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MARCELA HANZER

We classify the irreducible noncuspidal representations of the hermitian
quaternionic group of split rank 2. We also find the complete noncuspidal
unitary dual of this nonquasisplit group.

1. Introduction and preliminaries

We are interested in studying the composition series and unitary dual of the p-adic
hermitian quaternionic group of semisimple rank 2, denoted by G2(D). This group
is not quasisplit, so the calculations of the unitary dual cannot be obtained by the
direct application of Shahidi’s methods. The group has an interesting feature: it
has an isolated unitary representation, a phenomenon that occurs, for example, in
the case of the exceptional group G2.

We also calculate the unitary dual supported on the non-Siegel maximal par-
abolic subgroup using global methods similar to those used in [Muić and Savin
2000] for the Siegel case, but resolving some obstacles related to the Langlands
correspondence between the hermitian quaternionic group of semisimple rank 1
and its split form. Similar classifications were obtained for classical split groups by
Sally and Tadić [1993] for p-adic GSp(2,F) and Sp(2,F), and by Konno [2001] for
the quasisplit unitary group. Regarding the exceptional groups, the classification
for the group G2 was done by Muić [1997]. In the classification of the subquotients
of the principal series of the hermitian quaternionic group we use the structure of
the 9-Hopf module on the Grothendieck group of the representations of the finite
length. This structure in the case of the split connected groups with the root system
of types Cn and Bn was observed by Tadić [1995] and then, in the case of O(2n, F),
the similar result was obtained by Ban [1999].

In this section, we recall the structure of the hermitian quaternionic groups,
state a result about the aforementioned structure of the 9-Hopf module on the
Grothendieck group, and state the Langlands’ classification and the criterion for
square integrability. We resolve the questions of the reducibility of the induced
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representations for the hermitian quaternionic group of the semisimple rank 1 and
make some observations about its structure.

In Section 2 we deal with the reducibility and composition series for the principal
series for the group G2(D). Sections 3 and 4 are devoted to the determination of
reducibility in the case of the induction from the maximal parabolic subgroups.
Section 5 is devoted to the classification of the noncuspidal part of the unitary dual
of the group G2(D).

For the admissible representation σ of any group we consider, we denote by ωσ
its central character (if it exists). We will denote the Steinberg representation of
the group G by StG . If H is a subgroup of the group G and g ∈ G normalizes H ,
for the representation σ of the group H , we denote by gσ the representation of the
group H defined by gσ(h)= σ(g−1hg). We denote by {α, β} the basis of the root
system corresponding to the maximal F-split torus in G2(D). The choice of the
maximal F-split torus will be given in the next subsection. Also {α, β} will denote
the basis of the root system with respect to the diagonal subgroup in SO(4, F).

Hermitian quaternionic groups. Let F be a nonarchimedean local field of char-
acteristic zero, having residual field with q elements. We choose a uniformizer of
the field and denote it by ω. Let D be a quaternionic algebra central over F and
let τ be an involution (of the first kind) fixing the center of D. By [Mœglin et al.
1987], the division algebra D defines a reductive group G over F as follows. Let

Vn = e1 D ⊕ · · · ⊕ en D ⊕ en+1 D ⊕ · · · ⊕ e2n D

be a right vector space over D. The relations (ei , e2n− j+1)= δi j for i = 1, 2, . . . , n
define a hermitian form on Vn:

(v, v′)= ετ((v′, v)) for v, v′
∈ Vn, ε ∈ {−1, 1},

(vx, v′x ′)= τ(x)(v, v′)x ′ for x, x ′
∈ D.

We extend the involution τ on M(k, D), denoting it by ∗ :

g∗
= (gi j )

∗
= τ(gi j )

t .

For a smooth representation τ of the group GL(n, D), we define the representation

τ ∗(g)= τ(g−∗).

By the observation in [Muić and Savin 2000], for the irreducible smooth represen-
tation τ of the group GL( · , D), the relation τ ∗ ∼= τ̃ holds. Let Gn(D, ε) be the
group of the isometries of the form ( · , · ). We can also describe Gn(D) as

Gn(D)=

{
g ∈ GL(2n, D) : g∗

(
0 Jn

−Jn 0

)
g =

(
0 Jn

−Jn 0

)}
,
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where Jn =


1

1
. ..

1

. Using this characterization, the isomorphism

D ⊗F F ∼= M(2, F),

and the well-known explicit matrix realization of the algebra D, it is easy to see
that Gn(D, ε) is the group of F-rational points of a reductive algebraic group, an
inner form of the split group SO(4n) or Sp(4n), if ε = −1 or ε = 1, respectively.
In this paper, we will do explicit calculations for the case ε = −1, so we drop
ε from the notation and, unless otherwise specified, assume ε = −1. Having in
mind a matrix representation of the group of F-rational points, there is a maximal
(diagonal) split torus A0 which has the following set of F-rational points:

A0(F)=





λ1
λ2

. . .

λn

λ−1
n

. . .

λ−1
2

λ−1
1


: λi ∈ F∗


.

The element of A0(F) shown is denoted by diag(λ1, . . . , λn). X (A0) denotes
the group of F-rational characters on A0, which can be identified with characters
on A0(F). The root system corresponding to the maximal F-split torus is of type
Cn , with the set of simple roots {αi , i = 1, . . . , n}, where

αi (diag(λ1, . . . , λn))= λiλ
−1
i+1, for i = 1, . . . , n − 1,

αn(diag(λ1, . . . , λn))= λ2
n.

The standard Levi F-subgroups correspond to the subsets θ of the set of simple
roots 1 = 1(Gn(D), A0) in the root system and we denote them by Mθ . To
describe the Levi subgroups Mθ (F), we set Bl = Jl(A−1

l )∗ Jl if Al is a quadratic
matrix of order l.

(i) If αn /∈ θ there are positive integers n1, n2, . . . , nk such that
∑

ni = n and

Mθ (F)=





An1

. . .

Ank
Bnk

. . .

Bn1


: Ani ∈ GL(ni , D)


.
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(ii) If αn ∈ θ there are positive integers n1, n2, . . . , nk, r such that
∑

ni + r = n
and

Mθ (F)=





An1

. . .

Ank
Gr (D)

Bnk

. . .

Bn1


: Ani ∈ GL(ni , D)


.

We describe the Langlands classification, following [Borel and Wallach 2000].
Let ν(x) = |x |F if x ∈ F and ν(x) = |det x |F if x ∈ D; here det is the norm
homomorphism. For any essentially square integrable representation (mod center)
δ of the group GL(m, D), there exists a unique real number e(δ) and a unique
square-integrable representation δu such that δ = νe(δ)δu . We say that an (ordered)
multiset (δ1, δ2, . . . , δk) of irreducible essentially square-integrable representations
of GL( · , D)-groups is in standard order if e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δk). For the
representations δi of GL( · , D) groups and representation τ of the group Gr (D),
we write

δ1 × δ2 × · · · × δk o τ = IndGn(D)
P (δ1 ⊗ δ2 ⊗ · · · ⊗ δk ⊗ τ),

where P is a corresponding standard parabolic subgroup of Gn(D). Suppose
(δ1, δ2, . . . , δk) is a multiset of irreducible essentially square-integrable representa-
tions of GL( · , D)-groups which is in the standard order, and assume that e(δk)>0.
If τ is an irreducible tempered representation of Gr (D), we consider the represen-
tation δ = δ1 ⊗ δ2 ⊗· · ·⊗ δk ⊗ τ of the corresponding standard Levi subgroup and
let

e(δ)=
(
e(δ1), e(δ1), . . . , e(δk), e(δk), 0, . . . , 0

)
∈ X (A0)⊗Z R ∼= Rn.

Here the number e(δi ) appears in e(δ) exactly ni times if δi is a representation of the
group GL(ni , D), and 0 appears r times. We introduce a partial order on X (A0)⊗Z

R ∼= Rn related to the root system of type Cn. We say that (x1, x2, . . . , xn) ≤

(y1, y2, . . . , yn) if and only if
∑k

i=1 xi ≤
∑k

i=1 yi for k = 1, . . . , n. This order is
the one obtained in general as follows. Let ( · , · ) be the Weyl group-invariant scalar
product on X (A0)⊗R and let (β1, β2, . . . , βn) be the basis bidual to (α1, . . . , αn).
Then for ν1, ν2 ∈ X (A0)⊗Z R we say ν1 ≤ ν2 if and only if (ν1, βi )≤ (ν2, βi ) for
all i = 1, . . . , n.

Lemma 1.1 (Langlands’ classification [Borel and Wallach 2000]). The induced
(standard) representation δ1 × δ2 × · · ·× δk o τ , where the irreducible essentially
square-integrable representations (δ1, δ2, . . . , δk) are in the standard order with
e(δk) > 0 and where τ is an irreducible tempered representation of the group
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Gr (D), has a unique irreducible quotient, denoted L(δ1, δ2, . . . , δk; τ), which is
of the multiplicity one in the induced representation. In this way, we obtain ev-
ery irreducible representation of the group Gn(D). If the standard representation
δ1 × δ2 × · · · × δk o τ has an irreducible subquotient σ = L(δ′1, . . . , δk′; τ ′) other
than its Langlands quotient, then e(δ′1⊗δ′2⊗· · ·⊗δ′k′ ⊗τ

′)< e(δ1⊗δ2⊗· · · δk ⊗τ).

Given an admissible irreducible representation π of Gn(D) and an ordered par-
tition α = (n1, n2, . . . , nk) of n − r , let s(α)(π) denote the normalized Jacquet
module of π with respect to the standard parabolic subgroup Pα with Levi subgroup
isomorphic to GL(n1, D)×GL(n2, D)×· · ·×GL(nk, D)×Gr (D). Let Pα denote
a standard parabolic subgroup minimal with the property that s(α)(π) 6= 0. Each
irreducible subquotient of s(α)(π) is necessarily cuspidal. The square integrabil-
ity criterion from [Casselman 1995] for general p-adic reductive groups readily
applies, and we obtain:

Lemma 1.2 (Square integrability criterion). A necessary and sufficient condition
for an irreducible admissible representation π to be square-integrable is that, for
every ordered partition α = (n1, n2, . . . , nk) of n − r minimal with the property
sα(π) 6= 0 and every irreducible subquotient subquotient σ of s(α)(π), we have

(e(σ ), βn1+···+ni ) > 0 for all i = 1, . . . , k.

Given an admissible representation σ of the standard Levi subgroup Mθ and an
element w of the Weyl group such that w(θ)= θ ′ is subset of the set of the simple
roots, we set Nw = N0 ∩wN θw

−1, where N θ is the unipotent radical of the par-
abolic subgroup opposite to Pθ . For m ∈ Mθ ′ we define the representation of Mθ ′

by wσ(m)= σ(w−1mw). We define (formally), for f ∈ IndGn(D)
Mθ

(σ ),

Aw(σ ) f (g)=

∫
Nw

f (w−1ng) dn.

If this integral converges for every f , it defines the intertwining operator

Aw(σ ) : IndGn(D)
Mθ

(σ )→ IndGn(D)
Mθ ′

(wσ).

Often, the operator Aw will have some additional (complex) arguments, usually
denoting the action of the family of intertwining operators on the family of the
representations, which depends on these complex numbers in an obvious way. If
w is the longest element in the relative Weyl group, we call the operator Aw the
long intertwining operator. Sometimes we use a different definition for the long
intertwining operator: we denote by δ1 × δ2 × · · · × δk o τ the representation of
Mθ induced from the opposite (lower-triangular) parabolic subgroup. The long-
intertwining operator from the representation space of the standard representation
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δ1 × δ2 × · · · × δk o τ to the representation space of the representation δ1 × δ2 ×

· · · × δk o τ is denoted by R and defined (formally) by

R(δ1 ⊗ δ2 ⊗ · · · ⊗ δk ⊗ τ, Nθ , N θ ) f (g)=

∫
N θ

f (n̄g) dn̄.

