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ANALOGUES OF THE EXPONENTIAL MAP
ASSOCIATED WITH COMPLEX STRUCTURES

ON NONCOMMUTATIVE TWO-TORI

ALEXANDER POLISHCHUK

We define and study analogues of exponentials for functions on noncom-
mutative two-tori that depend on the choice of a complex structure. The
major difference with the commutative case is that our exponentials can be
defined only for sufficiently small functions. We show that this phenome-
non is related to the existence of certain discriminant hypersurfaces in an
irrational rotation algebra. As an application of our methods we give a very
explicit characterization of connected components in the group of invertible
elements of this algebra.

Introduction

We study some natural constructions for functions on noncommutative two-tori
equipped with a complex structure. Recall that for every number θ ∈ R \ Q the
algebra Aθ of smooth functions on the noncommutative torus Tθ (also known as the
irrational rotation algebra) consists of expressions

∑
(m,n)∈Z2 am,nU m

1 U n
2 , where

the coefficients am,n ∈ C decrease rapidly at infinity and the multiplication is per-
formed using the rule

U1U2 = exp(2π iθ)U2U1.

Given an element τ ∈ C \ R (as in [Polishchuk and Schwarz 2003] we will always
assume that Im τ < 0), we define a derivation

δτ : Aθ → Aθ :

∑
am,nU m

1 U n
2 7→ 2π i ·

∑
m,n

(mτ + n)am,nU m
1 U n

2

We consider δτ as a complex structure on Tθ and denote the resulting complex
noncommutative torus by Tθ,τ .

The main object of our study is the equation

(0–1) δτ (x)= xa
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for x ∈ Aθ , where a ∈ Aθ is given. In the commutative case this equation is
clearly related with the exponential map on smooth functions. It turns out that
there is a local analogue of this map for Aθ . However, in the noncommutative case
there seem to be serious reasons why the exponential map does not extend to all
functions. For example, we show that (0–1) has a nonzero solution if and only if
tr(a) ∈ 2π i(Z + Zτ), where tr(

∑
am,nU m

1 U n
2 ) = a0,0 — see Corollary 3.7 — but

these solutions are not necessarily invertible in Aθ , as they are in the commutative
case.

The study of Equation (0–1) turns out to be closely related to the study of holo-
morphic structures on the trivial holomorphic bundle over Tθ,τ . By a holomorphic
bundle on Tθ,τ we mean a right projective module E over Aθ equipped with a
δτ -connection, i.e., a linear map ∇ : E → E satisfying the Leibniz rule

∇(ea)= ∇(e)a + eδτ (e).

The category C of holomorphic bundles on Tθ,τ was studied in [Polishchuk and
Schwarz 2003] and [Polishchuk 2004]. The main result of the latter paper identifies
C with the heart of a certain t-structure on the derived category of coherent sheaves
on the elliptic curve C/(Z + Zτ). This leads to a classification of holomorphic
bundles on Tθ,τ up to isomorphism. We apply this classification to the study of
solutions of (0–1), and in particular to the question of existence of a solution x ∈ A∗

θ ,
where A∗

θ ⊂ Aθ is the set of invertible elements. The main result here is Theorem
3.6, which states that the map

A∗

θ/C∗
→ Aθ : x 7→ x−1δτ (x)

identifies A∗

θ/C∗ with �τ + 2π i(Z + Zτ), where �τ is a dense open subset in the
hyperplane H = {a ∈ Aθ : tr(a) = 0}. More precisely, we prove that �τ is the
complement to the discriminant hypersurface 2τ ⊂ H consisting of a ∈ H such
that the equation

δτ (x)+ ax − xa = 0

has a nontrivial solution x ∈ H . We call it a hypersurface since it coincides with the
zero locus of a global holomorphic section of a holomorphic line bundle over Aθ ,
induced by Quillen’s determinant line bundle on the space of Fredholm operators
of index zero. We study the structure of2τ in more detail, presenting some results
that make us believe that 2τ should be irreducible in an appropriate sense.

As a byproduct of our study we deduce the following statement about the struc-
ture of the group A∗

θ . It is well known that the group of connected components of
A∗

θ can be identified with Z2. We prove that for every x ∈ A∗

θ one has tr(x−1δτ (x))∈
2π i(Z + Zτ)⊂ C and that the map x 7→ tr(x−1δτ (x)) induces an isomorphism on
the groups of connected components.
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The paper is organized as follows. In Section 1 we study formal exponential
maps for Aθ . First we present the construction of a map

El(τ, · ) : Aθ [[t]]/C[[t]] → 1 + t Aθ [[t]]

that specializes to a 7→ exp(ta)/ tr(exp(ta)) in the commutative case. In Section 2
we construct and study the normalized map

Expl(τ, · ) : Aθ [[t]] → 1 + t Aθ [[t]]

that specializes to exp(ta) in the commutative case. In Section 3 we prove that our
formal exponentials converge in a neighborhood of zero and then study logarithmic
derivatives of invertible elements and the discriminant hypersurface.

1. Formal exponentials

Notation. For every v = (m, n) ∈ Z2 we set

Uv = exp(−π iθmn)U m
1 U n

2 .

We have the product rule

Uv · Uv′ = exp(2π i <<v, v
′
>> )Uv+v′

in Aθ , where for v′
= (m′, n′) we set

<<v, v
′
>> = <<v, v

′
>> θ =

1
2θ(mn′

− m′n).

For an element a =
∑

v∈Z2 avUv ∈ Aθ we define the support of a as the set of all
v ∈ Z2 such that av 6= 0. Elements supported on a fixed rank-1 subgroup Z ⊂ Z2

form a commutative subalgebra in Aθ .
Recall that Aθ is equipped with the C-antilinear antiinvolution ∗ defined by

(U1)
∗

= U−1
1 , (U2)

∗
= U−1

2 . For v ∈ Z2 we have (Uv)
∗

= U−v; hence for a =∑
v∈Z2 avUv we get a∗

=
∑

v a∗
vUv, where a∗

v = a−v.
Define the homomorphism

ι : Z2
→ C, (m, n) 7→ 2π i(mτ + n).

For every v ∈ Z2, we have δτ (Uv)= ι(v) · Uv.

First construction. Our formal exponentials will live in the ring Aθ [[t]], where t
is a formal variable commuting with Aθ . We extend δτ to a C[[t]]-linear derivation
of Aθ [[t]] and the trace to a C[[t]]-linear functional tr : Aθ [[t]] → C[[t]].

Theorem 1.1. For every τ ∈ C \ R there exists a unique map

El(τ, · ) : Aθ [[t]]/C[[t]] → 1 + t Aθ [[t]]

satisfying δτ (El(τ, a))= t El(τ, a) · δτ (a) and tr(El(τ, a))= 1.
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We need the following purely algebraic statement.

Lemma 1.2. Let A be an associative algebra over Q, M an A-bimodule, and
d : A → M a derivation. Assume that a1, . . . , an are elements of A such that

d(ai )= ai−1d(a1) for i = 2, . . . , n.

Then
and(a1) ∈ [A,M] + d(A),

where [A,M] ⊂ M is the linear span of the elements of the form [a,m] = am −ma
for a ∈ A, m ∈ M.

Proof. For every n1, . . . , nk ∈ [1, n], write

[n1, . . . , nk] = an1 . . . ank−1d(ank ) mod [A,M] + d(A).

From the Leibnitz identity we get

[n1, . . . , nk] + c.p.(1, . . . , k)= 0

in A/([A,M]+ d(A)), where c.p.(1, . . . , k) denotes the terms obtained by cyclic
permutation from (1, . . . , k). Since k is invertible in A, this implies that

(1–1)
∑

n1+···+nk=n

[n1, . . . , nk] = 0.

