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OPERATOR MULTIPLIERS

EDWARD KISSIN AND VICTOR S. SHULMAN

We introduce a noncommutative version of Schur multipliers relative to an
operator ideal. In this setting the functions of two variables are replaced
by elements from a tensor product of C*-algebras, and the measures (or
spectral measures) by representations. For commutative C*-algebras this
approach agrees with Birman and Solomyak’s theory of double operator
integrals. We study the dependence of the spaces of multipliers on the choice
of representations and find that the question is closely related to Voiculescu
and Arveson’s theory of approximately equivalent representations. The
space of multipliers universal with respect to the chosen measures is related
to the Haagerup tensor product of the algebras.

1. Introduction

Let H and K be Hilbert spaces, let B(H, K ) be the Banach space of all bounded
linear operators from H into K , and let S2(H, K ) be the Hilbert space of Hilbert–
Schmidt operators. Each symmetrically normed ideal I induces the norm | · |I on
XI = I (H, K ) ∩ S2(H, K ). Let 8 : ϕ → 8ϕ be a map from a set G into the
algebra B(S2(H, K )) of all bounded operators on S2(H, K ). If for some ϕ ∈ G,
the operator8ϕ preserves XI and is bounded in | · |I , so that |8ϕ(R)|I ≤C |R|I , for
all R ∈ XI , then ϕ is called a (8, I )-multiplier. Below we consider some examples
of (8, I )-multipliers with increasing generality.

Let X, Y be arbitrary sets, let H = l2(X), K = l2(Y ), and let B(X × Y ) be
the set of all bounded complex-valued functions on X × Y . Identify each T in
S2(H, K )with the corresponding matrix (t (x, y)). For ϕ∈ B(X × Y ), set Sϕ(T )=
(ϕ(x, y)t (x, y)). Then S : ϕ 7→ Sϕ is a map from B(X × Y ) into B(S2(H, K )),
and we call (S, I )-multipliers Schur I -multipliers. It is not difficult to check that,
at least for separable ideals I , they coincide with Schur I -multipliers as defined in
[Bennett 1977] and, for I = B(H, K ), in [Pisier 2001].

More generally, for arbitrary measures µ on X and ν on Y , let H = L2(X, µ)
and K = L2(Y, ν). Then S2(H, K ) consists of integral operators R with kernels

MSC2000: primary 46L06, 47B49; secondary 47B10, 47L20.
Keywords: C*-algebra, representation, approximate equivalence, tensor product, Schur multiplier,

operator ideal, ω-continuity.

109

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.227-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=46L06, 47B49,(47B10, 47L20)


110 EDWARD KISSIN AND VICTOR S. SHULMAN

r(x, y) on X × Y such that

(1–1) |R|2 =

( ∫
X×Y

|r(x, y)|2 dµ(x) dν(y)
)1/2

<∞.

Each ϕ ∈ L∞(X ×Y, µ×ν) defines a bounded linear map8ϕ on S2(H, K ), where
8ϕ(R) is the integral operator with kernel ϕ(x, y)r(x, y). The (8, I )-multipliers
in this case are called (µ, ν, I )-multipliers.

Birman and Solomyak [1967; 1973; 1989] developed a powerful machinery of
double operator integrals (DOI) in their study of multipliers related to various
problems arising in mathematical physics. Starting with two spectral measures E

and F on sets X and Y , respectively, they define, for each bounded measurable
function ϕ, a map 8ϕ on S2(H, K ) by

8ϕ(R)=

∫
X

∫
Y
ϕ(x, y) dF(y)R dE(x).

The corresponding (8, I )-multipliers are called “functions that define bounded
DOI on I ”; we will call them (E,F, I )-multipliers or DOI I -multipliers. For
multiplicity-free spectral measures, they coincide with (µ, ν, I )-multipliers.

We consider now a noncommutative version of the example above. In this setting
the functions of two variables are replaced by elements of the tensor product A ⊗ B

of C*-algebras, and the spectral measures by representations π, ρ of these algebras.
For ϕ ∈ A ⊗ B, the operator (π ⊗ ρ)(ϕ) acts on the tensor product H = Hπ ⊗ Hρ .
Identifying H with S2(H d

π , Hρ), where H d
π is the dual of Hπ , we may consider this

operator as an operator 8ϕ on S2(H d
π , Hρ) and, in the sense above, speak about

I -multipliers. We call them (π ⊗ ρ, I )-multipliers. For commutative C*-algebras
A = C0(X) and B = C0(Y ), the (π ⊗ ρ, I )-multipliers coincide with (E,F, I )-
multipliers, where E and F are the spectral measures corresponding to the repre-
sentations π and ρ. Even for commutative algebras the precise description of the
spaces of multipliers is known only for I = B(H); for Schur multipliers it was
obtained in [Grothendieck 1953], for DOI B(H)-multipliers in [Peller 1985].

In this paper we mainly study the dependence of the spaces of multipliers on
the choice of the representations and, in the commutative case, on the choice of
spectral or scalar measures. Our initial aim was to prove that a continuous function
ϕ(x, y) is a (µ, ν, B(H))-multiplier if and only if it is a Schur multiplier on the
product of the supports of µ and ν. In other words, we were going to prove that the
space of continuous (µ, ν, B(H))-multipliers depends only on the supports of the
measures. This was conjectured by B. E. Johnson in a discussion with the second
author and previously proved in [Kissin and Shulman 1996] for functions of the
form ( f (x)− f (y))/(x −y). Here this result will be deduced from a result of much
more general nature: the space of all (π, ρ, I )-multipliers does not change if the
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representations π and ρ are replaced by approximately equivalent representations.
For its proof we use Voiculescu’s noncommutative Weyl–von Neumann theorem.
As far as we know, this is the first application of a deep result of the theory of
C*-algebras to multipliers and, in particular, to Schur multipliers. In fact, the
desire to understand the relation between these branches of the operator theory
was our main motivation during this work.

The restriction to the C*-tensor products of C*-algebras reflects our interest in
continuous multipliers. However, in the last sections we go further and study “non-
continuous” multipliers. More precisely, we consider (µ, ν, I )-multipliers contin-
uous in a pseudotopology instead of a topology. It was shown in [Erdos et al. 1998]
that each pair µ and ν of standard measures on X and Y defines a pseudotopology
ω on X × Y , and we study (µ, ν, I )-multipliers that are ω-continuous functions. It
should be noted that the space of such multipliers is much wider than C0(X × Y )
and, moreover, all (µ, ν, B(H))-multipliers are necessarily ω-continuous. The
main result here states that an ω-continuous function is a (µ, ν, I )-multiplier if
and only if it becomes a Schur multiplier after deleting from X and Y suitable null
subsets. As a consequence we show how one can deduce Peller’s theorem on DOI
B(H)-multipliers from Grothendieck’s description of Schur multipliers. We also
prove that the space of all ω-continuous (µ, ν, I )-multipliers does not change if
the measures µ and ν are replaced by equivalent measures.

2. Preliminaries

We need some notions and results from the theory of symmetrically normed (s.n.)
ideals. The general reference for this topic is Gohberg and Kreı̆n [1965]. We
denote the dual space of a Banach space X by Xd and the conjugate operator of
A ∈ B(X) by Ad . Let F and C(H) be the ideals of finite rank operators and of
compact operators in the Banach algebra (B(H), ‖·‖) of all bounded operators on
a Hilbert space H . A two-sided ideal I of B(H) is symmetrically normed if it is a
Banach space with respect to a norm | · |I , and

|AX B|I ≤ ‖A‖|X |I ‖B‖, for A, B ∈ B(H) and X ∈ I.

