p+2b+2)/2.

To estimate
∫

Qm
ζ 2

mv
(p+2b+2)/2, we take φ = ζ

2/q
m v(p+2b+2)/2q in the interpolation

inequality (5–13). We then obtain

(5–20)
∫

Qm

ζ 2
mv

(p+2b+2)/2
≤ C

(∫
Qm

ζ 2/q
m v(p+2b+2)/(2q)

)q(1−α)

×

((2
q

)κ ∫
Qm

ζ κ(2/q−1)
m |∇ζm |

κvκ(p+2b+2)/(2q)

+

( p + 2b + 2
2q

)κ ∫
Qm

ζ 2κ/q
m vκ((p+2b+2)/(2q)−1)

|∇v|κ
)qα/κ

.

Now, we estimate the right-hand side. Choose r ∈ (0, 1) sufficiently small such
that |Qm | ≤ 1. Take κ ∈ (2n/(p +4), 2n/(n +2))∩ (1, 2); hence, q can be chosen
in
(
(κ(p + 4))/(p + 2), nκ/(n − κ)

)
. This implies that (5–15) with t = 0 is also

true since b ≥ 1. By using Hölder’s inequality, we have∫
Qm

ζ 2/q
m v(p+2b+2)/2q

≤

(∫
Qm

v(p+2b)/2
)(p+2b+2)/(q(p+2b))

,∫
Qm

ζ κ(2/q−1)
m |∇ζm |

κvκ(p+2b+2)/(2q)
≤

22m

rκ

(∫
Qm

v(p+2b)/2
)κ(p+2b+2)/(q(p+2b))

,

and∫
Qm

ζ (2κ)/qm vκ((p+2b+2)/(2q)−1)
|∇v|κ

≤

(∫
Qm

ζ 2
mv

(p+2b−4)/2
|∇v|2

)κ/2(∫
Qm

v(p+2b)/2
)κ((p+2b+2)/(q(p+2b))−1/2)

.

Combining these inequalities with (5–19) and (5–20) yields

(5–21) I1 ≤ C
((2m

r

)2
I2 +

(4m

r

)qα
I 1+2/(p+2b)
2

+

( p + 2b + 2
2q

)qα
I qα/2
1 I 1+2/(p+2b)−qα/2

2

)
,
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where
I1 =

∫
Qm

ζ 2
mv

(p+2b−4)/2
|∇v|2 and I2 =

∫
Qm

v(p+2b)/2.

Let p + 2b = sm and w = v(p+2b)/4
= vsm/4, with s > 1 to be determined later.

Using the Young inequality to treat the last term on the right side of (5–21), we
obtain(sm

+ 2
2q

)qα
I qα/2
1 I 1+2/(sm)−qα/2

2

≤ δ I1 + C(δ)
(sm

+ 2
2q

)2qα/(2−qα)
I 2(1+2/(sm)−qα/2)/(2−qα)
2 .

Substituting this into (5–21), we get

(5–22) I1 ≤ C(δ)
((2m

r

)2
I2 +

(4m

r t

)qα
I 1+2/sm

2

+

(sm
+ 2

2q

)2qα/(2−qα)
I 2(1+2/sm

−qα/2)/(2−qα)
2

)
.

By the embedding theorem, for any s ∈ (1, n/(n − 2)],∫
Qm

(ζmw)
2s

≤ C(s)
(∫

Qm

(ζmw)
2
+

∫
Qm

|∇(ζmw)|
2
)s

≤ C
(
(1 +

(2m

r

)2
)I2 +

(sm

4

)2
I1

)s

.

Combining this with (5–22) yields

(5–23)
∫

Qm

(ζmw)
2s

≤ C(s, r, q, κ)
(
(1 + 4m

+ s2m4m)I2 + s2m4qαm I 1+2/sm

2

+ s2ms2qαm/(2−qα) I (1+2/sm
−qα/2)2/(2−qα)

2

)s
.

If there is a subsequence of positive integers {mi } tending to infinity such that

I2 =

∫
Qmi

vsmi /2 < 1,

then letting mi → ∞ immediately yields

(5–24) ‖v‖L∞(Q∞,R) ≤ C(r).

Otherwise, there must be a positive integer m0 such that

I2 =

∫
Qm

vsm/2
≥ 1 for m ≥ m0.

