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Iterated loop algebras are by definition obtained by repeatedly applying
the loop construction, familiar from the theory of affine Kac–Moody Lie
algebras, to a given base algebra. Our interest in this iterated construction
is motivated by its use in the realization of extended affine Lie algebras,
but the construction also appears naturally in the study of other classes of
algebras. This paper consists of a detailed study of the basic properties of
iterated loop algebras.

1. Introduction

Over the past 35 years affine Kac–Moody Lie algebras have been at the centre
of a considerable amount of beautiful mathematics and theoretical physics. As
of late, and perhaps influenced by some of the newest theories in physics, the
need seems to have arisen for some “higher nullity” generalizations of affine Kac–
Moody Lie algebras. It is still too early to decide what the correct final choice for
these algebras will be, but it is fair to say notwithstanding, that Lie algebras graded
by root systems and extended affine Lie algebras (EALAs) will play a prominent
role in the process [Berman and Moody 1992; Benkart and Zelmanov 1996; Allison
et al. 1997a; Saito and Yoshii 2000].

Recall that given a Zm-grading 6 = {Aı̄ }ı̄∈Zm of an algebra A over a field k, the
loop algebra of 6 based on A is the subalgebra

L(A, 6) :=

⊕
i∈Z

Aı̄ ⊗k zi

of A⊗kk[z, z−1
]. Using this beautiful construction, V. Kac showed that (the derived

algebra modulo its centre of) any complex affine Kac–Moody Lie algebras can be
obtained as a loop algebra of a finite dimensional simple Lie algebra [Kac 1969].
The loop construction makes it clear, among other things, that the affine algebras
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are objects of nullity one in a sense that can be made precise. Indeed, in EALA the-
ory, where the concept of nullity is well-defined, one finds that finite dimensional
simple algebras are precisely the (tame) EALAs of nullity zero whereas affine
algebras are precisely the (tame) EALAs of nullity one [Allison et al. 1997b].

It thus seems almost inevitable to ask whether, starting from an affine Kac–
Moody Lie algebra and applying the loop construction, one obtains an extended
affine Lie algebra of nullity 2. This and related questions have been investigated
in some detail in [Wakimoto 1985; Pollmann 1994; Allison et al. 2002; Allison
et al. 2004; van de Leur 2001]. In our work on this topic, as well as in [van de
Leur 2001], it became clear that some advantages are to be had by thinking of loop
algebras based on an affine algebra as being obtained from a finite dimensional Lie
algebra by applying the loop construction twice (the advantages stemming from the
fact that in this case the “bottom” algebra, namely the finite dimensional one, is
much simpler than the affine algebra). As the reader will have surmised by now,
the study of these “iterated loop algebras” took on a life of its own and became the
subject of the present paper.

In general, if A is an (arbitrary) algebra over k, an n-step iterated loop algebra
based on A is an algebra that can be obtained starting from A by a sequence of
n loop constructions, each based on the algebra obtained at the previous step (see
Definition 5.1). Far from being a mere generalization of the loop construction,
iterated loop algebras seem to yield interesting mathematical objects in a natural
way. Even when the resulting objects are known, the new point of view can be
illuminating. As an example, we see in Example 9.8 that algebras representing
elements of the Brauer group of the ring k[t±1

1 , t±2
2 ] are obtained as 2-step iterated

loop algebras of Mn(k). This information is not apparent if one thinks in terms of
single loop algebras of M`(k[t±1

1 ]).

This paper contains a detailed study of the basic properties of iterated loop al-
gebras. We begin in Section 2 by recording some simple properties of the centroid
of an algebra. In the rest of Section 2 and in Section 3 we define and give the basic
properties of a very important class of algebras which for lack of a better name we
have simply referred to as pfgc algebras (nonzero, perfect, and finitely generated
as modules over their centroids). The property of being a prime pfgc algebra arises
naturally in the study of iterated loop algebras since this property is carried over
to a loop algebra (and hence to an iterated loop algebra) from its base. In contrast
the property of finite dimensional central simplicity certainly does not carry over
in the same way. After this discussion of pfgc algebras we establish in Section 4
some basic properties of (one step) loop algebras.

The main results of the paper appear in Sections 5, 6, 7 and 8 . These all deal
with properties of an n-step iterated loop algebra L based on a pfgc algebra A.
First Theorem 5.5 establishes a long list of properties that carry over from A to L.
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In particular, it is shown (as mentioned above) that if A is a prime pfgc algebra then
so is L. Next Theorem 6.2 shows that the centroid C(L) of L is itself an n-step
iterated loop algebra of the centroid of A. The same theorem describes a method
of calculating C(L) explicitly. Then Theorem 7.1 shows that L can be “untwisted”
by a base ring extension of C(L) that is free of finite rank. That is, the algebra L

(after such a base ring extension) becomes isomorphic to the iterated loop algebra
obtained using only the trivial gradings at each stage. Finally, Section 8 deals with
the concept of type of an algebra (which is motivated by the concept of type in
terms of root systems which exists in Lie theory). The main result, Theorem 8.16,
states that type cannot change under the loop construction.

Each of the main results in Sections 6, 7 and 8 has several corollaries that are
discussed in the respective sections. To give one important example, we show in
Section 8 that if L is an n-step iterated loop algebra based on a finite dimensional
split simple Lie algebra A over a field of characteristic 0 then both A and n are
isomorphism invariants of L (see Corollary 8.19). This result will play a crucial
role in our forthcoming work on the classification of the centreless cores of EALAs
of nullity 2 [Allison et al. ≥ 2006].

In the last section, Section 9, we look closely at 2-step iterated loop algebras.
If the base algebra is finite dimensional and central simple, these 2-step iterated
loop algebras come in two kinds, depending on the structure of their centroids.
We illustrate this fact along with many of the concepts discussed in the paper by
describing two examples dealing respectively with Lie algebras and associative
algebras.

2. Centroids and pfgc algebras

We record here some basic facts about centroids, and we define a class of algebras,
which we call pfgc algebras, that will play an important role in the study of loop
algebras. A good basic reference on the centroid is [Jacobson 1962, Ch. X, § 1].

Terminology and notation. A ring will mean a unital commutative associative
ring. Homomorphisms, subrings and modules for rings will always be assumed
to be unital.

A base change will mean a homomorphism υ : B → B ′ of rings. This base
change is said to be free (respectively flat, faithfully flat) if B ′ is a free (respectively
flat, faithfully flat) B-module. Note that if υ : B → B ′ is free and B ′

6= 0, then υ
is faithfully flat and hence flat [Bourbaki 1972, § I.3.1, Example 2]. An injective
base change υ : B → B ′ will be called an extension of rings, in which case we
often identify B as a subring of B ′ and denote the extension by B ′/B.

If B is a ring, an algebra over B will mean a B-module A together with a B-
bilinear product (which is not necessarily associative, commutative or unital). If
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A and A′ are B-algebras, we use the notation

A 'B A′

to mean that A and A′ are isomorphic as B-algebras. If A is an algebra over B and
υ : B → B ′ is a base change, we will denote by A ⊗B B ′ the (unique) B ′-algebra
which is obtained from A by base change [Bourbaki 1974, Ch. III, § 1.5].

For the rest of the section we assume that B is a ring, and that A is a B-algebra.
Note that A can also be regarded as Z-algebra under the natural action of Z on A.

We now recall the definition of the centroid of A [Jacobson 1962, Ch. X, § 1].

Definition 2.1. (i) For a ∈ A consider the two maps from A to A

aL : x 7→ ax and aR : x 7→ xa.

The multiplication algebra of A [Jacobson 1962, Ch. X, § 1] is defined to be the B-
subalgebra MultB(A) of EndB(A) generated by { 1 }∪{ aL | a ∈ A }∪{ aR | a ∈ A }.

(ii) The set CB(A) of elements of EndB(A) that commute with the action of
MultB(A) is called the centroid of A. Equivalently

CB(A) := {χ ∈ EndB(A) : χ(xy)= χ(x)y = xχ(y) for all x, y ∈ A}.

(The notation CentB(A) has been used for the centroid in some articles, for example
in [Allison et al. 2004]. We are using the abbreviated notation CB(A) since it will
arise frequently.) Clearly CB(A) is a B-subalgebra of EndB(A), and therefore A

can be viewed in a natural way as a left CB(A)-module by defining χ · x = χ(x).
(iii) For b ∈ B we define λA(b) ∈ EndB(A) by(

λA(b)
)
(x)= b · x .

Clearly λA(b) ∈ CB(A) since A is a B-algebra. Then the map λA : B → CB(A) is
a ring homomorphism, and CB(A) is a unital associative B-algebra via this map.
Furthermore, if A is a faithful B-module then B can be identified with a subring
of (the centre of) the centroid CB(A).

(iv) The B-algebra A is said to be central (or central over B) if λA : B → CB(A)

is an isomorphism.
(v) The centre of A is defined to be the set Z(A) of elements in A that commute

and associate with all elements of A. Then Z(A) is a B-subalgebra of A. If A is
unital, the map which sends z to left multiplication by z is a B-algebra isomorphism
of Z(A) onto CB(A) [Erickson et al. 1975, § 1].

The following is clear:
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Lemma 2.2. Suppose that A and A′ are B-algebras and ρ : A → A′ is a B-algebra
isomorphism. Then ρ induces a B-algebra isomorphism CB(ρ) :CB(A)→CB(A

′)

defined by χ 7→ ρχρ−1.

The formation of the centroid does not commute with base change. Nonetheless
these two processes do commute in two important cases that we now describe. If
B → B ′ is a homomorphism of rings, we define

ν = νA,B,B ′ : CB(A)⊗B B ′
→ CB ′(A ⊗B B ′)

to be the restriction of the canonical map EndB(A)⊗B B ′
→ EndB ′(A ⊗B B ′).

Then ν is a homomorphism, said to be canonical, of unital associative B ′-algebras.

Lemma 2.3. Suppose that B → B ′ is a homomorphism of rings. Then the map
νA,B,B ′ : CB(A)⊗B B ′

→ CB ′(A ⊗B B ′) is an isomorphism of B ′-algebras in the
following cases:

(a) A is finitely generated as a module over its multiplication algebra MultB(A)

and B ′ is a free B-module.

(b) B ′ is a finitely generated projective B-module.

Proof. (a) Let {si }i∈I be a basis of the B-module B ′.
It is clear that ν is injective. Indeed if

∑
χi ⊗ si is in the kernel of ν then∑

χi (x)⊗ si = 0 for all x in A and so χi = 0 for all i in I.
To see that ν is onto, let χ ∈ CB ′(A ⊗B B ′). Then for x ∈ A we can write

χ(x ⊗B 1B ′) uniquely as

χ(x ⊗ 1B ′)=

∑
χi (x)⊗ si ,

where χi (x) ∈ A and only finitely many of these are nonzero. It is easy to see that
for all i ∈ I the map χi : A → A given by χi : x 7→ χi (x) is an element of CB(A).
Thus to see that χ is an image under ν it suffices to show that only finitely many
of the maps χi are nonzero. For this let { x1, . . . , xn } be a set of generators of A

as a MultB(A)-module. Then whenever χi vanishes on all x j ’s we have

χi (A)= χi

( n∑
j=1

MultB(A) · x j

)
=

n∑
j=1

MultB(A) ·χi (x j )= 0.

(b) Consider the unique B-module homomorphism

ϕB,A : EndB(A)→ HomB(A ⊗B A,A ⊕ A)

satisfying

ϕB,A( f )(a1 ⊗B a2)=
(

f (a1a2)− f (a1)a2, f (a1a2)− a1 f (a2)
)
.



6 BRUCE ALLISON, STEPHEN BERMAN AND ARTURO PIANZOLA

By definition

ker(ϕB,A)= CB(A).

