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We discuss some aspects of the global behavior of surfaces in H2 × R with
constant mean curvature H (known as H-surfaces). We prove a maxi-
mum principle at infinity for complete properly embedded H-surfaces with
H > 1/

√
2, and show that the genus of a compact stable H-surface with

H > 1/
√

2 is at most three.

1. Introduction

We discuss the global behavior of surfaces in H2
×R with constant mean curvature

H , known as H-surfaces. Recently, work has been done on H -surfaces in product
spaces M2

× R with M2 a Riemannian surface. New examples were produced,
as well as many theoretical results; see [Hauswirth 2003; Meeks and Rosenberg
2004; 2005; Nelli and Rosenberg 2002; Rosenberg 2002] for the case H = 0, and
[Abresch and Rosenberg 2004; Hoffman et al. 2006; Sá Earp and Toubiana 2004]
for the case H 6= 0.

We study the stability of H -surfaces in H2
×R and prove a maximum principle

at infinity. Most of our results depend strongly on the following distance estimate:

Main Lemma. Let M be a stable H-surface in H2
× R. If H > 1/√3 , then

(1) distM(p, ∂M) <
2π√

3(3H 2 − 1)
for any p ∈ M.

The analogue of this lemma for the Euclidean case was proved in [Ros and Rosen-
berg 2001].

The hypothesis H > 1/√3 seems to be necessary only for technical reasons. We
believe that a similar estimate can be proved for H > 1/2 . Whether H is smaller
or greater than 1/2 makes a profound difference in the behaviour of H -surfaces
(comparable to whether H is smaller or greater than 1 in the case of ambient H3).
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For example, compact embedded H -surfaces in H2
×R only exist for H > 1/2 (see

[Hsiang and Hsiang 1989] and our Section 5).
The Lemma is used for proving the next two theorems:

Theorem A. Let M1 and M2 be two disjoint H-surfaces in H2
× R that are com-

plete, properly embedded, without boundary, and with H > 1/√2 . The surface M2

cannot lie in the mean convex side of M1.

By “mean convex side”, we understand the following: Since M1 is properly em-
bedded, it separates H2

×R into two connected components. The mean convex side
of M1 is the component of (H2

×R)\ M1 towards which points the mean curvature
vector of M1.

Theorem B. In H2
× R, there is no complete noncompact stable H-surface with

H > 1/√3 , either with compact boundary or without boundary.

We also prove:

Theorem C. Let M be a compact weakly stable H-surface in H2
×R. If H > 1/√2 ,

then the genus of M is at most three.

In the last section we will give explicit examples of entire graphs with constant
mean curvature H ≤ 1/2 .

2. Proofs of the Main Lemma and Theorem B

We recall the definition of stability. Consider an immersion x : M → H2
× R of

a 2-manifold M . Denote by dM the area form of M in the metric induced by the
immersion x . A variation of x is a differentiable map X : (−ε, ε)× M → H2

× R

such that X t = X (t, · ) is an immersion for each t ∈ (−ε, ε), X0 = x , and X t |∂ M =

x |∂ M .
Define the area and the volume functions A, V : (−ε, ε) → R by

A(t) =

∫
M

dMt and V (t) =

∫
[0,t]×M

X∗dv,

where dv is the volume element of the ambient space, X∗ is the standard linear
map on forms induced by X , and so X∗dv is the induced (algebraic) volume form.

Let N be a unit vector field normal to M , and H the mean curvature function
of M with respect to N . Writing f =

〈
∂ X
dt

∣∣
t=0, N

〉
, one has

Ȧ(0) = −

∫
M

2 f H dM, and V̇ (0) =

∫
M

f dM.

See [Barbosa et al. 1988] for a proof.
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Take M a surface with constant mean curvature H and consider the function
G : (−ε, ε)→R defined by G(t)= A(t)+2H V(t). Clearly, Ġ(0)=0. Furthermore,

(2) G̈(0)( f ) = −

∫
M

(
f 1 f +

(
Ric(N )+|A|

2) f 2
)

dM,

where |A| is the norm of the second fundamental form of M , while Ric(N ) is the
Ricci curvature of the ambient space in the direction of N . See again [Barbosa
et al. 1988] for a proof.