Since (1+2/sm
−qα/2)(2/(2−qα))= 1+(2/sm) (2/(2−qα))> 1, the exponent

of the last term in (5–23) is higher than those of the other terms. Now we compare



ASYMPTOTIC ESTIMATION FOR A p-GINZBURG–LANDAU MINIMIZER 131

the coefficients of the terms in (5–23). If we choose s ∈ (1,min{n/(n−2), 22−qα
}),

then 4m and s2qαm/(2−qα) are less than 4(1+qα)m . Thus,∫
Qm

(ζmw)
2s

≤ C
(
(s241+qα)m I 1+(2/sm) (2/(2−qα))

2

)s
.

This means ∫
Qm+1

vsm+1/2
≤ (C0Cm

1 )
s
(∫

Qm

vsm/2
)(1+C2/sm)s

,

where C1 = (s241+qα)s , C2 = 4/(2−qα), and C0 is a positive constant. Using the
iteration lemma [Lei 2004, Proposition 2.3] and Proposition 5.1, we also obtain
the estimate (5–24), completing the proof of Proposition 5.2. �

Proposition 5.3. Assume p > n − t and p 6= n. Suppose ũε is a regularized
minimizer. Then for any compact subset K ⊂ B1 \ {0, a1, a2, . . . , aN }, there exists
a constant C = C(K ) > 0 which is independent of ε such that

(5–25) ‖(1/ε p) (1 − |ũε|2)‖L∞(K ) ≤ C.

Proof. Assume B = BR b B1 \ {0, a1, a2, . . . , aN }. Consider the inner product of
the both sides of (5–2) with u = uτε ,

− div(v(p−2)/2
∇u)u = (1/ε p) |u|

2(1 − |u|
2)= |u|

2ψ,

where ψ = ψτε = (1/ε p) (1 − |uτε |
2). Combining this and ∇ψ = −(2/ε p) u · ∇u

with the equality − div(v(p−2)/2
∇u)u =− div(v(p−2)/2u ·∇u)+v(p−2)/2

|∇u|
2, and

noting (5–3), we then obtain

(5–26) (1/4) ψ ≤ v(p−2)/2
|∇u|

2
+ (ε p/2) div(v(p−2)/2

∇ψ) on B.

At the point x0 where ψ achieves its maximum on B, we have ∇ψ(x0) = 0 and
1ψ(x0)≤ 0. Hence at x0,

div(v(p−2)/2
∇ψ)= v(p−2)/21ψ + ((p − 2)/2) v(p−4)/2

∇v∇ψ ≤ 0.

Combining this with (5–26) and using Proposition 5.2, we derive that

(5–27) ‖(1/ε p) (1 − |uτε |
2)‖L∞(B) ≤ ψ(x0)≤ C.

When p > n, from (5–1) it follows that

(5–28) lim
τk→0

uτk
ε = ũε in C(B1).

When p ∈ (n−t, n), Proposition 3.5 still holds for uτε . As in the proof of Proposition
3.4, combining (5–1) with the embedding theorem we deduce (5–28). Letting
τ → 0 in (5–27) and using (5–28), we reach (5–25) by a finite-covering argument.

�
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Proof of Theorem 1.3. According to Proposition 5.3, the right-hand side of the
Euler–Lagrange equation

− div
(
|∇u|

p−2
∇u
)
= (1/ε p) u(1 − |u|

2)

satisfied by ũ is bounded on every compact subset K ⊂ B1 \ {0, a1, a2, . . . , aN }.
Thus Tolksdorf’s theorem [1983, p. 244, lines 19–23] yields that ‖ũε‖C1,β (K )≤C =

C(K ) for some β ∈ (0, 1), where the constant C does not depend on ε. Letting
ε→ 0, we find a subsequence ũk of ũε and a map u∗ such that ũε → u∗ in C1,α(K )
for all α ∈ (0, β). In addition, Remark 2 implies u∗ = u p, completing the proof. �

6. Proof of (4–17)

Theorem 6.1. Assume h =|u|≥1/2 and letw=u|u|
−1. If u ∈W 1,p(B(x, 3R), Rn)

satisfies

(6–1)
∫

B(x,3R)
|∇u|

p−2h(w∧ ∇w)∇ζ = 0 for all ζ ∈ W 1,p
0 (B(x, 3R)),

then for any ρ ∈ (0, 3R/2), there is C > 0 such that∫
B(x,ρ)

|∇u|
p−2h2

|∇w|
2
≤ C(

∫
B(x,2ρ)

|∇u|
p)1−2/p.