Also, by standard properties of projective modules we obtain the diagram

0 → CB(A)⊗B B ′
→ EndB(A)⊗B B ′

→ HomB(A⊗BA,A⊕A)⊗B B ′

↓ ν ‖ ‖

0 →CB′(A⊗BB ′)→EndB′(A⊗BB ′)→HomB′

(
(A⊗BB ′)⊗B′(A⊗BB ′),A⊗BB ′

⊕A⊗BB ′
)

where the horizontal rows are exact. Indeed the exactness of the top row is by flat-

ness of the B-module B ′ (every projective is flat). The two vertical isomorphisms
come from B ′ being a finitely generated B-module which is projective [Bourbaki
1974, Ch. II, § 5.3, Prop. 7]. It follows that ν is an isomorphism. �

The following important fact is proved in [Jacobson 1962, Ch. X, § 1, Theo-
rem 3]:

Lemma 2.4. Suppose that B is a field and A is finite dimensional and central
simple over B. If B ′/B is a field extension, then A ⊗B B ′ is finite dimensional and
central simple over B ′.

Next we consider gradings on CB(A) that are induced by gradings on A. For
this suppose that A is Q-graded algebra over B where Q is a finite abelian group.
Thus

A =

⊕
α∈Q

Aα

for some B-submodules Aα and AαAβ ⊂ Aα+β . Then, since Q is finite,

EndB(A)=

⊕
λ∈Q

EndB(A)λ

is also a Q-graded B-algebra, where

EndB(A)λ = {θ ∈ EndB(A) | θ(Aα)⊂ Aλ+α for all α ∈ Q}.

It is easy to check that CB(A) is a Q-graded B-subalgebra of EndB(A), and so we
have:

Lemma 2.5. Suppose that A is Q-graded algebra over B, where Q is a finite
abelian group. Then

CB(A)=

⊕
α∈Q

CB(A)λ

is a Q-graded algebra over B, where CB(A)λ = CB(A)∩EndB(A)λ for all λ∈ Q.
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Definition 2.6. If I and J are ideals of the B-algebra A we define

IJ =
{ ∑

xi yi : xi ∈ I, yi ∈ J
}

(finite sums of course). Note that in general IJ is not an ideal of A. We say that
A is perfect if AA = A.

Remark 2.7. It is clear that A is perfect as a B-algebra if and only if A is perfect
as a Z-algebra.

Lemma 2.8. Assume A is perfect. Then

(i) CB(A) is commutative.

(ii) CB(A)= CZ(A).

Proof. (i) See [Jacobson 1962, Ch. X, § 1, Lemma 1].
(ii) We must show that any element χ ∈ CZ(A) is B-linear. Indeed if x, y ∈ A

and b ∈ B we have χ(b ·(xy))=χ(x(b · y))=χ(x)(b · y)= b ·(χ(x)y)= b ·χ(xy).
�

We now introduce a convenient acronym, pfgc, that will be used throughout the
paper.

Definition 2.9. A B-algebra A is said to be pfgc if it satisfies the following condi-
tions

P0. A 6= (0)

P1. A is perfect

P2. A is finitely generated as a module over its centroid CB(A).

Remark 2.10. The notion of pfgc algebra A is independent of the base ring under
which A is viewed as an algebra. More precisely, if A is an algebra over B, it
follows from Remark 2.7 and Lemma 2.8(ii) that A is a pfgc algebra over B if and
only if A is a pfgc algebra over Z

We now summarize the basic facts that we will need about pfgc algebras.

Proposition 2.11. Suppose that A is a pfgc algebra over B. Then

(i) CB(A) is a nonzero unital commutative associative B-algebra.

(ii) A is finitely generated as a module over its multiplication algebra MultB(A).

Proof. (i) Since A is perfect and nonzero, this follows from Lemma 2.8(i).
(ii) Let C = CB(A). Let {x1, . . . , xn} ∈ A be such that A =

∑
Cxi . For each i

we can write xi =
∑

j yi j zi j (finite sum) for some yi j and zi j in A. Then

A =

∑
i

Cxi =

∑
i, j

C(yi j zi j )=

∑
i, j

(Cyi j )zi j ⊂

∑
i, j

MultB(A) · zi j ,

which shows that A is generated by the zi j ’s as an MultB(A)-module. �
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3. Prime pfgc algebras

In this section, we recall some basic facts about prime algebras and consider in
particular properties of prime pfgc algebras. A good basic reference on prime
nonassociative algebras and their centroids is [Erickson et al. 1975].

We suppose again in this section that B is a ring and that A is B-algebra.

Definition 3.1. The B-algebra A is said to be prime if for all ideals I and J of the
B-algebra A we have

IJ = 0 H⇒ I = 0 or J = 0.

On the other hand A is said to be semiprime if for all ideals I of A we have

II = 0 H⇒ I = 0.

The following lemma which is easily checked (see [Zhevlakov et al. 1982,
Exercise 1, § 8.2]) tells us that the notion of A being prime (or semiprime) is
independent of the base ring under which A is viewed as an algebra.

Lemma 3.2. A is prime (resp. semiprime) as a B-algebra if and only if A is prime
(resp. semiprime) as a Z-algebra.

The following is proved in [Erickson et al. 1975].

Lemma 3.3. Assume A is a prime algebra over B. Then

(i) CB(A) is an integral domain and A is a torsion free CB(A)-module.

(ii) If we denote the quotient field of CB(A) by C̃B(A), then A⊗CB(A) C̃B(A) is a
prime algebra over C̃B(A). Moreover, if A is finitely generated as a module
over its multiplication algebra MultB(A), then A ⊗CB(A) C̃B(A) is central
over C̃B(A).

Proof. (i) is Theorem 1.1(a) of [Erickson et al. 1975], whereas (ii) follows from
Theorem 1.3(a) and (b) of [Erickson et al. 1975]. �

In a later section of the paper we will investigate the type of an iterated loop
algebra. In that section, we will need the notion of central closure.

Definition 3.4. Let A be a prime pfgc algebra over B. Denote the quotient field of
CB(A) by C̃B(A), and form the C̃B(A)-algebra

Ã := A ⊗CB(A) C̃B(A).

We call Ã the central closure of A. (This is not apparently the same as the central
closure defined in [Erickson et al. 1975, § II]. Here we are following the termi-
nology in, for example, [McCrimmon and Zel’manov 1988, p. 154].) By Lemma
3.3(i), A is a torsion free CB(A)-module, and so the map a 7→ a ⊗1 is an injection
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of A into Ã which we regard as an identification. In this way A is regarded as a
subalgebra of its central closure Ã.

We now summarize the main facts that we will need about the central closure:

Proposition 3.5. Let A be a prime pfgc algebra over B. Then the central closure Ã

of A is a prime pfgc algebra over B. Moreover, Ã is finite dimensional and central
as an algebra over the field C̃B(A).

Proof. Ã is prime by Lemma 3.3(ii). Next, since A is embedded as a subalgebra
of Ã, we have Ã 6= 0. Also, since A is perfect, Ã is perfect. Furthermore, since
A is finitely generated as a CB(A)-module, Ã is finitely generated as a C̃B(A)-
module and therefore also as a CB(Ã)-module (since λ

Ã
(C̃B(A))⊂ CB(Ã)). Thus

Ã is pfgc.
We have just seen that Ã is finite dimensional over C̃B(A).
Finally, since A is pfgc, Proposition 2.11(ii) tells us that A is finitely generated

as a MultB(A)-module. Thus Ã is central over C̃B(A) by Lemma 3.3(ii). �

4. Loop algebras

Assumptions and notation: For the rest of the article, k will denote a fixed base
field. Unless indicated to the contrary, the term algebra will mean algebra over k.
For the sake of brevity, if A is an algebra (over k), we will often write

C(A) := Ck(A).

In this section we recall the definition of a loop algebra and derive some of its
basic properties.

Throughout the section let m be a positive integer and let

Zm = {ı̄ : i ∈ Z}

be the group of integers modulo m, where ı̄ = i + mZ ∈ Zm for i ∈ Z. Let

R = k[t±1
] and S = k[z±1

]

be the algebras of Laurent polynomials in the variables t and z respectively, and
we identify R as a subalgebra of S by identifying

t = zm .

Observe that S is a free R-module of rank m with basis { 1, z, . . . , zm−1
}, and

hence the ring extension S/R is faithfully flat.
Recall that a Zm-grading of the algebra A is an indexed family 6 = { Aı̄ }ı̄∈Zm

of subspaces of A so that A =
⊕

ı̄∈Zm
Aı̄ and Aı̄ Ā ⊂ Aı̄+̄ for ı̄, ̄ ∈ Zm . The

integer m is called the modulus of 6.
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Definition 4.1. Suppose that A is a k-algebra, and we are given a Zm-grading 6
of the algebra A:

A =

⊕
ı̄∈Zm

Aı̄ .

In A ⊗k S we define

L(A, 6) :=

⊕
i∈Z

Aı̄ ⊗k zi
= (A0̄ ⊗k R)⊕ (A1̄ ⊗k z R)⊕ · · · ⊕ (Am−1 ⊗k zm−1 R).

Then L(A, 6) is an R-subalgebra of A ⊗k S that we call the loop algebra of 6
based on A. Since L(A, 6) is an algebra over R, it is also an algebra over k.

Remark 4.2. If we wish to emphasize the role of the variable z in the construction
of the loop algebra we write L(A, 6) as L(A, 6, z).

Example 4.3. If m = 1, then Zm = { 0̄ }, A = A0̄ and L(A, 6)= A ⊗k S is called
the untwisted loop algebra based on A.

Remark 4.4. Suppose that k contains a primitive m -th root of unity ζm . In that
case we can choose to work with finite order automorphisms of period m rather
than Zm-gradings, provided that we fix the choice of ζm .

Indeed, suppose that A is an algebra. If σ is an algebra automorphism of period
m of A, we may define a Zm-grading 6 = { Aı̄ }ı̄∈Zm of A by setting

Aı̄ = { x ∈ A | σ(x)= ζ i
m x },

for ı̄ ∈ Zm . We refer to this grading 6 as the grading determined by σ . It is clear
that any Zm-grading is determined by a unique automorphism σ in this way. If 6
is the grading determined by σ , we denote the algebra L(A, 6) by L(A, σ ), or
L(A, σ, z) if we want to emphasize the role of z. The algebra L(A, σ ) can alter-
nately be defined as the subalgebra of fixed points in A ⊗k S of the automorphism
σ ⊗ η−1

m , where ηm ∈ Autk(S) is defined by ηm(z)= ζmz.

Remark 4.5. When k = C, A is a finite dimensional simple Lie algebra over k
and σ is a finite order automorphism of A, the loop algebra L(A, σ ) was used by
V. Kac in [Kac 1969] to give realizations of all affine Kac–Moody Lie algebras and
to classify finite order automorphisms of A. (See [Kac 1990, Ch. 8] and [Helgason
1978, Ch. X, § 5] for more information about this.)

For the rest of the section, let A a k-algebra, let 6 be a grading of A by Zm ,
and let

L = L(A, 6).

We next describe a useful canonical form for elements of A ⊗k S in terms of
elements of L(A, 6). For this purpose note that A ⊗k S is an S-module (with
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action denoted by “ · ”) and L(A, 6) is contained in A ⊗k S. Thus we may write
expressions like

∑m−1
i=0 zi

· xi ∈ A ⊗k S if x0, . . . , xm−1 ∈ L(A, 6).

Lemma 4.6. Each element of A ⊗k S can be written uniquely in the form

(4–1)
m−1∑
i=0

zi
· xi

where x0, . . . , xm−1 ∈ L.

Proof. This fact was proved using a Galois cocycle argument in [Allison et al. 2004,
Theorem 3.6 (b)] in the case when k contains a primitive m -th root of unity. We
give a direct proof here instead. Let x ∈A⊗k S. Then x is the sum of elements of the
form a⊗z j , where j ∈ Z and a ∈ A ¯̀ for some `∈ Z. But, if we write j −`=qm+i ,
where q ∈ Z and 0 ≤ i ≤ m −1, then a ⊗ z j

= zi
· (a ⊗ z j−i )= zi

· (a ⊗ zqm+`) and
a ⊗ zqm+`

∈ L. So x can be expressed in the form (4–1). For uniqueness, suppose
that

∑m−1
i=0 zi

· xi = 0, where x0, . . . , xm−1 ∈ L. Write xi =
∑

j∈Z ai j ⊗ z j , where
ai j ∈ Ā for all j and only finitely many ai j are nonzero. Then

m−1∑
i=0

∑
j∈Z

ai j ⊗ zi+ j
= 0.