Such an ideal I is selfadjoint and, by the Calkin theorem, F ⊆ I ⊆ C(H).
There is a one-to-one correspondence between the set of symmetrically normed

functions (see [Gohberg and Kreı̆n 1965]) on the space c0 of all sequences of real
numbers converging to 0 and the set J of all pairs (J0, J ) of s.n. ideals, where
J0 is a separable ideal that coincides with the closure of F in | · |J0 , and J is the
largest s.n. ideal such that J0 ⊆ J and the norms | · |J0 and | · |J coincide on J0. We
call J coseparable because there is another, “dual” pair ( Ĵ0, Ĵ ) in J such that J is
isometrically isomorphic to the dual space of Ĵ0 via the following correspondence:
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every bounded linear functional on Ĵ0 has the form

(2–1) FT (X)= (X, T )2 = Tr(T ∗X), with T ∈ J and ‖FT ‖ = |T |J .

In turn, the ideal Ĵ is isometrically isomorphic to the dual space of J0.
Many ideals are separable and coseparable simultaneously. An important class

of such ideals consists of the Schatten ideals Sp, with 1 ≤ p<∞. We will denote
C(H) by S∞ and B(H) by Sb. The dual ideal Ŝp of the Schatten ideal Sp is
Sp′ , where

1
p

+
1
p′

= 1 if 1< p <∞; p′
= 1 if p = ∞; p′

= b if p = 1.

For each s.n. ideal I , there is a unique pair (J0, J ) in J such that J0 ⊆ I ⊆ J
and the norms | · |J0 , | · |I and | · |J coincide on J0.

If I, J are s.n. ideals and J ⊆ I , Proposition 2.1 of [Kissin and Shulman 2005b]
tells us that there is c > 0 such that

(2–2) |A|I ≤ c|A|J , for A ∈ J.

For their dual spaces I d , J d , we have I d
⊆ J d and

(2–3) ‖F‖J d ≤ c‖F‖I d , for F ∈ I d .

Lemma 2.1. (i) For coseparable ideals I, J , the following conditions are equiv-
alent:

1) I ⊆ J ; 2) I0 ⊆ J ; 3) I0 ⊆ J0; 4) Ĵ ⊆ Î .

In particular, the following conditions are equivalent:

1) S2 ⊆ J0; 2) S2 ⊆ J ; 3) Ĵ ⊆ S2; 4) Ĵ0 ⊆ S2.

(ii) Let J ⊆ I be s.n. ideals. If a bounded map M : I → I preserves J , its
restriction to J is bounded.

Proof. Part (i) follows from (2–1)–(2–3).
Let An → A and M(An) → B in (J, | · |J ). By (2–2), |An − A|I → 0, so

|M(An)− M(A)|I → 0. Therefore,

|M(A)− B|I ≤ |M(A)− M(An)|I + |M(An)− B|I

≤ |M(A)− M(An)|I + c|M(An)− B|J −→ 0.

Thus M(A)= B. Hence M is closed on J and, therefore, bounded. �

Let H , K be Hilbert spaces and I be an s.n. ideal of B(H). Then

I (H, K )= {A ∈ B(H, K ) : (A∗ A)1/2 ∈ I }
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is a closed left B(K )- and right B(H)-module supplied with norm

|A|I =
∣∣(A∗ A)1/2

∣∣
I .

If U is an isometry from H onto K , then I (H, K ) = U I . For R ∈ B(H1, H),
S ∈ B(K , K1), and A ∈ I (H, K ),

S AR ∈ I (H1, K1) and |S AR|I ≤ ‖S‖|A|I ‖R‖.

If S and R are isometries, then |S AR|I = |A|I .
The dual space H d of H is a Hilbert space; there is an antiisometry map ∂ from

H onto H d , where xd
:= ∂(x) is given by xd(y)= (y, x)= (xd , yd) [Wegge-Olsen

1993]. The space S2(H d , K ), being a Hilbert space with respect to the scalar
product (T, R)= T r(R∗T ), is isometrically isomorphic to the tensor product space
H ⊗ K . More precisely, the linear map θ from the algebraic tensor product H � K
into the set of all finite rank operators in B(H d , K ) defined by

θ(h ⊗ k)xd
= xd(h)k = (h, x)k for x ∈ H,

extends to an isometric isomorphism from H ⊗ K to S2(H d , K ):

(θ(ξ), θ(η))2 = Tr(θ(η)∗θ(ξ))= (ξ, η) for ξ, η ∈ H ⊗ K .

Let θ1 be the isomorphism from H1 ⊗ K1 on S2(H d
1 , K1). For R ∈ B(H, H1),

denote by R∗ its adjoint, acting from H1 to H , and by Rd its conjugate from H d
1

to H d . Then

‖Rd
‖ = ‖R‖, Rd xd

= (R∗x)d for x ∈ H1,

and

(2–4) (RT )d = T d Rd , (R∗)d = (Rd)∗, (λR)d = λRd for λ ∈ C.

The second of these equalities can be written in the form

(2–5) Rd
= ∂R∗∂−1

1 .

Let S ∈ B(K , K1). We have θ1
(
(R ⊗ S)(h ⊗ k)

)
= Sθ(h ⊗ k)Rd for h ∈ H and

k ∈ K , so

(2–6) θ1((R ⊗ S)ξ)= Sθ(ξ)Rd , for ξ ∈ H ⊗ K .

3. Multipliers and approximate equivalence

A normed subspace X of a Hilbert space H is a linear subspace supplied with
its own norm ‖ · ‖X . By b1(X) we denote the closed unit ball of (X, ‖ · ‖X ). As
important classes of normed subspaces we mention full and normal subspaces:
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(1) X is full if X = H , while ‖ · ‖X need not coincide with the norm of H ;

(2) X is normal if b1(X) is closed in H .

We define the dual normed subspace X \ of a normed subspace X in H by setting

(3–1) X \
= {y ∈ H : ‖y‖X \ <∞}, where ‖y‖X \ = sup

x∈X

|(x, y)|
‖x‖X

.

Then X ⊆ X \\ and ‖x‖X \\ ≤ ‖x‖X , for x ∈ X . Thus b1(X)⊆ b1(X \\).

Proposition 3.1. (i) For a normed subspace X of H the following conditions are
equivalent:

(1) X is normal;
(2) X is a dual of some normed subspace;
(3) b1(X)= b1(X \\).

(ii) Let X be full. It is normal if and only if

(3–2) ‖x‖X ≤ C‖x‖, for all x ∈ H and some C > 0.

Proof. (3)⇒ (2). Set Y = X \. 2)⇒ 1) follows from (3–1).
(1) ⇒ (3). Let z ∈ b1(X \\) \ b1(X). Since b1(X) is closed in H , then, by the

Hahn–Banach theorem, there is y ∈ H such that |(z, y)| > 1 and |(x, y)| ≤ 1, for
all x ∈ b1(X). Therefore, by (3–1), y ∈ X \ and ‖y‖X \ ≤ 1, so ‖z‖X \\ > 1. This
contradiction shows that b1(X)= b1(X \\). Part (i) is proved.

Let X be full: H = X =
⋃

∞

n=1 n b1(X). If X is normal, then b1(X) is closed.
By Baire’s theorem, b1(X) contains an open subset of H and this implies (3–2).
The converse is evident. �

Let X be a normed subspace of H . An operator M ∈ B(H) is called bounded
on the pair (X, H), if it preserves X and is bounded on X in ‖ · ‖X . The proof of
the following result is straightforward.

Lemma 3.2. Let X be a normed subspace of H , and let M be bounded on (X, H).

(i) M∗ is bounded on (X \, H) and ‖M∗
‖B(X \) ≤ ‖M‖B(X).