We call L = 1 + |A|
2
+ Ric(N ) the stability operator on M .

If M has constant mean curvature, we say that M is stable if G̈(0)( f ) ≥ 0 for
all smooth functions f on M with compact support.

Our definition of stability is the strong notion of stability; it is what we use
for obtaining certain diameter estimates (see Main Lemma). Usually, one also
requires the test functions f to satisfy

∫
M f =0; that is, one only considers volume-

preserving variations. The resulting notion of stability is called weak stability. For
example, the geodesic spheres in space forms are weakly stable but not strongly
stable. We use the weaker notion in Theorem C.

Remark 2.1. We prove that a vertical graph M in H2
× R is stable. Assume that

the mean curvature vector of M points above, and orient M by the mean curvature
vector. It is enough to prove that, for any domain D ⊂ M with compact closure, the
first eigenvalue λ of L on D is positive. By contradiction, assume that λ < 0 and
let f be a first eigenfunction. Then L f = −λ f and f |∂ D = 0. We can assume that
f |D > 0. Let 8t be the variation of D such that

〈d8t
dt

∣∣
t=0, N

〉
= f , where N is the

unit normal vector field that orients M . The first variation of the mean curvature
for the normal variation f N is

Ḣ(0) f = L f = −λ f > 0.

Hence, for positive small t and at any interior point of the variation 8t(D), the
mean curvature is greater than H . Translate D upward, such that D ∩8t(D) = ∅.
Afterwards, translate D downward: at the first contact point between the translation
of D and 8t(D), the mean curvature of D is smaller than the mean curvature of
8t(D), but D is above 8t(D). By the maximum principle, this is a contradiction.

Remark 2.2. Let {e1, e2} be a principal frame for M , and λ1, λ2 the principal
curvatures. We have

|A|
2
+ Ric(N ) = 4H 2

− 2λ1λ2 − 1 − Ks,

where Ks is the sectional curvature of the ambient space for the plane in the direc-
tion (e1, e2). We used that the scalar curvature of the ambient space is −1. By the
Gauss equation, Ks + λ1λ2 = K , the intrinsic Gauss curvature of M . Hence

|A|
2
+ Ric(N ) = 4H 2

− λ1λ2 − 1 − K .
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Then

L − 1 + K = 4H 2
− λ1λ2 − 1 ≥ 3H 2

− 1 ≥ 0 for H ≥ 1/√3 ,(3)

L − 1 = 4H 2
− 2λ1λ2 − 1 − Ks ≥ 2H 2

− 1 ≥ 0 for H ≥ 1/√2 .(4)

In order to obtain inequality (4), we used that −1 ≤ Ks ≤ 0.

Main Lemma. Let M be a stable H-surface in H2
× R. If H > 1/√3 , then

distM(p, ∂M) <
2π√

3(3H 2 − 1)
for any p ∈ M.

Proof. As M is stable, it was proved in [Fischer-Colbrie 1985] that there exists a
function u > 0 on M such that Lu = 0 on M . Denote by ds2 the metric on M
induced by its immersion in H2

×R, and let ds̃2
= u2 ds2. Consider p ∈ M and let

R > 0 be such that the ball BR , centered at p and of ds-radius R, is contained in
the interior of M . Let γ be a ds̃-minimizing geodesic in BR joining p to ∂ BR . If a
denotes the ds-length of γ , then a ≥ R, and it is enough to prove that

a <
2π√

3(3H 2 − 1)
.

Let K̃ be the intrinsic Gauss curvature of M , and R̃ the length of γ , both in the ds̃
metric. As γ is minimizing, by the second variation formula one has that

(5)
∫ R̃

0

((dϕ

ds̃

)2
− K̃ϕ2

)
ds̃ ≥ 0

for any smooth function ϕ with ϕ(0) = 0 and ϕ(R̃) = 0. From standard computa-
tions, we have

(6) K̃ =
1
u2 (K − 1 ln u) and 1 ln u =

1
u2

(
u1u − |∇u|

2).
Set c = 3H 2

− 1 > 0; then (3) implies that L − 1 + K ≥ c. As Lu = 0, we have

(7) 0 ≥ 1u + (c−K )u.