On the other hand, the identity d(ai )= ai−1d(a1) implies that

(1–2) [n1, . . . , nk] = [n1, . . . , nk−1, nk − 1, 1]

for nk > 1. Set
bk =

∑
n1+···+nk=n

[n1, . . . , nk, 1].

For example, b1 = [n, 1] = and(a1), bn+1 = 0. We claim that

bk = −bk−1 for every k.

Indeed, using (1–2) we get

bk =

∑
n1+···+nk=n

[n1, . . . , nk−1, nk + 1] =

∑
n1+···+nk=n+1,nk>1

[n1, . . . , nk].

Now applying (1–1) we can replace this with

bk = −

∑
n1+···+nk=n+1

nk=1

[n1, . . . , nk] = −bk−1,

which proves our claim. Therefore,

and(a1)= b1 = ±bn+1 = 0 modulo [A,M] + d(M). �
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Proof of Theorem 1.1. We first show the uniqueness of El(τ, a). If x, y ∈1+t Aθ [[t]]
satisfy x−1δ(x)= y−1δ(y)= tδ(a) then

δ(xy−1)= δ(x)y−1
− xy−1δ(y)y−1

= 0,

hence x = cy with c ∈ C[[t]]. Furthermore,

1 = tr(x)= tr(cy)= c tr(y)= c,

so x = y. To show existence, write El(τ, a) = 1 + a1t + a2t2
+ · · · with some

ai ∈ Aθ [[t]] such that tr(ai )= 0 (so that tr(El(τ, a))= 1 as desired) and such that

δτ (ai )= ai−1δτ (a) for i ≥ 1,

where a0 = 1. Clearly this would imply the first equality in the conclusion of the
theorem, so it is enough to show the existence of such ai ’s. To this end we set
a1 = a − tr(a) and apply Lemma 1.2 to construct ai for i ≥ 2 inductively. We have

[Aθ , Aθ ] ⊂ H = δτ (Aθ ),

where H ⊂ Aθ is the space of elements x with tr(x)= 0. A similar inclusion holds
for the ring of formal power series. Thus, when a1, . . . , an are already constructed,
Lemma 1.2 allows us to conclude that anδτ (a)∈ δτ (Aθ [[t]]), so we can define an+1

as the unique element satisfying δτ (an+1)= anδτ (a) and tr(an+1)= 0. �

Remark. In the commutative case we have

El(τ, a)= exp(ta)/ tr(exp(ta)),

thanks to the equality tr(El(τ, a))= 1 of the theorem. In Section 2 we will present
a way of normalizing noncommutative exponentials that reduces to the standard
normalization in the commutative case.

Similarly, one can define the function Er (τ, · ) such that

δτ (Er (τ, a))= tδτ (a) · Er (τ, a)

and tr(Er (τ, a)) = 1. We now extend the standard antiinvolution ∗ : Aθ → Aθ to
an antiinvolution of Aθ [[t]] by t-linearity. From the equation δτ (a)∗ = δτ (a∗) one
can easily derive that

(1–3) Er (τ, a)∗ = El(τ , a∗).

Proposition 1.3. For every a ∈ Aθ [[t]] one has

El(τ, a) · Er (τ,−a)= Er (τ,−a) · El(τ, a)=: s(τ, a) ∈ 1 + tC[[t]].



158 ALEXANDER POLISHCHUK

Proof. Indeed, set x = El(τ, a), y = Er (τ,−a), and δ = δτ . Then

δ(xy)= δ(x)y + xδ(y)= t xδ(a)y − t xδ(a)y = 0.

This implies that z = xy ∈1+tC[[t]]. Since x is invertible in Aθ [[t]] and z commutes
with x−1, we derive that y = zx−1 and so yx = z = xy. �

Corollary 1.4. s(τ, a)= s(τ ,−a∗).

Proof. We have

s(τ, a)= Er (τ,−a)∗ El(τ, a)∗ = El(τ ,−a∗)Er (τ , a∗)= s(τ ,−a∗). �

The exponential formula in terms of coefficients. We next derive an explicit for-
mula for El(τ, a) in terms of the coefficients of a.

Recall that ι : Z2
→ C is the homomorphism sending (m, n) to 2π i(mτ + n).

Define a collection of symmetric functions fn(v1, . . . , vn) of n lattice vectors re-
cursively by setting f0 = f1(v)≡ 1 and

fn(v1, . . . , vn)= ι(v1 + · · · + vn)
−1

×
∑n

i=1 ι(vi ) fn−1(v1, . . . , v̂i , . . . , vn) exp
(
2π i <<

∑
j 6=i v j , vi >>

)
if v1 +· · ·+vn 6= 0, and fn(v1, . . . , vn)= 0 otherwise. It is easy to see that fn can
also be given by

fn(v1, . . . , vn)=

∑
σ∈S(v1,...,vn)

ι(vσ(1)) . . . ι(vσ(n)) exp(2π i
∑

i< j <<vσ(i), vσ( j)>> )

ι(vσ(1))ι(vσ(1) + vσ(2)) . . . ι(vσ(1) + · · · + vσ(n))
,

where the summation is taken over the set S(v1, . . . , vn)⊂ Sn of all permutations
σ for which the denominator in the corresponding term does not vanish. When
we want to stress the dependence of fn on θ we write fn(v1, . . . , vn; θ) instead of
fn(v1, . . . , vn).

Let Div(Z2)≥0 denote the semigroup of effective divisors on Z2, i.e., of formal
linear combinations D = n1(v1)+ · · · + nk(vk) with ni ≥ 0 and vi ∈ Z2. We set

supp D = {vi : ni > 0},

s(D)= n1v1 + · · · + nkvk ∈ Z2,

deg D = n1 + · · · + nk,

D! = n1! . . . nk !.

Theorem 1.5. For an element a =
∑

v 6=0 avUv ∈ Aθ [[t]] such that a0 = 0, one has

El(τ, a)=

∑
D∈Div(Z2)≥0

tdeg D

D!
c(D)aDUs(D),

where for D = (v1)+ · · · + (vd), with the vi not necessarily distinct, we set

c(D)= cθ (D) := fd(v1, . . . , vd; θ) and aD = av1 . . . avd .
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Proof. Recall that El(τ, a) =
∑

ai t i , where δ(ai ) = ai−1δ(a) and tr(ai ) = 0 for
i ≥ 1. This easily implies that

an =

∑
D∈Div(Z2)≥0

deg D=n

c(D)
D!

aDUs(D)

for some constants c(D) that do not depend on a. The coefficients c(D) are
uniquely determined from this equation since the functions a 7→ aD for D ∈

Div(Z2)≥0 are linearly independent. Note also that we have c(D)= 0 if s(D)= 0.
Comparing the coefficients with aDUs(D) in the equation δ(ad)= ad−1δ(a), where
d = deg D, we obtain

ι(s(D))
c(D)

D!
=

∑
v∈supp D

ι(v)
c(D − v)

(D − v)!
exp(2π i <<s(D − v), v>> ).

Equivalently,

(1–4) ι(s(D))c(D)=

∑
v∈supp D

nvι(v)c(D − v) exp(2π i <<s(D − v), v>> ),

where nv is the multiplicity of v in D. This implies that c(D)= fd(v1, . . . , vd) for
D = (v1)+ · · · + (vd). �

Corollary 1.6. For every v1, . . . , vn ∈ Z2 such that v1 + · · · + vn = 0 one has
n∑

i=1

ι(vi ) fn−1(v1, . . . , v̂i , . . . , vn)= 0.

Proof. Apply equation (1–4) to D = (v1)+ · · · + (vn). �

Remark. We do not know a direct combinatorial proof of the identity of Corollary
1.6 except when v1, . . . , vn are sufficiently generic. See remark after Theorem 2.4.

Recall that
(∑

v avUv

)∗
=

∑
v a−vUv. Using (1–3) and Theorem 1.5, we get

Er (τ, a)=

∑
D∈Div(Z2)≥0

tdeg D

D!
c−θ (D)aDUs(D).