For 0 ≤ `≤ m−1, the A ¯̀⊗k S-component of the expression on the left above must
be zero. Thus we have

m−1∑
i=0

∑
j≡`

ai j ⊗ zi+ j
= 0

for 0 ≤ ` ≤ m − 1, where ≡ denotes congruence modulo m. The exponents i + j
appearing in this sum are all distinct and so we have ai j = 0 for all i, j and hence
xi = 0 for all i . �

Next note that we have the canonical map ξ = ξA,6 : L(A, 6)⊗R S → A ⊗k S
defined by

ξ
(
x ⊗ zi)

= zi
· x

for x ∈ L(A, 6), i ∈ Z. As observed in [Allison et al. 2004, Theorem 3.6(b)],
Lemma 4.6 has the following interpretation:

Lemma 4.7. The map ξA,6 : L(A, 6)⊗R S → A⊗k S is an S-algebra isomorphism
of L(A, 6)⊗R S onto A ⊗k S.

Proof. Clearly ξ is a homomorphism of S-algebras. Moreover, each element of
L(A, 6)⊗R S can be expressed in the form

∑m−1
i=0 xi ⊗ zi , where xi ∈ L(A, 6)

for each i , and so ξ is bijective by Lemma 4.6. �
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Remark 4.8. Lemma 4.7 tells us that after base ring extension from R to S the
loop algebra L(A, 6) becomes isomorphic to the untwisted loop algebra A ⊗k S.
In other words, L(A, 6) is “untwisted” by the extension S/R. This fact is of great
importance in the study of loop algebras since, among other things, it allows one
to use the tools of Galois cohomology to study loop algebras [Allison et al. 2004;
Pianzola 2002].

Lemma 4.9.

(i) If A 6= 0, then L(A, 6) 6= 0.

(ii) If A is perfect, then L(A, 6) is perfect.

Proof. Statement (i) is clear and statement (ii) is easily checked (see the argument
in [Allison et al. 2004, Lemma 4.3]). �

We now examine the centroid of L = L(A, 6).
First note that since L is an R-algebra, CR(L) is naturally an R-algebra (see

Definition 2.1(iii)). So since CR(L) ⊂ C(L), it follows that C(L) is also an R-
algebra.

Next by Lemma 2.5 the centroid C(A) inherits a Zm-grading that we denote
by C(6). Under this grading we have

C(A)=

⊕
ı̄∈Zm

C(A)ı̄ ,

where

(4–2) C(A)ı̄ = {χ ∈ C(A) | χ(Ā )⊂ Aı̄+̄ for ̄ ∈ Zm }.

Now let
ψ := ψA,6 : L(C(A),C(6))→ CR

(
L(A, 6)

)
be the unique k-linear map so that(

ψ(χ ⊗ zi )
)
(a ⊗ z j )= χ(a)⊗ zi+ j

for i, j ∈ Z, χ ∈ C(A)ı̄ , a ∈ Ā . It is immediate from this definition that ψ is a
homomorphism of R-algebras that we call canonical.

Lemma 4.10. Assume A is finitely generated as a module over its multiplication
algebra Multk(A). Then the map ψA,6 : L

(
C(A),C(6)

)
→ CR

(
L(A, 6)

)
is an

R-algebra isomorphism.

Proof. Since the ring extension S/R is faithfully flat, to show thatψ is an R-module
isomorphism it suffices to show thatψ becomes an isomorphism of S-modules after
the base change from R to S. That this is so follows from the commutative diagram
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L
(
C(A),C(6)

)
⊗R S

ψ ⊗ 1- CR(L)⊗R S

CS
(
L ⊗R S

)νL
?

C(A)⊗k S

ξC

?

νA

- CS(A ⊗k S)

CS(ξ)
?

in view of the fact that all vertical maps and the bottom row therein are S-isomor-
phisms. In this diagram ξC = ξC(A),C(6) as in Lemma 4.7, νA = νA,k,S as in Lemma
2.3(a), νL = νL,R,S as in Lemma 2.3(b), and CS(ξ) is the isomorphism induced by
the isomorphism ξ = ξA,6 : L ⊗R S → A ⊗k S (see Lemmas 2.2 and 4.7). �

The following proposition tells us that the centroid of a loop algebra based on a
pfgc algebra A is isomorphic to the loop algebra of the centroid of A.

Proposition 4.11. Let L = L(A, 6) be a loop algebra based on a pfgc algebra A.
Then CR(L)= C(L), and the canonical map

ψ = ψA,6 : L(C(A),C(6))→ C(L)

is an R-algebra isomorphism.

Proof. Since L is perfect by Lemma 4.9(ii), it follows that CR(L) = C(L) by
Lemma 2.8(ii). Also since A is pfgc, it follows from Proposition 2.11(ii) that A

is finitely generated as a module over Multk(A). Thus, by Lemma 4.10, ψ is an
R-algebra isomorphism from L(C(A),C(6)) onto C(L). �

Finally we want to show that a loop algebra based on a pfgc algebra is pfgc. For
this we will use the following:

Lemma 4.12. If A is finitely generated as a C(A)-module then L(A, 6) is finitely
generated as a CR

(
L(A, 6)

)
-module.

Proof. Let {a1, . . . , ap} be a set of homogeneous elements of A that generates
A as a C(A)-module. Fix integers d1, . . . , dp so that a j ∈ Ad j

. Let M be the
CR(L)-submodule of L generated by the elements ak ⊗ zdk . Since S/R is flat we
may identify M ⊗R S as an S-submodule of L ⊗R S, and since S/R is faithfully
flat it is sufficient to show that M ⊗R S = L ⊗R S [Bourbaki 1972, Ch. I, § 3.1,
Proposition 2]. We do this by showing that ξ(M ⊗R S) = ξ(L ⊗R S), where ξ =

ξA,6 : L ⊗R S −→ A ⊗k S is the S-algebra isomorphism from Lemma 4.7.
Suppose that i, j ∈ Z, χ ∈ C(A)ı̄ and 1 ≤ `≤ p. Then ψ(χ ⊗ zi ) is an element

of CR(L), where ψ = ψA,6 . So
(
ψ(χ ⊗ zi )

)
(a`⊗ zd`) ∈ M. But under ξ we have((

ψ(χ ⊗ zi )
)
(a` ⊗ zd`)

)
⊗ z j

7→ χ(a`)⊗ zd`+i+ j .
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Since {a1, . . . , ap} generates A as a C(A)-module, it follows ξ(M⊗R S)= ξ(L⊗R

S) as needed. �

Proposition 4.13. Let L = L(A, 6) be a loop algebra based on a pfgc algebra A.
Then L is a pfgc algebra.

Proof. L 6= (0) and L is perfect by Lemma 4.9. So P0 and P1 hold (see Definition
2.9). By Lemma 4.12, L is finitely generated as a CR(L)-module. But by Proposi-
tion 4.11, we have CR(L)= C(L). Thus L is finitely generated as a C(L)-module
and so P2 holds. Hence L is pfgc. �

5. Iterated loop algebras

In this section we define iterated loop algebras and prove some of their basic prop-
erties.

Notation: For the rest of this article, we fix some notation. Let n be a positive
integer. Let z1, . . . , zn be a sequence of algebraically independent variables over k.
For 0 ≤ p ≤ n, let

S⊗p
:= k[z±1

1 , . . . , z±1
p ]

be the algebra of Laurent polynomials in the variables z1, . . . , z p over k. (So
S⊗0

=k.) We identify S⊗p
⊗S⊗q

= S⊗(p+q) in the natural fashion when 0≤ p, q ≤n
and p +q ≤ n. We also fix a sequence m1, . . . ,mn of positive integers, and we set

Ip := { (i1, . . . , i p) ∈ Zp
| 0 ≤ i j ≤ m j − 1 for all j },

for 1 ≤ p ≤ n.

Definition 5.1. Suppose that A is an algebra over k. An algebra L over k is called
an n-step loop algebra or an iterated loop algebra based on A if there exists a
sequence L0,L1, . . . ,Ln of algebras so that L0 = A, Ln = L and

Lp = L(Lp−1, 6p, z p),

for 1 ≤ p ≤ n, where 6p is a Zm p -grading of Lp−1. (See Remark 4.2 for the
notation used here.) In that case we write

L = L(A, 61, . . . , 6n)

(suppressing in the notation the role of the variables z1, . . . , zn).

Remark 5.2. Suppose that L is an n-step loop algebra based on A and we have
the notation from Definition 5.1.

(i) For 1 ≤ p ≤ n, Lp = L(A, 61, . . . , 6p) is a p-step loop algebra based on A.
(ii) Observe that Lp ⊂ Lp−1 ⊗k k[z±1

p ] for 1 ≤ p ≤ n. Thus

Lp ⊂ (. . . ((A ⊗k k[z±1
1 ])⊗k k[z±1

2 ]) . . . )⊗k k[z±1
p ] = A ⊗ k[z±1

1 , . . . , z±1
p ],
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for 0 ≤ p ≤ n, where the last equality is the natural identification using the asso-
ciativity of the tensor product and the identification k[z±1

1 ]⊗k . . .⊗k k[z±1
p ] = S⊗p.

Consequently, Lp is a subalgebra of A ⊗k S⊗p for 0 ≤ p ≤ n, and in particular L

is a subalgebra of A ⊗k S⊗n .
(iii) Suppose that k contains a primitive mi -th root of unity ζmi (which we fix)

for i = 1, . . . , n. Then for p = 1, . . . , n, the grading 6p of Lp−1 is determined
by a unique automorphism σp of Lp−1 of period m p. We then denote the algebra
L(A, 61, . . . , 6n) by L(A, σ1, . . . , σn).

Example 5.3. If m1 = · · · = mn = 1 then L(A, 61, . . . , 6n)= A ⊗k S⊗n is called
the untwisted n-step loop algebra based on A.

Example 5.4 (Multiloop algebras). Suppose that k contains a primitive mi -th root
of unity ζmi for 1 ≤ i ≤ n. Let A be an algebra, and let σ1, . . . , σn be commuting
finite order automorphisms of A with periods m1, . . . ,mn respectively. Let

Aı̄1,...,ı̄n = { x ∈ A | σ j x = ζ
i j
m j x for 1 ≤ j ≤ n }

for (i1, . . . , in) ∈ Zn , where ı̄ j := i j + m j Z ∈ Zm j for 1 ≤ j ≤ n. Then

A =

⊕
(i1,...,in)∈In

Aı̄1,...,ı̄n ,

and we set

M(A, σ1, . . . , σn) :=

⊕
(i1,...,in)∈Zn

Aı̄1,...,ı̄n ⊗k zi1
1 . . . z

in
n

in A⊗k S⊗n . Then M(A, σ1, . . . , σn) is a subalgebra of A⊗k S⊗n that we call the
n-step multiloop algebra of σ1, . . . , σn based on A.

Now the multiloop algebra L = M(A, σ1, . . . , σn) can be interpreted as an it-
erated loop algebra. To see this, let L0 = A and let Lp = M(A, σ1, . . . , σp) for
1 ≤ p ≤ n. Then by definition we have L0 = A and Ln = L. Also, for 1 ≤ p ≤ n,
we may define a Zm p -grading 6p on Lp−1 by setting

(Lp−1)ı̄ p =

⊕
(i1,...,i p−1)∈Zp−1

Aı̄1,...,ı̄ p ⊗k zi1
1 . . . z

i p−1
p−1

for ı̄ p ∈ Zm p , in which case it is then clear that L(Lp−1, 6p, z p) = Lp. So L =

L(A, 61, . . . , 6n).

We have just seen in Example 5.4 that any multiloop algebra is an iterated loop
algebra. However we will see later in Example 9.7 that there are iterated loop
algebras A that are not multiloop algebras.

For the rest of the section we assume that

L = L(A, 61, . . . , 6n)
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is an n-step loop algebra based on an algebra A over k, and we use the notation
L0, . . . ,Ln of Definition 5.1.