(ii) M is bounded on (X \\, H).

(iii) If X is normal, then ‖M∗
‖B(X \) = ‖M‖B(X).

Let π be a representation of a C*-algebra A on H and X be a normed subspace
of H . An element a ∈ A is a (π, X)-multiplier if π(a) is bounded on (X, H). Set

(3–3) |a|
π
X = ‖π(a)‖B(X) = sup

x∈X

‖π(a)x‖X

‖x‖X
.

We now recall the notions of approximate equivalence and approximate subor-
dination for representations of C*-algebras, introduced in [Voiculescu 1976] (see
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also [Arveson 1974]) and [Hadwin 1981], respectively. Among the various possible
definitions, we use the one given in this last reference.

Definition 3.3. (i) Let π and π ′ be ∗-representations of a C∗-algebra A on Hilbert
spaces H and H ′. The representation π ′ is approximately subordinate to π
(we write π ′

�a π) if there is a net {Uλ} of isometries from H ′ into H such
that

(3–4) ‖π(a)Uλ − Uλπ
′(a)‖ → 0, for all a ∈ A.

(ii) If the operators Uλ are unitary, then π and π ′ are approximately equivalent,
and we write π∼a π

′.

Let X ′ and X be normed subspaces of H ′ and H , respectively. We say that
an approximate subordination π ′

�a π or approximate equivalence π ′ ∼a π) is
(X ′, X)-consistent if the operators Uλ in Equation (3–3) can be chosen in such a
way that

(3–5) UλX ′
⊆ X, U∗

λ X ⊆ X ′, ‖Uλx ′
‖X ≤ C‖x ′

‖X ′, ‖U∗

λ x‖X ′ ≤ C‖x‖X ,

for some C > 0 and all x ′
∈ X ′, x ∈ X .

Proposition 3.4. Let π ′ and π be ∗-representations of A on H ′ and H , let X ′ and
X be normed subspaces of H ′ and H , and let there exist an (X ′, X)-consistent
approximate subordination π ′

�a π . Suppose that X ′ is normal. Then any (π, X)-
multiplier a in A is also a (π ′, X ′)-multiplier, and

(3–6) |a|
π ′

X ′ ≤ C2
|a|

π
X .

Proof. Set Fλ = π(a)Uλ − Uλπ
′(a). Given x ′

∈ X ′, we have U∗

λπ(a)Uλx ′
∈ X ′,

‖U∗

λπ(a)Uλx ′
‖X ′ ≤ C‖π(a)Uλx ′

‖X ≤ C |a|
π
X‖Uλx ′

‖X ≤ C2
|a|

π
X‖x ′

‖X ′,

and π ′(a)x ′
= U∗

λUλπ
′(a)x ′

= U∗

λπ(a)Uλx ′
− U∗

λ Fλx ′.
Set C1 = C2

|a|
π
X‖x ′

‖X ′ . Then all U∗

λπ(a)Uλx ′ belong to C1b1(X ′). Since X ′ is
normal, the ball C1b1(X ′) is closed in H . Since ‖U∗

λ Fλx ′
‖H ′ → 0, we obtain that

π ′(a)x ′
∈ C1b1(X ′). Thus π ′(a) preserves X ′, and

‖π ′(a)x ′
‖X ′ ≤ C1 = C2

|a|
π
X‖x ′

‖X ′,

which gives (3–6). �

4. Operators bounded on normed subspaces of S2

For an s.n. ideal I , define a normed subspace XI of S2(H, K ) by setting

XI = I (H, K )∩ S2(H, K ), with ‖X‖XI = |X |I for X ∈ XI .
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As in general (see Section 2), set

X∼

I = {T ∈ S2(H, K ): the map X → (X, T )2 = Tr(T ∗X) is bounded on XI }.

Let a pair (J0, J ) in J be such that J0 ⊆ I ⊆ J and the norms | · |J0 and | · |I coincide
on J0. If S2 ⊆ I , then, by Lemma 2.1(i), S2 ⊆ J0, so XI = XJ0 . Let ( Ĵ0, Ĵ ) be
the corresponding “dual” pair.

Lemma 4.1. (i) (XJ0)
\
= X Ĵ .

(ii) If S2 ⊆ I or if I is coseparable (I = J ), then the normed space XI is normal.

(iii) If J ⊆ S2, then (XJ )
\
= (XI )

\
= (XJ0)

\
= X Ĵ = X Ĵ0

and (XI )
\\

= XJ .

Proof. Since J0 is separable and the space F(H, K ) of all finite rank operators
from H into K lies in XJ0 , we see that XJ0 is dense in J0(H, K ). From this, from
(2–1) and (3–1) we obtain (XJ0)

\
= X Ĵ . Part (i) is proved.

If S2
⊆ I , then XI is full. By (2–2) and Proposition 3.1, XI is normal.

Let I = J . By (i), (X Ĵ0
)\ = XJ . Thus, by Proposition 3.1, XI is normal. Part

(ii) is proved.
Let I ⊆ S2. By Lemma 2.1, J ⊆ S2, so that XJ0 ⊆ XI ⊆ XJ . It follows from

(2–2) that
(XJ )

\
⊆ (XI )

\
⊆ (XJ0)

\.

By (i), (XJ0)
\
= X Ĵ . By Lemma 2.1, S2 ⊆ Ĵ0 ⊆ Ĵ , so X Ĵ = X Ĵ0

. From (2–1) we
have X Ĵ0

⊆ (XJ )
\. Combining all, we obtain

(XJ )
\
= (XI )

\
= (XJ0)

\
= X Ĵ = X Ĵ0

.

Applying (i) again, we complete the proof. �

Denote by L(I ) the algebra of all operators bounded on (XI ,S2(H, K )). Recall
that this means that they are bounded operators on S2(H, K ), preserve XI and are
bounded on XI in ‖ · ‖XI . Set

(4–1) L(I )∗ = {M∗: M ∈ L(I )} and ‖M‖I = ‖M‖B(XI ).

If there is an s.n. ideal J such that XJ = (XI )
\, then it follows from Lemma 3.2

that

(4–2) L(I )∗ ⊆ L(J ) and ‖M∗
‖J ≤ ‖M‖I , for M ∈ L(I ).

If XI is normal, then

(4–3) ‖M∗
‖J = ‖M‖I .

Let (J0, J ) ∈ J and let ( Ĵ0, Ĵ ) be the corresponding “dual” pair.

Proposition 4.2. (i) L(J0)
∗
⊆ L( Ĵ ) and ‖M∗

‖ Ĵ ≤ ‖M‖J0 , for all M ∈ L(J0).
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(ii) If J0 = J , then ‖M∗
‖ Ĵ = ‖M‖J , for all M ∈ L(J ). If J is reflexive (that is,

J0 = J and Ĵ0 = Ĵ ), then also L(J )∗ = L( Ĵ ).

(iii) Let J ⊆ S2 and let I be an s.n. ideal such that Ĵ0 ⊆ I ⊆ Ĵ and the norms
| · | Ĵ0

, | · |I , coincide on Ĵ0. Then

L(J0)⊆ L( Ĵ0)
∗
= L(I )∗ = L( Ĵ )∗ = L(J ),

and the inclusion and the equalities are isometric.
In particular, L(Sp)

∗
= L(Sp′), if 1 < p < ∞, where p′

= p/(p − 1);
L(S1)

∗
= L(S∞)= L(Sb) and the norms coincide.