2. The normalized exponential

We now define a natural modification of El(τ, · ) that reduces to the usual expo-
nential in the commutative case.

The idea is to modify the symmetric functions fn(v1, . . . , vn) that appear in the
explicit formula for El(τ, · ). Consider the rational functions

Rn(x1, . . . , xn)=
x1x2 . . . xn

x1(x1 + x2) . . . (x1 + · · · + xn)
.
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For a permutation σ ∈ Sn and an n-tuple x = (x1, . . . , xn), write

xσ = (xσ(1), . . . , xσ(n)).

Recall that for an n-tuple of lattice vectors v = (v1, . . . , vn) we have

fn(v)=

∑
σ∈S(v)

Rn(ι(v)
σ ) exp

(
2π i

∑
i< j

<<vσ(i), vσ( j)>>
)
,

where ι(v)= (ι(v1), . . . , ι(vn)) and S(v)⊂ Sn is the set of all permutations σ such
that Rn is regular at vσ . We want to define a modified expression f ∗

n (v) that takes
into account contributions from σ such that Rn is not defined at vσ . For this we
will combine several terms corresponding to such permutations, so that the poles
will cancel out.

An n-tuple v = (v1, . . . , vn) determines a map

tv : Sn → Z2
⊗Z Z2, σ 7→

∑
i< j

vσ(i) ⊗ vσ( j).

The fibers of tv define a partition

Sn = S(v, 1)t · · · t S(v, r)

of Sn . The crucial observation is the following remarkable cancellation of poles.

Proposition 2.1. The rational functions

RS(v, j)(x) :=

∑
σ∈S(v, j)

Rn(xσ ), for j = 1, . . . , r,

are regular at ι(v). More precisely, for every collection 1 ≤ i1 < · · ·< ir ≤ n such
that vi1 +· · ·+vir = 0, the functions RS(v, j) do not have poles along the hyperplane
xi1 + · · · + xir = 0.

In the following discussion we view indices as elements of Z/nZ (so vn+1 = v1).
The proof of the next lemma is straightforward:

Lemma 2.2. If v1 + · · · + vn = 0 then∑
i< j

vi ⊗ v j =

∑
i< j

vi+1 ⊗ v j+1,

Lemma 2.3. Let ζ ∈ Sn be the cyclic permutation of order n. Then the function

n−1∑
i=0

Rn(xζ
i
)

has no pole along x1 + · · · + xn = 0.
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Proof. It suffices to prove that the function

n∑
i=1

1
xi (xi + xi+1) . . . (xi + xi+1 + · · · + xi+n−1)

has no pole along x1 + · · · + xn = 0. Since

xi + xi+1 + · · · + x j ≡ −(x j+1 + x j+2 + · · · + xi−1) mod (x1 + · · · + xn)

we can replace the expression above with

(x1+· · ·+xn)
−1

×

n∑
i=1

(−1)i−1

(x1+· · ·+xi−1)(x2+· · ·+xi−1)xi−1xi (xi +xi+1) . . . (xi +· · ·+xn−1)
.

The new sum depends only on (x1, . . . , xn−1). Hence, our assertion is equivalent
to the identity

n∑
i=1

(−1)i−1

(x1 +· · ·+ xi−1)(x2 +· · ·+ xi−1)xi−1 · xi (xi + xi+1) . . . (xi +· · ·+ xn−1)
= 0.

Since the left-hand side is homogeneous of degree −(n − 1), it suffices to prove
that it has no poles. The only possible poles are along the hyperplanes hi j =

xi + xi+1 + · · · + x j = 0. Now one can check easily that for every i ≤ j there are
exactly two terms in the sum above having poles along hi j = 0, and that their polar
parts cancel out. �

Proof of Proposition 2.1. We use induction in n and the recursive formula

Rn(x1, . . . , xn)= Rn−1(x1, . . . , xn−1)
xn

x1 + · · · + xn
.

Assume that the assertion holds for n − 1. We can write RS(v, j) in the form

RS(v, j) =

n∑
m=1

∑
σ∈S(v, j):σ(n)=m

Rn−1(xσ(1), . . . , xσ(n−1))
xm

x1 + · · · + xn

For a given m let us denote S(v, j; m) the set of σ ∈ S(v, j) such that σ(n)=m. Fix
σ0 ∈ S(v, j; m). Then S(v, j; m)σ−1

0 leaves m stable. Furthermore, it is clear that
S(v, j; m)σ−1

0 coincides with one piece in the partition of the set of permutations
of (1, . . . , m̂, . . . , n) associated with the (n −1)-tuple (v1, . . . , v̂m, . . . , vn). Thus,
by the induction assumption all the sums∑

σ∈S(v, j;m)

Rn−1(xσ(1), . . . , xσ(n−1))
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have no poles along the required hyperplanes. If v1 +· · ·+vn 6= 0 this finishes the
proof. It remains to consider the case when v1 + · · · + vn = 0. By Lemma 2.2 in
this case all the sets S(v, i) are right cosets for the subgroup Z/nZ ⊂ Sn generated
by the cyclic permutation ζ ∈ Sn , where ζ(i) = i + 1. Therefore, by Lemma 2.3
the functions RS(v, j) have no poles along the hyperplane x1 + · · · + xn = 0. �

We now define a rational function of x = (x1, . . . , xn) by

Rv(x)=

∑
σ∈Sn

R(xσ ) exp(2π i << tv(σ )>> )=

r∑
j=1

RS(v, j)(x) exp(2π i << tv(S(v, j))>> ),

where << tv(S(v, j))>> is the common value of

<< tv( · )>> := << · , · >> ◦ tv : Sn → R

on S(v, j). By Proposition 2.1 this function is regular at ι(v), so we can set

f ∗

n (v)= f ∗

n (v; θ)= Rv(ι(v)).

It is easy to check that f ∗
n is symmetric in v1, . . . , vn . As before we have f ∗

0 =

f ∗

1 (v)≡ 1.

Theorem 2.4. For an element a =
∑

v avUv ∈ Aθ [[t]] consider the series

Expl(τ, a) :=

∑
D∈Div(Z2)≥0

tdeg D

D!
c∗(D)aDUs(D) ∈ 1 + t Aθ [[t]],

where for D = (v1)+ · · · + (vd) we have set

c∗(D)= c∗

θ (D)= f ∗

n (v1, . . . , vd; θ).

Then

(i) δτ (Expl(τ, a))= t Expl(τ, a) · δτ (a);

(ii) if θ = 0 or if the support of a is contained in a rank-1 subgroup Z ⊂ Z2 then
Expl(τ, a)= exp(ta); and

(iii) for a ∈ Aθ [[t]] and z ∈ C[[t]] we have

(2–1) Expl(z + a)= exp(t z) · Expl(a).

Proof. As in Theorem 1.5 the proof of first equality reduces to the identity

ι(v1 + · · · + vn) f ∗

n (v1, . . . , vn)

=
∑n

m=1 ι(vm) f ∗

n−1(v1, . . . , v̂m, . . . , vn) exp
(
2π i <<

∑
j 6=m v j , vm >>

)
.
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We claim that in fact, there is an identity between the corresponding rational func-
tions:

(x1 + · · · + xn)Rv(x1, . . . , xn)

=
∑n

m=1 xm Rv(m)(x1, . . . , x̂m, . . . , xn) exp
(
2π i <<

∑
j 6=m v j , vm >>

)
,

where v(m) = (v1, . . . , v̂m, . . . , vn). Indeed, we can rewrite the left-hand side as

(x1 + · · · + xn)
∑

σ∈Sn
Rn(xσ ) exp(2π i << tv(σ )>> )

=
∑

σ∈Sn
xσ(n)Rn−1(xσ(1), . . . , xσ(n−1))

× exp
(
2π i

(∑
i< j<n <<vσ(i), vσ( j)>> + <<

∑
j 6=σ(n) v j , vσ(n)>>

))
=

∑n
m=1 xm Rv(m)(x1, . . . , x̂m, . . . , xn) exp

(
2π i <<

∑
j 6=m v j , vm >>

)
.