Our first theorem describes some important basic algebraic properties that are
inherited by a loop algebra from its base. In the last part of this theorem we will
see how the Krull dimension of a loop algebra depends on the Krull dimension of
its base. Here and subsequently we use

Dim C

to denote the Krull dimension of a unital commutative associative k-algebra C

(when regarded as a ring). Note that if C is finitely generated as a k-algebra then
Dim C is finite [Kunz 1985, p. 52].

Theorem 5.5. Let L = L(A, 61, . . . , 6n).

(i) If A 6= 0 then L 6= 0.

(ii) If A is perfect then L is perfect.

(iii) If A is pfgc then L is pfgc.

(iv) If A is prime then L is prime.

(v) If A is unital then L is a unital subalgebra of A ⊗ S⊗n .

(vi) If A is commutative then L is commutative.

(vii) If A is associative then L is associative.

(viii) If A is an integral domain then L is an integral domain.

(ix) If A is unital and finitely generated as a k-algebra then L is unital and finitely
generated as a k-algebra.

(x) If A is unital, commutative, associative and finitely generated as a k-algebra,
then L has the same properties and

(5–1) Dim L = Dim A + n.

Proof. Since Lp+1 is a loop algebra based on Lp for 0 ≤ p ≤ n−1, we can assume
in the proof of each of these statements that n = 1. So we may use the notation of
Section 4:

m = m1, z = z1, 6 =61, L = L(A, 6, z), S = S⊗1
= k[z±1

] and R = k[z±m
].

Now (i) and (ii) follow from Lemma 4.9. (iii) follows from Proposition 4.13.
(v) follows from that fact that 1A ∈ A0̄, since then 1A ⊗1S ∈ L. (vi), (vii) and (viii)
follow from the fact that L is a subalgebra of A⊗k S 'k A[z±1

]. So we only need
to prove (iv), (ix) and (x).
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(iv) We show first that A ⊗k S is prime. For this let I and J be ideals of the
k-algebra A ⊗k S such that IJ = 0. For m ∈ Z, let

Im = { a ∈ A | ∃ ai ∈ A for i ≥ m with am = a and
∑

i≥mai ⊗ zi
∈ I },

in which case Im is an ideal of A. Similarly, using J instead of I, we define
an ideal Jn of A for n ∈ Z. Furthermore, since IJ = 0, we have ImJn = 0 for
m, n ∈ Z. Now suppose that I 6= 0. Then Im 6= 0 for some m ∈ Z. Thus, since A

is prime, we have Jn = 0 for all n ∈ Z and so J = 0. Therefore A ⊗k S is prime.
But L ⊗R S 'S A ⊗k S by Lemma 4.7. Hence L ⊗R S is a prime algebra. To

prove that L is prime (as a k-algebra), it is enough to show that L is a prime R-
algebra (by Lemma 3.2). For this let I and J be ideals of the R-algebra L such
that IJ = 0. Since S/R is flat, we can identify I⊗R S and J⊗R S as ideals of the
S-algebra L ⊗R S. Furthermore, we have (I ⊗R S)(J ⊗R S) = 0. Since L ⊗R S
is prime, either I ⊗R S or J ⊗R S is 0. Therefore I = 0 or J = 0 by the faithful
flatness of S/R.

(ix) L is unital by (v). Let {a1, . . . , ap} be a set of homogeneous elements of A

that generates A as a k-algebra, and fix integers d1, . . . , dp so that a j ∈ Ad̄ j
. One

easily checks that the elements a1 ⊗ zd1, . . . , ap ⊗ zdp together with the elements
1A ⊗zm and 1A ⊗z−m generate L as a k-algebra.

(x) L is unital, commutative, associative and finitely generated as a k-algebra
by (v), (vi), (vii) and (ix), and so the Krull dimensions of both A and L are finite.
Now recall that L is a subalgebra of A ⊗k S and, by Lemma 4.6, each element of
A ⊗k S can be written uniquely in the form

m−1∑
i=0

zi
· xi =

m−1∑
i=0

xi (1A ⊗zi )

where x0, . . . , xm−1 ∈ L. Thus A ⊗k S is a free L-module of rank m, and so in
particular A⊗k S is a finitely generated L-module. Hence A⊗k S/L is an integral
ring extension and so by [Kunz 1985, Corollary II.2.13],

Dim L = Dim
(
A ⊗k S

)
.

On the other hand since both A and S are finitely generated k-algebras

Dim
(
A ⊗k S

)
= Dim A + Dim S

[Kunz 1985, Corollary II.3.9]. Since Dim S = 1, we obtain Dim L = Dim A+1. �

Remark 5.6. It follows in particular from Theorem 5.5 that any n-step loop algebra
based on a prime pfgc algebra is a prime pfgc algebra. The corresponding statement
is not true for simple pfgc algebras. For example, an untwisted pfgc algebra A ⊗k

S⊗n is never simple (since S⊗n is not simple). This is the reason why prime pfgc
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algebras are natural algebras to consider when studying loop algebras, even if one’s
main interest is in the case when the base algebras are simple.

We conclude this section with a generalization to iterated loop algebras of the
canonical form described in Lemma 4.6. If 1 ≤ p ≤ n, we use the usual convenient
notation

zi
= zi1

1 . . . z
i p
p

for i = (i1, . . . , i p) ∈ Zp. Note that A ⊗k S⊗p is an S⊗p-module (with action
denoted by “·”), and Lp is contained in A⊗k S⊗p. Thus, we can write expressions
like

∑
i∈Ip

zi
· xi ∈ A ⊗k S⊗p, where xi ∈ Lp for all i ∈ Ip.

Lemma 5.7. If 1 ≤ p ≤ n, each element in A ⊗k S⊗p can be expressed uniquely in
the form

(5–2)
∑
i∈Ip

zi
· xi,

where xi ∈ Lp for all i.

Proof. We argue by induction on p. When p = 1, the statement follows from
Lemma 4.6. So we suppose that the statement is true for p, where 1 ≤ p ≤ n − 1.

Let x ∈ A ⊗ S⊗(p+1). To show that x can be expressed in the form (5–2), note
first that x is a sum of elements of the form x ′

⊗ z j
p+1, where x ′

∈ A ⊗k S⊗p and
j ∈ Z. But by the induction hypothesis, x ′ is the sum of elements of the form zi

·x ′′,
where i ∈ Ip and x ′′

∈ Lp. Thus x is the sum of elements of the form

(zi
· x ′′)⊗ z j

p+1 = zi
· (x ′′

⊗ z j
p+1).

But x ′′
⊗ z j

p+1 ∈ Lp ⊗k k[z±1
p+1], and so, by Lemma 4.6, x ′′

⊗ z j
p+1 is the sum of

elements of the form z`p+1 · x ′′′, where 0 ≤ ` ≤ m p+1 − 1 and x ′′′
∈ Lp+1. Thus x

is the sum of elements of the form

zi
· (z`p+1 · x ′′′)= (ziz`p+1) · x ′′′

as desired.
For uniqueness, suppose that

∑
j∈Ip+1

zj
· xj = 0, where xj ∈ Lp+1 for each

j ∈ Ip+1. Then

∑
i∈Ip

m p+1−1∑
`=0

(ziz`p+1) · xi,` = 0,
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where, if i = (i1, . . . , i p) ∈ Ip and 0 ≤ ` ≤ m p+1 − 1, we are using the notation
xi,` := x(i1,...,i p,`) ∈ Lp+1. So we have

∑
i∈Ip

zi
·

( m p+1−1∑
`=0

z`p+1 · xi,`

)
= 0.

But for i ∈ Ip, the element
∑m p+1−1

`=0 z`p+1 · xi,` is in Lp ⊗k k[z±1
p+1] and therefore

we can write
m p+1−1∑
`=0

z`p+1 · xi,` =

∑
j∈Z

yi, j ⊗ z j
p+1,

where each yi, j is in Lp and only finitely many of these elements are nonzero.
Then

∑
i∈Ip

zi
·
( ∑

j∈Z yi, j ⊗ z j
p+1

)
= 0, and so

∑
j∈Z

( ∑
i∈Ip

zi
· yi, j

)
⊗ z j

p+1 = 0.

Hence
∑

i∈Ip
zi

· yi, j = 0 for each j and so by the induction hypothesis yi, j = 0

for all i ∈ Ip and j ∈ Z. So
∑m p+1−1

`=0 z`p+1 · xi,` = 0 for all i ∈ Ip, and hence, by
Lemma 4.6, xi,` = 0 for all i ∈ Ip and 0 ≤ `≤ m p+1 − 1. �

If A is unital and associative, then L = L(A, 61, . . . , 6n) is a unital associative
subalgebra of A⊗k S⊗n and hence A⊗k S⊗n is an L-module (with action denoted
by “·”).

Corollary 5.8. Suppose that L = L(A, 61, . . . , 6n) where A is unital and asso-
ciative. Then A ⊗k S⊗n is a free L-module of rank m1 . . .mn with basis

{ 1A ⊗zi
}i∈In .

Proof. This follows from Lemma 5.7 (with p = n) and the observation that

zi
· x = x · (1A ⊗zi)

for x ∈ L and i ∈ Zn . (On the left of this equation · denotes the action of S⊗n on
A ⊗k S⊗n , whereas on the right · denotes the action of L on A ⊗k S⊗n .) �

6. The centroid of an iterated loop algebra

In this section, we give an explicit description of the centroid of an n-step loop
algebra based on a pfgc algebra A as an n-step loop algebra based on C(A).

Throughout the section we assume that L = L(A, 61, . . . , 6n) is an n-step
loop algebra based on a algebra A over k. So we have algebras L0, . . . ,Ln so
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that L0 = A, Ln = L and

Lp+1 = L(Lp, 6p+1, z p+1)

for 0 ≤ p ≤ n −1. As we observed in Remark 5.2, Lp is a subalgebra of A⊗k S⊗p

for 0 ≤ p ≤ n.
We next introduce some notation.
First let 0 ≤ p ≤ n. Then C(A) ⊗k S⊗p is a unital associative algebra and

A ⊗k S⊗p is a C(A)⊗k S⊗p-module under the action “·” defined by

(χ ⊗ zi) · (a ⊗ zj)= χ(a)⊗ zi+j.

We let C̄(Lp) denote the stabilizer of Lp in C(A)⊗k S⊗p under this action. That
is we let

C̄(Lp) := { u ∈ C(A)⊗k S⊗p
| u · Lp ⊂ Lp }.

Then C̄(Lp) is a unital subalgebra of C(A)⊗k S⊗p and Lp is a C̄(Lp)-module.
(For convenience, our notation suppresses the fact that C̄(Lp) depends on A,
61, . . . , 6p and not just on the loop algebra Lp.)

Next suppose that 0 ≤ p ≤ n − 1. Then 6p+1 is a Zm p+1-grading of the algebra
Lp which we write as

Lp =

⊕
ı̄∈Zm p+1

(Lp)ı̄ .

We set

(6–1) C̄(Lp)ı̄ := { u ∈ C̄(Lp) | u · (Lp)̄ ⊂ (Lp)ı̄+̄ for all ̄ ∈ Zm p+1 }

for ı̄ ∈ Zm p+1 . We denote the collection {C̄(Lp)ı̄ }ı̄∈Zm p+1
by C̄(6p+1). We will see

in Lemma 6.1(ii) below that C̄(6p+1) is a Zm p+1-grading of C̄(Lp).
Finally for 0 ≤ p ≤ n we define γp : C̄(Lp)→ C(Lp) by

γp(u)(x)= u · x

for u ∈ C̄(Lp), x ∈ Lp, in which case γp is an algebra homomorphism. Note in
particular that C̄(L0)= C(A) and γ0 is the identity map.

Lemma 6.1. Suppose that L = L(A, 61, . . . , 6n), where A is a pfgc algebra.

(i) If 0 ≤ p ≤ n then γp : C̄(Lp)→ C(Lp) is an isomorphism of k-algebras.

(ii) If 0 ≤ p ≤ n − 1 then C̄(6p+1) is a Zm p+1-grading of the algebra C̄(Lp) and
the map γp is an isomorphism of graded algebras.