From (6) and (7),

(8) K̃ =
1
u2 (K −1 ln u) ≥

1
u2

(
c+

|∇u|
2

u2

)
> 0.

We replace (8) in (5), while letting ϕ denote, by abuse of notation, also the com-
position ϕ ◦ s̃. Hence ϕ(0) = ϕ(a) = 0, and

0 <

∫ a

0

(
c+

|∇u|
2

u2

) ϕ2

u
ds ≤

∫ a

0
K̃ϕ2u ds ≤

∫ a

0

(dϕ

ds̃

)2
u ds =

∫ a

0

(dϕ

ds

)2 ds
u

.
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To get rid of u from the denominator, we replace ϕ by ϕ
√

u and, using dot notation
for the derivative with respect to s, write∫ a

0

(
c +

|∇u|
2

u2

)
ϕ2 ds ≤

∫ a

0

(ϕ2u̇2

4u2 + ϕ̇2
+

u̇
u
ϕϕ̇

)
ds,

hence ∫ a

0

(
−

3ϕ2u̇2

4u2 − cϕ2
+ ϕ̇2

+
u̇
u
ϕϕ̇

)
ds ≥ 0.

Using the inequality a2
+ b2

≥ 2ab with a =

√
3

2 u−1u̇ϕ and b =
1

√
3
ϕ̇, we get

3u̇2ϕ2

4u2 +
ϕ̇2

3
≥ u−1u̇ϕ ϕ̇,

hence ∫ a

0

(4
3
ϕ̇2

− cϕ2
)

ds ≥ 0.

Integration by parts gives ∫ a

0

(4
3
ϕ̈ + cϕ

)
ϕ ds ≤ 0.

Choosing ϕ = sin(πsa−1) and s ∈ [0, a], we have∫ a

0

(
c −

4π2

3a2

)
sin2(πsa−1) ds ≤ 0.

Finally,
c −

4π2

3a2 ≤ 0,

and this gives the desired inequality. �

Theorem B. In H2
×R there is no complete noncompact stable surface of constant

mean curvature H > 1/√3 , either with compact boundary or without boundary.

Proof. As M is complete, one can find a sequence of points on M whose distances
to any compact set diverge. This is in contradiction with (1). �

Remark 2.3. In the Main Lemma, suppose one replaces the stability hypothesis by
the assumption that M has finite index (see [Fischer-Colbrie 1985] for the definition
and for the proof of the next fact). For a compact subset K of M , there is a positive
function u on M \ K with Lu = 0 on M \ K . The same argument as above shows
that the distance from any point p ∈ M \ K to ∂(M \ K ) is bounded by the same
bound as in the lemma. Thus, if M is an H -surface of finite index in H2

×R, with
H > 1/√3 and ∂ M compact, then M is compact.

Denote by t the last coordinate in H2
× R.
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Corollary 2.4. Let M be a compact H-surface embedded in H2
×R, with H > 1/√3

and boundary in the horizontal geodesic plane P = {t =0}. The height h of M
above P satisfies

(9) |h| <
4π√

3(3H 2 − 1)
.

Proof. For any two points p and q in M , one has dist
H2×R

(p, q) ≤ distM(p, q).
Assume first that M is a vertical graph above the plane P . By Remark 2.1, such a
graph is a stable surface. Hence, for any point p ∈ M one has

|h(p)| ≤ dist
H2×R

(p, ∂M) ≤ distM(p, ∂M) ≤
2π√

3(3H 2 − 1)
,

where the last step is inequality (1).
If M is not a graph, it is enough to prove the result for any component M ′ of

M lying above the plane P . We apply to M ′ the Alexandrov reflection method
with horizontal geodesic planes. One can do it exactly as in the Euclidean case
(see [Ros and Rosenberg 1996]), because reflections with respect to horizontal
geodesic planes are isometries of H2

× R. By this method one obtains that, if the
height of M ′ above the plane P is L , then the part of M ′ above height 1

2 L is a
vertical graph. So, by the first part of the proof,

L <
4π√

3(3H 2 − 1)
. �

It is proved in [Hoffman et al. 2006] that

|h| ≤
4H

2H 2 − 1
for H > 1/√2 .