If θ = 0 or the vectors v1, . . . , vn belong to a rank-1 subgroup Z ⊂ Z2, we have

Rv(x)=

∑
σ∈Sn

Rn(xσ ).

Applying Proposition 2.1 we deduce that this function has no poles. Since it is
homogeneous of degree 0 it must be a constant. To compute this constant we
substitute x1 = . . .= xn =1 and obtain that in this case Rv(x)≡1. This immediately
implies (ii).

To prove part (iii) it suffices to check (2–1) as a formal identity in Aθ [[z, t]]. We
claim that both sides solve the same differential equation ∂ f

∂z (z, t) = t f (z, t) with
the same initial condition f (0, t) = Expl(τ, a). This is clear for the right-hand
side, so we just have to check this for the left-hand side. It is easy to check that

1
D!

·
∂[(a + z)D]

∂z
=
(a + z)D−(0)

(D − (0))!

if D − (0)≥ 0, otherwise the derivative is zero. This implies that the derivative of
Expl(z + a) with respect to z is equal to t Expl(z + a), as claimed. �

Remark. For n lattice vectors (v1, . . . , vn) such that v1 + · · · + vn = 0 we obtain
from the proof above that

n∑
m=1

ι(vm) f ∗

n−1(v1, . . . , v̂m, . . . , vn)= 0.

If v1, . . . , vn are sufficiently generic this reduces to the identity of Corollary 1.6.

Corollary 2.5. If Expl(τ, a)= Expl(τ, b) for some a, b ∈ Aθ [[t]] then a = b.

Proof. Using part (i) of Theorem 2.4 we immediately deduce that b = a + z for
some z ∈ C[[t]]. Now part (iii) implies that exp(t z)= 1 and hence z = 0. �
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We can also define the right exponential map Expr (τ, · ) by setting

Expr (τ, a)= Expl(τ , a∗)∗.

Then
δτ (Expr (τ, a))= tδτ (a) · Expr (τ, a).

Using the definition of Expl(τ, · ) we get

Expr (τ, a)=

∑
D∈Div(Z2)≥0

tdeg D

D!
c∗

−θ (D)aDUs(D).

Proposition 2.6. For every a ∈ Aθ [[t]] one has

Expl(τ, a)−1
= Expr (τ,−a).

Proof. It suffices to prove that for every divisor D > 0 on Z2 one has

∑
D1,D2∈Div(Z2)≥0

D1+D2=D

(−1)deg D2

D1!D2!
c∗

θ (D1)c∗

−θ (D2) exp(2π i <<s(D1), s(D2)>> θ )= 0.

This is equivalent to the following identity, which should hold for every n-tuple
(v1, . . . , vn) of lattice vectors (where n > 0):∑
I={i1,...,ir }⊂[1,n]

(−1)n−r f ∗

r (vi1, . . . , vir ; θ) f ∗

n−r (v j1, . . . , v jn−r ; −θ)

× exp
(
2π i <<vi1 +· · ·+vir , v j1 +· · ·+v jn−r >> θ

)
= 0,

where the sum is taken over all subsets I = {i1, . . . , ir } of [1, n] = {1, 2, . . . , n}

and we denote by { j1, . . . , jn−r } the complement to I . Recalling the definition of
the functions f ∗

n , we see that it suffices to prove the following identity between
rational functions of x1, . . . , xn:

n∑
r=0

∑
σ∈Sn

(−1)n−r Rr (xσ(1), . . . , xσ(r))Rn−r (xσ(n), . . . , xσ(r+1))

× exp
(

2π i
( ∑

i< j≤r
<<vσ(i), vσ( j)>> θ +

∑
i> j>r

<<vσ(i), vσ( j)>> −θ

+ <<
∑
i≤r
vσ(i),

∑
j>r
vσ( j)>> θ

))
= 0.

Due to the skew-symmetry of << · , · >> θ we have

<<v, v
′
>> −θ = <<v

′, v>> θ .
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Using this observation we can rewrite our identity as

n∑
r=0

∑
σ∈Sn

(−1)n−r Rr (xσ(1), . . . , xσ(r))Rn−r (xσ(n), . . . , xσ(r+1))

× exp
(

2π i
∑
i< j

<<vσ(i), vσ( j)>> θ

)
= 0.

Thus, it is enough to prove that

n∑
r=0

(−1)n−r Rr (x1, . . . , xr )Rn−r (xn, . . . , xr+1)= 0.

This is equivalent to the identity

n−1∑
i=0

(−1)i

x1(x1 + x2) . . . (x1 + · · · + xn−i )xn(xn + xn−1) . . . (xn + · · · + xn−i+1)

=
(−1)n−1

xn(xn + xn−1) . . . (xn + · · · + x1)
.

We claim that more generally for 0< j < n one has

j∑
i=0

(−1)i

x1(x1 + x2) . . . (x1 + · · · + xn−i )xn(xn + xn−1) . . . (xn + · · · + xn−i+1)

=
(−1) j

x1(x1+x2) . . . (x1+· · ·+xn− j−1)(x1+· · ·+xn)

×xn(xn +xn−1) . . . (xn +· · ·+xn− j+1)

.

This can be easily checked by induction in j . �

Corollary 2.7. tr(Expl(τ, a)) · tr(Expr (τ,−a))= s(τ, a)−1.

Proof. This follows from the relation Expl(τ, a) = tr(Expl(τ, a))El(τ, a) and the
similar relation for right exponentials. �

Finally, we state the analogue of the equation exp(x) exp(y) = exp(x + y) for
our exponentials.

Proposition 2.8. For every a, b ∈ Aθ [[t]] there exists a unique ϕ(a, b)∈ Aθ [[t]] such
that

(2–2) Expl(a)Expl(b)= Expl(ϕ(a, b)+ b)

and
δτ (ϕ(a, b))= Expl(τ, b)−1δτ (a)Expl(τ, b).
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Proof. Since the element Expl(τ, b)−1δτ (a)Expl(τ, b) ∈ Aθ [[t]] has zero trace we
can find some element ϕ′

∈ Aθ [[t]] such that

δτ (ϕ
′)= Expl(τ, b)−1δτ (a)Expl(τ, b).

Now one can easily check that the left-hand side of (2–2) is a solution of the
equation

δτ (x)= t xδτ (ϕ′
+ b).

It follows that

Expl(a)Expl(b)= f (t)Expl(ϕ
′
+ b)

for some f (t)∈ 1+tC[[t]]. Writing f (t) in the form exp(t z) for z ∈ C[[t]] and using
Theorem 2.4(iii) we conclude that (2–2) holds for ϕ(a, b) = z + ϕ′. Uniqueness
follows from Corollary 2.5. �

Compatibility with the SL2(Z)-action. The group SL2(Z) acts on the algebra Aθ
by automorphisms. Namely, to an element g =

(a
c

b
d

)
∈ SL2(Z) one associates an

automorphism
αg : Aθ → Aθ : Uv 7→ Ugv.

These automorphisms are compatible with derivations δτ and the modular action
of SL2(Z) on τ :

αgδτα
−1
g = δgτ

where gτ = (aτ + b)/(cτ + d).
The only way in which the standard basis of Z2 enters into our formulae for

El(τ, a) and Expl(τ, a) is through the definition of the homomorphism ι = ιτ :

Z2
→ C. For an element g ∈ SL2(Z) we have

ιgτ (v)= ιτ (
tgv) · jτ (g)−1,

where tg is the transpose of g and jτ (g) = cτ + d . The functions f ∗
n (v1, . . . , vn)

and fn(v1, . . . , vn) are homogeneous of degree 0, so we get

f ∗

n (v1, . . . , vn; gτ)= f ∗

n (
tgv1, . . . ,

tgvn; τ)

and similarly for the fn . This easily implies the following result.