(iii) If 0 ≤ p ≤ n − 1 then

(6–2) C̄(Lp+1)= L(C̄(Lp), C̄(6p+1), z p+1).
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Proof. (i) We first show that γp is injective for 0 ≤ p ≤ n. To see this, suppose
that u ∈ ker(γp). Then u · x = 0 for all x ∈ Lp, and so (since Lp spans A ⊗k S⊗p

over S⊗p by Lemma 5.7) we have u · x = 0 for all x ∈ A⊗k S⊗p. This implies that
u = 0.

Next we prove the bijectively of γp for 0 ≤ p ≤ n by induction on p. This is
clear if p = 0 since γ0 is the identity map. So we suppose that 0 ≤ p ≤ n − 1
and that γp is bijective. It is clear from this bijectivity and from the definitions of
C̄(Lp+1) and C(Lp+1) (see (6–1) and (4–2)) that

γp(C̄(Lp+1)ı̄ )= C(Lp+1)ı̄

for ı̄ ∈ Zm p+1 . Hence C̄(6p+1) is a grading of the algebra C̄(Lp) and γp : C̄(Lp)→

C(Lp) is a graded isomorphism. So γp induces an algebra isomorphism

L(γp) : L(C̄(Lp), C̄(6p+1), z p+1)→ L(C(Lp),C(6p+1), z p+1).

Consequently we have the composite algebra isomorphism
(6–3)

L(C̄(Lp), C̄(6p+1), z p+1)
L(γp)
−→ L(C(Lp),C(6p+1), z p+1)

ψLp ,6p+1
−→ C(Lp+1),

where ψLp,6p+1 is the isomorphism of Proposition 4.11. (Note that the proposition
can be applied since Lp is a pfgc algebra by, Theorem 5.5(iii).) But

L(C̄(Lp), C̄(6p+1), z p+1)⊂ C̄(Lp+1)

and one easily checks that the restriction

(6–4) γp+1|L(C̄(Lp),C̄(6p+1),z p+1)
: L(C̄(Lp), C̄(6p+1), z p+1)→ C(Lp+1)

equals the composite map (6–3). Hence the restriction (6–4) of γp+1 is bijective.
Thus, since γp+1 itself is injective, it follows that

L(C̄(Lp), C̄(6p+1), z p+1)= C̄(Lp+1)

and γp+1 is bijective. So we have proved (i).
(ii) and (iii): These were proved in the argument for (i). �

Since L = Ln , we write C̄(L)= C̄(Ln) and so

C̄(L) := { u ∈ C(A)⊗k S⊗n
| u · L ⊂ L }.

Then C̄(L) is a unital subalgebra of C(A)⊗k S⊗n , and A⊗k S⊗n is a C̄(L)-module.
We also write γL = γn . Thus γL : C̄(L)→ C(L) is the k-algebra homomorphism
(said to be canonical) defined by

γL(u)(x)= u · x

for u ∈ C̄(L), x ∈ L.
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Using Lemma 6.1 we can now give an explicit description of the centroid of an
n-step loop algebra as an n-step loop algebra.

Theorem 6.2. Suppose that L= L(A, 61, . . . , 6n) is an n-step loop algebra based
on a pfgc algebra A. Then the canonical map γL : C̄(L) → C(L) is an algebra
isomorphism and we have

(6–5) C̄(L)= L(C(A), C̄(61), . . . , C̄(6n)).

Proof. γL is an isomorphism by Lemma 6.1(i). Moreover (6–5) follows by repeated
application of (6–2). �

Corollary 6.3. Suppose that L is an n-step loop algebra based on a pfgc algebra
A. Then

(i) C(A) and C(L) are nonzero unital commutative associative algebras over k.

(ii) If C(A) is an integral domain, then C(L) is an integral domain.

(iii) If C(A) is finitely generated as an algebra over k, then C(L) is finitely gen-
erated as an algebra over k and Dim C(L)= Dim C(A)+ n.

Proof. (i) Since A is pfgc, we know that L is pfgc by Theorem 5.5(iii). Hence
C(A) and C(L) are nonzero unital commutative associative algebras by Proposi-
tion 2.11(i).

(ii) and (iii): We know by Theorem 6.2 that C(L) is isomorphic to an n-step
loop algebra based on C(A). Thus (ii) and (iii) follow from Theorem 5.5 (viii) and
(x) respectively. �

If A is a finite dimensional central simple algebra over k, then C(A)= k and A

is a pfgc algebra. Hence we have the following consequence of Corollary 6.3:

Corollary 6.4. Suppose that L is an n-step loop algebra based on a finite dimen-
sional central simple algebra A over k. Then C(L) is an integral domain, C(L)
is finitely generated as an algebra over k, and Dim C(L)= n. Consequently, if L′

is an n′-step loop algebra based on a finite dimensional central simple algebra A′

over k, then

L 'k L′
H⇒ n = n′.

Remark 6.5. Suppose that L is an n-step loop algebra based on a finite dimensional
central simple algebra A over k. Then C(A)⊗k S⊗n

= k ⊗k S⊗n
= S⊗n and so

C(L)
γL
'k C̄(L)= { u ∈ S⊗n

: u · L ⊂ L }.

This fact can be used to explicitly compute C(L) in examples.
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Corollary 6.6. Suppose that L = M(A, σ1, . . . , σn) is a multiloop algebra based
on a finite dimensional central simple algebra A over k, where σ1, . . . , σn are
commuting finite order automorphisms of A with periods m1, . . . ,mn respectively.
Then

(6–6) C̄(L)= k[(zm1
1 )±1, . . . , (zmn

n )±1
],

and so C(L) is isomorphic to the algebra of Laurent polynomials in n-variables
over k.

Proof. Recall (using the notation of Example 5.4) that

L =

⊕
(i1,...,in)∈Zn

Aı̄1,...,ı̄n ⊗k zi1
1 . . . z

in
n ,

and so the inclusion “⊃” in (6–6) is clear. For the inclusion “⊂”, let u ∈ C̄(L).
Now S⊗n is naturally Zn-graded and it is clear that C̄(L) is a graded subalgebra.
Hence we can assume that u = z j1

1 . . . z
jn
n , where ( j1, . . . , jn) ∈ Zn . But then

Aı̄1,...,ı̄n ⊂ Aı̄1+̄1,...,ı̄n+̄n for all (i1, . . . , in) ∈ Zn and so (̄1, . . . , ̄n)= (0̄, . . . , 0̄).
�

7. Untwisting iterated loop algebras

In this section we show that any n-step loop algebra based on a pfgc algebra can
be untwisted by an extension of the centroid of L that is free of finite rank.

Suppose again throughout the section that L = L(A, 61, . . . , 6n) is an n-step
loop algebra based on an algebra A over k. We use the notation of the previous
section.

It will be convenient to work with C̄(L) rather than C(L) (although one could
use γL to identify these algebras using Theorem 6.2 and avoid this distinction).
Note that C̄(L) is a subalgebra of C(A)⊗k S⊗n , and so C(A)⊗k S⊗n/C̄(L) is a
ring extension. This is the extension that we use to untwist L.

We define
ωL : L ⊗C̄(L) (C(A)⊗k S⊗n)→ A ⊗k S⊗n

by
ωL(x ⊗ u)= u · x

for x ∈ L and u ∈ C(A) ⊗k S⊗n . One easily checks that ωL is a well-defined
C(A)⊗k S⊗n-algebra homomorphism which we call canonical.

Our untwisting theorem is the following:

Theorem 7.1. Suppose that L= L(A, 61, . . . , 6n) is an n-step loop algebra based
on a pfgc algebra A, where 6p has modulus m p for 1 ≤ p ≤ n. Then
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(i) C(A)⊗k S⊗n is a free C̄(L)-module of rank m1 . . .mn with basis

{ 1C(A) ⊗zi
| i ∈ In }.

(ii) The canonical map ωL is an isomorphism and so

(7–1) L ⊗C̄(L) (C(A)⊗k S⊗n)'C(A)⊗k S⊗n A ⊗k S⊗n.

Proof. (i) Since C̄(L) is an n-step loop algebra based on C(A) by Theorem 6.2,
statement (i) follows from Corollary 5.8.

(ii) First L spans A ⊗k S⊗n over S⊗n by Lemma 5.7, and so L spans A ⊗k S⊗n

over C(A)⊗ S⊗n . Thus ωL is surjective.
To show that ωL is injective, let x ∈ ker(ωL). Then, in particular, x is an element

of L ⊗C̄(L) (C(A)⊗k S⊗n). Now since C̄(L) is an n-step loop algebra based on
C(A), it follows from Lemma 5.7 that every element of C(A) ⊗k S⊗n can be
written as a sum of elements of the form zi

· u, where i ∈ In and u ∈ C̄(L). But
zi

· u = u · (1C(A) ⊗zi). Thus from the balanced property in the tensor product
L ⊗C̄(L) (C(A)⊗k S⊗n), it follows that x can be written in the form

x =

∑
i∈In

xi ⊗ (1C(A) ⊗zi),

where xi ∈ L for all i. Applying ωL to this expression yields
∑

i∈In
zi

· xi = 0, and
so xi = 0 for all i ∈ In by Lemma 5.7. Thus x = 0 and ωL is injective. �

Remark 7.2. Suppose that L is an n-step loop algebra based on a pfgc algebra A.
(i) We can use the canonical isomorphism γL : C̄(L)→ C(L) of Theorem 6.2

to identify the algebras C̄(L) and C(L). This identification is compatible with
the actions of these algebras on L and it gives C(A) ⊗k S⊗n the structure of a
C(L)-module. Then (7–1) can be restated as

(7–1′) L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗k S⊗n.

Since A ⊗k S⊗n is the untwisted n-step loop algebra based on A, Theorem 7.1
tells us that L is untwisted by a free base ring extension of rank m1 . . .mn of the
centroid of L.

(ii) Also observe that the algebras A ⊗k S⊗n and A ⊗C(A)
(
C(A)⊗k S⊗n

)
are

canonically isomorphic as C(A)⊗k S⊗n-algebras. Thus the isomorphism (7–1′)
can be further restated as

(7–1′′) L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗C(A)
(
C(A)⊗k S⊗n).

Theorem 7.1 can be used to compare properties of an iterated loop algebra as
a module or algebra over its centroid with corresponding properties of the base
algebra over its centroid. We now indicate an example of this sort of argument.
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Corollary 7.3. Let L be an n-step loop algebra based on a pfgc algebra A. If A is
a projective C(A)-module then L is a finitely generated projective C(L)-module

Proof. As in Remark 7.2, we identify C̄(L) and C(L) using γL. By axiom P2
of pfgc algebras and the present assumption, A is a finitely generated projective
C(A)-module. Hence A ⊗C(A)

(
C(A)⊗k S⊗n

)
is a finitely generated projective

C(A)⊗k S⊗n-module. Thus by (7–1′′), L ⊗C(L)
(
C(A)⊗k S⊗n

)
is a finitely gen-

erated projective C(A)⊗k S⊗n-module. But the extension C(A)⊗k S⊗n/C(L) is
free of finite rank by Theorem 7.1(i), and so it is faithfully flat. The result now
follows from [Bourbaki 1972, Ch. I, § 3.6, Prop. 12] �

In the same spirit, we now describe an application of Theorem 7.1 for asso-
ciative algebras. For this purpose we first recall some definitions and basic facts
about Azumaya algebras. A unital associative algebra D over a ring B is called
an Azumaya algebra over B if D is central and separable over B (see for example
[Knus and Ojanguren 1974, §5]). If D is an Azumaya algebra over B, then D is a
finitely generated projective B-module [Knus and Ojanguren 1974, Théorème 5.1],
and so Dm is a free Bm-module of finite rank rm for each maximal ideal m of B.
D is said to have constant rank r over B if rm = r for all such m [Bourbaki 1972,
§II.5.3]. It is known that if D is a unital associative algebra over a ring B and ` is
a positive integer then

(7–2)

D is an Azumaya algebra of constant rank `2 over B if and only if
there exists a faithfully flat extension B ′/B of rings so that D ⊗B

B ′ is isomorphic as a B ′-algebra to the algebra M`(B ′) of `× `-
matrices over B ′.