If this operator is injective or surjective (for the standard representation δ1 × δ2 ×

· · · × δk o τ ), the representation δ1 × δ2 × · · · × δk o τ is irreducible.

Reducibility of the induced representations. We recall briefly some results from
[Bernstein et al. 1984; Tadić 1990] about the reducibility of the induced repre-
sentations of GL(n, D). To the irreducible cuspidal representation σ of the group
GL(n, D), Jacquet–Langlands correspondence attaches an irreducible essentially
square-integrable representation σ ′ of the group GL(2n, F). If σ ′ is a cuspidal
representation, we set s(σ )= 1, and if σ ′ is a subquotient of the induced represen-
tation τ×τν for some irreducible cuspidal representation τ of the group GL(n, F),
we set s(σ ) = 2. These are the only possibilities. We then set νσ = νs(σ ). Then,
for the irreducible cuspidal representations σi of GL(n1, D) and GL(n2, D), the
representation σ1 × σ2 is reducible if and only if n1 = n2, s(σ1) = s(σ2) and
σ1 = ν±1

σ2
σ2.

Using the factorization of the long intertwining operator [Speh and Vogan 1980]
we obtain the following lemma, for which see also [Tadić 1994].

Lemma 1.3 (Reducibility of the principal series). For the irreducible admissible
representations τi of the D∗ the principal series representation τ1 ×· · ·× τn o1 of
the group Gn(D) reduces if and only if

(i) there exists i such that τi o 1 or τ̃i o 1 reduces in G1(D), or

(ii) there exist distinct i and j such that τi × τ j or τ̃i × τ j or τi × τ̃ j or τ̃i × τ̃ j

reduce in GL(2, D).

We will describe reducibility in G1(D) shortly.

We recall from [Zelevinsky 1981; Tadić 1990] the Hopf algebra structure on
the Grothendieck group Rn of smooth representations of finite length of the group
GL(n, D). Let R(∗) be the Grothendieck group related to the corresponding re-
ductive group, and R =

⊕
n≥0 Rn . The multiplication m : R ⊗ R → R is defined

by induction, and comultiplication m∗
: R → R ⊗ R by Jacquet modules:

m∗(π)=

n∑
k=0

s.s(r(k,n−k),(n)(π)) ∈ R ⊗ R.

Here π is a smooth representation of finite length of GL(n, D), and r(k,n−k),(n)(π)∈

Rk ⊗ Rn−k is the normalized Jacquet module with respect to the maximal standard
parabolic subgroup with Levi subgroup GL(k, D)×GL(n−k, D). By linearity, we
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extend the definition of m and m∗ to R. The tensor product R ⊗ R has an algebra
structure in the usual way. The comultiplication m∗ is a ring homomorphism; the
proof can be found in [Zelevinsky 1981] for the case of general linear groups over
the field F .

Set R(G) =
⊕

n≥0 R(Gn(D)). This is obviously and R-module, and a comod-
ule structure is defined like the one in the GL-case: for a smooth, finite length
representation π of the group Gn(D) we put

µ∗(σ )=

n∑
k=0

s.s(s(k)(σ )).

Denote by s : R ⊗ R → R ⊗ R the linear map such that s(π1 ⊗π2)= π2 ⊗π1 for
representations π1 and π2. Define the ring homomorphism 9 : R → R ⊗ R by

9 = (m ⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦ m∗.

Proposition 1.4 (The 9-Hopf module structure on R(G)). For the smooth, finite
length representation π of the group GL(m, D), and smooth, finite length repre-
sentation σ of the group Gk(D) we have

µ∗(π o σ)=9∗(π)oµ∗(σ ).

Proof. As in the split case in [Tadić 1995]. �

Proposition 1.5 (R-groups). Let σ1, σ2, . . . , σk denote discrete series representa-
tions of general linear groups over the division algebra D, and τ a discrete series
representation of Gr (D). The representation

σ1 × σ2 × · · · × σk o τ

is multiplicity-free and has length 2d , where d is the number of mutually nonequiv-
alent σi such that σi o τ reduces.

Proof. This is proved in [Hanzer 2004]. �

Structure and reducibility results for G1(D). It is easy to see that

(1) G1(D)=

{[
ad1 bd1

cd1 dd1

]
; a, b, c, d ∈ F, d1 ∈ D, (ad − bc)d1τ(d1)= 1

}
.

So there is an epimorphism

φ : G1(D)→ F∗/(F∗)2, φ(g)= (ad − bc)(F∗)2

whose kernel is isomorphic to SL(2,F)D1, where D1 denotes the subgroup of
elements of norm 1 in D∗, and is realized as a subgroup of diagonal matrices in
G1(D). Also SL(2,F)∩ D1 = {±I }.
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From now on, for irreducible smooth representations of D∗ (which are always
finite-dimensional) we will use χ to denote (unitary) characters and τ to denote
(unitary) higher-dimensional representations. The distinction is important, be-
cause, by the Jacquet–Langlands correspondence, characters correspond to twists
of the Steinberg representation of GL(2,F), and higher-dimensional representa-
tions of D∗ correspond to the cuspidal representations of GL(2,F) [Bernstein et al.
1984]. Each (continuous) character χ of D∗ is of the form χ = χ ′

◦ det, for some
character χ ′ of the field F .

Proposition 1.6. Assume τ and χ are irreducible admissible representations of D∗.

(i) If τ � τ̃ , then τνs o 1 is irreducible for all s ∈ R.

(ii) If χ2
6= 1, then χνs o 1 is irreducible for all s ∈ R

(iii) Assume τ ∼= τ̃ . Then τνs o 1 reduces if and only if s = ±
1
2 and ωτ = 1 or

s = 0 and ωτ 6= 1.

(iv) If χ2
= 1, χνs o 1 reduces if and only if s = ±

1
2 .

In both cases, when we have reducibility at s = ±
1
2 , the induced representation

has length 2 and one of the subquotients is a square-integrable representation,
denoted by δ[χν1/2

; 1] (or δ[τν1/2
; 1]). When the representation τ o 1 reduces,

it is a direct sum of the two nonequivalent tempered representations. The square-
integrable representations obtained this way are mutually inequivalent.

Proof. Let w0 be the unique nontrivial element of the Weyl group of G1(D). Ap-
plying the standard result of Harish-Chandra [Ban 1999], and taking into account
the action of the Weyl group, the representation τνs o1 of G1(D) reduces for some
s ∈ R only if τ ∗ ∼= τ̃ ∼= τ . So we assume that τ ∼= τ̃ . Let

Aw0(τ, s) fs(e)=

∫
U

fs(w
−1
0 u) du

be the action of the standard intertwining operator, where f denotes a function in
the “compact” picture of the representation τ o 1 and fs is its analytic section.
Make the identification U ∼= F . We have the explicit calculation:

Aw0(τ, s) fs(e)=

∫
|n|≤1

fs(w
−1
0 n) dn +

∞∑
k=1

q−2ksωτ (ω
k)

∫
O∗

f
([

u−1 0
ωk u

])
du.

We denote by Km the m-th congruence subgroup in GL(2, D). If we denote the
first integral above, which always converges, by I1, and if f is (Km ∩ G1(D))-
right-invariant, we get
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Aw0(τ, s) fs(e)= I1 +

m−1∑
k=1

q−2ksωτ (ω
k)

∫
O∗

ωτ (u) f
([

1 0
u−1ωk 1

])
du

+

∞∑
k=m

q−2ksωτ (ω
k) f (e)

∫
O∗

ωτ (u) du.

We conclude that the operator Aw0(τ, s) is holomorphic at s = 0 if and only
if the central character ωτ of the representation τ is nontrivial. By the results of
Harish-Chandra, in this situation the induced representation is reducible at s = 0,
and this is the only point of the reducibility [Silberger 1980].

Now consider the self-contragredient representations τ (or χ ) with trivial central
character so the induced representation is irreducible at s = 0.

We determine the poles of the Plancherel measure by computing the composition
of the intertwining operators Aw0(τ, s)Aw0(τ,−s). Set f̃s = Aw0(τ,−s) f−s . Then

Aw0(τ, s) f̃s(e)=

∫
F

|ξ0|
−2s−1 f̃s

([
1 0
ξ−1

0 1

])
dξ0

=

∫
F

|ξ0|
−2s−1

∫
F

|ξ |2s−1 f−s

([
1 0

ξ−1
+ ξ−1

0 1

])
dξ dξ0.

To detect the poles of the Plancherel measure, it is enough to consider an f such
that supp f−s ⊂ P0U 0 and such that

f−s |U 0

([
1 0
ξ 1

])
=

{
0 if |ξ |> 1,

v0 if |ξ | ≤ 1.

The vector v0 belongs to the representation space of τ . After some simple calcu-
lations, we conclude that the composition of those intertwining operators is trivial
only for s = ±

1
2 . (Note that the characters of D∗ having order at most 2 are

necessarily trivial on F∗.) �

2. The principal series representations

In this section we write down all the composition factors for the principal series
representations, identifying the occurrence of square-integrable and tempered irre-
ducible subquotients.

Recall that to each square-integrable representation of GL(n, D) is attached a
segment of cuspidal representations [Tadić 1990]. So, the (essentially) unique
square-integrable subquotient of the representation ρνk

ρ×ρν
k−1
ρ ×· · ·×ρ is denoted

by δ(ρνk
ρ, ρ). Here ρ denotes the cuspidal representation of some GL(m, D). In

our case, νχ = ν2 for segments of characters of D∗ and ντ = ν for segments of
higher dimensional irreducible cuspidal representations of D∗.
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The next two propositions describe the composition series of all principal series
induced from the characters. Lemma 1.3 and Proposition 1.6 give the reducibility
points.

Proposition 2.1. Let χ1 be a unitary character of D∗ and take α ∈ R. In the
Grothendieck group R(G2(D)), we have

χ1ν
α
×χ1ν

α+2 o 1 =

L(χ1ν
3/2δ(ν, ν−1); 1)+π1 + L(χ1ν

5/2
; δ[χ1ν

1/2
; 1])+ L(χ1ν

5/2, χ1ν
1/2

; 1)

if χ2
1 = 1, α =

1
2 ,

L(χ1ν
1/2δ(ν, ν−1); 1)+π2 + L(χ1ν

3/2
; δ[χ1ν

1/2
; 1])+ L(χ1ν

3/2, χ1ν
1/2

; 1)

if χ2
1 = 1, α = −

1
2 ,

L(χ1ν
α+1δ(ν, ν−1); 1)+ L(χ1ν

α+2, χ1ν
α
; 1) if α ∈ R+

\ {
1
2},

L(χ1ν
1δ(ν, ν−1); 1)+ L(χ1ν

2
;χ1 o 1) if α = 0,

L(χ1ν
α+1δ(ν, ν−1); 1)+ L(χ1ν

α+2, χ−1
1 ν−α

; 1) if α ∈ (−1, 0) \ {−
1
2},

L(χ1δ(ν, ν
−1)o 1)+ L(χ1ν, χ

−1
1 ν; 1) if α = −1,

L(χ−1
1 ν−1−αδ(ν, ν−1); 1)+ L(χ−1

1 ν−α, χ1ν
α+2

; 1) if α ∈ (−2,−1),

L(χ−1
1 νδ(ν, ν−1); 1)+ L(χ−1

1 ν2
;χ1 o 1) if α = −2,

L(χ−1
1 ν−1−αδ(ν, ν−1);1)+ L(χ−1

1 ν−α, χ−1
1 ν−α−2

;1) if α <−2.