Proposition 2.9. For every a ∈ Aθ [[t]] and every g ∈ SL2(Z) one has

El(g′τ, αg(a))= αg El(τ, a), Expl(g
′τ, αg(a))= αg Expl(τ, a),

Er (g′τ, αg(a))= αg Er (τ, a), Expr (g
′τ, αg(a))= αg Expr (τ, a),

s(g′τ, αg(a))= s(τ, a),
where g′

=
tg−1.
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3. Convergent exponentials, logarithmic derivatives and the discriminant
hypersurface

Norms. In this section we establish notation for some of the norms we use on Aθ .
First we have the operator algebra norm ‖ · ‖ on Aθ : ‖a‖ is defined to be the

norm of the operator of multiplication by a on the L2-completion of Aθ . It does
not matter whether one considers left or right multiplication. Recall that the C∗-
algebra Aθ is defined as the completion of Aθ with respect to this norm.

We will also consider the L2-norm

‖a‖0 =

( ∑
v∈Z2

|av|2
)1/2

,

where a =
∑

v∈Z2 avUv. From the definition, for every a, b ∈ Aθ we have

‖ab‖0 ≤ ‖a‖ · ‖b‖0.

For every s ≥ 0 we can also consider the norm

‖a‖
2
s =

s∑
i=0

‖δi
τa‖

2
0.

The completion of Aθ with respect to this norm is the Sobolev space Ws . We have
a sequence of embeddings W0 ⊃ W1 ⊃ W2 ⊃ · · · . These spaces enjoy all the
usual properties of the Sobolev spaces (see [Polishchuk 2004]). In particular, this
sequence of spaces can be extended to one indexed over Z, so that Ws is dual to
W−s . Also, the intersection of all the Ws is Aθ and the topology on Aθ is the one
determined by the collection of seminorms coming from the Ws .

Finally, at one point we will use the norm

‖a‖l1 :=

∑
v∈Z2

|av|.

For a, b ∈ Aθ we have

‖ab‖l1 ≤

∑
v∈Z2

‖avUvb‖l1 =

∑
v∈Z2

|av| · ‖b‖l1 = ‖a‖l1 · ‖b‖l1 .

On the other hand, ‖a‖ ≤
∑

v∈Z2 ‖avUv‖ = ‖a‖l1 .

Convergence criteria. If one wants to solve the equation

(3–1) δτ (x)= xδτ (a)

for given a ∈ Aθ one can try to consider the series

(3–2) x = El(τ, a)|t=1 = 1 + a1 + a2 + · · ·
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obtained by substituting t = 1 into El(τ, a) = 1 + ta1 + t2a2 + · · · . This series
does not always converge even for θ = 0 (remember that in the commutative case
it represents the function exp(ta)/ tr(exp(ta))). One of our goals in this section is
to show that (3–2) always converges for sufficiently small a.

Remark. In the commutative case the convergence improves when we switch
from El(τ, a) to Expl(τ, a), since the latter series becomes the usual exponen-
tial. However, this does not seem to work in noncommutative case. Indeed, as
we will see in Proposition 3.13(ii), there exists a ∈ Aθ for which (3–1) has no
invertible solutions. By Proposition 2.6 this means that either Expl(τ, a)|t=1 or
Expr (τ,−a)| t=1 diverges.

The next lemma follows from [Schweitzer 1993, Corollary 7.16], but since our
particular case is much easier we present a more direct proof due to Chris Phillips.

Lemma 3.1. If x ∈ Aθ is invertible as an element of Aθ then x ∈ A∗

θ .

Proof. First, we claim that for every a ∈ Aθ such that ‖a‖ < 1, the series 1 + a +

a2
+· · · converges to an element of Aθ . Indeed, it suffices to show that it converges

absolutely in every Sobolev space Ws . But this follows from the fact that for every
k there exists a constant C (depending on a) such that ‖δk(an)‖ ≤ C‖a‖

n−k for
n > k. Thus, the assertion is true when ‖x − 1‖ < 1. The general case can be
reduced to this by the following trick. Let x be an element of Aθ such that there
exists an inverse x−1

∈ Aθ . Choose y ∈ Aθ such ‖y − x−1
‖ < ‖x‖

−1. Then the
element xy ∈ Aθ satisfies ‖xy − 1‖ < 1. Hence, xy ∈ A∗

θ . It follows that x has a
right inverse in Aθ . A similar argument shows that yx ∈ A∗

θ and hence x has a left
inverse. This implies that x ∈ A∗

θ . �

Remark. In fact, it is also true that if xy = 1 in Aθ then yx = 1. This follows from
the existence of a finite positive faithful trace on Aθ ; see [Davidson 1996, second
half of p. 101 and Exercises 6 and 9 of Chapter 4]. Here is another argument
using Rieffel’s classification of finitely generated projective Aθ -modules in [Rieffel
1983]. We assume that θ is irrational. Let I ⊂ Aθ be the set of all a such that xa =0.
Then I is a right ideal and we have Aθ = I ⊕ y Aθ . It follows that y Aθ and I are
projective modules. Furthermore, y Aθ is isomorphic to Aθ ; hence rk y Aθ = 1. It
follows that rk I = 0, so I = 0.

Theorem 3.2. Let d = min{|mτ+n| : m, n ∈ Z, (m, n) 6= (0, 0)}. For every a ∈ Aθ
with tr(a) = 0 such that ‖δτ (a)‖ < 2πd , the series (3–2) converges to an element
el(τ, a) ∈ Aθ satisfying the equation

δτ (el(τ, a))= el(τ, a)δτ (a).

Furthermore, if ‖δτ (a)‖l1 < πd then el(τ, a) ∈ A∗

θ . The map a 7→ el(τ, a) from
Uτ = {a ∈ H : ‖δτ (a)‖l1 < πd} to A∗

θ is continuous.
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Proof. Recall that the ai are defined inductively by the conditions δ(ai )=ai−1δ(a),
tr(ai )= 0, where δ = δτ . It follows that

‖ai‖0 ≤ (2πd)−1
‖δ(ai )‖0 ≤ (2πd)−1

‖δ(a)‖ · ‖ai−1‖0.

Hence, ‖an‖0 ≤
(
‖δ(a)‖/(2πd)

)n for every n ≥ 0. It follows that the series 1 +

a1 +a2 +· · · converges to an element x in the L2-completion of Aθ . Furthermore,
since

‖δ(an)‖0 ≤ ‖δ(a)‖ · ‖an−1‖0 ≤ ‖δ(a)‖ ·

(
‖δ(a)‖
2πd

)n−1
,

we see that in fact x belongs to the Sobolev space W1 and satisfies the equation
δ(x)= xδ(a). This implies that x ∈ Aθ .

To prove the last assertion we first observe that ‖an‖l1 ≤ rn for all n, where
r = ‖δ(a)‖l1/(2πd) (this is deduced in the same way as above). Hence,

‖a1 + a2 + · · · ‖ ≤ ‖a1 + a2 + · · · ‖l1 ≤
r

1 − r
< 1 if r < 1

2 .

Therefore, x is invertible in Aθ . It remains to apply Lemma 3.1. �

The following result shows that our exponentials converge if all the coefficients
of a belong to closed half-planes not containing zero.

Proposition 3.3. Let a =
∑

v avUv ∈ Aθ be an element with tr(a)= 0. Assume that
there exists a homomorphism h : Z2

→ R and a positive constant ε such that h > ε
on supp a = {v ∈ Z2

: av 6= 0}. Then the series 1 + a1 + a2 + · · · converges to an
element of A∗

θ .