Proof. Part (i) follows from Lemma 3.2(i) and (4–2).
If J0 = J , then, by Lemma 4.1(ii), the space XJ0 = XJ is normal, and part (ii)

follows from (4–3) and (i).
By Lemma 2.1, S2 ⊆ Ĵ0, so that X Ĵ0

= XI = X Ĵ (=S2) and the norms coincide.
Hence L( Ĵ0)=L(I )=L( Ĵ ) and the norms coincide. By Lemma 4.1, X Ĵ is normal
and (X Ĵ )

\
= (X Ĵ0

)\ = XJ . It follows from (4–2) and (4–3) that

(4–4) L( Ĵ )∗ ⊆ L(J ) and ‖M‖ Ĵ = ‖M∗
‖J for M ∈ L( Ĵ ).

Combining this with (i), we have

L(J0)⊆ L( Ĵ0)
∗
⊆ L(J ),(4–5)

‖M‖J = ‖M∗
‖ Ĵ0

= ‖M∗
‖ Ĵ ≤ ‖M‖J0 for M ∈ L(J0).(4–6)

By Lemma 4.1(iii), (XJ )
\
= X Ĵ0

. Hence, by (4–2),

L(J )∗ ⊆ L( Ĵ0) and ‖M∗
‖ Ĵ0

≤ ‖M‖J for M ∈ L(J ).

Since XJ0 ⊆ XJ and the norms | · |J and | · |J0 coincide on J0, we have ‖M‖J0 ≤

‖M‖J , for M ∈ L(J0). Combining this with (4–4)–(4–6), we conclude the proof
of (iii). �

Let I ⊂ R ⊂ J be s.n. ideals. The ideal R is called an interpolation ideal for
the pair (I, J ), if every bounded operator T on J preserving I also preserves R. It
follows from Lemma 2.1 that T |I and T |R are bounded operators. All coseparable
ideals are interpolation ideals for the pair (S1,S∞) (see [Mitjagin 1965]).

Using the results of [Boyd 1969], Arazy [1978] associated the Boyd indices
(pJ0, qJ0), where 1 ≤ pJ0 ≤ qJ0 ≤ ∞, with each separable ideal J0 and proved
that J0 is an interpolation ideal for a pair (Sp,Sq) if p < pJ0 and qJ0 < q . For
J0 = Sp, one has pJ0 = qJ0 = p. In particular, Sr is an interpolation ideal for
(Sp,Sq) if p < r < q .
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Corollary 4.3. If R is an interpolation ideal for a pair (I, I1) of separable ideals,
then L(I )∩ L(I1)⊆ L(R). In particular,

L(S∞)
∗
∩ L(S∞)⊆ L(J ) for each coseparable ideal J,

L(Sr )⊆ L(Sp) if 2 ≤ p < r or 1 ≤ r < p ≤ 2,

L(Sp)∩ L(Sq)⊆ L(J0) if p < pJ0 and qJ0 < q.

5. Multipliers for tensor products of representations

Let A ⊗ B be the minimal tensor product of C*-algebras A and B — the comple-
tion of the algebraic tensor product A � B in the minimal C*-norm ‖ · ‖min . If π
and ρ are *-representations of A and B on Hilbert spaces H and K , we denote by
π ⊗ ρ their tensor product; it is a *-representation of A ⊗ B on H ⊗ K .

Let ξ ∈ H ⊗ K . Then θ(ξ)∈S2(H d , K ). It follows from (2–6) that, for a � b ∈

A � B,

θ((π ⊗ ρ)(a � b)ξ)= θ((π(a)⊗ ρ(b))ξ)= ρ(b)θ(ξ)π(a)d ,

where π(a)d is the conjugate of π(a) on H d . Thus the representation π ⊗ ρ is
equivalent to the representation σπ,ρ of A ⊗ B on S2(H d , K ) such that

(5–1) σπ,ρ(a � b)T = ρ(b)Tπ(a)d , for a ∈ A, b ∈ B, T ∈ S2(H d , K ).

We say that ϕ ∈ A ⊗ B is a (π ⊗ ρ, I )-multiplier if it is a (σπ,ρ, I )-multiplier, that
is, σπ,ρ(ϕ) ∈ L(I ). Recall that it means that σπ,ρ(ϕ) preserves XI = I (H d , K )∩
S2(H d , K ), and its restriction to XI is bounded in | · |I .

Denote by Mπ,ρ
I (A ⊗ B) (or just Mπ,ρ

I ) the algebra of all (π ⊗ ρ, I )-multipliers,
and by ‖ϕ||

π,ρ
I the norm of σπ,ρ(ϕ) on XI (see (4–1)):

‖ϕ||
π,ρ
I = ‖σπ,ρ(ϕ)‖I .

Then Mπ,ρ

S2
= A ⊗ B. We have Mπ,ρ

S∞
= Mπ,ρ

Sb
and, omitting the subscript, write

Mπ,ρ and ‖ϕ‖
π,ρ .

Remark. It follows immediately from our definitions that all results of Proposition
4.2 and Corollary 4.3 hold if L(I ) is replaced by Mπ,ρ

I .

Clearly, all algebras Mπ,ρ
I contain A � B, so they are dense in A ⊗ B. We will

see now (and use later on) that the unit ball of Mπ,ρ
I is norm closed in A ⊗ B. In

fact, it is closed in a much stronger sense — with respect to a weaker convergence,
which can be considered as the analog of the point convergence in the case of usual
Schur multipliers.

Let X and Y be Banach spaces. Probably the weakest condition for an operator
T from X into Y to be considered as a “limit point” for a set W of operators is the
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condition that T x ∈ W x , for any vector x ∈ X. In this case one says that T belongs
to the reflexive hull Ref(W ) of W .

Let τ be a *-representation of a C*-algebra D on a Hilbert space H. We say that
ϕ ∈ D is a τ -cluster point of a convex subset W of D, if τ(ϕ) ∈ Ref(τ (W )). For
H = S2(H1, H2), this means that there are ϕn ∈ W such that

(5–2) lim
n→∞

∣∣τ(ϕ)(T )− τ(ϕn)(T )
∣∣
2 = 0 for all T ∈ S2(H1, H2).

We say that ϕ is a weak τ -cluster point of W if, for each T ∈ S2(H1, H2), the
operator τ(ϕ)(T ) ∈ S2(H1, H2) belongs to Ref{τ(w)(T ): w ∈ W }. By the Hahn–
Banach theorem, this means that, for each x ∈ H1 and y ∈ H2, there are ϕn ∈ W
such that

(5–3) (τ (ϕn)(T )x, y)→ (τ (ϕ)(T )x, y).

Recall that, for any normed space (X, ‖ · ‖), we denote by br (X) the closed ball
{x ∈ X: ‖x‖ ≤ r}.

Proposition 5.1. (i) If S2 ⊆ I , then br (M
π,ρ
I ) contains all its σπ,ρ-cluster points.

(ii) br (Mπ,ρ) contains all its weak σπ,ρ-cluster points.

Proof. Let ϕ be a σπ,ρ-cluster point of br (M
π,ρ
I ). Then, for T ∈ S2(H d , K ), there

are ϕn ∈ br (M
π,ρ
I ) such that (5–2) holds. Hence, by (2–2),

|σπ,ρ(ϕ)(T )|I ≤ |σπ,ρ(ϕ−ϕn)(T )|I + |σπ,ρ(ϕn)(T )|I

≤ c|σπ,ρ(ϕ−ϕn)(T )|2 + ‖ϕn‖
π,ρ
I |T |I ≤ c|σπ,ρ(ϕ−ϕn)(T )|2 + r |T |I ,

for some c > 0. Thus |σπ,ρ(ϕ)(T )|I ≤ r |T |I , so ϕ ∈ br (M
π,ρ
I ). Part (i) is proved.