Proof. Let {ei }
n
i=1 be an orthogonal basis of Rn . Since |w| = 1 over B(x, 3R), we

have the formula in n-dimension ball coordinates

w = cos θ1e1 + sin θ1 cos θ2e2 + sin θ1 sin θ2 cos θ3e3 + . . .

+ sin θ1 . . . sin θn−2 cos θn−1en−1 + sin θ1 . . . sin θn−2 sin θn−1en.

As h ≥ 1/2, there is no zero of u in B(x, 3R). This implies deg(w, ∂�) = 0 for
any � ⊂ B(x, 3R). Hence, (θ1, . . . , θn−2, θn−1) ∈ [0, π] × · · · × [0, π] × [0, 2π ],
and each θi is single-valued. Thus,

∇w = − sin θ1∇θ1e1 + (cos θ1 cos θ2∇θ1 − sin θ1 sin θ2∇θ2)e2

+ (cos θ1 sin θ2 cos θ3∇θ1 + sin θ1 cos θ2 cos θ3∇θ2 − sin θ1 sin θ2 sin θ3∇θ3)e3

+ · · · + (cos θ1 sin θ2 · · · sin θn−2 cos θn−1∇θ1 + · · ·

+ sin θ1 · · · sin θn−3 cos θn−2 cos θn−1∇θn−2 − sin θ1 · · · sin θn−1∇θn−1)en−1

+ (cos θ1 sin θ2 · · · sin θn−1∇θ1 + · · · + sin θ1 · · · sin θn−2 cos θn−1∇θn−1)en.

Hence,

(6–2) |∇w|
2
= |∇θ1|

2
+ sin2 θ1|∇θ2|

2
+ sin2 θ1 sin2 θ2|∇θ3|

2
+ · · ·

+ sin2 θ1 · · · sin2 θn−2|∇θn−1|
2,
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and there are n(n − 1)/2 vectors in the formula

w∧ ∇w =
(
(cos θ2∇θ1 − cos θ1 sin θ1 sin θ2∇θ2)(e1 ∧ e2)+ · · ·

+
(∏n−1

i=1 sin θi∇θ1 + cos θ1
∏n−1

i=1 sin θi∇θ2 + · · ·

+ cos θ1
∏n−2

i=1 sin θi cos θn−1∇θn−1
)
(e1 ∧ en)

)
+
(
(sin2 θ1 cos θ3∇θ2 − sin2 θ1 sin θ2 cos θ2 sin θ3∇θ3)(e2 ∧ e3)+ · · ·

+(sin2 θ1
∏n−1

i=3 sin θi∇θ2 + · · ·

+ sin2 θ1 cos θ2
∏n−2

i=2 sin θi cos θn−1∇θn−1)(e2 ∧ en)
)
+ · · ·

+
(∏n−3

i=1 sin2 θi (cos θn−1∇θn−2 − sin θn−2 cos θn−2 sin θn−1∇θn−1)(en−2 ∧en−1)

+
∏n−3

i=1 sin2 θi (sin θn−1∇θn−2 +sin θn−2 cos θn−2 cos θn−1∇θn−1)(en−2 ∧en)
)

+ sin2 θ1 · · · sin2 θn−2∇θn−1(en−1 ∧ en).

The equality corresponding to en−1 ∧ en in the integral system (6–1) is∫
B(x,3R)

|∇u|
p−2h25n−2

i=1 sin2 θi∇θn−1∇ζ = 0.

Letting ζ = θn−1ξ
2 where ξ ∈ W 1,p

0 (B(x, 3R)), we obtain∫
B(x,3R)

|∇u|
p−2h2

n−2∏
i=1

sin2 θi |∇θn−1|
2ξ 2

≤

∣∣∣∣ ∫
B(x,3R)

|∇u|
p−2h2

n−2∏
i=1

sin2 θi (ξθn−1)∇θn−1∇ξ

∣∣∣∣.
Using Hölder’s inequality, we have, for any δ ∈ (0, 1),∫

B(x,3R)
|∇u|

p−2h2
n−2∏
i=1

sin2 θi |∇θn−1|
2ξ 2

≤ δ

∫
B(x,3R)

|∇u|
p−2h2

n−2∏
i=1

sin2 θi |∇θn−1|
2ξ 2

+ C(δ)
∫

B(x,3R)
|∇u|

p−2h2
n−2∏
i=1

sin2 θi |∇ξ |
2(ξθn−1)

2.