A straightforward computation shows that our estimate is sharper than the estimate
in [Hoffman et al. 2006] in the range

1
√

2
≤ h ≤

(
4π2

− 3 +

√
3(4π2 + 3)

2(4π2 − 9)

)1/2

.

On the other hand, if H > 1/2 , the height of a compact rotational H -surface over
its horizontal symmetry plane is

hrot =
2H

√
4H 2 − 1

tan−1 1
√

4H 2 − 1
,

as computed in [Hsiang and Hsiang 1989]. Since

hrot <
2π√

3(3H 2 − 1)
for H > 1/√3 ,

our estimate is not sharp.
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3. Maximum principle at infinity

Theorem A. Let M1 and M2 be two disjoint H-surfaces properly embedded in
H2

× R, without boundary and with H > 1/√2 . The surface M2 cannot lie in the
mean convex side of M1.

The analogue of this result in Euclidean space was proved in [Ros and Rosenberg
2001].

In order to prove Theorem A, we need to establish some notation and prove a
lemma. Let M be an H -surface properly embedded in H2

× R. Take ε a positive
number and, for each t with |t | ≤ ε, consider the set

Nt =
{
q ∈ H2

× R
∣∣ dist

H2×R
(q, M) = t

}
,

where dist
H2×R

is the signed distance function, chosen to be positive in the mean
convex side of M . Given any domain of M with compact closure, if ε is sufficiently
small, the Nt ’s foliate a neighborhood of this domain in H2

×R. For t > 0, the leaf
Nt lies in the mean convex side of M ; for t < 0, in the other side. Let Y be the
unit vector field normal to the foliation Nt and orienting M in the direction of the
mean curvature vector. Along M , the field Y points into the mean convex side of
M . At any x ∈ Nt , let Ht(x) denote the mean curvature of Nt with respect to Y .

Lemma 3.1. If H > 1/√2 and ε is sufficiently small, then, for any x ∈ Nt and y ∈ Ns ,

(10) Ht(x) < H < Hs(y)

whenever −ε < t < 0 < s < ε. Moreover, div Y is negative (here div is divergence
in the ambient space).

Proof. The first variation of the mean curvature for a normal variation f Y gives

d Ht
dt

∣∣∣
t=0

f = Ḣ(0) f = 1 f +
(
|A|

2
+ Ric(Y )

)
f,

where |A| is the norm of the second fundamental form of M and Ric(Y ) is the
Ricci curvature of H2

× R in the direction of Y .
Choosing f = 1 and using (4),

Ḣ(0) = |A|
2
+ Ric(Y ) > 0 for H > 1/√2 ,

and inequality (10) is proved.
Furthermore, at any point y of Nt one has

(div Y )(y) = −2Ht(y).
Hence

(11) (div Y )(y) = −2Hs(y) < −2H < −2Ht(x) = (div Y )(x)
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for any y ∈ Ns , x ∈ Nt , −ε < t < 0 < s < ε. Therefore, div Y is negative. �

Proof of Theorem A. The first part of the proof explains the name “maximum prin-
ciple at infinity”. The proof is by contradiction: we assume that M2 lies in the
mean convex side of M1.

We first prove that neither M1 nor M2 can be compact. If M1 were compact,
then the mean convex side of M1 would be compact too, and M2 would be properly
embedded in a compact set; hence, M2 would be compact. Moving M1 towards
M2 by an isometry of the ambient space yields a first contact point, where the
mean curvature vectors of M1 and M2 are equal. This gives a contradiction by the
standard maximum principle; hence, M1 cannot be compact. If M2 were compact,
then, by moving M2 towards M1 as before, one obtains a contradiction by the
standard maximum principle. So, M1 and M2 are both noncompact. Further, when
moving M1 towards M2 by an isometry of the ambient space, the first contact point
cannot be finite, by the standard maximum principle.