The representations π1 and π2 are square-integrable and mutually inequivalent.

Proof. In the course of the proof we will make extensive use of [Tadić 1998,
Remark 3.2 and Lemma 3.7]. We have

χ1ν
α
×χ1ν

α+2 o 1 = χ1ν
α+1δ(ν, ν−1)o 1 + L(χ1ν

α+2, χ1ν
α)o 1.

Using the 9-Hopf module structure (Proposition 1.4) we obtain

s(2)(χ1ν
α+1δ(ν, ν−1)o 1)

χ1ν
α+1δ(ν, ν−1)⊗ 1 +χ−1

1 ν−(α+1)(δ(ν, ν−1)
)∼

⊗ 1 +χ−1
1 ν−α

×χ1ν
α+2

⊗ 1

and

s(1)(χ1ν
α+1δ(ν, ν−1)o 1)= χ1ν

α+2
⊗χνα o 1 +χ−1

1 ν−α
⊗χνα+2 o 1.

First, assume that all three expressions χ−1
1 ν−α

×χ1ν
α+2

⊗1, χναo1 and χνα+2o1
are irreducible. Then, applying [Tadić 1998, Lemma 3.7] on Jacquet subquotients,
we see that, in that case, the representation χ1ν

α+1δ(ν, ν−1)o 1 is irreducible. In
general (without assumptions on the reducibility of those three expressions), with
the aid of the Aubert involution [1995], we conclude that χ1ν

α+1δ(ν, ν−1)o1 and
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L(χ1ν
α+2, χ1ν

α)o 1 have the same length. So with the previous assumption, the
representation χ1ν

α
×χ1ν

α+2 o 1 has length 2.
Second, assume χ−1

1 ν−α
× χ1ν

α+2 is reducible. This implies χ2
1 = 1 and α ∈

{0,−2}. For each choice of α from this set, we get representations which are the
same in the Grothendieck group. We have

χ1ν
2
×χ1 o 1 = χ1νδ(ν, ν

−1)o 1 +χ1ν1GL(2,D) o 1.

Lemma 2.2. The representation χ1νδ(ν, ν
−1)o 1 is irreducible.

Proof. We can apply ideas from [Tadić 1998, Section 6]. �

Third, assume that χνα o1 is reducible. It follows that χ2
1 = 1 and α ∈ {±

1
2}. The

case α =
1
2 will be addressed first. We have (in the Grothendieck group)

χ1ν
5/2

×χ1ν
1/2 o 1 = χ1ν

3/2δ(ν, ν−1)o 1 +χ1ν
3/21GL(2,D) o 1(2)

= χ1ν
5/2 o δ[χ1ν

1/2
; 1] +χ1ν

5/2 o L(χ1ν
1/2

; 1).

We have

(3) s(2)(χ1ν
3/2δ(ν, ν−1)o 1)=

χ1ν
3/2δ(ν, ν−1)⊗ 1 +χ1ν

−3/2δ(ν, ν−1)⊗ 1 +χ1ν
5/2

×χ1ν
−1/2

⊗ 1,

(4) s(2)(χ1ν
5/2 o δ[χ1ν

1/2
; 1]) = χ1ν

1/2
× χ1ν

5/2
⊗ 1 + χ1ν

−5/2
× χ1ν

1/2
⊗ 1.

From this, applying [Tadić 1998, Remark 3.2], it follows that both

χ1ν
3/2δ(ν, ν−1)o 1 and χ1ν

5/2 o δ[χ1ν
1/2

; 1]

are reducible representations and that they have an irreducible subquotient in com-
mon. Examining Jacquet modules in (3) and (4), we conclude that there is only
one such subquotient, denoted π1, and it is a square-integrable representation.
Analogously we conclude that χ1ν

3/21GL(2,D) o 1 and χ1ν
5/2 o δ[χ1ν

1/2
; 1] have

a common irreducible subquotient. We also conclude that each of the represen-
tations which appear on the right-hand side of (2) has length at most 3. If we
explore Jacquet modules of the representation χ1ν

5/2 o δ[χ1ν
1/2

; 1] with respect
to the minimal parabolic subgroup, we see that this is impossible. So we obtain
the decomposition of the principal series into 4 irreducible subquotients.

In the case α=−
1
2 , the discussion is similar, but here we find a common square-

integrable subquotient π2 in χ1ν
1/2δ(ν, ν−1)o 1 and χ1ν

3/2 o L(χ1ν
1/2

; 1). Ex-
amining the Jacquet modules with respect to the minimal parabolic subgroup, we
find that the principal series has length 4.

Finally, the reducibility of χ1ν
α+2 o 1 leads to the representations already seen

above. �
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Proposition 2.3. We assume χ2
1 = 1. Then

χ2ν
α
×χ1ν

1/2 o 1 =

L(χ1ν
3/2δ(ν,ν−1);1)+π1 + L(χ1ν

5/2
;δ[χ1ν

1/2
;1])+ L(χ1ν

5/2,χ1ν
1/2

;1)
if χ2 = χ1, α =

5
2 ,

L(χ1ν
1/2δ(ν,ν−1);1)+π2 + L(χ1ν

3/2
;δ[χ1ν

1/2
;1])+ L(χ1ν

3/2,χ1ν
1/2

;1)
if χ2 = χ1, α =

3
2 ,

L(χ2ν
1/2

;δ[χ1ν
1/2

;1])+π3 + L(χ1ν
1/2,χ2ν

1/2
;1)+ L(χ1ν

1/2
;δ[χ2ν

1/2
;1])

if χ2
2 =1, χ2 6=χ1, α=

1
2 ,

χ2 o δ[χ1ν
1/2

;1] + L(χ1ν
1/2

;χ2 o 1) if α = 0,

and in other cases:

L(χ2ν
α
;δ[χ1ν

1/2
;1])+ L(χ2ν

α,χ1ν
1/2

;1) if α > 0,

L(χ−1
2 ν−α

;δ[χ1ν
1/2

;1])+ L(χ−1
2 ν−α,χ1ν

1/2
;1) if α < 0.

Moreover, π1, π2, π3 are mutually inequivalent, square-integrable representations.

Proof. We have χ2ν
α

×χ1ν
1/2 o 1 = χ2ν

α o δ[χ1ν
1/2

; 1] +χ2ν
α o L(χ1ν

1/2
; 1).

Also s(2)(χ2ν
α o δ[χ1ν

1/2
; 1])= χ2ν

α
×χ1ν

1/2
+χ−1

2 ν−α
×χ1ν

1/2 and

s(1)(χ2ν
α o δ[χ1ν

1/2
; 1])

= χ1ν
1/2

⊗χ2ν
α o 1 +χ2ν

α
⊗ δ[χ1ν

1/2
; 1] +χ−1

2 ν−α
⊗ δ[χ1ν

1/2
; 1].

The assumption that χ2ν
α

× χ1ν
1/2, χ−1

2 ν−α
× χ1ν

1/2 and χ2ν
α o 1 are irre-

ducible, together with [Tadić 1998, Lemma 3.7], lead to the conclusion that χ2ν
αo

δ[χ1ν
1/2

; 1] and χ2ν
αoL(χ1ν

1/2
; 1) are irreducible. If we drop these assumptions,

the only new case to consider is χ2ν
1/2

×χ1ν
1/2 o 1, with χ2

2 = 1.
First, suppose that χ2 = χ1. The representations χ1ν

1/2 o δ[χ1ν
1/2

; 1] and
χ1ν

1/2oL(χ1ν
1/2

; 1) are irreducible. Namely, the representation χ1ν
1/2

×χ1ν
−1/2

is an irreducible unitarizable representation of GL(2, D), so the representation
χ1ν

1/2
×χ1ν

−1/2 o 1 is also unitarizable and χ1ν
1/2 o δ[χ1ν

1/2
; 1] is its quotient.

But the latter is also a standard representation, so it is irreducible.
Next suppose that χ2 6= χ1. By examining s(2)(χ2ν

1/2 o δ[χ1ν
1/2

; 1]) we see
that χ2ν

1/2 o δ[χ1ν
1/2

; 1] has length at most 2. Also we see from [Tadić 1998,
Remark 3.2] that this representation and χ1ν

1/2 o L(χ2ν
1/2

; 1) have one common
subquotient, a square-integrable representation denoted π3. �

Now, we describe the composition factors of all principal series induced from
higher-dimensional representations. The principal series representation of the form
τ1ν

α
× τ2ν

β o 1 where τ1, τ2 have dimension greater than 1, are reducible only in
the situations covered by the next four propositions.
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Proposition 2.4. Let τ1 denote an irreducible, admissible, unitary representation
of D∗ of dimension greater than 1. If τ1 is not a selfdual representation, we have

τ1ν
α+1

× τ1ν
α o 1 =

L(να+
1
2 δ(τ1ν

1/2, τ1ν
−1/2); 1)+ L(τ1ν

α+1, τ1ν
α
; 1) if α > 0,

L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+ L(τ1ν; τ1 o 1) if α = 0,

L(να+
1
2 δ(τ1ν

1/2, τ1ν
−1/2); 1)+ L(τ1ν

α+1, τ̃1ν
−α

; 1) if α ∈ (−1
2 , 0),

δ(τ1ν
1/2, τ1ν

−1/2)o 1 + L(τ1ν
1/2, τ̃1ν

−1/2
; 1) if α = −

1
2 ,

L(ν−α−
1
2 δ(τ̃1ν

1/2, τ̃1ν
−1/2); 1)+ L(τ̃1ν

−α, τ1ν
α+1

; 1) if α ∈ (−1,−1
2),

L(ν−α−
1
2 δ(τ̃1ν

1/2, τ̃1ν
−1/2); 1)+ L(τ̃1ν

−α, τ̃−α−1
1 ; 1) if α <−1.

Proof. We have

τ1ν
α+1

× τ1νo 1 = ν1/2δ(τ1ν
1/2, τ1ν

−1/2))o 1 + ν1/2L(τ1ν
1/2, τ1ν

−1/2)o 1.

Analogously to the proof of the previous proposition, we examine

s(2)(ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2))o 1)= ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2)⊗ 1

+ ν−1/2−α
(
δ(τ1ν

1/2, τ1ν
−1/2)

)∼
⊗ 1 + τ̃1ν

−α
× τ1ν

α+1
⊗ 1.

Also s(1)(ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2)) = τ1ν
α+1

⊗ τ1ν
α o 1 + τ̃1ν

−α
⊗ τ1ν

α+1 o 1.
With the assumptions that τ̃1ν

−α
× τ1ν

α+1, τ1ν
α o 1, and τ1ν

α+1 o 1 are irre-
ducible, and applying [Tadić 1998, Lemma 3.7], we obtain that the representation
(ν1/2+αδ(τ1ν

1/2, τ1ν
−1/2)o 1 is irreducible. By the properties of the Aubert invo-

lution, also that the representation ν1/2L(τ1ν
1/2, τ1ν

−1/2)o1 is irreducible. These
assumptions are met when τ1 � τ̃1. �

Proposition 2.5. Let τ1 denote an irreducible, unitary, selfdual representation of
D∗ of dimension greater than 1. Without loss of generality we can assume α≥ −

1
2 .