In that case we will say that D is split by the extension B ′/B. Indeed the implication
“⇒” of (7–2) is Corollary 6.7 of [Knus and Ojanguren 1974]. For the converse,
the algebra M`(B ′) is an Azumaya algebra of constant rank `2 over B ′, and hence
D is an Azumaya algebra of constant rank `2 over B since the extension B ′/B is
faithfully flat (see Lemma 5.1.9(1) in [Knus 1991] and Exercise 8 in [Bourbaki
1972, § II.5]).

Corollary 7.4. Suppose that L is an n-step loop algebra based on the matrix
algebra M`(k) over k. Then L is a prime Azumaya algebra of finite rank `2 over
its centroid C(L) which is split by the extension S⊗n/C(L).

Proof. Let A = M`(k). Then A is a prime unital associative algebra over k and
hence so is L (by Theorem 5.5). Also C(A)= k and so C(A)⊗k S⊗n

= S⊗n as in
Remark 6.5. Thus by (7–1′) we have

L ⊗C(L) S⊗n
'S⊗n M`(k)⊗k S⊗n

'S⊗n M`(S⊗n).
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Our conclusion now follows from (7–2), since the extension S⊗n/C(L) is faithfully
flat. �

8. Permanence of type

There is a classical notion of type for simple pfgc Lie algebras in characteristic zero
(see Example 8.1 below). This notion can easily be extended using the central clo-
sure to include prime pfgc Lie algebras in characteristic 0. It will be a consequence
of the results in this section that type is preserved under the loop construction (that
is type is permanent).

An analogous notion of type can be defined for many other important classes
of prime pfgc algebras besides Lie algebras in characteristic 0. Moreover, since
algebras in these classes arise naturally as coordinate algebras in the study of Lie
algebras, and in particular in the study of extended affine Lie algebras, it is desirable
to include these classes in our discussion of type. This generality requires almost
no extra effort once the appropriate definitions are made. That being said, the
reader can safely choose to assume throughout this section that the base algebras,
and hence their loop algebras, are Lie algebras in characteristic 0.

We begin by recalling the classical notion of type for simple pfgc Lie algebras
in characteristic 0.

Example 8.1. Suppose that k has characteristic 0. Let A be a simple pfgc Lie
algebra over k (or equivalently let A be a simple Lie algebra over k that is finitely
generated as a module over its centroid). Then, since A is simple, it is easily
checked that C(A) is a field. Hence, if we let K be an algebraic closure of C(A),
the algebra A⊗C(A)K is a finite dimensional simple Lie algebra over K by Lemma
2.4. The type of A is defined in [Jacobson 1962, Ch. X, § 3] to coincide with
the type of the root system of the K -algebra A ⊗C(A) K relative to any Cartan
subalgebra.

In order to extend this notion to other classes of algebras, we need to introduce
some terminology.

Definition 8.2. Recall that a variety over k is a class Vk of algebras over k that
is defined by a set of identities in the free nonassociative algebra kna[x1, x2, . . . ]

in countably many symbols [Zhevlakov et al. 1982, § 1.2]. A variety Vk over k is
said to be homogeneous if the ideal in kna[x1, x2, . . . ] consisting of all identities
satisfied by all algebras in Vk is homogeneous. Algebras in a variety Vk over k
will be simply called Vk-algebras.

A very familiar example is the variety Vk of Lie algebras over k which is de-
fined by the identities x1x1 and (x1x2)x3 + (x2x3)x1 + (x3x1)x2. In that case Vk is
homogeneous [Zhevlakov et al. 1982, § 1.4], and a Vk-algebra is just a Lie algebra
over k.
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Remark 8.3. Suppose that Vk is a variety over k. Suppose that B is a unital
associative commutative k-algebra. A Vk-algebra over B will mean a B-algebra
A with the property that A, when regarded as an algebra over k, is in Vk . In other
words, a Vk-algebra over B is a B-algebra that satisfies the identities (which are
identities with coefficients from our fixed base field k) that define Vk .

The homogeneity assumption is important for our purposes since homogeneous
varieties are closed under base ring extension.

Lemma 8.4. Suppose that Vk is a homogeneous variety over k and B → B ′ is a
homomorphism of unital commutative associative k-algebras. If A is a Vk-algebra
over B then A ⊗B B ′ is a Vk-algebra over B ′.

Proof. This follows the proof of Theorem 6 in [Zhevlakov et al. 1982, § 1.4]. �

Corollary 8.5. Suppose that Vk is a homogeneous variety over k. If L is an n-step
loop algebra based on a Vk-algebra A, then L is a Vk-algebra.

Proof. By Lemma 8.4, A⊗k S⊗n is a Vk-algebra. Hence so is its subalgebra L. �

We will be interested in homogeneous varieties Vk that satisfy the following
axiom:

(S) If K/k is a field extension and A is a finite dimensional semiprime Vk-algebra
over K then A is a direct sum of simple algebras over K .

Example 8.6. In each of the following cases, the variety Vk is homogeneous and
satisfies axiom (S):

(a) char(k)= 0, Vk is the variety of Lie algebras.

(b) Vk is the variety of associative algebras.

(c) Vk is the variety of commutative associative algebras.

(d) Vk is the variety of alternative algebras.

(e) char(k) 6= 2, Vk is the variety of Jordan algebras.

Indeed the fact that these varieties are homogeneous is proved in [Zhevlakov et al.
1982, § 1.4]. Moreover axiom (S) follows from the structure theory for the variety
Vk in each case. For example, in case (a), suppose that K/k is a field extension
and A is a finite dimensional semiprime Lie algebra over K . If the radical R of
A is nonzero, then the last nonzero term in the derived series for R has trivial
multiplication, contrary to the assumption that A is semiprime. So R = 0 and
hence A is the direct sum of simple algebras [Jacobson 1962, § III.4]. Similarly
we can use (for example) [Zhevlakov et al. 1982, §12.2, Theorem 3] in cases (b),
(c) and (d) and [Jacobson 1968, § V.2, Lemma 2 and § V.5, Corollary 2] in case (e)
to verify axiom (S).
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The reason for our interest in Axiom (S) is that it allows us to prove the following
proposition.

Proposition 8.7. Let Vk be a homogeneous variety over k that satisfies axiom (S).
Suppose that A is a prime pfgc Vk-algebra over k and let C̃(A) be the quotient field
of C(A). Then the central closure Ã := A⊗C(A) C̃(A) of A is a finite dimensional
central simple Vk-algebra over C̃(A).

Proof. By Proposition 3.5, Ã is a prime pfgc algebra over k and hence also over
C̃(A) (see Remark 2.10 and Lemma 3.2). Also, by Lemma 8.4, Ã is a Vk-algebra.
Hence, by axiom (S), Ã is the direct sum of simple algebras over C̃(A). Since

Ã is prime, there is only one summand in this sum. Thus Ã is a simple algebra
over C̃(A). Finally, by Proposition 3.5, Ã is central and finite dimensional over
C̃(A). �

Remark 8.8. Suppose that A is as in Proposition 8.7. Then in the terminology
of [Polikarpov and Shestakov 1990, § 1], Proposition 8.7 says that A is a central
order in the finite dimensional central simple algebra Ã.

We will also need a set Xk of algebras over k that play the role of the split simple
Lie algebras over k.

Definition 8.9. Suppose that Vk is a homogeneous variety over k. A set of ar-
chetypes for Vk is a set Xk of finite dimensional central simple Vk-algebras over k
such that the following axioms hold:

(A1) If K/k is an algebraically closed field extension and A is a finite dimensional
central simple Vk-algebra over K then there exists X∈Xk so that A'K X⊗k K .

(A2) If K/k is a field extension and X,X′
∈ Xk then

X ⊗k K 'K X′
⊗k K H⇒ X = X′

In particular, the elements of Xk are pairwise nonisomorphic over k.

Example 8.10. In each of the cases (a)-(e) in Example 8.6 there is a natural choice
for a set Xk of archetypes:

(a) char(k)= 0, Vk is the variety of Lie algebras and Xk = { X5 }, where 5 runs
through all connected Dynkin diagrams (up to isomorphism) and X5 denotes
the split simple Lie algebra with Dynkin diagram5 [Jacobson 1962, § VII.4].

(b) Vk is the variety of associative algebras and Xk = { M`(k) | ` ≥ 1 }, where
M`(k) is the algebra of `× `-matrices over k.

(c) Vk is the variety of commutative associative algebras and Xk = { k }.

(d) Vk is the variety of alternative algebras and Xk ={ M`(k) | `≥1 }∪{ O }, where
O denotes the split Cayley–Dickson (octonion) algebra [Zhevlakov et al. 1982,
§ 2.4].
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(e) char(k) 6= 2, Vk is the variety of Jordan algebras and Xk is the set consisting
of the following algebras: k; the Jordan algebra constructed from a nonde-
generate symmetric bilinear form with matrix diag(1,−1, . . . , 1,−1) on a
2`-dimensional space over k, ` ≥ 1; the Jordan algebra constructed from a
nondegenerate symmetric bilinear form with matrix diag(1,−1, . . . , 1,−1, 1)
on a 2`+ 1-dimensional space over k, ` ≥ 1; the algebra of `× ` hermitian
matrices with coordinates from the split composition algebras of dimension 1,
2 and 4, ` ≥ 3; and the algebra of 3 × 3 hermitian matrices over O [Jacobson
1968, § 1.4 and 4.3].

The fact that Xk satisfies axioms (A1) and (A2) follows from the classification of
finite dimensional central simple algebras over algebraically closed fields in each
case. See for example [Jacobson 1962, § IV.3, Theorem 3] in case (a), [Zhevlakov
et al. 1982, § 12.2, Theorem 3] in cases (b), (c) and (d), and [Jacobson 1968, § V.6,
Corollary 2] in case (e).

Remark 8.11. A homogeneous variety Vk over k may possess more than one set
of archetypes. For example if k = R and Vk is the variety of Lie algebras over
k as in Example 8.10(a) above, then an alternate choice of a set of archetypes is
the set Xk = { C5 }, where 5 runs through all connected Dynkin diagrams (up to
isomorphism) and C5 denotes the compact real Lie algebra whose complexification
is the simple Lie algebra with Dynkin diagram 5.

Assumption. For the rest of this section we assume that Vk is a homogeneous
variety over k that satisfies axiom (S), and that there exists a set Xk (which we fix)
of archetypes for Vk .

We can now prove the proposition that allows us to define the notion of type.

Proposition 8.12. Suppose that A is a prime pfgc Vk-algebra over k. If

C(A) ↪→ K

is a unital k-algebra monomorphism of C(A) into an algebraically closed field
extension K of k (such a monomorphism exists since C(A) is an integral domain),
then there exists a unique X ∈ Xk so that

(8–1) A ⊗C(A) K 'K X ⊗k K ,

where on the left K is regarded as an algebra over C(A) using the given monomor-
phism. Moreover, X is independent of the choice of the k-algebra monomorphism
C(A) ↪→ K .
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Proof. First let L be an algebraic closure of C̃(A). By Proposition 8.7, Ã is
a finite dimensional central simple Vk-algebra over C̃(A). Therefore, by Lemma
2.4, Ã⊗

C̃(A)
L is a finite dimensional central simple algebra over L . So, by Lemma

8.4, Ã ⊗
C̃(A)

L is a finite dimensional central simple Vk-algebra over L . Thus, by
axiom (A1) (see Definition 8.9), there exists X ∈ Xk so that Ã⊗

C̃(A)
L 'L X⊗k L .

Then

(8–2) A ⊗C(A) L 'L (A ⊗C(A) C̃(A))⊗
C̃(A)

L = Ã ⊗
C̃(A)

L 'L X ⊗k L .

Now let C(A) ↪→ K be an arbitrary unital k-algebra monomorphism of C(A)
into an algebraically closed extension K of k. This extends to a unital k-algebra
monomorphism C̃(A) ↪→ K which in turns extends to a unital k-algebra monomor-
phism L ↪→ K . We use this latter monomorphism to identify L as a subfield of K .
Then using (8–2) we have

A ⊗C(A) K 'K (A ⊗C(A) L)⊗L K 'K (X ⊗k L)⊗L K 'K X ⊗k K .

This shows the existence of an element X ∈ Xk satisfying (8–1). The uniqueness
follows from Axiom (A2).