Let I = S∞ and let ϕ be a weak σπ,ρ-cluster of br (Mπ,ρ). For T ∈ S2(H d , K ),
x ∈ H d , y ∈ K , choose ϕn ∈ br (Mπ,ρ) satisfying (5–3). Then a similar argument
gives

|(σπ,ρ(ϕ)(T )x, y)| ≤ r‖T ‖‖x‖‖y‖.

Hence ϕ ∈ b(Mπ,ρ). �

We consider now how the space of multipliers depends on the choice of repre-
sentations. The next theorem establishes that Mπ,ρ

I does not change if π and ρ are
replaced by approximately equivalent representations.

Theorem 5.2. Let π ′
�a π and ρ ′

�a ρ. If I is either a coseparable ideal or
contains S2, then

Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I for ϕ ∈ Mπ,ρ

I .

As a consequence, if π ′∼a π and ρ ′∼a ρ, then

Mπ,ρ
I = Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I = ‖ϕ‖
π,ρ
I for ϕ ∈ Mπ,ρ

I .
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Proof. Let isometries Uλ : H ′
→ H and Vµ : K ′

→ K satisfy (3–4). Then, for
a ∈ A and b ∈ B, ‖π(a)Uλ − Uλπ

′(a)‖ → 0 and ‖ρ(b)Vµ − Vµρ ′(b)‖ → 0. The
operators Wλµ = Uλ ⊗ Vµ are isometries from H ′

⊗ K ′ into H ⊗ K , and∥∥(π ⊗ ρ)(a ⊗ b)Uλ ⊗ Vµ − Uλ ⊗ Vµ(π ′
⊗ ρ ′)(a ⊗ b)

∥∥
≤

∥∥(π(a)Uλ − Uλπ
′(a))⊗ ρ(b)Vµ

∥∥ +
∥∥Uλπ

′(a)⊗ (ρ(b)Vµ − Vµρ ′(b))
∥∥,

which tends to 0. By linearity, ‖(π ⊗ ρ)(x)Wλµ − Wλµ(π
′
⊗ ρ ′)(x)‖ → 0, for all

x ∈ A � B. Since ‖Wλµ‖ = 1, it also holds for all x ∈ A ⊗ B. Thus

π ′
⊗ ρ ′

�a π ⊗ ρ.

By Lemma 4.1(ii), the normed space XI ((H ′)d , K ′) is normal. Identifying
H ⊗ K with S2(H d , K ) and H ′

⊗ K ′ with S2((H ′)
d
, K ′), we have from (2–6)

that,

WλµT = (Uλ ⊗ Vµ)T = VµT U d
λ and W ∗

λµR = (U∗

λ ⊗ V ∗

µ)R = V ∗

µ R(U∗

λ )
d ,

for T ∈ S2((H ′)d , K ′) and R ∈ S2(H d , K ). Since I is an ideal,

WλµXI ((H ′)d , K ′)⊆ XI (H d , K );

see (4–6). By (2–4),

|WλµT |I ≤ ‖Vµ‖|T |I ‖U d
λ ‖ ≤ |T |I and |W ∗

λµR|I ≤ ‖V ∗

µ‖|R|I ‖(U∗

λ )
d
‖ ≤ |R|I .

Hence the approximate subordination π ′
⊗ ρ ′

�a π ⊗ ρ satisfies (3–5). Applying
Proposition 3.4, we complete the proof. �

Remark. We do not know whether Theorem 5.2 extends to all separable ideals
contained in S2. Proposition 4.2(i) only gives that (Mπ,ρ

J0
)∗ ⊆ Mπ ′,ρ′

J , if J0 ⊆ S2.

Recall that for T ∈ B(H), rank(T )=dim (T H). Let π and π ′ be representations
of a C*-algebra A. It was proved in Theorem 5.1 of [Hadwin 1981] that

(5–4) π ′
�a π ⇐⇒ rank(π ′(a))≤ rank(π(a)) for each a ∈ A.

Thus it follows from Theorem 5.2 and (5–4) that, if

rank(π ′(a))= rank(π(a)) and rank(ρ ′(b))= rank(ρ(b))

for all a ∈ A and b ∈ B, then Mπ,ρ
I = Mπ ′,ρ′

I , and the corresponding norms are
equal.

For some applications (see Section 6) it is important that, for representations of
separable algebras on the spaces of arbitrary dimension, one need not distinguish
infinite values of the rank.
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Corollary 5.3. Let an s.n. ideal I be either coseparable or contain S2. Let π, π ′

and, respectively, ρ, ρ ′ be representations of separable C∗-algebras A and B on
Hilbert spaces H, H ′ and K , K ′. If

min{ℵ0, rank(π ′(a))} ≤ min{ℵ0, rank(π(a))}

and
min{ℵ0, rank(ρ ′(b))} ≤ min{ℵ0, rank(ρ(b))},

for all a ∈ A, b ∈ B, then Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I , for ϕ ∈ Mπ,ρ

I .

Proof. Let ϕ ∈ Mπ,ρ
I and ‖ϕ‖

π,ρ
I = C . We have to prove that for every T ∈

I (H ′d , K ′),
‖σπ ′,ρ′(ϕ)(T )‖I ≤ C‖T ‖I .

Since T is compact, there are separable subspaces K0 ⊂ K ′ and G0 ⊂ H ′d such that
T = PK0 T PG0 , where PK0 , PG0 are the corresponding projections. The subspaces
K1 = ρ ′(B)K0 of K ′ and G1 = π ′d(A)G0 of H ′d are also separable because A

and B are separable. We denote by H1 the orthogonal complement in H ′ of the
annihilator of G1.

Since H1 and K1 are invariant for π ′ and ρ ′, respectively, define new represen-
tations π ′

1 and ρ ′

1 of A and B by

π ′

1(a)= π ′(a)|H1 ⊕ 0 and ρ ′

1(b)= ρ ′(b)|K1 ⊕ 0 for a ∈ A, b ∈ B.

Since H1 and K1 are separable, it follows from our assumptions that rank(π ′

1(a))
≤ rank(π(a)) and rank(ρ ′

1(b)) ≤ rank(ρ(b)), for all a ∈ A, b ∈ B. By (5–4),

π ′

1�a π and ρ ′

1�a ρ.

Hence, by Theorem 5.2,

ϕ ∈ Mπ ′

1,ρ
′

1
I and ‖ϕ‖

π ′

1,ρ
′

1
I ≤ ‖ϕ‖

π,ρ
I .

Thus ‖σπ ′

1,ρ
′

1
(ϕ)(T )‖I ≤ C‖T ‖I . But by the construction of π ′

1 and ρ ′

1, we have

σπ ′

1,ρ
′

1
(ϕ)(T )= σπ ′,ρ′(ϕ)(T ),

whence ‖σπ ′,ρ′(ϕ)(T )‖I ≤ C‖T ‖I . �

Corollary 5.4. Let an ideal I be either coseparable or contain S2, let π, π ′ be
representations of A, and ρ, ρ ′ be representations of B. Suppose that π(A) and
ρ(B) contain no nonzero finite rank operators, and that π ′ and ρ ′ are separable
and satisfy the condition

(5–5) Ker(π)⊆ Ker(π ′) and Ker(ρ)⊆ Ker(ρ ′).

Then Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I , for ϕ ∈ Mπ,ρ

I .