(i) If χτ1 = 1 we have

τ1ν
α+1

× τ1ν
α o 1 =

L(ν1/2δ(τ1ν
1/2,τ1ν

−1/2);1)+ L(τ1ν;τ1 o 1) if α = 0,

L(νδ(τ1ν
1/2,τ1ν

−1/2);1)+ L(τ1ν
3/2

;δ[τν1/2
;1])+π4 + L(τ1ν

3/2,τ1ν
1/2

;1)
if α =

1
2 ,

L(τ1ν
1/2

;δ[τ1ν
1/2

;1])+ L(τν1/2
1 ,τν

1/2
1 ;1)+ T1 + T2 if α = −

1
2 ,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
−α

;1) if α ∈ (− 1
2 ,0),

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
α
;1) if α ∈ R+

\ {
1
2}.
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(ii) If χτ1 6= 1 and τ1 o 1 = T ′

3 + T ′

4 we have

τ1ν
α+1

× τ1ν
α o 1 =

L(τ1ν;T ′

3)+L(τ1ν;T ′

4)+2L(ν1/2δ(τ1ν
1/2,τ1ν

−1/2);1)+π5+π6 if α = 0,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
α
;1) if α > 0,

δ(τ1ν
1/2,τ1ν

−1/2)o 1 + L(τ1ν
1/2,τ1ν

1/2
;1) if α = −

1
2 ,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
−α

;1) if α ∈ (− 1
2 ,0).

Moreover, π4, π5 and π6 are mutually inequivalent square-integrable represen-
tations, and T1, T2 and δ(τ1ν

1/2, τ1ν
−1/2) o 1 in the second case are mutually

inequivalent tempered (not square-integrable) representations.

Proof. Dropping the assumptions that τ̃1ν
−α

× τ1ν
α+1, τ1ν

α o 1, and τ1ν
α+1 o 1

are irreducible (see proof of the previous proposition), we are left to deal with the
following families of representations in (5)–(8) below:

τ1ν× τ1 o 1, when χτ1 = 1.(5)

Analogously to Lemma 2.2 we conclude that ν1/2δ(τ1ν
1/2, τ1ν

−1/2) o 1 is irre-
ducible. Another representation to consider is

τ1ν× τ1 o 1, when χτ1 6= 1.(6)

Here we obtain a single case where multiplicity one fails; this is also the only
induced representation of length 6. Examining the Jacquet modules we learn that
the representation τ1 o T ′

3 has length at most 3 and that it is reducible (because it
has the same length as τ1 o T ′

4). If we assume that it has length 2, then also

ν1/2δ(τ1ν
1/2, τ1ν

−1/2)o 1 = L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+π, (in R(G2(D))),

where π is some subrepresentation. We see that then L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)
has to be a subrepresentation of τ1ν × τ1 o 1, but ν1/2δ(τ1ν

1/2, τ1ν
−1/2) o 1 is

also a subrepresentation of τ1ν × τ1 o 1. This leads to conclusion that either
L(ν1/2δ(τ1ν

1/2, τ1ν
−1/2); 1) is a subrepresentation of ν1/2δ(τ1ν

1/2, τ1ν
−1/2)o 1,

or the multiplicity of L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1) in τ1ν×τ1 o1 is greater then 1;
both of them false (in this situation). So we conclude that τ1 o T ′

3 and τ1 o T ′

4 both
have length 3, and both have unique subrepresentations which are square-integrable
(denoted π5 and π6). By careful examination of the composition sequences of the
Jacquet modules, we conclude that the representations ν1/2δ(τ1ν

1/2, τ1ν
−1/2)o 1

and ν1/2L(τ1ν
1/2, τ1ν

−1/2)o 1 have one irreducible quotient in common. In the
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Grothendieck group we have

ν1/2δ(τ1ν
1/2, τ1ν

−1/2)o 1 = L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+π5 +π6,

τ1νo T ′

3 = L(τ1ν; T ′

3)+π5 + L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1).

The next case is

(7) τ1ν
3/2

× τ1ν
1/2 o 1 if χτ1 = 1.

Examining the length of Jacquet modules, similarly to the case of inducing from
the characters, we see that the length of νδ(τ1ν

1/2, τ1ν
−1/2)o1 can’t be 3, because

that’s inconsistent with the associativity of Jacquet modules. The rest is straight-
forward. We use a similar analysis to deal with

(8) τ1ν
1/2

× τ1ν
1/2 o 1 if χτ1 = 1. �

Proposition 2.6. Let τ2 be a unitary, irreducible selfdual representation of D∗ of
dimension greater than 1, with trivial central character, and let τ1 denote a unitary
irreducible representation of D∗ of dimension greater than 1.

(a) If τ1 � τ̃1, we have

τ1ν
α
× τ2ν

1/2 o 1 =

{
L(τ1ν

α
; δ[τ2ν

1/2
; 1])+ L(τ1ν

α, τ2ν
1/2

; 1) ifα > 0,

T3 + L(τ2ν
1/2

; τ1 o 1) ifα = 0,

where T3 = τ1 o δ[τ2ν
1/2

; 1] is an irreducible tempered representation.

(b) If τ1 ∼= τ̃1, we consider two cases:

(i) If χτ1 = 1, then τ1ν
α+1

× τ1ν
α o 1 =

L(τ1ν
α
;δ[τ2ν

1/2
;1])+ L(τ1ν

α,τ2ν
1/2

;1) if |α| /∈R+

0 \ {0, 1
2 ,

3
2},

L(τ1ν
1/2

;δ[τ2ν
1/2

;1])+L(τ2ν
1/2

;δ[τ1ν
1/2

;1])+L(τ1ν
1/2,τ2ν

1/2
;1)+π7

if |α|=
1
2 and τ1 �τ2,

L(τ1ν
1/2

;δ[τ1ν
1/2

;1])+L(τν1/2
1 ,τν

1/2
1 ;1)+T1+T2 if |α|=

1
2 and τ1 ∼=τ2,

τ1 × δ[τ2ν
1/2

;1] + L(τ2ν
1/2

;τ1 o 1) if α=0,

L(νδ(τ1ν
1/2,τ1ν

−1/2);1)+L(τ1ν
3/2

;δ[τν1/2
;1])+π4+L(τ1ν

3/2,τ1ν
1/2

;1)
if |α|=

3
2 and τ1 ∼=τ2,

L(τ1ν
3/2

;δ[τ2ν
1/2

;1])+ L(τ1ν
3/2,τ2ν

1/2
;1) if |α|=

3
2 and τ1 �τ2.

The representation π7 is square-integrable, and τ1 × δ[τ2ν
1/2

; 1] is an
irreducible tempered representation.
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(ii) If χτ1 6= 1 and τ1 o 1 = T ′

3 + T ′

4, then

τ1ν
α
× τ2ν

1/2 o 1 =

{
L(τ1ν

α
; δ[τ2ν

1/2
; 1])+ L(τ1ν

α, τ2ν
1/2

; 1) if α > 0,

L(τ2ν
1/2

; T ′

3)+ L(τ2ν
1/2

; T ′

4)+ T5 + T4 if α = 0.

T4 and T5 are irreducible tempered representations.

Proof. The only new case left to check, after dealing with ones which are covered
by [Tadić 1998, Lemma 3.7], is

(9) τ1ν
1/2

× τ2ν
1/2 o 1 if τ1 � τ2, χτ1 = χτ2 = 1.

This case is resolved in the same way as for the characters. �

Proposition 2.7. Let τ2 be a unitary, irreducible, self-dual representation of D∗

such that χτ2 6= 1, so that τ2 o 1 = T ′

3 ⊕ T ′

4, and let τ1 be an irreducible unitary
representation of D∗.

(a) If α > 0, then τ1ν
α
× τ2 o 1 =

L(τ1ν
1/2

;T ′

3)+ L(τ1ν
1/2

;T ′

4)+ T4 + T5 if α =
1
2 , τ1 ∼= τ̃1, ωτ1 = 1,

L(τ2ν;T ′

3)+L(τ2ν;T ′

4)+2L(ν1/2δ(τ2ν
1/2,τ2ν

−1/2);1)+π5+π6

if τ1 ∼= τ2 and α = 1,

L(τ1ν
α
;T ′

3)+ L(τ1ν
α
;T ′

4) in other cases.

(b) If α = 0, then

τ1 × τ2 o 1 =

{
T6 + T7 + T8 + T9 if τ1 ∼= τ̃1, ωτ1 6= 1, τ1 � τ2,

T10 + T11 in other cases.

The representations Ti , i = 6, . . . , 11, are mutually inequivalent, tempered (not
square-integrable) representations.

Proof. The cases in the first part of this Proposition were already covered, and the
statements of the second part follow from [Hanzer 2004]. �

We now settle the mixed case of the principal series representations.

Proposition 2.8. Let χ be a unitary character of D∗, and let τ be irreducible,
admissible unitary representation of D∗ of dimension greater than 1. Then the
principal series representation χνα × τνβ o 1 (for α, β ∈ R) reduces only in the
following cases:
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(i) If χ2
= 1, then τνβ ×χ1/2 o 1 =

L(τνβ;δ[χν1/2
;1])+ L(τνβ,χν1/2

;1) if β>0 and τνβ o 1 is irreducible,

τ o δ[χν1/2
;1] + L(χν1/2

;τ o 1) if β=0 and τ o 1 is irreducible,

T7 + T8 + L(χν1/2,T ′

3)+ L(χν1/2,T ′

4) if τ∼= τ̃ , ωτ 6=1, β=0,

L(τν1/2
;δ[χν1/2

;1])+π8 + L(χν1/2
;δ[τν1/2

;1])+ L(τν1/2,χν1/2
;1)

if τ∼= τ̃ , ωτ =1, |β|=
1
2 ,

where, in the third case, τ o 1 = T ′

3 + T ′

4. The tempered representation τ o
δ[χν1/2

; 1] from the second case is irreducible, and the representation π8 is
square-integrable.

(ii) If τν1/2 o 1 reduces, then χνα × τν1/2 o 1 =
L(χνα;δ[τν1/2

;1])+ L(χνα,τν1/2
;1) if α>0 and χνα o 1 is irreducible,

L(τν1/2
;δ[χν1/2

;1])+L(χν1/2
;δ[τν1/2

;1])+L(τν1/2,χν1/2
;1)+π8

if χ2
=1 and α=

1
2 ,

χ o δ[τν1/2
;1] + L(τν1/2

;χ o 1) if α=0.

The tempered representation χ o δ[τν1/2
; 1] in the third case is irreducible.

(iii) If τ o 1 = T ′

3 ⊕ T ′

4, then χνα × τ o 1 =
L(χνα;T ′

3)+ L(χνα;T ′

4) if α>0 and χνα o 1 is irreducible,

χ o T ′

3 +χ o T ′

4 if α=0,

T7 + T8 + L(χν1/2,T ′

3)+ L(χν1/2,T ′

4) if χ2
=1, |α|=

1
2 .

Proof. Use [Tadić 1998, Lemma 3.7]. �

3. Induced representations of the group G2(D); the Siegel case

We now consider the reducibility of the representations of the form

σνs o 1,

where σ is an irreducible admissible cuspidal representation of GL(2, D) and s is
a real number. By a result of Harish-Chandra [Ban 1999], if this induced repre-
sentation is reducible for some s, σ must be self-contragredient. So, from now on,
we assume that σ ∼= σ̃ . Let σ ′ be the square-integrable representation of GL(4, F)
corresponding to σ by the Jacquet–Langlands correspondence. It is actually a
cuspidal representation as well [Bernstein et al. 1984].

Proposition 3.1. Let σ be an irreducible, admissible, selfdual cuspidal represen-
tation of the group GL(2, D). The representation σ o1 is irreducible if and only if
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L(s, σ ′,32ρ4) has a pole at s = 0. If this is so, the representation σνs o 1, where
s ∈ R, reduces only for s = ±

1
2 .

Proof. Recall that the Plancherel measure is defined as

R(s, σ, N (F), N (F))R(s, σ, N (F), N (F))= µ−1(s, σ ).