Taking ξ = 1 over B(x, ρ) and ξ = 0 over B(x, 3R) \ B(x, 2ρ) and letting δ be
sufficiently small, we get

(6–3)
∫

B(x,ρ)
|∇u|

p−2h2
n−2∏
i=1

sin2 θi |∇θn−1|
2
≤ C

∫
B(x,2ρ)

|∇u|
p−2

≤ C
(∫

B(x,2ρ)
|∇u|

p
)1−2/p

.



134 YUTIAN LEI

Next, we use the equalities corresponding to en−2 ∧ en−1 and en−2 ∧ en in (6–1):
the integrals over B(x, 3R) of

|∇u|
p−2h2

n−3∏
i=1

sin2 θi (cos θn−1∇θn−2 − cos θn−2 sin θn−2 sin θn−1∇θn−1)∇ζ

and

|∇u|
p−2h2

n−3∏
i=1

sin2 θi (sin θn−1∇θn−2 + cos θn−2 sin θn−2 cos θn−1∇θn−1)∇ζ

both equal zero. Taking ζ = θn−2ξ
2 cos θn−1 and θn−2ξ

2 sin θn−1 in these two
integrals, respectively, we obtain∫

B(x,3R)
|∇u|

p−2h2
n−3∏
i=1

sin2 θi (|∇θn−2|
2ξ 2

+ θn−2∇θn−2∇ξ
2)= 0.

Similar to the derivation of (6–3), we have, for any ρ ∈ (0, 3R/2),

(6–4)
∫

B(x,ρ)
|∇u|

p−2h2
n−3∏
i=1

sin2 θi |∇θn−2|
2
≤ C

(∫
B(x,2ρ)

|∇u|
p
)1−2/p

.

By means of induction, applying the equalities corresponding to ek∧ek+1, ek∧ek+2,
. . . , ek ∧ en in (6–1), we find that

(6–5)
∫

B(x,ρ)
|∇u|

p−2h2
k−1∏
i=1

sin2 θi |∇θk |
2
≤ C

(∫
B(x,2ρ)

|∇u|
p
)1−2/p

,

for k = 2, . . . , n − 1. At last, we can deduce

(6–6)
∫

B(x,ρ)
|∇u|

p−2h2
|∇θ1|

2
≤ C

(∫
B(x,2ρ)

|∇u|
p
)1−2/p

.

Combining the estimations (6–3)–(6–6) and using (6–2) completes the proof. �

References

[Bethuel et al. 1994] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in
Nonlinear Differential Eq. and their Applications, 13, Birkhäuser, Boston, 1994. MR 95c:58044
Zbl 0802.35142

[Chapman et al. 1995] S. J. Chapman, Q. Du, and M. D. Gunzburger, “A Ginzburg-Landau type
model of superconducting/normal junctions including Josephson junctions”, European J. Appl.
Math. 6:2 (1995), 97–114. MR 1331493 (96c:82069) Zbl 0843.35120

[Chen and DiBenedetto 1989] Y. Z. Chen and E. DiBenedetto, “Boundary estimates for solutions of
nonlinear degenerate parabolic systems”, J. Reine Angew. Math. 395 (1989), 102–131. MR 983061
(90g:35085) Zbl 0661.35052

[Ding et al. 1998] S. Ding, Z. Liu, and W. Yu, “A variational problem related to the Ginzburg-
Landau model of superconductivity with normal impurity inclusion”, SIAM J. Math. Anal. 29:1
(1998), 48–68. MR 99f:35186 Zbl 0913.35040

http://www.ams.org/mathscinet-getitem?mr=95c:58044
http://www.emis.de/cgi-bin/MATH-item?0802.35142
http://www.ams.org/mathscinet-getitem?mr=1331493 (96c:82069)
http://www.emis.de/cgi-bin/MATH-item?0843.35120
http://www.ams.org/mathscinet-getitem?mr=983061 (90g:35085)
http://www.ams.org/mathscinet-getitem?mr=983061 (90g:35085)
http://www.emis.de/cgi-bin/MATH-item?0661.35052
http://dx.doi.org/10.1137/S0036141096303086
http://dx.doi.org/10.1137/S0036141096303086
http://www.ams.org/mathscinet-getitem?mr=99f:35186
http://www.emis.de/cgi-bin/MATH-item?0913.35040