Finally if C(A) ↪→ K ′ is another unital k-algebra monomorphism of C(A) into
an algebraically closed extension K ′ of k, then the argument just given using (8–2)
shows that A ⊗C(A) K ′

'K ′ X ⊗k K ′. �

Definition 8.13. Let A be a prime pfgc Vk-algebra over k. The element X ∈ Xk

described in Proposition 8.12 is called the type of A (relative to Xk) and denoted
by t (A). We also sometimes refer to t (A) as the absolute type of A since it is
determined by extending the base ring C(A) to an algebraically closed field.

Example 8.14. Let char(k) = 0, let Vk be the variety of Lie algebras, and let
Xk = { X5 } be as in Example 8.10(a). If we identify X5 with the diagram 5,
then Definition 8.13 assigns to each prime pfgc Vk-algebra A a connected Dynkin
diagram t (A). (If A is a simple pfgc algebra, this is exactly what was done in
Example 8.1.)

The following result tells us that type is an isomorphism invariant for prime pfgc
algebras.

Proposition 8.15. Suppose that A and A′ are prime pfgc Vk-algebras over k. Then

A 'k A′
H⇒ t (A)= t (A′).

Proof. Let ϕ : C(A′) ↪→ K be a unital k-algebra monomorphism of C(A′) into an
algebraically closed field extension K of k. Denote the resulting action of C(A′)

on K by (χ ′, α) 7→ χ ′
·α.
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Fix a k-algebra isomorphism ρ : A → A′. Then ρ induces an isomorphism
C(ρ) : C(A)→ C(A′) by Lemma 2.2. So the composite map ϕ◦C(ρ) : C(A)→ K
is a unital k-algebra monomorphism which we use to view K as an algebra over
C(A). The resulting action of C(A) on K is given by

χ ·α = C(ρ)(χ) ·α.

for χ ∈ C(A) and α ∈ K .
The biadditive map ρ̃ : A × K → A′

⊗C(A′) K satisfying ρ̃ : (a, α) 7→ ρ(a)⊗α
is then C(A)-balanced. Indeed if χ ∈ C(A), a ∈ A and α ∈ K we have

ρ̃
(
χ(a), α

)
= ρ

(
χ(a)

)
⊗α = C(ρ)(χ)

(
ρ(a)

)
⊗α

= ρ(a)⊗
(
C(ρ)(χ) ·α

)
= ρ(a)⊗χ ·α = ρ̃(a, χ ·α).

Thus ρ̃ induces a k-linear map A⊗C(A)K → A′
⊗C(A′)K so that a⊗α 7→ρ(a)⊗α

for a ∈ A and α ∈ K . This map is clearly a homomorphism of K -algebras. In a
similar fashion we obtain a homomorphism of K -algebras A′

⊗C(A′)K → A⊗C(A)

K so that a′
⊗ α 7→ ρ−1(a′)⊗ α for a′

∈ A′ and α ∈ K . These maps are inverses
of each other and so we have

A ⊗C(A) K 'K A′
⊗C(A′) K .

Thus, X⊗k K 'K X′
⊗k K , where X= t (A) and X′

= t (A′), and so t (A)= t (A′). �

Our main result in this section is the following:

Theorem 8.16. (Permanence of type) If L is an n-step loop algebra based on a
prime pfgc Vk-algebra A, then L is a prime pfgc Vk-algebra and

t (L)= t (A).

Proof. By Theorem 5.5(iii) and (iv) and Corollary 8.5, L is a prime pfgc Vk-
algebra. So t (A) and t (L) are defined and it remains so show that these types are
equal. For this note first that C(A) is an integral domain by Lemma 3.3(i), and so
the algebra C(A)⊗k S⊗n

'k C(A)[z±1
1 , . . . , z±1

n ] is an integral domain. Let K be
an algebraic closure of the quotient field of C(A)⊗k S⊗n . Now by (7–1′′) we have
the isomorphism

L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗C(A)
(
C(A)⊗k S⊗n).

Tensoring this over C(A)⊗k S⊗n with K yields the isomorphism

L ⊗C(L) K 'K A ⊗C(A) K .

Hence we have X ⊗k K 'K X′
⊗k K , where X = t (A) and X′

= t (L), and so
X = X′. �
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Since finite dimensional central simple algebras over k are prime pfgc algebras,
we have:

Corollary 8.17. If L is an n-step loop algebra based on a finite dimensional central
simple Vk-algebra A over k, then L is a prime pfgc Vk-algebra and t (L)= t (A).

Corollary 8.18. If X ∈ Xk and L is an n-step loop algebra based on X, then L

is a prime pfgc Vk-algebra of type X. If further X′
∈ Xk and L′ is an n′-step loop

algebra based on X′, then

L 'k L′
H⇒ X = X′ and n = n′.

Proof. The first statement follows from Corollary 8.17 since t (X) = X. For the
second statement suppose that L 'k L′. Then by Proposition 8.15, t (L) = t (L′)

and so X = X′. Finally by Corollary 6.4, n = n′. �

Our primary focus in future work will be on the case when the base algebra is
a finite dimensional split simple Lie algebra. For ease of reference we therefore
record Corollary 8.18 explicitly in that case.

Corollary 8.19. Suppose that A is a finite dimensional split simple Lie algebra
over a field k of characteristic 0, and L is an n-step loop algebra based on A.
Then L is a prime pfgc Lie algebra and for any unital k-algebra monomorphism
C(L) ↪→ K into an algebraically closed extension K of k we have

L ⊗C(L) K 'K A ⊗k K .

Moreover, if A′ is a finite dimensional split simple Lie algebra and L′ is an n′-step
loop algebra based on A′, then

(8–3) L 'k L′
H⇒ A 'k A′ and n = n′.

Proof. We apply Corollary 8.18 to the case when Vk is the variety of Lie algebras
and Xk = { X5 } as in Example 8.10(a). Since any finite dimensional split simple
Lie algebra over k is isomorphic to exactly one algebra in Xk the result follows. �

If L is an n-step loop algebra based on a finite dimensional split simple Lie
algebra A (in characteristic 0), then (8–3) tells us that both (the isomorphism class
of) the base algebra A and the number of steps n are isomorphism invariants of L.
This answers a natural question that began the research described in this paper.
We have now seen in Corollary 8.18 that the result is true in a much broader
context. The interested reader can easily write down the results corresponding
to Corollary 8.19 for the varieties of associative algebras, alternative algebras and
Jordan algebras (see Example 8.10(b), (d) and (e)).
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9. Two-step loop algebras

In this section we look more closely at 2-step iterated loop algebras and their cen-
troids. We then conclude with a detailed look at two examples that illustrate several
of the concepts studied in this article.

Throughout this section, we assume that m1 and m2 are positive integers and
that k contains a primitive mi -th root of unity ζmi , i = 1, 2. We use the notation of
Section 5 (for iterated loop algebras).

We start with some further notation. Let k×
= { ρ ∈ k | ρ 6= 0 } be the group of

units of k. If ρ ∈ k×, we let
k[u1, u±1

2 , w]ρ

denote the unital associative commutative k-algebra presented by the generators
u1, u2, u−1

2 , w subject to the relations

u2u−1
2 = 1 and w2

= (u2
1 − 4ρ)u2.

It is clear that the set

{ ui1
1 ui1

2 w
j
: i1 ∈ Z≥0, i2 ∈ Z, j = 0, 1 }

is a k-basis for k[u1, u±1
2 , w]ρ . It is also easy to verify that the group of units of

k[u1, u±1
2 , w]ρ is given by

(9–1) U (k[u1, u±1
2 , w]ρ)= {αui2

2 | α ∈ k×, i2 ∈ Z }.

Indeed, one way to see this is to make use of the multiplicative norm function
N : k[u1, u±1

2 , w]ρ → k[u1, u±1
2 ] defined by N (a1 +a2w)= a2

1 −a2
2w

2 for a1, a2 ∈

k[u1, u±1
2 ], and use the fact that if u is a unit in k[u1, u±1

2 , w]ρ then N (u) is a unit
in k[u1, u±1

2 ]. We leave the details of this to the reader.
The algebra k[u1, u±1

2 , w]ρ is important in the study of iterated loop algebras
because of the following fact.

Lemma 9.1. Let L = L(k, 61, 62) be a 2-step iterated loop algebra based on the
algebra k, where6i has modulus mi for i = 1, 2. Then exactly one of the following
holds:

(a) L 'k k[t±1
1 , t±2

2 ] (the algebra of Laurent polynomials in 2 variables).

(b) L 'k k[u1, u±1
2 , w]ρ for some ρ ∈ k×.

Moreover (a) holds if and only if zm1
1 z j

2 ∈ L for some j ∈ Z.

Proof. Note that the group of units in k[t±1
1 , t±1

2 ] spans the algebra k[t±1
1 , t±1

2 ],
whereas this is not true for the algebra k[u1, u±1

2 , w]ρ (by (9–1)). Thus (a) and (b)
cannot hold simultaneously. So it remains to show that either (a) or (b) holds (the
final statement will be proved along the way).
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Now as noted in Remark 5.2(iii), we have

L = L(k, σ1, σ2),

where σ1 is an automorphism of period m1 of L0 = k, and σ2 is an automorphism
of period m2 of L1 = L(k, σ1). Then, since σ1 is an algebra homomorphism, σ1 =1
and so

L1 = k[y±1
1 ], where y1 = zm1

1 .

Thus σ2 is an automorphism of period m2 of k[y±1
1 ]. Hence either σ2(y1) = ρy1

for some m2-th root of unity ρ in k× or σ2(y1)= ρy−1
1 for some ρ ∈ k×. Moreover

(for the proof of the final statement in the proposition) the first of these possibilities
holds if and only if y1 is homogeneous in the grading 62 determined by σ2 which
in turn holds if and only if y1z j

2 ∈ L for some j ∈ Z.
Case (a): Suppose that σ2(y1)= ρy1 for some m2-th root of unity ρ in k×. Let

n2 be the order of ρ in k×. Then n2 is a divisor of m2,

ρ = ζ p2r
m2
, where p2 =

m2

n2
,

and r is relatively prime to n2 (take r = 0 if n2 = 1). Choose an inverse s for r
modulo n2 (take s = 0 if n2 = 1). Now the grading 62 of L1 is given by L1 =⊕

̄∈Zm2
(L1)̄ , where (L1)̄ is spanned by the elements yi

1 with i ∈ Z and σ2(yi
1)=

ζ
j

m2 yi
1. But n2 and s are relatively prime and so any integer can be expressed in the

form an2 + bs, where a, b ∈ Z. Also

σ2(y
an2+bs
1 )= ρan2+bs yan2+bs

1 = ρbs yan2+bs
1 = ζ p2rbs

m2
yan2+bs

1 = ζ p2b
m2

yan2+bs
1

and so yan2+bs
1 ∈ (L1)p2b. Therefore L = L(L1, σ2) is spanned by elements of the

form
yan2+bs

1 z p2b
2 , a, b ∈ Z.

But yan2+bs
1 z p2b

2 = (yn2
1 )

a(ys
1z p2

2 )
b. Hence we obtain

L = k[t±1
1 , t±2

2 ], where t1 = yn2
1 and t2 = ys

1z p2
2 .

Case (b): Suppose that σ2(y1) = ρy−1
1 for some ρ ∈ k×. Then σ2 has order 2

and so m2 is even. Let p2 =
m2
2 and y2 = z p2

2 . Then

L =
(
L+

1 ⊗k k[(y2
2)

±1
]
)
⊕

(
L−

1 ⊗k y2k[(y2
2)

±1
]
)
,

where L±

1 is the ±1-eigenspace for σ2. Now it is clear that L+

1 has a k-basis
consisting of the elements (y1 + ρy−1

1 )a , a ≥ 0. Therefore L+

1 ⊗k k[(y2
2)

±1
] has

basis
(y1 + ρy−1

1 )a y2b
2 , a, b ∈ Z, a ≥ 0.
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Also one easily checks that L−

1 = (y1 −ρy−1
1 )L+

1 , so L−

1 ⊗k y2k[(y2
2)

±1
] has basis

(y1 − ρy−1
1 )y2(y1 + ρy−1

1 )a y2b
2 , a, b ∈ Z, a ≥ 0.