Our notation is as in [Muić and Savin 2000]. From that paper we know that

µ(s, σ )= µ(s, σ ′),

where on the left-hand side we have the Plancherel measure in the group G2(D),
and on the right-hand side the Plancherel measure corresponding to the represen-
tation induced from σ ′ in SO(8, F). Because σ ′ is cuspidal, the reducibility of
σ ′νs o 1 can be obtained directly from the Plancherel measure: there exists a
unique s0 ≥ 0 such that σ ′νs0 o 1 reduces [Silberger 1980] and

s0 = 0 if and only if µ(0, σ ′) 6= 0,

s0 > 0 if and only if µ(s, σ ′) has a pole at s = s0.

So, σνs o 1 is reducible if and only if σ ′νs o 1 is reducible, and s0 ∈ {
1
2 , 0}, by

the results in [Shahidi 1990b]. Because σ ′ is generic, the Plancherel measure is
expressible in terms of L-functions. To conclude, σ ′ o 1 is irreducible if and only
if L(s, σ ′,32ρ4) has a pole at s = 0; see [Shahidi 1992]. �

4. Induced representations of the group G2(D); the non-Siegel case

We now consider the representations of the form

τνs o δ,

where τ is an irreducible admissible unitary representation of D∗, δ is an irreducible
cuspidal representation of G1(D), and s ∈R. As in the previous section, to examine
the reducibility, it is enough to assume that τ ∼= τ̃ , and s ≥ 0. Throughout this
section we keep this assumption. For an algebraic number field k, we denote its
ring of adeles by Ak . We consider the restriction

δ|SL(2,F)D1 =

k∑
i=1

τi ⊗ δi ,

according to the observation about the structure of G1(D)— see Equation (1).
The procedure we use is this: we choose a summand in the restriction above, such
as τ1 ⊗ δ1, and lift it to the discrete series representation τ1 ⊗ δ′1 of the group
SL(2,F)×SL(2,F). Then we find representations δ′ and δ′′ of SO(4, F) such that
the representation τ1 ⊗ δ′1 is a component in the restrictions of the representations
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δ′ and δ′′ to SL(2,F) · SL(2,F). Then, using global methods, we will prove that
µ(s, τ ⊗ δ)2 = µ(s, τ ′

⊗ δ′)µ(s, τ ′
⊗ δ′′). The difficulty in applying the global

methods lies in that there are global L-packets for the group SL(2, Ak) includ-
ing both automorphic and nonautomorphic global representations [Labesse and
Langlands 1979], so we have to make some adjustments. Also, in order to ensure
that the representations δ′ and δ′′ differ only in quadratic character, i.e., they have
the same restriction to SL(2,F) · SL(2,F), we have to be careful when varying
representations in the local L-packets of τ1 and δ1. Before we proceed with the
detailed exposition, briefly remind the reader how the group SL(2,F) · SL(2,F)
sits in SO(4, F). Let {α, β} denote the basis of the root system 8(SO(4, F), T ),
where T is a diagonal subgroup in the standard matrix realization of SO(4, F).
So, with the obvious meaning, we choose α = e1 − e2 and β = e1 + e2. The Levi
subgroup Mα corresponding to the root α is isomorphic to GL(2,F); the same is
true for Mβ . One copy of SL(2,F) is standardly embedded in Mα and the other in
Mβ ; one is block-diagonal, and the other is not.

We can choose a number field k having two places v1 and v2 such that kv1
∼=

kv2
∼= F , and a division algebra D of rank 4 over k that it splits only at v1 and

v2, with Dv1
∼= D ∼= Dv1 . Then we can define the reductive group G1 over k such

that G1(kv) ∼= SO(4, kv) for all v /∈ {v1, v2} and G1(kv1)
∼= G1(D) ∼= G1(kv2).

Analogously, we define G2 over k. Also, we can define D1, the subgroup of
elements of norm 1 in D∗ such that D1(kv) ∼= SL(2, kv) for v /∈ {v1, v2} and
D1(kv1)

∼= D1 ∼= D1(kv2). We choose any of the summands from the restriction
of δ, e.g., τ1 ⊗ δ1.

First assume that dim δ1 > 1. Consider the set of ideles ((±I )v) that can be
observed as a subgroup of D1. We can form the character ω =

∏
ωv on that set

such that ωv1 =ωδ1 , ωv2 =ωδ1 , and ωv are almost everywhere trivial. Then we can
introduce the space L(D1(Ak)) (and other notation) as in [Flicker 1987], and study
the representations of the functions from C(D1(Ak)) on the space L(D1(Ak)). We
choose a full tensor f = ⊗ fv from the space C(D1(Ak)). We can choose f in
such a way that fv1 and fv2 are the coefficients of the representation δ1, and at
all other nonarchimedean places fv are spherical. Then we can adjust the support
of fv at the archimedean places in such way that we can reason analogously to
[Flicker 1987, Proposition §3.3 and Theorem §4.3]. We obtain the existence of
an automorphic cuspidal representation π ′

1 =
⊗

v π
′

1,v of the group D1(Ak) with
central character ω such that π ′

1,v1
∼= δ1 ∼=π ′

1,v2
Then there exists a grossencharacter

ω′
=

⊗
v ω

′
v such that ω′

|((±Iv)) = ω. Also, we can find an automorphic cuspidal
representation π ′

=
⊗

v π
′
v of the group D∗(Ak) with central character ω′ such that

π ′

1 embeds in π ′; the proof is analogous to one in [Flicker 1992]. Note that π ′
v1

and πv2 are cuspidal representations of D∗ of dimension greater then 1, so by the
Jacquet–Langlands correspondence, they correspond to cuspidal representations of
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GL(2,F). This enables us to use results of [Flicker and Kazhdan 1988] about lifts
of representations of D∗(Ak) to the representations of GL(2, Ak) with one fixed
cuspidal place. So there exists an automorphic cuspidal representation π =

⊗
v πv

of GL(2, Ak) such that πv ∼= π ′
v for all v /∈ {v1, v2}, and πvi and π ′

vi
correspond.

Let π1 =
⊗

v π1,v denote some automorphic cuspidal representation of SL(2, Ak)

embedded in the representation π |SL(2, Ak). We can arrange that π1,v ∼= π ′

1,v for
every place v different from v1, v2. Indeed, let {φ} be an admissible homomorphism
{φ} : WK/k → PGL(2)×WK/k defined by the representation Ind(WK/k,WK/E , θ),
where K is some large, but finite Galois extension of k, E a quadratic extension
of k contained in K , and θ a Grossencharacter of E that doesn’t factor through
Nm E/k . Let π2 be some automorphic cuspidal representation of SL(2, Ak) em-
bedded in π . If π2 does not belong to the L-packet parameterized by {φ}, we
define a representation π1 of SL(2, Ak) in the following way:

π1,v = π ′

1,v for all v /∈ {v1, v2},

π1,vi = π2,vi for i = 1, 2.

The representation π1 is in the same L-packet as π2 and it is automorphic; see
[Labesse and Langlands 1979]. If π2 corresponds to {φ} as above, we can form π1

as above at split places, but at v1 and v2 we must adjust representations to obtain a
representation which is in the same L-packet as π2 but is also automorphic. We can
do so because the multiplicity with which π1 occurs in the space of cusp forms is

1
[S◦

φ \ Sφ]

∑
s∈S◦

φ\Sφ

〈s, π1〉,

with notation as in [Labesse and Langlands 1979]. So we want to make

〈s, π1〉 =
∏

〈s, π1,v〉

a trivial character. But we can easily do that fixing at the place v1 the representation
which defines the trivial character on the local group S◦

φv1
\ Sφv1 , and adjusting

accordingly at the place v2.
Second, if dim δ1 = 1, i.e., δ1 = 1, we fix a nonarchimedean place u outside

{v1, v2} and fix some cuspidal representation πu of SL(2, ku) at that place. As
before, we can choose an automorphic cuspidal representation π ′

1 of D1 which
has that component on the place u, and which is unramified at the places v1 and
v2, i.e., equal to δ1 = 1. Now there exists a lift from the automorphic cuspidal
representations of D∗ to such representations of GL(2, Ak), with fixed place u
with cuspidal component, and, as before, we obtain the representation of SL(2, Ak)

having properties as in the previous case.
If the finite set

{
gi =

[ 1 0
0 xi

]}
is a set of representatives of GL(2,F)/SL(2,F)F∗,
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then the set

g′

i =




1 0 0 0
0 xi 0 0
0 0 x−1

i 0
0 0 0 1




is a set of representatives (in our realization) of SO(4, F)/
(
SL(2,F) · SL(2,F)

)
.

Now, with the same character ω as before, we can find an automorphic cuspidal
representation ε =

⊗
v εv of SL(2, Ak) with the central character ω such that

εv1
∼= εv2

∼= τ1 if π1,v1
∼= π1,v2,

εv1
∼= τ1, εv2

∼=
giτ1 if π1,v2

∼=
giπ1,v1 .

There exists an automorphic cuspidal representation σ ′ of the group G1(Ak) in
which ε ⊗ π ′

1 embeds as a representation of the group SL(2, Ak)D1(Ak). Anal-
ogously, there exists an automorphic cuspidal representation σ of SO(4, Ak) in
which ε⊗π1 embeds as a representation of SL(2, Ak) ·SL(2, Ak). We can arrange
that

σ ′

v1
∼= σ ′

v2
∼= δ and σ ′

v
∼= σv for all v /∈ {v1, v2}.

Let γ ′
=

⊗
v γ

′
v be an automorphic cuspidal representation of D∗(Ak) such that

γ ′
v1

∼= γ ′
v2

∼= τ and let γ be its lift to GL(2; Ak) such that γ ′
v

∼= γv for all v /∈
{v1, v2} and γv1

∼= γv2
∼= τ ′, where τ ′ corresponds to τ by Jacquet–Langlands

correspondence. This can be arranged; see [Flicker and Kazhdan 1988].
We have to normalize measures on the unipotent radicals of the groups consid-

ered in order to get the global functional equation right. We can decompose D as
F ⊕ D−, looking at the center F of the algebra D as the τ -hermitian part of D
and D− as the τ -antihermitian part. Now, the unipotent radical of the non-Siegel
parabolic subgroup in the group G2(D) in the case ε = −1 (the case we are now
considering) is N (F)∼= D⊕D⊕F , and in the case ε=1 it is N ′(F)∼= D⊕D⊕D−.
Let ψF denote a nontrivial additive character of F . Introduce self-dual measures
on N (F) and N ′(F) by the use of the F-form 〈x, y〉 =

∑5
i=1 xi yi +τ(xi yi ) on D5,

and a character ψF so that the self-dual measure on D5 is the product of a self-dual
measure αF on N (F) and α′

F on N ′(F). Fix a nontrivial character ψ =
⊗

v ψv

of Ak trivial on k and such that ψv1 = ψv2 = ψF . As above, at each split place
we can get a self-dual measure αv on N (kv) with respect to ψv, and a self-dual
measure α on N (Ak). In this way, we get a coherent family of measures {αv}

such that α =
∏
αv and α is actually the Tamagawa measure [Weil 1973, §VII.2,

Corollary 1], meaning that α(N (Ak)/N (k))=1. The Plancherel measure is defined
analogously to the Siegel case.

Proposition 4.1. µ(s, τ ⊗ δ)2 = µ(s, τ ′
⊗ σv1)µ(s, τ

′
⊗ σv2).
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Proof. Denote by S a finite set of places containing v1 and v2, all the places of
residual characteristic 2, and all the places where γv, σv, and ψv are ramified. For
every v /∈ S, let fv,s denote the unique unramified vector in γ ′

vν
s oσ ′

v, normalized
to be equal to 1 on the maximal compact subgroup Kv. Analogously, define f v,s
in γ ′

vν
s oσ ′

v. In the L-group SO(8,C) of SO(8, kv), the action (representation) of
the GL(2,C)×SO(4,C) on the unipotent radical is equal to 32(C2)⊕ (C2

⊗ C4).
So, for v /∈ S we can explicitly calculate the constants c(v, s, γ ′

v ⊗ σ ′
v) in terms of

L-functions, where

R(s, γ ′

v ⊗ σ ′

v, N (kv), N (kv)) fv,s = c(v, s, γ ′

v ⊗ σ ′

v) f v,s .