We are left with the case in which the first contact point is at infinity. In this
case, define W to be the closure of the component of (H2

× R) \ (M1 ∪ M2) with
∂W = M1 ∪ M2. The boundary of W is not connected, and the mean curvature
vector of M1 points towards W .

Take h > 1/2 and let Bh be a compact rotational surface of constant mean cur-
vature h. One knows that such surfaces exist for any h > 1/2 , and that their mean
convex sides are compact and exhaust the space as h → 1/2 ; see [Hsiang and Hsiang
1989]. Let Wh be the intersection of W with the mean convex side of Bh .

Let S be a relatively compact domain in M1 such that 0 = ∂S is a smooth curve.
For large h, the mean convex side of Bh contains the surface S. We will show that
there exists a stable H -surface 6 in Wh with boundary 0 and homologous to S.
Then, by taking the domain S in M1 larger and larger, we will find points of 6

very far from its boundary 0. This will give a contradiction, because the distance
between a point of a stable H -surface and its boundary is bounded; see inequality
(1).

We divide the proof of the existence of 6 in three steps.

Step 1: Define a functional F on integral mod 2 currents Q in Wh with ∂ Q =

S ∪ 6, and minimize it in Wh .

Step 2: If Q is a minimizer for F , then 6 = ∂ Q \ S is a stable H -surface.

Step 3: If 6 does not coincide with S, then Int 6 is contained in Int Wh .

Proof of Step 1. Consider the functional

F(Q) = A(6) + 2H V(Q)

defined on all integral mod 2 currents Q contained in Wh with both
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(a) ∂ Q = 6 ∪ S, where 6 is a compact set of finite 2-mass; and

(b) V (Q) ≤ A(S), and A(6) ≤ A(S).

Here, A(6) denotes the 2-mass of 6, while V (Q) denotes the 3-mass of Q.

If there exists no Q such that conditions (a) and (b) hold, then S is stable. We
prove this by contradiction: Assume that, for any Q satisfying condition (a), one
has either V (Q) > A(S) or A(6) > A(S). As H ≥ 1/√2 , it follows that in both
cases F(Q) > A(S). This means that there is no variation of S inside Wh that
decreases the value of F . We claim that this implies that S is stable in the sense of
Section 2.

Suppose by contradiction that this is not the case. Then, as in the proof of
Remark 2.1, the first eigenvalue λ of the stability operator L on S is negative. We
can assume that a first eigenfunction f is such that f |∂S = 0 and f |S > 0. Then
L f = −λ f > 0 and G̈(0)( f ) < 0. As f |S > 0, the deformation arising from f is
inside Wh , where the functionals G and F coincide. We found a deformation of F
inside Wh that decreases F : a contradiction.

If one chooses the domain S on M1 large enough to have interior points with
distance from the boundary of S contradicting inequality (1), then S is not stable.
For such an S, one can find integral currents Q such that conditions (a) and (b) are
satisfied.

There exists a minimum Q of F in Wh . Furthermore, 6 = ∂ Q \ S is regular at
interior points, that is, at points of 6 ∩ Int Wh , and 6 has mean curvature H at
regular points. The existence follows from [Massari 1974, Theorem 1.1]; Massari
states the result in Euclidean space, but, as his functional is the same as our F , the
proofs are analogous.

The regularity follows from [Morgan 2003]. Actually, Morgan proves regularity
for solutions of an isoperimetric problem, and his proof is local. In order to apply
Morgan’s result, we have to show that, in a small ball, a minimum of F and the
solution of the isoperimetric problem coincide. Take p ∈ 6 and let B(p, ε) ⊂

Int(Wh) be a small ball around p. Write Qε = Q ∩ B(p, ε) and 6ε = 6 ∩ B(p, ε).
We claim that 6ε is the solution of the isoperimetric problem for the volume

V (Qε) in the closed manifold B̄(p, ε), with fixed boundary ∂6ε. If this is not
the case, one can find a surface 6′

⊂ B̄(p, ε), with ∂6′
= ∂6ε but distinct from

6ε, with A(6′) < A(6ε) and V (Q′) = V (Qε), where Q′
⊂ B̄(p, ε) is such that

∂ Q′
= 6′

∪ (∂ Qε \ 6ε); see Figure 1. But then

F(Q′) = A(6′) + 2H V(Q′) < A(6ε) + 2H V(Qε) = F(Qε)

Hence Q would not be a minimum for F , a contradiction. �
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p

B(p, ε)

6

6ε

6′

Q
Qε

Figure 1

Proof of Step 2. We have to prove that, if Q is a minimum for F , then 6 = ∂ Q \ S
is a stable surface in the sense of Section 2.