122 EDWARD KISSIN AND VICTOR S. SHULMAN

Proof. It follows from (5–5) that rank(π ′(a)) ≤ rank(π(a)), for a ∈ A, and
rank(ρ ′(b))≤ rank(ρ(b)), for b ∈ B. Hence, by (5–4),

π ′
�a π and ρ ′

�a ρ,

and it remains now only to apply Theorem 5.2. �

Remark 5.5. (1) The first condition in Corollary 5.4 can be replaced by the
conditions

rank(π ′(a))≤ rank(π(a)) and rank(ρ ′(b))≤ rank(ρ(b)),

whenever π(a) and ρ(b) are nonzero finite rank operators.

(2) If A and B are separable, the condition in Corollary 5.4 that π ′ and ρ ′ are
separable can be omitted.

Applying Corollary 5.4 to simple C*-algebras we get the following result.

Corollary 5.6. Let I be either a coseparable ideal, or S2 ⊆ I . If A and B are
simple C∗-algebras different from S∞, then Mπ,ρ

I is the same for all separable
representations π of A and ρ of B.

For I = S∞ or Sb, the conditions in Corollary 5.4 can be further simplified if
the representations π, ρ have separating vectors. This simplification is based on
the results of Smith [1991].

Recall that a vector x ∈ H is separating for a representation π of A if the map
T → T x is injective on the second commutant π(A)′′. This is equivalent to the
existence of a cyclic vector for the commutant π(A)′. In the lemma below, 1 is the
identity operator on a fixed Hilbert space H. The representations π ⊗ 1 and ρ⊗ 1
act on H ⊗ H and K ⊗ H, respectively.

Lemma 5.7. Let ∗-representations π and ρ of C∗-algebras A and B on H and K
have separating vectors. Then Mπ,ρ

= Mπ ⊗ 1,ρ⊗ 1 and the norms coincide.

The proof of the lemma follows along the lines of the proof of in [Smith 1991,
Theorem 2.1] and we omit it.

Corollary 5.8. Let representations π of A and ρ of B have separating vectors.
Then Mπ,ρ

⊆ Mπ ′,ρ′

and ‖ϕ‖
π ′,ρ′

≤ ‖ϕ‖
π,ρ , for ϕ ∈ Mπ,ρ , if representations π ′

and ρ ′ satisfy (5–5).

Proof. If dim H is sufficiently large, then condition (5–5) implies

rank(π ′(a))≤ rank(π(a)⊗ 1) and rank(ρ ′(b))≤ rank(ρ(b)⊗ 1),

for all a ∈ A and b ∈ B. Hence, by (5–4), π ′
�a π ⊗ 1 and ρ ′

�a ρ⊗ 1, and to
complete the proof it remains only to apply Theorem 5.2 and Lemma 5.7. �
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6. Universal multipliers

In this section we consider only the case I = Sb. We saw in Corollary 5.8 that
in this case all multipliers for a pair of faithful representations with separating
vectors are multipliers for all pairs of representations. Let us denote by M(A ⊗ B)

the algebra of “universal” multipliers; it consists of all elements of A ⊗ B that are
(π ⊗ ρ,Sb)-multipliers for all pairs (π, ρ). Clearly A � B⊆M(A ⊗ B)⊆A ⊗ B.
For ϕ ∈ M(A ⊗ B), set

(6–1) ‖ϕ‖r = sup
π,ρ

‖ϕ‖
π,ρ .

It is not difficult to see that ‖ϕ‖r < ∞. Indeed, if ‖ϕ‖
πn,ρn → ∞, consider the

representations π =
⊕
πn and ρ =

⊕
ρn . Then ‖ϕ‖

πn,ρn ≤ ‖ϕ‖
π,ρ for all n, a

contradiction.
As usual, we denote by Aop the C*-algebra that consists of all elements of A

and has the same norm and involution, but the reverse multiplication: a◦b = ba. If
π is a *-representation of A on H , the map πop

: a → π(a)d is a *-representation
of Aop on H d .

Recall that the Haagerup norm on A � B is defined by

‖w‖h = inf
{∥∥ ∑

ai a∗

i

∥∥1/2∥∥ ∑
b∗

i bi
∥∥1/2

: w =
∑

ai ⊗ bi

}
.

It is known that

‖w‖min ≤ ‖w‖h, for w ∈ A � B.

Define a “pseudo-Haagerup” norm on A � B by setting

(6–2) ‖w‖ph = inf
{∥∥ ∑

ai a∗

i

∥∥1/2∥∥ ∑
bi b∗

i )
∥∥1/2

: w =
∑

ai ⊗ bi

}
.

It is a norm, because ‖w‖ph = ‖0w‖h , where 0: A � B → B � Aop is a linear
bijection defined by 0(a ⊗ b)= b ⊗ a.

Theorem 6.1. The Haagerup and pseudo-Haagerup norms satisfy ‖w‖r = ‖w‖ph

for w ∈ A � B.

Proof. Let π and ρ be representations of A and B on H and K . For w=
∑

ai ⊗ bi

in A � B, set Ai = π(ai ), Bi = ρ(bi ). Take T ∈ S2(H d , K ), x ∈ H , y ∈ K . By
(5–1),

|(σπ,ρ(w)T x, y)| =

∣∣∣∑
i
(Bi T Ad

i x, y)
∣∣∣ ≤

∑
i

∣∣(T Ad
i x, B∗

i y)
∣∣

≤
∑

i
‖T Ad

i x‖‖B∗

i y‖ ≤ ‖T ‖

(∑
i
‖Ad

i x‖
2
)1/2(∑

i
‖B∗

i y‖
2
)1/2

.
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We have ∑
i

‖B∗

i y‖
2
=

∑
i
(B∗

i y, B∗

i y)=

(
y,

(∑
i

Bi B∗

i

)
y
)

≤

∥∥∥ρ(∑
i

bi b∗

i

)∥∥∥‖y‖
2
≤

∥∥∥∑
i

bi b∗

i

∥∥∥‖y‖
2.

We see from (2–4) that (π(a)d)∗π(a)d = π(aa∗)d for a ∈ A. From this, and using
(2–4) again, we get

∑
i‖Ad

i x‖
2
≤

∥∥∑
i ai a∗

i

∥∥‖x‖
2. Therefore∣∣(σπ,ρ(w)T x, y)

∣∣ ≤ ‖T ‖

∥∥∥∑
i

ai a∗

i

∥∥∥1/2∥∥∥∑
i

bi b∗

i

∥∥∥1/2
‖x‖‖y‖.

Hence
‖σπ,ρ(w)T ‖ ≤ ‖w‖ph‖T ‖,

so ‖w‖
π,ρ

≤ ‖w‖ph . Thus

(6–3) ‖w‖r ≤ ‖w‖ph for w ∈ A � B.

To prove the converse inequality, denote by G the space of all linear functionals
g on A � B such that

|g(w)| ≤ ‖w‖ph, for w ∈ A � B.

For g ∈G, let ĝ be the linear functional on B � Aop acting by the rule ĝ(w)=g(0w)
for w ∈ B � Aop. By (6–2), |ĝ(w)| ≤ ‖w‖h . Hence ĝ extends to a bounded
functional on the Haagerup tensor product B ⊗ hAop and ‖ĝ‖ ≤ 1. Consider now
the bilinear map on B × Aop defined by the formula: G(b, a) = ĝ(b ⊗ a), for
b ∈ B and a ∈ Aop. It follows from Theorems 1.5.2 and 1.5.4 of [Sinclair and
Smith 1995] that there exist *-representations ρ of B on K and τ of Aop on L , a
bounded operator T : L → K , and elements x ∈ L and y ∈ K with ‖x‖ = ‖y‖ = 1,
such that

G(b, a)= (ρ(b)T τ(a)x, y), for b ∈ B, a ∈ Aop,

and ‖G‖cb = ‖ĝ‖h = ‖T ‖ ≤ 1.
Set H = Ld and π(a)= τ(a)d . Then π is a *-representation of A on H and

(6–4) g(a ⊗ b)= ĝ(b ⊗ a)= G(b, a)= (ρ(b)Tπ(a)d x, y),

for a ∈ A and b ∈ B. For w =
∑

i ai ⊗ bi , denote by σ∞
π,ρ(w) the extension of

σπ,ρ(w) from S2(H d , K ) to S∞(H d , K ). Let λπ,ρ(w) be the second adjoint of
σ∞
π,ρ(w) acting on the second dual space B(H d , K ). By (6–1),

(6–5) ‖λπ,ρ(w)‖ = ‖σ∞

π,ρ(w)‖ = ‖w‖
π,ρ

≤ ‖w‖r .