We then have

c(v, s, γ ′

v ⊗ σ ′

v)=
L(s, γ ′

v ⊗ σ ′
v, ρ2 ⊗ ρ4)(1 −χγ ′

v
(ω)q−s

v )−1

L(1 + s, γ ′
v ⊗ σ ′

v, ρ2 ⊗ ρ4))(1 −χγ ′
v
(ω)q−s−1

v )−1
.

It is easily seen that the product

cS(s, γ ′
⊗ σ ′)=

∏
v /∈S

c(v, s, γ ′

v ⊗ σ ′

v)

converges in some right half-plane, and it continues to a meromorphic function on
C. Analogously we have

R(s, γ ′

v ⊗ σ ′

v, N (kv), N (kv)) f v,s = c(v,−s, γ̃ ′

v ⊗ σ ′

v) fv,s .

We now take fs =
⊗

v fv,s ∈ γ ′νs o σ ′, where for each v /∈ S we have chosen
spherical fv,s as above. Because we have chosen the Tamagawa measure on the
(global) unipotent radical we have the global functional equation

R(s, γ ′
⊗ σ ′, N (Ak), N (Ak))R(s, γ ′

⊗ σ ′, N (Ak), N (Ak)) fs = fs;

see [Mœglin and Waldspurger 1995, Theorem IV.1.10]. When the right-hand side
of this equation is written as a product of local intertwining operators, the local
Plancherel measures appear. So we have∏

v∈S

µ(s, γ ′

v ⊗ σ ′

v)cS(s, γ ′
⊗ σ ′)cS(−s, γ̃ ′

⊗ σ ′)= 1.

By analogy with the previous equation for G2(Ak), we have the equation∏
v∈S

µ(s, γv ⊗ σv)cS(s, γ ⊗ σ)cS(−s, γ̃ ⊗ σ)= 1

in SO(8, Ak). But at each split place we have an isomorphism G2(kv)∼= SO(8, kv)
that preserves unipotent radicals, and we have isomorphic representations, so we
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have equality of the Plancherel measures. From this, it follows that

µ(s, τ ⊗ δ)2 = µ(s, τ ′
⊗ σv1)µ(s, τ

′
⊗ σv2). �

Remark. Because of our adjustment of the representation ε, we conclude that
the representations σv1 and σv2 differ in the quadratic character that is trivial on
SL(2,F) · SL(2,F).

We now compute the Plancherel measure above. Because τ1 is a generic rep-
resentation for some nontrivial character of F and πv1 is a generic representation
for some nontrivial character, we conclude that σv1 is a generic representation of
the group SO(4, F). We can now use [Shahidi 1990b] and express the Plancherel
measure in terms of γ -factors. We fix a nontrivial additive character ψ of F and
obtain, up to the exponential factor,

µ(s, τ ′
⊗ σv1)≈

γ (2s, τ ′,32ρ2, ψ)γ (s, τ ′
× σv1)

γ (1 + 2s, τ ′,32ρ2, ψ)γ (1 + s, τ ′ × σv1)
.

The only difficulty appears in the calculation of the Rankin–Selberg γ -factor of the
groups GL(2,F)× SO(4, F). If σv1 is noncuspidal, the computation is straight-
forward, using the multiplicativity of γ -factors [Shahidi 1990a]. So, assume that
the representations σvi appearing in the previous proposition are square-integrable,
noncuspidal representations. This is the case when, with the previous notations,
δ1 = 1. Let π denote the cuspidal unitary representation of GL(2,F) with trivial
central character such that τ1 ↪→ π |SL(2,F). Then π is a self-contragredient repre-
sentation. Such π ’s differ mutually by a quadratic character. We denote the basis
of the root system for SO(4, F) by {α, β}. Now, the standard Levi subgroup Mα is
diagonally embedded in SO(4, F) and contains the diagonal version of SL(2,F),
and Mβ isn’t diagonal and also contains the other copy of SL(2,F). Consider the
representation IndSO(4,F)

Mβ
πν1/2. It is easy to see that this representation restricted

to SL(2,F) · SL(2,F) decomposes as

IndSO(4,F)
Mβ

πν1/2
|SL(2,F)SL(2,F) =

∑
νo 1 ⊗ τi ,

where the τi are components of the restriction of π to SL(2,F). Let δ′ denote
the unique square-integrable subquotient of IndSO(4,F)

Mβ
πν1/2. Then StSL(2,F) ⊗ τ1

injects in δ′, so σv1 and σv2 differ from δ′ by a quadratic character. We can conclude:

Corollary 4.2. Assume that the representations σvi are not cuspidal and that σv1

injects in IndSO(4,F)
Pβ πν1/2.

(i) If dim τ > 1 then

(a) if χτ ′(ω) 6= 1 the representation τνs o δ reduces only for s = 0, and
(b) if χτ ′(ω)= 1 then τ o δ is irreducible, and τνs o δ reduces at s =

1
2 or at

s =
3
2 , depending on whether τ ′ � π or τ ′ ∼= π , respectively.
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(ii) If τ = χ is a quadratic character, the representation χνs o δ reduces only at
s =

1
2 .

Proof. In the formula for Plancherel measure we include the expression for the
Rankin–Selberg factor

γ (s, τ ′
× σv1, ψ)= γ (s, τ ′

×πν1/2, ψ)γ (s, τ ′
×πν−1/2, ψ).

If τ ′ is cuspidal, we obtain the claim, and if τ ′
= χStGL(2,F) we have

γ (s, χStGL(2,F)×πν
1
2 , ψ)= γ (s, χν1/2

×πν1/2, ψ)γ (s, χν−1/2
×πν1/2, ψ)= 1.

�

We denote by ε the conjugation in SO(4, F) by the element

ε =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


of O(4, F) \ SO(4, F), and, accordingly, if π is the representation of SO(4, F)
we denote the representation of SO(4, F) obtained using the involution ε by επ .
Keeping the assumptions from the proposition, in the case of cuspidal σvi ’s we
have

Corollary 4.3. (i) Suppose τ = χ is a quadratic character of D∗.

(a) If εσv1 � σv1 the representation χνs o δ reduces only at s =
1
2 .

(b) If εσv1
∼= σv1 (so that also εσv2

∼= σv2) then if at least one of the represen-
tations χ o σ̃vi , i = 1, 2, of the group SO(6, F) is irreducible, χνs o δ

reduces (only) for s =
3
2 . On the other hand, if both of the representations

χ o σ̃vi , i = 1, 2, reduce, χνs o δ reduces for s =
1
2 .

(ii) Suppose dim τ > 1.

(a) If χτ (ω)= 1 the representation τν1/2 o δ reduces.
(b) If χτ (ω) = −1 then the points of reducibility are at s = 0 or s = 1. We

have reducibility at s = 1 if at least one of the representations τ ′ o σvi of
the group SO(8, F) is irreducible.

Proof. We prove (i). Using the multiplicativity of γ -factors, we come to γ -factors
γ (s, χν1/2

×σvi ), which leads us to consider the reducibility of the representations
χνs oσvi of the group SO(6, F). It is well known that in order to have reducibility
for some real number s, the nontrivial element of the Weyl group has to fix the
representation χ ⊗ σvi , which amounts to the statement that εσv1

∼= σv1 . If it isn’t
so, the aforementioned L-functions and γ -factors appearing in the case of SO(6, F)
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are trivial, so the only pole of the Plancherel measure comes from the Hecke L-
function for τ ′. If εσv1

∼= σv1 , the irreducibility of χoσ̃v1 implies that L(s, χ×σv1)

has a pole at s = 0. This implies that µ(s, τ ⊗ δ) has a pole at s =
3
2 , no matter the

situation with χ o σ̃v2 . On the other hand, if both of the representations χ o σ̃vi

reduce, the Rankin–Selberg L-functions are holomorphic for real s and the only
poles of µ(s, τ ⊗ δ) come from the Hecke L-function for χStGL(2,F).

The proof of (ii) follows from [Goldberg and Shahidi 2001, Theorem 4.8]. �

5. Unitary dual of the group G2(D)

We are interested in finding the hermitian, and especially irreducible unitarizable
representations of G2(D). We will list them by grouping together the ones with
the same cuspidal support.

5.1. Unitary subquotients of the principal series. Let χ1 and χ2 denote unitary
characters of D∗. Let π = χ1ν

s1 × χ2ν
s2 o 1. Without loss of generality we can

assume that s1 ≥ s2 ≥ 0.

Proposition 5.1. Assume that we have unitary characters χ1 and χ2 such that
χ2

1 6= 1 and χ2
2 6= 1.

(i) If χ1 6= χ±1
2 then the representation π has a hermitian subquotient if and only

if s1 = s2 = 0 and then it is an irreducible tempered representation.

(ii) If χ1 = χ2 then the representation π has a hermitian subquotient if and only
if s1 = s2 = 0 and then it is an irreducible tempered representation.

(iii) Suppose if χ1 = χ−1
2 . If s2 = 0 the representation π has a hermitian sub-

quotient only if s1 = 0 and we obtain an irreducible tempered representation
(isomorphic to one obtained in the previous case for the same χ1).

If s2 > 0 the representation π has a hermitian subquotient only if s1 = s2;
then for all s1 > 0 all the subquotients of the representation π are hermitian.
For s1 ∈ (0, 1) we have π = χ1ν

s1 ×χ−1
1 νs1 o 1 = L(χ1ν

s1, χ−1
1 νs1; 1) and π

is a unitary representation. For s1 > 1, π is not a unitary representation. For
s1 = 1 we have

π = χ1δ(ν, ν
−1)o 1 + L(χ1ν, χ

−1
1 ν; 1),

where the first subquotient is a tempered representation, and the other is uni-
tary (nontempered).

Proof. The first two cases follow from the criterion for the hermiticity of the
Langlands quotient. For the third case we observe that χ1ν

s1 × χ1ν
−s1 is the

complementary series of the group GL(2, D) for α ∈ (0, 1). From this, it follows
that χ1ν

s1 × χ1ν
−s1 o 1 has exclusively unitarizable subquotients for s1 ∈ (0, 1].

�
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Proposition 5.2. Let χ1 and χ2 be unitary characters such that χ2
1 = 1 and χ2

2 6= 1.
Again, let π = χ1ν

s1 × χ2ν
s2 o 1. The representation π has a hermitian subquo-

tient only if s2 = 0; then all of its subquotients are hermitian representations. In
this case, for s1 = 0, π is an irreducible tempered representation; for s1 =

1
2 ,

the representation π has an irreducible tempered subquotient; for s1 ∈ (0, 1
2 ], the

representation L(χ1ν
s1;χ2 o 1) is unitarizable; and for s1 >

1
2 , the representation

π is irreducible and nonunitarizable.

Proof. We just comment on the case s2 = 0. We have the standard intertwining
operators Aw2α+β

(s1) : χ1ν
s1 × χ2 o 1 → χ1ν

−s1 × χ2 o 1, which converge for
s1 > 0. These operators define, for s1 >

1
2 , a continuous family, indexed by s1,

of nondegenerate hermitian forms on the compact picture X of the representation
χ1 ×χ2 o 1 by means of

( f1, f2)s1 =

∫
K

〈
f1,s1(k), Aw2α+β

(s1) f2,s1(k)
〉

dk.