Proof. Since the elements ai ∈ H are defined inductively by a1 = a and δ(ai ) =

ai−1δ(a), we have h > nε on supp an . Let dn = min(m,n):h(m,n)>nε |mτ + n|. Then

‖an‖0 ≤ (2πdn)
−1

‖δ(an)‖0 ≤ (2πdn)
−1

‖δ(a)‖ · ‖an−1‖0.

Since dn grows linearly with n this immediately implies convergence of the series∑
an in the L2-norm. Arguing as in the proof of Theorem 3.2 we derive that

x = 1 + a1 + a2 + · · · belongs to A∗

θ . �

Remark. In the situation of the proposition one has Expl(τ, a)| t=1 = El(τ, a)|t=1.
However, at present we do not know any criteria for convergence of Expl(τ, a)| t=1

similar to Theorem 3.2.

The discriminant hypersurface. Recall that H ⊂ Aθ is the set of elements a such
that tr(a)= 0. For every a ∈ Aθ consider the operator

da := δτ + ad(a) : Aθ → Aθ .

We are interested in the subset of H given by

2=2τ = {a ∈ H : dim ker da > 1}.
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Since C ⊂ ker da , this is also the set of a ∈ H such that ker(da|H ) 6= 0. We are
going to show that 2τ is a complex hypersurface in H in the sense that it can be
given locally as the zero set of a holomorphic function on H .

Lemma 3.4. For every a ∈ Aθ one has ker da ' HomC(E, E) and coker da '

Ext1C(E, E), where E is the holomorphic bundle
(

Aθ ,∇a := δτ + a
)
. Thus da is a

Fredholm operator of index zero. The same assertions are true if we replace da by
its extension da : Ws+1 → Ws to a Sobolev space.

Proof. The identification of ker d0 with endomorphisms of E in the category C

follows from the definitions. The identification of coker(d0) with Ext1C(E, E) is
constructed as in [Polishchuk and Schwarz 2003, Proposition 2.4]; by Serre duality,
Ext1C(E, E) ' HomC(E, E)∗ [Polishchuk 2004]. The remaining assertions are
proved using the same techniques as in [Polishchuk 2004, Theorem 2.8]. �

Let F0(H) be the space of Fredholm operators of index zero on W0(H), where
W0(H) = {a ∈ W0 : tr(a) = 0}. Recall from [Quillen 1985; Furutani 2004] that
there is a natural holomorphic line bundle L over F0(H), called the determinant
line bundle. By definition, L is trivial over each open set UA ⊂ F0(H), where
A : W0(H)→ W0(H) is a fixed trace class operator and UA consists of operators
T such that T + A is invertible. The transition functions of L with respect to this
open covering are of the form

gA,B(T )= detF
(
1 + (A − B)(T + B)−1)

= detF
(
(T + A)(T + B)−1),

where A, B are trace class operators and detF is the Fredholm determinant.
Let Z ⊂ F0(H) be the complement of U0, that is, the subset consisting of T

such that ker T 6= 0. This is a complex hypersurface in F0(H). More precisely,
there exists a global holomorphic section s of the determinant line bundle L such
that Z coincides with the zero locus of s. Under the standard trivialization of L

over UA the section s corresponds to the holomorphic function

sA(T )= detF
(
1 − (T + A)−1 A

)
.

One can easily check that sB = gA,BsA, so these functions glue into a global section
of L. One has sA(T )= 0 if and only if 1− (T + A)−1 A has a nonzero kernel. But
1 − (T + A)−1 A = (T + A)−1T , so sA(T ) = 0 if and only if ker T 6= 0. Thus the
zero locus of s coincides with Z.

We have a map
H → F0(H) : a 7→ da|W0(H).

Note that the restriction of da to H (and to W0(H)) still has index zero, since
da(Aθ ) ⊂ H and ker da = C ⊕ ker(da|H ). Abusing notation, we denote by L also
the pull-back of the determinant line bundle to H under the map above.
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Proposition 3.5. (i) The subset2⊂ H coincides with the zero locus of the global
holomorphic section s(da|W0(H)) of L over H.

(ii) For every one-dimensional subspace L ⊂ H the intersection2∩L is a discrete
subset of L \ {0}.

Proof. (i) is clear since 2 is the preimage of Z ⊂ F0(H). For (ii), observe that
δτ : W0(H) → W−1(H) is an isomorphism and the operator ad(a) : W0(H) →

W−1(H) is compact for every a ∈ Aθ ; see the proof of [Polishchuk 2004, Theorem
2.8]. Hence, for every a ∈ H and t ∈ C we have ta ∈2 if and only if −t−1 belongs
to the spectrum of the compact operator δ−1

τ ad(a) : W0(H)→ W0(H). �

Remark. Proposition 3.5(ii) implies that 2 contains no linear subspaces of H .
On the other hand, we will see later that 2 is swept by infinite-dimensional affine
subspaces (see Theorem 3.17).

We can also consider more general loci

2(n)τ = {a ∈ H : dim ker da > n + 1} = {a ∈ H : dim ker(da|H ) > n}

for n ≥ 0. For n = 0 we get 2(0)τ =2τ . Since the kernel of da coincides with the
kernel of its extension to W0, it follows that the loci 2(n)τ are closed.

Logarithmic derivative and connected components of groups of invertible ele-
ments. In this section we will study the relation between holomorphic structures
and the group of invertible elements in Aθ .

Theorem 3.6. Consider the map Lτ : A∗

θ → Aθ : x 7→ x−1δτ (x).

(i) The composition
χτ := tr ◦Lτ : A∗

θ → C

is a locally constant homomorphism with image (2π i)(Z+Zτ)⊂C and kernel
(A∗

θ )0, the connected component of 1 in A∗

θ .

(ii) Let H ⊂ Aθ be the set of elements a such that tr(a)= 0. Let

�τ = {a ∈ H : dim ker(δτ + ad(a))= 1}

be the complement to the hypersurface 2τ ⊂ H. Then �τ is a dense open
subset of H and Lτ induces homeomorphisms

A∗

θ/C∗ ∼
−→�τ + 2π i(Z + Zτ) and (A∗

θ )0/C∗ ∼
−→�τ .

Proof. From the Leibniz rule we immediately get

(3–3) Lτ (xy)= y−1Lτ (x)y + Lτ (y).

Taking traces we see that χτ = tr ◦Lτ is a homomorphism. It is easy to see that the
derivative of Lτ at the point x ∈ A∗

θ is a 7→ x−1δτ (ax−1)x . Hence, the derivative
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of χτ is a 7→ tr(x−1δτ (ax−1)x) = 0. This implies that χτ is locally constant. In
particular, χτ ((A∗

θ )0)= 0; that is, Lτ ((Aθ )0) ∈ H .
Next we claim that the map Lτ : (A∗

θ )0/C∗
→ H is a local homeomorphism.

Indeed, (3–3) shows that it is enough to check that Lτ is a local homeomorphism
in a neighborhood of 1 ∈ (A∗

θ )0/C∗. Then we can use the map el constructed in
Theorem 3.2 to get a local inverse to Lτ .

We know that the space of holomorphic endomorphisms of (Aθ , δτ + a) can
be identified with ker(δτ + ad(a)) (see Lemma 3.4). Using the classification of
holomorphic bundles on noncommutative tori given in [Polishchuk 2004] we derive
that the dimension of this space is 1 if and only if there exists a holomorphic
isomorphism of (Aθ ,∇) with a standard holomorphic bundle (Aθ , δτ+z) for some
z ∈ C. In other words, ker(δτ + ad(a))= C if and only if there exists x ∈ A∗

θ such
that a ≡ Lτ (x) mod C. Thus, the map

(3–4) A∗

θ/C∗
→ H, x 7→ Lτ (x)− tr(Lτ (x))

has �τ as its image. As we have seen, this map is a local homeomorphism, so
�τ is open in H . Now we claim that the nonempty fibers of (3–4) are exactly
the orbits of the action of the central subgroup Z2

⊂ A∗

θ/C∗. Indeed, assume that
Lτ (x)= Lτ (y) mod C for some x, y ∈ A∗

θ . Set z = xy−1. Then

Lτ (x)= Lτ (zy)= y−1Lτ (z)y + Lτ (y),

which implies that y−1Lτ (z)y ∈ C; hence, Lτ (z) ∈ C. But this is possible only if
z is proportional to Uv for some v ∈ Z2. This proves our claim about the fibers of
the map (3–4).