First, we argue that the mean curvature vector of 6 points outside Q. Suppose
by contradiction that there is a point p of 6 such that the mean curvature vector
at p points towards Q. Then one can find a compact subset K of the ambient
space such that p ∈ K ∩ 6, ∂K is mean convex, and the mean curvature vectors
at points of 6 ∩ K point towards Q. Let 6̃ be the solution of the Plateau problem
in K ∩ Q for the boundary ∂(K ∩6). Denote by Q̃ the subset of K ∩ Q such that
∂ Q̃ = (6 ∩ K ) ∪ 6̃. One has

F(Q \ Q̃) = V (Q \ Q̃) + 2H
(

A(6)− A(U ∩ K )+ A(6̃)
)
< F(Q),

where the last inequality follows from A(6̃)< A(6∩K ), as 6̃ is area-minimizing.
This is a contradiction with Q being a minimizer of F .

Now, suppose by contradiction that 6 = ∂ Q \ S is not a stable surface in the
sense of Section 2. Then, as in the proof of Remark 2.1, the first eigenvalue λ for
the stability operator L on 6 is negative. We can assume that a first eigenfunction
f is such that f |∂6 = 0 and f |6 > 0. Then L f = −λ f > 0 and G̈(0)( f ) < 0.
As f |6 > 0, the deformation arising from f is inside Wh and outside Q, where
the functionals G and F coincide. Hence, 6 cannot be a minimum for F in Wh : a
contradiction. �

Proof of Step 3. We prove that, if Q is an integral current in Wh such that ∂ Q \ S
touches ∂Wh , then there is an integral current Q′ such that

S ⊂ ∂ Q′, ∂ Q′
\ S ⊂ Int(Wh), and F(Q′) < F(Q).

Hence, one can always choose a minimizing sequence Qn for the functional F
such that ∂ Qn \ S stays inside Int(Wh), and there is a minimum Q of F such that
6 = ∂ Q\S is a stable H -surface in Int(Wh) with boundary 0 and homologous to S.

We have four cases: 6 = ∂ Q \ S can touch ∂Wh along S, along M1 \ S, along
Bh , or along M2.
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S0

M1
C

C

6̃ 6̃

Q

Q6δ

Q̃ H

H

Figure 2

(i) Case along S. We can assume that 6 touches S in one connected component
S0; if this were not the case, we could repeat the same reasoning for each of the con-
nected components. Foliate a neighbourhood of S0 as in Lemma 3.1. Let C ⊂ ∂ Q,
6̃ ⊂ ∂ Q and 6δ ⊂ Nδ with δ < ε be such that ∂ Q = 6̃ ∪ C ∪ S0, as in Figure 2.
Let Q̃ be the subset of Wh such that ∂ Q̃ = 6δ ∪ C ∪ S0. Set Q′

= Q ∪ Q̃, so that
∂ Q′ does not touch S.

We prove that F(Q′) < F(Q). We have

F(Q′) = A(6̃) + A(6δ) + 2H V(Q̃) + 2H V(Q),

F(Q ) = A(6̃) + A(C) + A(S0) + 2H V(Q).

After applying Stokes’ theorem in Q̃ and using inequality (11), one gets

−2H V(Q̃) >

∫
Q̃

div Y = A(6δ) +

∫
C
〈Y, nC〉 − A(S0),

where nC is the unit normal vector to C pointing outwards Q̃. Then

A(6δ) + 2H V(Q̃) < A(S0) + A(C).

This yields F(Q′) < F(Q) and thus excludes this case. (See [Ros and Rosenberg
2001] for another proof of this case.)