Here f1 and f2 belong to X and f1,s1 , f2,s1 denote their holomorphic sections,
which are identified with elements from χ1ν

s1 × χ2 o 1. If one of these forms
were unitarizable, meaning that the irreducible representation χ1ν

s1 × χ2 o 1 is
unitarizable, all the other forms would have to be unitarizable, too, because of the
connectedness of the indexing set. But for s1 >

5
2 the representation χ1ν

s1 ×χ2 o1
has unbounded matrix coefficients, which implies nonunitarizability. The oper-
ator Aw2α+β

(s1) has a pole at s1 = 0, but we can normalize it by multiplying it
by an appropriate real polynomial; we obtain, for s1 ∈ [0, 1

2), a family of (nor-
malized) intertwining operators A′

w2α+β
(s1) which also define a continuous family

of nondegenerate hermitian forms on X . By the same argument, we obtain the
unitarizability of the representations considered for s1 ∈ [0, 1

2). In this way, we
obtain the complementary series representations, and, by the results in [Miličić
1973], the subquotients of the representation on the edge of the complementary
series (s1 =

1
2 ) are unitarizable. �

Proposition 5.3. With notation as before, assume that χ2
1 6= 1 and χ2

2 = 1. Then
the representation π has a hermitian subquotient only if s1 = s2 = 0, and π is then
irreducible and tempered. This representation is already described in the previous
proposition.

The proof is left to the reader.

Proposition 5.4. Assume that we have unitary characters χ1 and χ2 such that
χ2

1 = χ2
2 = 1 and χ1 6= χ2. Let π = χ1ν

s1 ×χ2ν
s2 o1. Consider the regions defined

on the s1s2 plane in Figure 1 (which also includes points that do not have s1 ≥ s2).

(i) The representation π for (s1, s2) from the closed region I has all its subquo-
tients unitarizable. The composition factors are given in Proposition 2.3.
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-

6

( 1
2 ,

1
2 )

s1

s2

I

II

III

IV

Figure 1

(ii) For (s1, s2) in each of the open regions II, III, IV we obtain representations
all of whose subquotients are hermitian, but none unitarizable.

Proof. For (s1, s2) with s1 ≥ s2 > 0 from open region I we have the family of
standard long intertwining operators A(s1, s2) : χ1ν

s1 × χ2ν
s2 o 1 → χ1ν

−s1 ×

χ2ν
−s2 o1 which defines a continuous family of nondegenerate hermitian forms on

the compact picture. So, we can fix such a pair (s1, s2) and form the one-parameter
family t → (ts1, ts2) for t ≥ 0. Because χ1 ×χ2 o 1 is irreducible, we can assume
that we have unitarizable representations for t ≥ 0, until χ1ν

ts1 ×χ2ν
ts2 o 1 starts

being reducible. An analogous reasoning and the unboundedness of the matrix
coefficients ensures the nonunitarizability of the representations on the unbounded
regions. We, of course, could apply immediately [Tadić 1983] to conclude that. �

Proposition 5.5. Given a quadratic character χ1 of D∗, set π = χ1ν
s1 ×χ1ν

s2 o1.
All subquotients of π are hermitian representations. Let the notation be as in
Figure 2.
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(i) First we consider the open regions in the figure. Only for (s1, s2) lying in
the (open) regions I or III is it the case that π is unitarizable (irreducible)
nontempered representation.

(ii) Now we consider the boundaries. Besides the square-integrable and tempered
subquotients, the other unitarizable subquotients that appear for (s1, s2) lying
on the boundaries are the subquotients of π for (s1, s2) on the boundary of
regions I and III and L(χ1ν

5/2, χ1ν
1/2

; 1).

Proof. As in the previous proposition, we obtain the unitarizability of region I.
Consider χ1ν

s1 ×χ1ν
−s1 in GL(2, D) for s1 ∈ (0, 1). These (irreducible) represen-

tations belong to the complementary series of GL(2, D), so all the subquotients of
the representation χ1ν

s1 × χ1ν
s1 o 1 are unitarizable. In the open region III this

gives unitarizability of some representations and the unitarizability on the entire
region then follows. This gives, by [Miličić 1973], the unitarizability of all sub-
quotients for π from the boundaries of I and III. Now, consider the representation
χ1ν

5/2
×χ1ν

1/2 o1. If we prove that it has some nonunitarizable subquotients, this
would imply the nonunitarizability in the open region V I (and, symmetrically, in
V ). We have

χ1ν
5/2

×χ1ν
1/2 o 1 = L(χ1ν

3/2δ(ν, ν−1); 1)+π1

+L(χ1ν
5/2

; δ[χ1ν
1/2

; 1])+ L(χ1ν
5/2, χ1ν

1/2
; 1).

The unitarizability of L(χ1ν
5/2, χ1ν

1/2
; 1) is proved using global methods [Grbac

2004]. In the case χ1 = 1, L(χ1ν
5/2, χ1ν

1/2
; 1) is a trivial character, so we know

from [Casselman 1981] that the only unitarizable subquotients of ν5/2
×ν1/2o1 are

the Steinberg representation and the trivial one. In general, the nonunitarizability of
L(χ1ν

3/2δ(ν, ν−1); 1) and L(χ1ν
5/2

; δ[χ1ν
1/2

; 1]) can be proved using the Howe–
Moore theorem [Borel and Wallach 2000]. Denote L(χ1ν

3/2δ(ν, ν−1); 1) by π .
Consider the unbounded set S = {a0 ∈ A0 : |α1(a0)|F ≤ 1, |α2(a0)| = 1}. We have

s(1,1)(π)= χ1ν
1/2

⊗χ1ν
5/2

+χ1ν
1/2

⊗χ1ν
−5/2

+χ1ν
−5/2

⊗χ1ν
1/2.

Let v and ṽ be the canonical lifts of the vectors in Jacquet modules corresponding
to the last summand in this sum. There exists ε > 0 such that for every a0 from
A0(ε) we have

〈π(a0)v, ṽ〉 = δ
1/2
P0
(a0)(χ1ν

−5/2
⊗χ1ν

1/2)(a0)〈 jP0(v), j̃P0(ṽ)〉.

Here A0(ε) = {a0 ∈ A0 : |α1(a0)|F ≤ ε, |α2(a0)|F ≤ ε}. The vectors jP0(v)

and j̃P0(ṽ) denote the projection on the corresponding Jacquet module. We fix
an element a0 from A0(ε). Then a0S is a subset of A0(ε). So, we can find an un-
bounded sequence of elements in a0S that defines a sequence of matrix coefficients
of π not vanishing at infinity. By the Howe–Moore theorem π is not a uniformly
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bounded representation, hence is not unitarizable. Quite analogously we prove the
nonunitarizability of L(χ1ν

5/2
; δ[χ1ν

1/2
; 1]).

Now, consider the representation

χ1ν
2
×χ1 o 1 = L(χ1νδ(ν, ν

−1); 1)+ L(χ1ν
2, χ1 o 1).

We prove that both subquotients on the right are nonunitarizable. We have a holo-
morphic family of the irreducible hermitian representations χ1ν

sδ(ν, ν−1)o 1 for
s ∈ [1, 3

2), because we have a holomorphic family of nondegenerate hermitian
forms obtained by standard intertwining operators on the compact picture of the
representation χ1δ(ν, ν

−1)o 1. If we assume unitarizability at s = 1, this would
imply unitarizability on the whole interval, and the unitarizability of all the sub-
quotients on the edge of the interval, at s =

3
2 , which is false by the preceding

reasoning. Analogously, the unitarizability of L(χ1ν
2
;χ1 o1)= χ1νL(ν, ν−1)o1

would imply the unitarizability of all the subquotients of χ1ν
3/2L(ν, ν−1)o1; but

we have shown that this is not the case. This proves nonunitarizability on the region
IV and on the remaining boundaries. �

We continue with the examination of the principal series representations induced
by the higher-dimensional representations of D∗. Let τ1 and τ2 be unitarizable
representations of D∗ of dimension greater then 1. Let π = τ1ν

s1 × τ2ν
s2 o 1. We

can assume that s1 ≥ s2 ≥ 0. The next four propositions are completely analogous
to the first four propositions in the previous subsection, so we just note them.

Proposition 5.6. With the notation as above, assume that τ1 � τ̃1 and τ2 � τ̃2.

(i) If τ1 � τ2 and τ1 � τ̃2, then the representation π has a hermitian subquotient if
and only if s1 = s2 = 0, and then π is an irreducible tempered representation.

(ii) If τ1 ∼= τ2 then π has a hermitian subquotient if and only if s1 = s2 = 0, and
then π is an irreducible tempered representation.

(iii) If τ1 ∼= τ̃2 the representation π has a hermitian subquotient if and only if
s1 = s2. In that case all of its subquotients are hermitian. For s1 ∈

(
0, 1

2

)
the

representation L(τ1ν
s1, τ̃1ν

s1; 1) is unitarizable, for s1 >
1
2 nonunitarizable.

We also get tempered subquotients for s1 ∈
{
0, 1

2

}
.

Proposition 5.7. Assume that τ1 ∼= τ̃1 and τ2 � τ̃2. Then the representation π
has a hermitian subquotient only if s2 = 0. In that case, if ωτ1 = 1, π has a
tempered subquotient only if s1 =

1
2 or s1 = 0. On the other hand, L(τ1ν

s1, τ2 o 1)
is unitarizable for s1 ∈

(
0, 1

2

]
, and for s1 >

1
2 it is a hermitian nonunitarizable

representation. If ωτ1 6= 1, π has a tempered subquotient only if s1 = 0; in that case
π is a sum of two nonequivalent tempered representations and L(τ1ν

s1, τ2 o 1) is
hermitian nonunitarizable representation for every positive s1.
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Proposition 5.8. Assume that τ1 � τ̃1 and τ2 ∼= τ̃2. Then π has a hermitian subquo-
tient only if s1 = s2 = 0. In this case π is an irreducible tempered representation
or a sum of two nonequivalent tempered representations, depending on the central
character of τ1. These tempered representations are those described in the previous
proposition.

Proposition 5.9. Assume that τ1 and τ2 are nonisomorphic, unitary, self-contra-
gredient representations. We keep our assumption s1 ≥ s2 ≥ 0. Then all the sub-
quotients of the representation π are hermitian and

(i) If ωτ1 =ωτ2 = 1, we have the same situation as in Figure 1, π has unitarizable
subquotients only inside closed region I, the tempered (not square-integrable)
subquotients appear for (s1, s2) ∈

{
(1

2 , 0), (0, 0)
}
, and square-integrable rep-

resentation appears for (s1, s2)=
( 1

2 ,
1
2

)
.

(ii) If ωτ1 = 1 and ωτ2 6= 1 π has unitarizable subquotients only for s2 = 0 and s1 ∈

[0, 1
2 ]. Tempered (not square-integrable) representations appear for (s1, s2) ∈{

( 1
2 , 0), (0, 0)

}
.

(iii) If χτ1 6= 1 and χτ2 6= 1 π is unitarizable only for s1 = s2 = 0 and π (as we
have already seen) is a sum of 4 nonequivalent tempered representations.

Proposition 5.10. Assume that τ1 ∼= τ2 and τ1 is self-contragredient, such that
ωτ1 6= 1. Then all the irreducible subquotients of the representation π are her-
mitian, and the unitarizable subquotients appear only for (s1, s2) from the closed
region I on Figure 3 (when all of them are unitarizable). The square-integrable
subquotients appear for (s1, s2)= (1, 0) and the tempered (not square-integrable)
subquotients appear for (s1, s2)= (0, 0).