For T ∈ S∞(H d , K ), we have σ∞
π,ρ(w)T =

∑
ρ(bi )Tπ(ai )

d . This implies that
λπ,ρ(w)T =

∑
ρ(bi )Tπ(ai )

d for all T ∈ B(H d , K ). Hence, by (6–4), g(w) =
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(λπ,ρ(w)T x, y). Using (6–5), we obtain |g(w)| ≤ ‖λπ,ρ(w)T ‖ ≤ ‖w‖r . Thus

|g(w)| ≤ ‖w‖r for g ∈ G and w ∈ A � B.

Making use of the Hahn–Banach theorem, we have ‖w‖ph =supg∈G |g(w)|≤‖w‖r ,
for w ∈ A � B. Combining this with (6–3), we complete the proof. �

We say that a net {dν} of elements of a C*-algebra D point-weakly converges to
d ∈ D, and write

dν
pw
→ d,

if for each irreducible representation τ of D, τ(dν) → τ(d) in the weak operator
topology. Denote by (A � B)∼ the linear space of all ϕ ∈ A ⊗ B for which there
is a net {wν} in A � B point-weakly converging to ϕ such that sup ‖wν‖ph <∞.

Theorem 6.2. (A � B)∼ ⊆ M(A ⊗ B).

Proof. Let wν ∈ A � B, wν
pw
→ ϕ ∈ A ⊗ B and D = sup ‖w‖ph <∞. To prove that

ϕ ∈ M(A ⊗ B), we have to check that ‖ϕ‖
π,ρ

≤ D for all representations π , ρ.
Let firstly π and ρ be direct sums of irreducible representations: π =

⊕
λ∈3 πλ

and ρ =
⊕

γ∈0 ργ act on Hilbert spaces H =
⊕

Hλ and K =
⊕

Kλ, respectively.
By Theorem 6.1, ‖wν‖

π,ρ
≤ D, for each ν, so ‖σπ,ρ(wν)(T )‖ ≤ ‖wν‖

π,ρ
‖T ‖ ≤

D‖T ‖, for any operator T ∈ S2(H d , K ). To prove that ‖σπ,ρ(ϕ)(T )‖ ≤ D‖T ‖,
it suffices to show that the operators σπ,ρ(wν)(T ) tend to σπ,ρ(ϕ)(T ) in the weak
operator topology. Moreover, the standard boundedness arguments show that it
suffices to prove that

(6–6) (σπ,ρ(wν)(T )x, y)→ (σπ,ρ(ϕ)(T )x, y),

for each x ∈ U =
⋃

H d
λ and y ∈ V =

⋃
Kγ , since U, V are generating subsets in

H d and K , respectively.
For x ∈ H d

λ and y ∈ Kγ , set R = x ⊗ y. We have from (5–1) that, for each
ψ ∈ A ⊗ B, σπ,ρ(ψ)(R)= σπλ,ργ (ψ)(R). Hence, we obtain from (2–1) that

(σπ,ρ(ψ)(T )x, y)= Tr(y ⊗ σπ,ρ(ψ)(T )x)= Tr(σπ,ρ(ψ)(T )(x ⊗ y)∗)

= (x ⊗ y, σπ,ρ(ψ)(T ))2 = (σπ,ρ(ψ∗)(R), T )2

= (σπλ,ργ (ψ
∗)(R), T )2 .

Since σπλ,ργ is an irreducible representation A ⊗ B and w∗
ν

pw
→ ϕ∗, it follows that

(6–6) holds.
Now let π and ρ be arbitrary. Consider the representation τ of A, which is the

direct sum of all irreducible representations of A repeated dim(Hπ ) times. Then,
for each a ∈ A, we have rank(π(a)) ≤ rank(τ (a)), whence π�a τ ; see (5–4).
Similarly, there is a representation χ of B, which is a direct sum of irreducible
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representations, such that ρ �a χ . By Theorem 5.2, Mτ,χ
⊆ Mπ,ρ , so ϕ ∈ Mπ,ρ .

Thus ϕ ∈ M(A ⊗ B) and (A � B)∼ ⊆ M(A ⊗ B). �

Problem 6.3. Does (A � B)∼ coincide with M(A ⊗ B)?

We will see further that for commutative C*-algebras the answer is positive.

7. Multipliers of commutative algebras; (µ, ν)-multipliers

The commutativity of the C*-algebras A and B implies significant simplifications
to the previous results and constructions. To begin with, each representation of a
commutative algebra has a separating vector. Hence, by Corollary 5.8, the algebra
Mπ,ρ(A ⊗ B) depends only on the kernels of the representations π, ρ. In particular,
if π, ρ are faithful, then Mπ,ρ(A ⊗ B) = M(A ⊗ B) and ‖ϕ‖

π,ρ
= ‖ϕ‖r . Since

‖ϕ‖ph = ‖ϕ‖h for commutative algebras, Theorem 6.1 shows that, for faithful π
and ρ,

‖ϕ‖
π,ρ

= ‖ϕ‖h, for ϕ ∈ A � B.

It was proved in [1953] that the norm ‖ · ‖h on A ⊗ B is equivalent to the pro-
jective tensor norm ‖ · ‖γ . Thus in the case of commutative algebras our Theorem
6.2 implies that the Varopoulos tensor algebra V (X, Y ) = C(X) ⊗̂ C(Y ) and its
“tilde-algebra” (see [Graham and McGehee 1979]) are topologically included into
M(C(X)⊗ C(Y )). In fact, this theorem deals with a wider “tilde-extension” con-
sisting of pointwise limits of ‖ ·‖γ -bounded nets. We will return to this topic later.

Let U be a commutative operator C*-algebra on H with the space 3 of all
maximal ideals. Then

H =

⊕
γ∈0

Hγ ,

where all Hγ ≈ L2(3,µγ ) are invariant for U, and each f ∈ U acts on Hγ as a
multiplication operator. The antiisometric involution j : {gγ (λ)} 7→ {gγ (λ)} on H
induces an involution on U given by j A j = A∗, for A ∈ U. Taking into account
(2–5), which here becomes ∂A∗∂−1

= Ad , we see that the unitary operator V = ∂ j
from H to H d establishes a unitary equivalence of A and Ad : Ad

= V AV −1.
For representations π of A on H and ρ of B on K , we identify S2(H d , K ) with
S2(H, K ) by the formula U (T )= T V , for T ∈ S2(H d , K ). Using this and (5–1),
we will assume that σπ,ρ acts on S2(H, K ) by the formula

σπ,ρ(a ⊗ b)R = ρ(b)Rπ(a).

We now prove that, for commutative A,B, the subalgebras Mπ,ρ
I in A ⊗ B are

involutive.
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Proposition 7.1. If A and B are commutative, then Mπ,ρ
I (A ⊗ B) is a ∗-subalgebra

of A ⊗ B for each pair of representations π, ρ and each s.n. ideal I . Moreover,

‖ϕ∗
‖
π,ρ
I = ‖ϕ‖

π,ρ
I , for ϕ ∈ Mπ,ρ

I (A ⊗ B).