(ii) Case along M1 \ S. Let S0 be the subset of M1 \ S where 6 touches M1. As in
the proof of (i), we can assume that S0 is connected, and foliate a neighbourhood
of S0 as in Lemma 3.1. Let Q̃ = Q∩

{
Nt

∣∣ 0 < t <δ
}

with δ < ε. Write Q′
= Q\ Q̃,

so that ∂ Q′
\ S does not touch M1.

We prove that F(Q′) < F(Q). Split ∂ Q̃ = S0 ∪6δ ∪C , with C ⊂ ∂ Q, 6δ ⊂ Nδ,
and 6′

= ∂ Q \ (C ∪ S0), as in Figure 3. Applying Stokes’ theorem in Q̃ and using
inequality (11), one has

−2H V(Q̃) >

∫
Q̃

div Y = −A(S0) + A(6δ) +

∫
C
〈Y, nC〉,
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Figure 3

where nC is the unit normal vector to C pointing outwards Q̃. Then

(12) A(6δ) + 2H V(Q̃) < A(S0) + A(C).

Furthermore,

F(Q ) = 2H V(Q̃) + 2H V(Q′) + A(6′) + A(C) + A(S0),

F(Q′) = 2H V(Q′) + A(6′) + A(6δ).

From inequality (12) then follows that F(Q′) < F(Q).

(iii) Case along Bh . As Q lies in the mean convex side of Bh , a reasoning similar
to that in (ii) excludes this case.

(iv) Case along M2. The same proof as in (ii) yields that ∂ Q cannot touch M2,
provided the mean curvature vector of M2 points towards Wh .

If the mean curvature vector of M2 points outwards Wh , we proceed as fol-
lows: Let S0 be the subset of M2 where 6 touches M2; as before we can assume
that S0 is connected, and foliate a neighbourhood of S0 as in Lemma 3.1. Let
Q̃ = Q ∩

{
Nt

∣∣ −δ < t < 0
}

and Q′
= Q \ Q̃; then Q′ does not touch M2.

We prove that F(Q′) < F(Q). Split ∂ Q̃ = S0 ∪ 6−δ ∪ C , with C ⊂ ∂ Q and
6−δ ⊂ N−δ, and let 6′

= ∂ Q \ (C ∪ S0), as in Figure 4. Applying Stokes’ theorem
in Q̃ and using inequality (11), one has

−2H V(Q̃) <

∫
Q̃

div Y = A(S0) − A(6−δ) +

∫
C
〈Y, nC〉,

where nC is the unit normal vector to C pointing outwards Q̃. Then

(13) A(6−δ) < 2H V(Q̃) + A(S0) + A(C).

Furthermore,

F(Q ) = 2H V(Q̃) + 2H V(Q′) + A(6′) + A(C) + A(S0),

F(Q′) = 2H V(Q′) + A(6′) + A(6−δ).
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Then, from inequality (13) it follows that F(Q′) < F(Q), which excludes this last
case. �

Now, we finish the proof of Theorem A.
Take p1 ∈ M1 and let S be the set of points of M1 at distance from p1 less than

or equal to a fixed R. As M1 is properly embedded, when R is large ∂S is outside
any compact set of H2

×R, and hence S is not stable because of inequality (1). Let
6 be the stable H -surface in Wh with boundary 0 obtained by minimizing F . Take
a point p2 of M2 and a path γ in Int Wh joining p1 to p2. One of the components
of 6 intersects γ , since 6 is homologous to S and the intersection number of γ

and S is one. As ∂S = ∂6, there exists a p ∈ γ ∩ 6 such that

dist6(p, ∂6) >
2π√

3(3H 2 − 1)
.

This contradicts inequality (1). �

4. Compact stable surfaces

Theorem C. Let M be a compact weakly-stable H-surface in H2
×R. If H > 1/√2 ,

then the genus g of M is at most three.