Proposition 3.5(ii) immediately implies that �τ is connected (and dense in H ).
Since we have identified the quotient of A∗

θ/C∗ by Z2 with �τ , it follows that the
embedding Z2

⊂ A∗

θ induces an isomorphism on connected components. Since χτ
is locally constant, this implies that

χτ (A∗

θ )= χτ (Z
2)= (2π i)(Z + Zτ).

We also see that Lτ : (A∗

θ )0/C∗
→�τ is a homeomorphism. �

Corollary 3.7. For every a ∈ H there exists a nonzero x ∈ Aθ such that δτ (x)= ax ,
and one such that δτ (x)= xa.

Proof. If −a ∈�τ , the preceding theorem says there exists x ∈ A∗

θ such that δτ (x)=
−xa. Therefore, δτ (x−1)= ax−1. If −a 6∈�τ , the holomorphic bundle (Aθ ,∇−a)

is decomposable (note that ∇−a = δτ − a). Since one of the indecomposable
factors must be of positive degree, this implies that H 0(Aθ ,∇−a) 6= 0. The case
of the equation δτ (x)= xa reduces to the previous case by using the identification
Aopp
θ = A−θ . �
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As another corollary we get a new proof of the following well known fact.

Corollary 3.8. The embedding Z2
⊂ A∗

θ induces an isomorphism on connected
components.

Using the results of [Polishchuk 2004] we can give one more characterization
of the open subset �τ ⊂ H . As in the discussion on pages 170–171 this leads to a
set of local equations for its complement 2τ . For every a ∈ H , set ∇a = δτ + a.

Proposition 3.9. For a ∈ H one has a ∈�τ if and only if there is z ∈ C such that

ker(∇a+z)= {x : δτ (x)+ (a + z)x = 0}

is zero. Moreover, for a ∈ �τ this holds for all z 6∈ 2π i(Z + Zτ). Hence, if we
choose any z0 6∈ 2π i(Z + Zτ) then a ∈ �τ if and only if the operator ∇a+z0 is
invertible.

Proof. If a ∈ �τ then this follows from the fact that cohomology of the standard
holomorphic bundle (Aθ , δτ+z) vanishes for z 6∈2π i(Z+Zτ). If a 6∈�τ , it suffices
to observe that the holomorphic bundle (Aθ ,∇a+z) has a direct factor of positive
degree. �

One can generalize some of the assertions of Theorem 3.6 to a slightly more
general context.

Proposition 3.10. Let (E,∇) be a basic right module over Aθ equipped with a
holomorphic structure. Then the map

χE : AutAθ (E)→ C : x 7→ tr(x−1
[∇, x])

is a locally constant homomorphism that does not depend on ∇. Its kernel coin-
cides with the connected component of 1 in AutAθ (E) and its image is the lattice
(2π i/ rk E) (Z + τZ) ⊂ C, where rk E ∈ (Z + Zθ) ∩ R>0 is the rank of E. If
E = E ′

⊕ E ′′ is a decomposition into the direct sum of Aθ -modules, where E ′ is
also basic, one has the commutative diagram

(3–5)

AutAθ (E
′)

χE ′
- C

AutAθ (E)
? χE - C

rk E ′/ rk E
?

Proof. Any other holomorphic structure on E has form ∇ + φ for some φ in
EndAθ (E). But

tr
(
x−1

[∇ +φ, x]
)
= tr

(
x−1

[∇, x]
)
+ tr(x−1φx −φ)= tr(x−1

[∇, x]).

This shows that χE is independent of ∇. If we choose ∇ to be standard (see
[Polishchuk 2004]), the pair (EndAθ , ad ∇) can be identified with a pair of the



174 ALEXANDER POLISHCHUK

form (Aθ ′, δτ/r) for some θ ′, where r = rk E ; see [Polishchuk and Schwarz 2003,
Proposition 2.1]. It remains to apply Theorem 3.6.

Since the homomorphism χE does not depend on the choice of a holomorphic
structure, we can choose a holomorphic structure on E compatible with the decom-
position E = E ′

⊕E ′′. Then commutativity of (3–5) follows from the compatibility
of the embedding i : EndAθ (E

′)→ EndAθ (E) with normalized traces:

tr(i(x))=
rk E ′

rk E
tr(x). �

As a corollary we get a new proof of the following well known fact.

Corollary 3.11. Let E be a basic right module over Aθ , and let E = E ′
⊕ E ′′ be a

decomposition into the direct sum of Aθ -modules, where E ′ is also a basic module.
Then the natural homomorphism AutAθ (E

′)→ AutAθ (E) induces an isomorphism
on connected components.

Proof. Apply commutative diagram (3–5) together with the fact that the image of
χE is 2π i rk(E)(Z + Zτ), and likewise for E ′. �

Corollary 3.12. Let E be a basic right module over Aθ and let E = E ′
⊕ E ′′ be a

decomposition into a direct sum of Aθ -modules. Then the natural homomorphism
AutAθ E ′

→ AutAθ E induces a surjection on connected components.

Proof. It suffices to choose any decomposition E ′
= E ′

1 ⊕ E ′

2 with E ′

1 basic and
apply Corollary 3.11. �

Remark. The embedding of Aθ into Matn Aθ induces an isomorphism on con-
nected components of groups of invertible elements. (For Aθ this statement is
[Rieffel 1983, Theorem 8.3]; the case of Aθ follows using its invariance under the
holomorphic functional calculus.) This allows to deduce from Corollary 3.11 the
same statement for E ′ not necessarily basic.

More on the discriminant hypersurface. It would be interesting to study intersec-
tions of 2τ with finite-dimensional subspaces of H . In the following proposition
we consider simplest examples.

Proposition 3.13. (i) Let h : Z2
→ R be a homomorphism. Assume that a ∈ H

is an element such that h > ε on supp a for some ε > 0. Then Ca ∈ �τ . The
same conclusion holds if we assume that h takes values in Q and that h ≥ 0
on supp a.

(ii) Let e ∈ Aθ be a nontrivial idempotent such that δτ preserves eAθ ⊂ Aθ , i.e.,
eδτ (e)= δτ (e). Then 2τ ∩ Cδτ (e)= {δτ (e)}.

Lemma 3.14. Let a = x−1
0 δτ (x0) for some x0 ∈ A∗

θ . Then every x ∈ Aθ such that
δτ (x)= xa is proportional to x0.
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Proof. Indeed, δ(xx−1
0 ) = δ(x)x−1

0 − xx−1
0 δ(x0)

−1x−1
0 = 0. Hence xx−1

0 is a
constant. �

Proof of Proposition 3.13. (i) It suffices to show that the equation Lτ (x) = a has
a solution with x ∈ A∗

θ . If h > ε on supp a, this follows from Proposition 3.3. If h
takes values in Q and h ≥ 0 on supp a, we can write a = b + c, where h = 0 on
supp b and h > ε > 0 on supp c. Since the subalgebra of elements supported on
h = 0 is commutative and stable under δτ , we have b = Lτ (x) for some x ∈ A∗

θ

such that h = 0 on supp x . Now consider the element c′
= xcx−1. Note that h > 0

on supp c′. Therefore, by Proposition 3.3, there exists an element y ∈ A∗

θ such that
c′

= Lτ (y). Then

Lτ (yx)= x−1Lτ (y)x + Lτ (x)= x−1c′x + b = c + b = a.