Thus, setting

u1 = y1 + ρy−1
1 , u2 = y2

2 and w = (y1 − ρy−1
1 )y2,

we see that L has basis ua
1ub

2w
c, a ∈ Z≥0, b ∈ Z, c = 0, 1. Moreover, one checks

directly thatw2
= (u2

1−4ρ)u2, and so we have identified L with k[u1, u±1
2 , w]ρ . �

Remark 9.2. In Case (a) of the proof of Lemma 9.1, the conclusion is an immediate
consequence of a more general “erasing theorem” that was proved in [Allison et al.
2004, Theorem 5.1]. We have included the proof above since it is short and self-
contained.

Remark 9.3. If ρ, ρ ′
∈ k×, one can show that

k[u1, u±1
2 , w]ρ 'k k[u1, u±1

2 , w]ρ′ ⇐⇒ ρ ′ρ−1 is a square in k×.

In particular, if k is algebraically closed, the isomorphism class of k[u1, u±1
2 , w]ρ

does not depend on ρ. In that case Lemma 9.1 tells us that, up to isomorphism, there
are exactly two (one step) loop algebras based on k[y±1

1 ]. This fact is a special case
of a more general result about (one step) loop algebras based on the algebra A of
Laurent polynomials k[y±1

1 , . . . , y±1
q ] over an algebraically closed field k. Indeed,

using the fact that the abstract automorphism group of A is (k×)q o GLq(Z) and
some techniques from Galois cohomology (see Remark 4.8), one can show that
there is an injective map that attaches to each R-isomorphism class of loop algebras
based on A an invariant in the set of conjugacy classes of GLq(Z). (When q = 1,
GLq(Z) has exactly two conjugacy classes and one can show that R-isomorphism
coincides with k-isomorphism.) We omit proofs of the statements in this remark,
since we will not be using these statements here and since their proofs would take
us rather far afield.

Lemma 9.1 together with Theorem 6.2 implies the following more general result:

Proposition 9.4. Let L = L(A, 61, 62) be a 2-step iterated loop algebra based
on a finite dimensional central simple algebra A over k, where 6i has modulus mi

for i = 1, 2. Then exactly one of the following holds:

(a) C(L)'k k[t±1
1 , t±2

2 ].

(b) C(L)'k k[u1, u±1
2 , w]ρ for some ρ ∈ k×.

Moreover (a) holds if and only if zm1
1 z j

2 ∈ C̄(L) for some j ∈ Z (see Remark 6.5).

Definition 9.5. As in Proposition 9.4, let L = L(A, 61, 62) be a 2-step iterated
loop algebra based on a finite dimensional central simple algebra A over k, where
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6i has modulus mi for i = 1, 2. We say that L is of the first kind (resp. second
kind) if C(L) is isomorphic to k[t±1

1 , t±2
2 ] (resp. k[u1, u±1

2 , w]ρ for some ρ ∈ k×).

Remark 9.6. (a) It follows from Corollary 6.6 that any 2-step multiloop algebra
based on a finite dimensional central simple algebra is of the first kind.

(b) Suppose k is algebraically closed of characteristic 0 and L = L(A, σ1, σ2)

is a 2-step iterated loop algebra based on a finite dimensional central simple Lie
algebra A over k, where σi has period mi for i = 1, 2. Then L(A, σ1) is the
derived algebra modulo its centre of an affine Kac–Moody Lie algebra g [Kac
1990, Theorem 8.5]. Moreover one can show that the 2-step loop algebra L is
of the first kind in the sense of Definition 9.5 if and only if the automorphism σ2

of L(A, σ1) is induced by an automorphism of the first kind of g (as defined for
example in [Levstein 1988, Part III.1]). Indeed this example is the reason for our
choice of terminology.

We conclude by looking at two examples of 2-step iterated loop algebras. These
examples illustrate the above proposition (Proposition 9.4) as well as a number of
the concepts studied in this article.

Example 9.7. Suppose that k is of characteristic 0. In this example we consider a
2-step iterated loop algebra L= L(A, σ1, σ2) based on the Lie algebra A= sl`+1(k)
over k, where `≥ 1 and σ1 and σ2 have order m1 = m2 = 2.

Before beginning it will be convenient to define four commuting automorphisms
η1, η2, κ1 and κ2 of S⊗2 by

η1(z
i1
1 zi2

2 )= (−1)i1 zi1
1 zi2

2 , η2(z
i1
1 zi2

2 )= (−1)i2 zi1
1 zi2

2 ,

κ1(z
i1
1 zi2

2 )= z−i1
1 zi2

2 and κ2(z
i1
1 zi2

2 )= zi1
1 z−i2

2

for i1, i2 ∈ Z. Each of these automorphisms restricts to an automorphism of k[z±1
1 ]

which we also denote by η1, η2, κ1 and κ2 respectively.
To construct L we first let L0 = A. Next let σ1 ∈ Aut(A) be defined by σ1(a)=

−Jat J , where

J =

0 . . . 1
... . ..

...

1 . . . 0

 .
Then σ1 has order 2 and we set

L1 := L(A, σ1, z1),

using the notation of Remark 4.4. Thus L1 is the algebra of fixed points in A ⊗k

k[z±1
1 ] of the automorphism σ1 ⊗ η1. (If k is an algebraically closed field of char-

acteristic 0 and `≥ 2, then L1 is the derived algebra modulo its centre of the affine
Kac–Moody Lie algebra of type A(2)` [Kac 1990, Chapter 8].)
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Next the automorphisms 1A⊗κ1 and σ1⊗η1 of A⊗k k[z±1
1 ] commute, so 1A⊗κ1

stabilizes L1. We set σ2 = 1A ⊗κ1 |L1∈ Autk(L1). Then σ2 has order 2, and we set

L = L2 := L(L1, σ2, z2).

By construction L is a 2-step iterated loop algebra based on A.
It is clear from the above descriptions of L1 and L2, that L is the algebra of

common fixed points in A ⊗k S⊗2 of the automorphisms σ1 ⊗ η1 and 1A ⊗ κ1η2.
From this it follows easily that

(9–2) L = { x ∈ sl`+1(K ) | x∗
= −x },

where
K = (S⊗2)κ1η2

is the algebra of fixed points in S⊗2 of the automorphism κ1η2, and

(9–3) x∗
= −J (η1x)t J

for x ∈ Mn(K ). (Here η1x denotes the matrix obtained from x by applying η1 to
the entries of x .) In more geometric language, L can be viewed as the Lie algebra
of K -linear transformations of the free K -module K `+1 that are skew relative to
the hermitian form (u, v) 7→ (η1u)t Jv.

Now by Remark 6.5, the centroid of L is isomorphic to the algebra

(9–4) C̄(L)= { u ∈ S⊗2
| u · L ⊂ L }

of S⊗2. This together with (9–2) implies that C̄(L)⊂ K . But by (9–3), (u · x)∗ =

(η1u) · x∗ for u ∈ K and x ∈ sl`+1(K ). Hence it follows from (9–2) and (9–4) that
C̄(L)= K η1 . So we have

C̄(L)= (S⊗2)〈η1,κ1η2〉.

Note also that, by Theorem 7.1, S⊗2 is a free C̄(L)-module of rank 4 and

L ⊗C̄(L) S⊗2
' sl`+1(S⊗2).

Moreover, by Corollary 8.17, L is a prime pfgc Lie algebra of type A` (see Example
8.14).

Finally, note that κ1η2(z2
1z j

2) = (−1) j z−2
1 z j

2 6= z2
1z j

2 and so z2
1z j

2 /∈ C̄(L) for
j ∈ Z. Thus L is of the second kind. (In fact one can check directly that C̄(L) is
isomorphic to k[u1, u±1

2 , w]ρ for ρ = 1.) So C̄(L) is not isomorphic to the algebra
of Laurent polynomials in any number of variables (since C̄(L) is not spanned by
its units). Hence, by Corollary 6.6, L is not isomorphic to a multiloop algebra in
any number of steps based on a finite dimensional central simple Lie algebra.
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Example 9.8. Suppose that ` ≥ 1 and k is a field which contains a primitive `-th
root of unity ζ = ζ`. In this example we consider a 2-step multiloop loop algebra
L = M(A, σ1, σ2) based on the associative algebra A = M`(k) of `× `-matrices
over k, where σ1 and σ2 have order m1 = m2 = `.

First let

a1 =


1 0 . . . 0
0 ζ . . . 0
...
...
. . .

...

0 0 . . . ζ `−1

 and a2 =


0 1 . . . 0
...
...
. . .

...

0 0 . . . 1
1 0 . . . 0


in A. Then a2a1 = ζa1a2, a`1 = a`2 = 1, and it is well known that

{ ai1
1 ai2

2 | 0 ≤ i1, i2 ≤ `− 1 }

is a basis for A. (See for example [Draxl 1983, §11].)
Define σi ∈ Autk(A) by σi (x) = ai xa−1

i for x ∈ A, i = 1, 2. Then σi (ai ) = ai ,
σ1(a2)= ζ

−1a2 and σ2(a1)= ζa1. Hence σ1 and σ2 are commuting automorphisms
of A of order `. Let

L = M(A, σ1, σ2)

be the multiloop algebra of σ1, σ2 based on A (with m1 = m2 = `). To calculate L

explicitly, note that

σ1(a
−i1
2 ai2

1 )= ζ i1a−i1
2 ai2

1 and σ2(a
−i1
2 ai2

1 )= ζ i2a−i1
2 ai2

1

for i1, i2 ∈ Z. Thus Aı̄1,ı̄2 = ka−i1
2 ai2

1 for i1, i2 ∈ Z. Consequently

L = spank{ a−i1
2 ai2

1 ⊗ zi1
1 zi2

2 | i1, i2 ∈ Z } = spank{ x i1
1 x i2

2 | i1, i2 ∈ Z },

where

x1 = a−1
2 ⊗ z1 =


0 . . . 0 z1

z1 . . . 0 0
...
. . .

...
...

0 . . . z1 0

 and x2 = a1 ⊗ z2 =


z2 0 . . . 0
0 ζ z2 . . . 0
...

...
. . .

...

0 0 . . . ζ `−1z2


in L. Thus L is the subalgebra of M`(S⊗2) generated as an algebra by the matrices
x±1

1 , x±1
2 which satisfy the relations

(9–5) xi x−1
i = x−1

i xi = 1 and x2x1 = ζ x1x2.

It follows that L ' kq, where kq is the algebra presented by the generators x1, x2

subject to the relations (9–5). This algebra kq, which is called the quantum torus
determined by the matrix

q =

[
1 ζ

ζ−1 1

]
,
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has arisen in a number of different contexts; see for example [Magid 1978; Mc-
Connell and Pettit 1988; Berman et al. 1996; Gao 2000].

Note that by Corollary 6.6, the centroid (= centre) of L is isomorphic to C̄(L)=
k[t±1

1 , t±1
2 ], where t1 = z`1 and t2 = z`2. Moreover, by Theorem 6.1, S⊗2 is a free

C̄(L)-module of rank `2 and L⊗C̄(L)S
⊗2

' M`(S⊗2). Consequently (see Corollary
7.4) L ' kq is a prime Azumaya algebra of constant rank `2 that is split by the
extension S⊗2/k[t±1

1 , t±1
2 ].

Remark 9.9. The fact that the quantum torus kq (described in the preceding ex-
ample) is an Azumaya algebra was seen by a different method some time ago
in [Magid 1978, Lemma 4]. This information about the algebra kq is important
because it tells us that kq defines an element [kq] of the Brauer group of the ring
k[t±1

1 , t±2
2 ]. In fact `Br(k[t±1

1 , t±2
2 ]) is cyclic of order ` and the element [kq] is a

generator of this group [Magid 1978, Theorem 6].

Remark 9.10. The authors wish to thank John Faulkner for conversations that led
to Example 9.8. This example turns out to be a special case of a more general con-
struction of quantum tori and their nonassociative analogs as multiloop algebras.
This topic will be investigated in a article in preparation by the present authors
together with John Faulkner.
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