Proof. Let ϕ : M → S2 be a meromorphic map satisfying

deg ϕ ≤ 1 +
[ 1

2(g + 1)
]

and
∫

M
ϕ = 0,

where [x] means the integer part of x . For the existence of such a map ϕ, see for
example [Ritoré and Ros 1992]. Applying the stability inequality of Section 2 to
the three coordinates of ϕ and summing up, one has

0 ≤

∫
M

(
|∇ϕ|

2
− (Ric N +|A|

2)
)
dM.
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Using that |∇ϕ|
2

= 2 Jac(ϕ) and Ric(N ) + |A|
2

= 4H 2
− 2K + Ks − 1 (with the

notation of Remark 2.2), one obtains

0 ≤ 8π deg ϕ −

∫
M

(
4H 2

+Ks −1
)
dM + 2

∫
M

K dM.

Since Ks ≥ −1, by the Gauss–Bonnet theorem one has

0 ≤ 8π deg ϕ −

∫
M

(
4H 2

−2
)
dM + 8π(1−g).

Hence

(14)
1

2π

∫
M

(
H 2

− 1/2
)
dM ≤

[
(g + 1)

/
2

]
+ 2 − g.

Since H > 1/√2 , this inequality gives g ≤ 3. �

Corollary 4.1. Let M be a compact stable H-surface in H2
× R with H > 1/√2 .

Denote the genus of M by g.

• If g = 0 or 1, then A(M) ≤ 8π
/
(2H 2

− 1) .

• If g = 2 or 3, then A(M) ≤ 4π
/
(2H 2

− 1) .

Proof. The estimates on the area of M follow immediately from inequality (14). �

Remark 4.2. In [Abresch and Rosenberg 2004] it is proved that any compact
H -surface of genus zero is a rotational surface. We remark that such rotational
compact H -surfaces exist only for H > 1/2 .

5. Surfaces of constant mean curvature H ≤ 1/2

Theorem D. For any H ∈ (0, 1/2 ] there exists a complete, vertical rotational graph
RH on H2 with constant mean curvature H.

Proof. Consider the disk model for H2 and let u : H2
→ R be a C2 function

depending on r =

√
x2

1 + x2
2 . Write u̇ = du/dr .

The graph of u is a rotational H -surface if and only if

(15) ü +
τ 2u̇

r
+

√
F ru̇3

=
2Hτ 3

F
,

where F =
(
(1 − r2)

/
2

)2 and τ =
√

1 + Fu̇2. A first integral of (15) is

u̇ =
4Hr

(1 − r2)
√

1 − 4H 2r2
.

Let us describe the behaviour of such a solution. All values of r in [0, 1) are
allowed. When H = 1/2 , one can integrate explicitly and obtain

u(r) =
2

√
1 − r2

+ constant.
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Hence, limr→1 u(r) = ∞. On the other hand, if H ∈ (0, 1/2 ], then

u(r) >

∫
4Hr

(1 − r2)
= −2H ln(1 − r2).

Hence, limr→1 u(r) = ∞. �

Corollary 5.1. For any simple closed curve 0 that is not homologically zero in
the boundary of H2

× R, there exists no H-surface in H2
× R with H 6= 0 and

asymptotic boundary 0.

Proof. If such a surface existed, then, by the maximum principle it would coincide
with one of the rotational surfaces described above; this is a contradiction. �

Remark 5.2. The result of Corollary 5.1 is in contrast with the situation for H = 0;
see [Nelli and Rosenberg 2002].

Corollary 5.3. There is no compact H-surface with H ∈ (0, 1/2 ] and embedded in
H2

× R.

Proof. Assume by contradiction that a compact embedded H -surface 60 exists for
H = H0 ∈ (0, 1/2 ]. Consider the rotational surface RH0 from Theorem D. Compar-
ing 60 and RH0 , by the maximum principle one obtains that they should coincide.
This is a contradiction, as 60 is compact, which is not the case with RH0 . �

Remark 5.4. Corollary 5.3 is implicitly contained in [Hsiang and Hsiang 1989].
There, it is proved that any embedded compact surface of constant mean curvature
must be rotational, and that the only embedded compact rotational surfaces have
mean curvature greater than 1/2 . In the case of the sphere, Corollary 5.3 holds for
immersed surfaces. This is contained in [Abresch and Rosenberg 2004], where the
authors prove that any immersed constant-mean-curvature sphere is rotational.
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