(ii) For λ ∈ C∗ consider the element xλ = λe + (1−e) ∈ Aθ . Then xλ ∈ (A∗

θ )0 and
x−1
λ = λ−1e + (1−e). Hence

Lτ (xλ)=
(
λ−1e + (1−e)

)
(λ− 1)δτ (e)= (1 − λ−1)δτ (e).

It follows that zδτ (e) ∈ �τ for all z ∈ C \ {1}. Now let us prove that δτ (e) 6∈ �τ .
Assume that there exists x0 ∈ A∗

θ such that

x−1
0 δτ (x0)= δτ (e).

Since we also have δτ (e)= eδτ (e), applying Lemma 3.14 to x = e we derive that
e should be proportional to x0. Since e is not invertible we get a contradiction. �

Remark. There are plenty of idempotents e ∈ Aθ such that eAθ is preserved by
δτ . In fact, for every number 0< mθ + n < 1 such that m, n ∈ Z and m < 0 there
exists an idempotent e as above with tr(e)= mθ + n; see [Polishchuk ≥ 2006].

Next we describe the decomposition of the discriminant locus 2τ ⊂ H corre-
sponding to types of idempotents in Aθ .

Lemma 3.15. Assume that θ is irrational. Two idempotents e and e′ in Aθ are
conjugate by an element in (A∗

θ )0 if and only if tr(e)= tr(e′).

Proof. The “only if” part is trivial. Assume that tr(e) = tr(e′). By Rieffel’s clas-
sification of projective Aθ -modules (see [Rieffel 1983]), there exist isomorphisms
of right A-modules eA ' e′ A and (1−e)A ' (1−e′)A. Therefore, there exists an
element x ∈ A∗

θ such that xeA = e′ A and x(1−e)A = (1−e′)A. This immediately
implies the equality of the idempotents xex−1

= e′. It remains to show that x can
be chosen in (A∗

θ )0. But this follows easily from Corollary 3.12. �

For every idempotent e, denote by Ae,τ the set of a ∈ Aθ such that the operator
x 7→ δ(x)+ ax preserves the decomposition Aθ = eAθ ⊕ (1−e)Aθ :

Ae,τ = {a ∈ Aθ : δ(e)+ ae ∈ eAθ , δ(1−e)+ a(1−e) ∈ (1−e)Aθ }.
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Equivalently, a ∈ Ae,τ if and only if a satisfies the equations

eδ(e)= ea(1−e) and (1−e)ae = (1−e)δ(1−e).

This shows that Ae,τ is an affine subspace in Aθ with the associated linear subspace
eAe + (1−e)A(1−e).

Lemma 3.16. For x ∈ A∗

θ and for an idempotent e∈ Aθ the map a 7→ x−1ax+Lτ (x)
induces a bijection from Ae,τ to Ax−1ex,τ .

Proof. The natural action of A∗

θ on operators of the form δτ +a is equivalent to the
following action of A∗

θ on Aθ :

x ∗ a = xax−1
+ Lτ (x−1),

where x ∈ A∗

θ , a ∈ Aθ . It is clear from the definition that the action of x−1 sends
Ae,τ to Ax−1ex,τ . �

We refer to the action of A∗

θ on Aθ introduced above as the twisted action. Note
that it preserves H and 2τ .

Set He,τ = Ae,τ ∩ H . For any r ∈ (0, 1)∩ (Z + Zθ), set Hr,τ =
⋃

e : tr e=r He,τ ,
where the union is taken over the set of all idempotents e with tr(e) = r . Since
A1−e,τ = Ae,τ we have H1−r,τ = Hr,τ .

Theorem 3.17. Assume that θ is irrational. Then

(3–6) 2τ =

⋃
r∈(0,1/2)∩(Z+Zθ)

Hr,τ .

This decomposition is irreducible, in the sense that none of the subsets is contained
in the union of the rest. If e ∈ Aθ is any idempotent with tr(e)= r , we have a map

(3–7) ψe : (A∗

θ )0 × He,τ → H, (x, a) 7→ x−1ax + L(x)

such that Hr,τ is the image of ψe. The codimension of the differential of ψe at a
point (x, a) is dim HomC(E1, E2)+ dim HomC(E2, E1), where C is the category
of holomorphic bundles on Tθ,τ and E1, E2 are the summands of the holomorphic
decomposition (Aθ , δτ + ψ(x, a)) = E1 ⊕ E2 corresponding to the idempotent
x−1ex.

Proof. From the main theorem in [Polishchuk 2004] we know that a holomorphic
bundle E on a noncommutative torus has nonscalar endomorphisms then it is ei-
ther decomposable or its rank is a nonprimitive element of Z + Zθ . Since for a
holomorphic bundle Ea = (Aθ , δτ + a) the second alternative is impossible, we
conclude that a ∈2τ if and only if Ea is decomposable. This implies (3–6). Since
ψe is (A∗

θ )0-equivariant with respect to the twisted action on H and the action by
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left multiplication on (A∗

θ )0, it suffices to consider the differential of ψe at a point
(1, a0), where a0 ∈ He. This differential maps

(x, a) ∈ Aθ ⊕ H ∩
(
eAe+ (1−e)A(1−e)

)
to δτ (x)+[a0, x]+a = da0(x)+a.

But by Lemma 3.4, coker(da0 : Aθ → Aθ ) is isomorphic to Ext1C(E, E), where
E = (Aθ , δτ + a0). Furthermore, it is easy to see that the map da0 is compatible
with the decomposition

Aθ = eAθe + (1 − e)Aθ (1 − e)⊕ eAθ (1 − e)⊕ (1 − e)Aθe

and that the cokernel of da0 acting on each of these four pieces is identified with
Ext1(Ei , E j ), where E = E1 ⊕ E2 is the holomorphic decomposition induced by
e. The assertion follows immediately. �

Let r0 be the unique number of the form ±θ+n with n ∈Z such that 0<r0<1/2.

Proposition 3.18. (i) 2(1)τ =2τ .

(ii) 2(2)τ =
⋃

r∈(0,1/2)∩(Z+Zθ), r 6=r0
Hr,τ .

(iii) The natural map
⊔

e: tr(e)=r0
He,τ \2

(2)
τ →2τ \2

(2)
τ is an affine line bundle.

Proof. (i) follows from the fact that if Ea is decomposable then dim EndC(Ea)> 2.
Moreover, the only case when dim EndC(Ea)= 3 is the following: Ea ' E1 ⊕ E2

in the holomorphic category, where E1 and E2 are simple, HomC(E2, E1)= 0 and
HomC(E1, E2) is one-dimensional. Let rk E1 = mθ + n. Then rk E2 = −mθ +

(1 − n) and hence, by [Polishchuk 2004, Corollary 2.9],

dim HomC(E1, E2)− dim HomC(E2, E1)= −mn − m(1 − n)= −m.

This implies that m = −1, so either rk E1 = r0 or rk E2 = r0, which proves (ii). It
remains to note that the set of all possible holomorphic decomposition of Ea into
E1 and E2 is a principal homogeneous space for HomC(E1, E2), which leads to
(iii). �

The part of Theorem 3.17 concerning tangent maps should imply that Hr,τ has
(in an appropriate sense) codimension ≥ 2 for r 6= r0 (where 0 < r < 1/2) while
Hr0,τ is irreducible of codimension 1. If we were in the finite-dimensional situation
we would immediately deduce from this that the hypersurface 2τ is irreducible.
Our lack of knowledge does not allow us to state this precisely. However, we
conjecture that the statements above hold when we intersect these loci with generic
finite-dimensional subspaces in Aθ .
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