In the next proposition, we note an occurrence of the isolated unitary represen-
tation in the unitary dual, namely, the representation L(τ1ν

3/2, τ1ν
1/2

; 1).
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Proposition 5.11. We keep all the assumptions of the previous proposition, except
now ωτ1 = 1. In Figure 4, considering the open regions, we have unitarizability
only on region I, where we have nontempered representations. On the boundaries,
we have a square-integrable subquotient for (s1, s2) =

( 3
2 ,

1
2

)
, and tempered sub-

quotients for (s1, s2)∈
{( 1

2 , 0
)
,
( 1

2 ,
1
2

)
, (0, 0)

}
. We have other unitary subquotients

on the boundary of region I, and L(τ1ν
3/2, τ1ν

1/2
; 1) is a unitarizable subquotient.

Proof. We discuss only the more difficult cases. Consider the representation

τ1ν
3/2

× τ1ν
1/2 o 1

= L(νδ(τ1ν
1/2, τ1ν

−1/2); 1)+π4+L(τν3/2
; δ[τ1ν

1/2
; 1])+L(τ1ν

3/2, τ1ν
1/2

; 1).

The unitarizability of the representation L(τ1ν
3/2, τ1ν

1/2
; 1) is proved by global

methods [Grbac 2004]. This is an isolated unitary representation in the unitary
dual. We will prove the nonunitarizability of L(νδ(τ1ν

1/2, τ1ν
−1/2); 1) and of

L(τν3/2
; δ[τ1ν

1/2
; 1]). We will do that in the following way: we will calculate

the Plancherel measure µ(s, δ(τ1ν
1/2, τ1ν

−1/2)). Let us again denote by A(s) the
standard intertwining operator such that

A(s) : δ(τ1ν
1/2, τ1ν

−1/2)νs o 1 → δ(τ1ν
1/2, τ1ν

−1/2)ν−s o 1.

We will prove that the Plancherel measure has a simple pole at s = 1 and that
A(s) has no pole at s = −1. We will apply these observations to the calcula-
tion of Jantzen filtrations near s = 1. This will give us nonunitarizability. Let
δ = δ(τ1ν

1/2, τ1ν
−1/2). First, we use the previously mentioned result stating that

µ(s, δ)=µ(s, δ′). The representation δ′ is generic, so we can apply the results from
[Shahidi 1990b] to compute the Plancherel measure in terms of the γ -factors. Up
to an exponential factor, we have

µ
( s

2
, δ′

)
≈

γ (s, δ′,32ρ4, ψ)

γ (1 + s, δ′,32ρ4, ψ)
,
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where ψ is a nontrivial additive character of F , given in advance. By multiplica-
tivity of γ -factors [Shahidi 1990a] we have

γ (s, δ′,32ρ4, ψ)

= γ (s, τ1ν
1/2, det, ψ)γ (s, τ1ν

−1/2, det, ψ)γ (s, τ1ν
1/2

× τ1ν
1/2, ψ).

The last factor is a Rankin–Selberg γ -factor. When a γ -factor is expressed in terms
of L-functions, we obtain, up to an exponential factor,

µ(
s
2
, δ′)≈

(1 − q−1−s)(1 − q1−s)(1 − q1+s)(1 − q−1+s)(1 − q−rs)(1 − qrs)

(1 − qs)(1 − q−s)(1 − q−2+s)(1 − q−2−s)(1 − q−r+rs)(1 − q−r−rs)
,

where r is a natural number satisfying L(s, τ1 ×τ1)= (1−qrs)−1. Indeed µ(s, δ′)
has a simple pole at s = 1. Denote by wε the reflection in the Weyl group with
respect to the root ε. Then consider the intertwining operator

Awα+β
(s) : τ1ν

s+ 1
2 × τ1ν

s− 1
2 o 1 → τ1ν

−s+ 1
2 × τ1ν

−s− 1
2 o 1.

The poles of the operator A(s) are among the poles of the operator Awα+β
(s)

and Awα+β
(s)|δνso1 = A(s). But using the factorization of the operator Awα+β

(s)
[Shahidi 1981], we see that it has no poles at s = −1. Let X denotes the compact
picture of the representation δνs o1. We will consider the Jantzen filtrations of the
space X , for s ∈[0, 1]. For s ∈ (0, 1) the representations δνs o1 are irreducible, and
the mentioned interval parameterizes a nondegenerate family of hermitian forms in
the compact picture X . For s=0, A(s) is holomorphic, and, normalized, generates
the intertwining algebra of the representation δo1= T1+T2 (follows from the proof
of the Proposition 2.5). The operator A(0) endows the space of this representation
with the hermitian form which is of a different sign on each of the Ti ’s. This
gives us the nonunitarizability of δνs o 1 for s ∈ (0, 1). By the theory of Jantzen
filtrations [Vogan 1984], at s = 1 we consider filtrations X = X0

1 ⊃ X1
1 ⊃ · · · ⊃ 0.

Because we have a standard representation, we have X1
1 = π4, a square-integrable

representation. We will prove that X2
1 = {0}, i.e., that a hermitian form defined on

X1
1 by

< v, v′ >1= lims→1

∫
K
< v(k),

1
s − 1

A(s)v′

s(k) > dk

is nondegenerate, so its radical, namely X2
1 , is trivial. Because of the simplicity of

the pole of the Plancherel measure at s = 1, we have

A(−s)
1

s − 1
A(s)= h(s),

where h is holomorphic function in the neighborhood of s =1, and h(1) 6=0. Hence,
for nonzero v′

∈ X such that v′

1 ∈ π4, we have lims→1 A(s)v′
s/(s−1) /∈ L(δν, 1).
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Now, we can choose v ∈ X1
1 such that

〈v, v′
〉1 = lims→1

∫
K

〈
v(k),

A(s)v′
s(k)

s − 1

〉
dk 6= 0.

We can obtain the signature of δνs o1 for s> 1 and for s< 1 in terms of signatures
(p0, q0) and (p1, q1). But we know that on these segments we have nonunitarizable
representations. We conclude that p0 6= 0 and q0 6= 0, which is equivalent to
nonunitarizability.

The proof of the nonunitarizability of L(τ1ν
3/2

; δ[τ1ν
1/2

; 1]) follows the same
pattern: We will compute the Plancherel measure of µ(s, τ1 ⊗ δ[τ1ν

s
; 1]). We

can easily extend the results from the fourth section to the case when we consider
square-integrable representations instead of cuspidal ones. So we have

µ(s, τ1 ⊗ δ[τ1ν
s
; 1])2 = µ(s, τ ′

1 ⊗ σ1)µ(s, τ ′

1 ⊗ σ2).

The representations σi , i = 1, 2, from the above equation are obtained originally
by considering the restrictions of the representations to the groups SL(2,F)D1 or
SL(2,F) · SL(2,F). It is not hard to see that, in this case, σi ↪→ IndSO(4,F)

Mα
(τ ′

1χi ),
where χi is a quadratic character on F∗. Here Mα is the standard Levi subgroup,
which is diagonally positioned in SO(4, F), and τ ′

1 is a Langlands’ lift of the repre-
sentation τ1. Because of the genericity of the representations σi , we can apply the
results of Shahidi about multiplicativity of γ -factors. We obtain that the Plancherel
measure µ(s, τ ′

1 ⊗σi ) can have a pole of order one at s =
3
2 . We obtain a pole there

if and only if, τ ′

1
∼= τ ′

1χi . But µ(s, τ1 ⊗ δ[τ1ν
1/2

; 1]) must have a pole there, so it
is a pole of order one. As in the previous case, we conclude that the intertwining
operators appearing in the definition of the Plancherel measureµ(s, τ1⊗δ[τ1ν

s
; 1])

are holomorphic near s = ±
3
2 . Now we can conclude, as in the previous dis-

cussion, that L(τ1ν
3/2

; δ[τ1ν
1/2

; 1]) is a nonunitarizable representation. The only
Langlands quotient left to settle is L(τ1ν; τ1 o 1) = ν1/2L(τ1ν

1/2, τ1ν
−1/2)o 1.

We obtain the hermiticity of the representations πs = νs L(τ1ν
1/2, τ1ν

−1/2)o 1 for
s ∈ (0, 1) using the action of the long intertwining operator acting on the space
τ1ν

s+ 1
2 × τ1ν

s− 1
2 o 1. But unitarity of the representation πs at s =

1
2 would imply

unitarizability of all the subquotients at s = 1, which contradicts what we have just
proved. �

Again, let π = τ1ν
s1 × χ1ν

s2 o 1. We can assume s1, s2 ≥ 0. The proof of the
next result is straightforward.

Proposition 5.12. (i) If τ1 is not a self-contragredient representation and χ2
1 6= 1,

π has a hermitian quotient only if (s1, s2) = (0, 0), and then π is an irre-
ducible, tempered representation.
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(ii) If τ1 is selfdual, but χ2
1 6= 1 π has a hermitian quotient only if s2 = 0 (then all

the subquotients are hermitian), and has unitarizable subquotients for s1 from
the segment [0, 1

2 ] if ωτ1 = 1 and only in the origin if ωτ1 6= 1. If ωτ1 = 1, π is
irreducible tempered for s1 = 0, and has a tempered subquotient for s1 =

1
2 . If

ωτ1 6= 1, we obtain a tempered representation for s1 = s2 = 0.

(iii) If χ2
1 =1 and τ1 is not a selfdual representation, π has a hermitian subquotient

only for s1 = 0 (then all quotients are hermitian). For s2 = 0 representation π
is irreducible tempered, for s2 =

1
2 it has a tempered subquotient, and unita-

rizable subquotients appear for {(0, s2) : s2 ∈ [0, 1
2 ]}.

(iv) If χ2
1 = 1 and τ1 o 1 reduces, every subquotient of π is hermitian. For

s1 = s2 = 0 representation π is a sum of two-nonequivalent tempered rep-
resentations, and for (s1, s2) = (0, 1

2) has a tempered subquotient. Other
unitarizable subquotients appear for s1 = 0 and s2 ∈

[
0, 1

2

]
.

(iv) If χ2
1 = 1 and τ1ν

1/2 o 1 reduces, we have the analogous situation as for the
characters; unitarizability of all subquotients of π on the closed region I in
Figure 1.

5.2. The unitary dual supported on the nonminimal parabolic subgroups. Once
we have handled the reducibility questions in this case, the rest is straightforward.
Assume that s ≥ 0.

Proposition 5.13. (i) We consider induction from the Siegel parabolic subgroup:
If τ is an irreducible cuspidal representation of GL(2, D), let πs = τνs o 1.
If τ is not self-dual, πs is hermitian only when s = 0; then it is a tempered
representation. If τ is self-dual, πs reduces for some s0 ∈ {0, 1

2}, and all of
it subquotients are always hermitian. In this case, if s0 = 0, π0 is the sum of
two nonequivalent tempered representations, and otherwise, πs are nonunita-
rizable. If s0 =

1
2 , πs is a nontempered irreducible unitary representation for

s ∈ (0, 1
2), tempered for s = 0, and for s =

1
2 the representation π 1

2
has two

irreducible unitary subquotients; one of them is nontempered and the other is
a square-integrable representation.

(ii) We consider induction from the non-Siegel parabolic subgroup: the represen-
tation τνs oδ for irreducible representation τ of the group D∗ and irreducible
cuspidal representation δ of the group G1(D) is unitarizable for nonselfdual τ
only for s = 0, and then it is irreducible tempered representation. Otherwise,
it reduces for some s0 ∈ {0, 1

2 , 1, 3
2} (Corollaries 4.2 and 4.3). If s0 = 0, π0 is a

sum of two nonequivalent tempered representations, otherwise πs is nonuni-
tarizable. If s0 ∈

{1
2 , 1, 3

2

}
, the representation π0 is tempered, nontempered

unitarizable for s ∈ (0, s0) and for s = s0 it has a nontempered unitarizable
Langlands quotient, and a square-integrable subrepresentation.
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