ASYMPTOTIC ESTIMATION FOR A p-GINZBURG–LANDAU MINIMIZER 135

[Du et al. 1992] Q. Du, M. D. Gunzburger, and J. S. Peterson, “Analysis and approximation of the
Ginzburg-Landau model of superconductivity”, SIAM Rev. 34:1 (1992), 54–81. MR 93g:82109
Zbl 0787.65091

[Han and Li 1996] Z.-C. Han and Y. Y. Li, “Degenerate elliptic systems and applications to Ginzburg-
Landau type equations. I”, Calc. Var. Partial Differential Eq. 4:2 (1996), 171–202. MR 97d:35085a
Zbl 0847.35055

[Hong 1996] M.-C. Hong, “Asymptotic behavior for minimizers of a Ginzburg-Landau-type func-
tional in higher dimensions associated with n-harmonic maps”, Adv. Differential Equations 1:4
(1996), 611–634. MR 97h:58047 Zbl 0857.35120

[Lei 2004] Y. Lei, “C1,α convergence of a Ginzburg-Landau type minimizer in higher dimensions”,
Nonlinear Anal. 59:4 (2004), 609–627. MR 2094431 (2005h:35129) Zbl pre02117582

[Lei and Wu 2000] Y. Lei and Z. Wu, “C1,α convergence of minimizers of a Ginzburg-Landau
functional”, Electron. J. Differential Equations 14 (2000), 20. MR 2001a:58012 Zbl 0939.35076

[Misawa 2001] M. Misawa, “Approximation of p-harmonic maps by the penalized equation”, Non-
linear Anal. 47:2 (2001), 1069–1080. MR 2003m:58021 Zbl 1042.58507

[Struwe 1993] M. Struwe, “Une estimation asymptotique pour le modèle de Ginzburg-Landau”, C.
R. Acad. Sci. Paris Sér. I Math. 317:7 (1993), 677–680. MR 94k:35043 Zbl 0789.49005

[Tinkham 1975] M. Tinkham, Introduction to superconductivity, McGraw-Hill, New York, 1975.

[Tolksdorf 1983] P. Tolksdorf, “Everywhere-regularity for some quasilinear systems with a lack of
ellipticity”, Ann. Mat. Pura Appl. (4) 134 (1983), 241–266. MR 85h:35104 Zbl 0538.35034

Received October 9, 2004.

YUTIAN LEI

DEPARTMENT OF MATHEMATICS

NANJING NORMAL UNIVERSITY,
NANJING, JIANGSU, 210097,
P.R.CHINA

leiyutian@njnu.edu.cn

http://links.jstor.org/sici?sici=0036-1445(199203)34:1%3C54:AAAOTG%3E2.0.CO%3B2-X
http://links.jstor.org/sici?sici=0036-1445(199203)34:1%3C54:AAAOTG%3E2.0.CO%3B2-X
http://www.ams.org/mathscinet-getitem?mr=93g:82109
http://www.emis.de/cgi-bin/MATH-item?0787.65091
http://dx.doi.org/10.1007/s005260050034
http://dx.doi.org/10.1007/s005260050034
http://www.ams.org/mathscinet-getitem?mr=97d:35085a
http://www.emis.de/cgi-bin/MATH-item?0847.35055
http://www.ams.org/mathscinet-getitem?mr=97h:58047
http://www.emis.de/cgi-bin/MATH-item?0857.35120
http://www.ams.org/mathscinet-getitem?mr=2094431 (2005h:35129)
http://www.emis.de/cgi-bin/MATH-item?pre02117582
http://www.ams.org/mathscinet-getitem?mr=2001a:58012
http://www.emis.de/cgi-bin/MATH-item?0939.35076
http://dx.doi.org/10.1016/S0362-546X(01)00247-4
http://www.ams.org/mathscinet-getitem?mr=2003m:58021
http://www.emis.de/cgi-bin/MATH-item?1042.58507
http://www.ams.org/mathscinet-getitem?mr=94k:35043
http://www.emis.de/cgi-bin/MATH-item?0789.49005
http://dx.doi.org/10.1007/BF01773507
http://dx.doi.org/10.1007/BF01773507
http://www.ams.org/mathscinet-getitem?mr=85h:35104
http://www.emis.de/cgi-bin/MATH-item?0538.35034
mailto:leiyutian@njnu.edu.cn

	1. Introduction
	2. Preliminaries
	3. Location of zeros
	4. Uniform estimation
	5. Convergence
	6. Proof of Equation (4--17)
	References