Proof. Consider the antiisometric involutions j on Hπ and i on Kρ such that
π(a∗)= jπ(a) j and ρ(b∗)= iρ(b)i , for all a ∈A, b ∈B. Then, for T ∈S2(H, K ),

σπ,ρ(a∗
⊗ b∗)(T )= ρ(b∗)Tπ(a∗)= i{σπ,ρ(a ⊗ b)(iT j)} j.

Hence σπ,ρ(ϕ∗)(T ) = i{σπ,ρ(ϕ)(iT j)} j , for all ϕ ∈ A ⊗ B. For any s.n. ideal I
and any operator T ∈ I (H, K ), iT j ∈ I (H, K ) and |iT j |I = |T |I . Thus it follows
that ϕ ∈ Mπ,ρ

I (A ⊗ B) implies ϕ∗
∈ Mπ,ρ

I (A ⊗ B), and ‖ϕ∗
‖
π,ρ
I = ‖σπ,ρ(ϕ

∗)‖I =

‖σπ,ρ(ϕ)‖I = ‖ϕ‖
π,ρ
I . �

Let X be the space of all maximal ideals of a commutative C*-algebra A. Then
A = C0(X) and each representation π of A corresponds to a spectral measure Eπ
on X , that is, a σ -additive map from the σ -algebra of all Borel subsets of X to the
lattice of projections in Hπ . An isolated point x in the support, supp(Eπ ), of Eπ
must be an atom: Eπ ({x}) 6= 0. To apply the results of the previous sections we
need to express rank(π( f )) in terms of the spectral measure. Set

S( f,Eπ )= {x ∈ supp(Eπ ) : f (x) 6= 0}.

Lemma 7.2. For f ∈ C0(X), rank(π( f )) <∞ if and only if S( f,Eπ ) consists of
a finite number of points of finite multiplicity (dim(Eπ ({x})) <∞). In this case

rank(π( f ))=

∑
x∈S( f,Eπ )

dim(Eπ ({x})).

Proof. If S( f,Eπ ) is infinite, it contains a countable set of points with disjoint
neighbourhoods. Hence rank(π( f )) is infinite. Let S( f,Eπ )={x1, . . . , xn}. Since
f is continuous, Eπ ({xi }) 6= 0 and π( f )=

∑
i f (xi )Eπ ({xi }). �

It follows from Lemma 7.2 that the kernel of a representation depends only on the
support of the corresponding spectral measure.

Corollary 7.3. Let π, π ′ and ρ, ρ ′ be, respectively, representations of commutative
C*-algebras A = C0(X) and B = C0(Y ). Let

(7–1) supp(Eπ ′)⊂ supp(Eπ ) and supp(Eρ′)⊂ supp(Eρ).

Then

(i) Mπ,ρ(A ⊗ B)⊆ Mπ ′,ρ′

(A ⊗ B), and the inclusion is contractive.



128 EDWARD KISSIN AND VICTOR S. SHULMAN

(ii) Suppose that I is either a coseparable s.n. ideal or S2 ⊆ I . Let the represen-
tations π ′ and ρ ′ be separable, and let, for all isolated points x ∈ supp(Eπ )
and y ∈ supp(Eρ),

dim(Eπ ′({x}))≤ dim(Eπ ({x})) and dim(Eρ′({y}))≤ dim(Eρ({y})).

Then Mπ,ρ
I (A ⊗ B)⊆ Mπ ′,ρ′

I (A ⊗ B), and the inclusion is contractive.

Proof. The inclusions (7–1) imply (5–4). Since all representations of commutative
C*-algebras have separating vectors, (i) follows from Corollary 5.8.

Applying Lemma 7.2, Corollary 5.4 and Remark 5.5, we get (ii). �

Let µ and ν be measures on X and Y , let H = L2(X, µ) and K = L2(Y, ν). Then
S2(H, K ) consists of integral Hilbert–Schmidt operators R with kernels r(x, y)
on X × Y satisfying (1–1). Each ϕ ∈ L∞(X × Y, µ× ν) defines a bounded linear
map 8ϕ on S2(H, K ): 8ϕ(R) is the integral operator with kernel ϕ(x, y)r(x, y).
Recall from the Introduction that if 8ϕ preserves XI and is bounded in | · |I , then
ϕ is called a (µ, ν, I )-multiplier. We denote by ‖8ϕ‖I the norm of the operator
8ϕ acting on XI , and by Mµ,ν(I ) the set of all (µ, ν, I )-multipliers.

Every multiplicity-free representation of C0(X) is defined by a regular σ -finite
Borel measure µ on X , and acts on L2(X, µ) by multiplication operators:

πµ( f )h(x)= f (x)h(x).

Let ρν be a multiplicity-free representation of C0(Y ) defined by a regular σ -finite
Borel measure ν on Y . Then C0(X)⊗ C0(Y ) = C0(X × Y ) and, for each ϕ in
C0(X × Y ), σπµ,ρν (ϕ), acts on S2(H, K ) by multiplying the integral kernels of
operators R ∈ S2(H, K ) by ϕ. Thus

σπµ,ρν (ϕ)=8ϕ for ϕ ∈ C0(X × Y ).

Therefore (πµ ⊗πν, I )-multipliers are continuous (µ, ν, I )-multipliers, and

Mπµ,ρν
I (C0(X)⊗ C0(Y ))= Mµ,ν(I )∩ C0(X × Y ).

We will use the simplified notations and write

Mµ,ν
I instead of Mπµ,ρν

I and ‖ϕ‖
µ,ν
I instead of ‖ϕ‖

πµ,ρν
I .

Thus

‖ϕ‖
µ,ν
I

def
= ‖ϕ‖

πµ,ρν
I

def
= ‖σπµ,ρν (ϕ)‖I = ‖8ϕ‖I for ϕ ∈ C0(X × Y ).

Corollary 7.4. Let X, Y be locally compact spaces with countable bases. Let
µ,µ′ and ν, ν ′ be σ -finite Borel measure on X and Y , respectively. Let I be either
a coseparable s.n. ideal or S2 ⊆ I . If

supp(µ′)⊆ supp(µ) and supp(ν ′)⊆ supp(ν),
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then Mµ,ν
I (C0(X)⊗ C0(Y )) ⊆ Mµ′,ν′

I (C0(X)⊗ C0(Y )), and the inclusion is con-
tractive.

Proof. Since X, Y have countable bases and all measures are σ -finite, the corre-
sponding L2( · , · ) spaces are separable. For any A ⊂ X , Eπµ(A) is the multipli-
cation operator by the characteristic function of A. Hence supp(µ) coincides with
supp(Eπµ). Since dim(Eπµ({x}))=1 for each isolated point x ∈ supp(µ), our result
follows from Corollary 7.3. �

Our next aim is to relate continuous (µ, ν, I )-multipliers to Schur I -multipliers.
Let H = l2(X) be the Hilbert space of all complex-valued functions g on X such
that

∑
x∈X |g(x)|2 < ∞. Denote by τX the representation of C0(X) on l2(X) by

diagonal operators

(τX (h)g)(x)= h(x)g(x) for h ∈ C0(X), g ∈ l2(X).

Let K = l2(Y ). Each T ∈ S2(H, K ) corresponds to a matrix (t (x, y)) with∑
|t (x, y)|2 < ∞. For a bounded complex-valued function ϕ on X × Y , the

operator Sϕ(T ) = (ϕ(x, y)t (x, y)) is bounded on S2(H, K ). If Sϕ preserves
XI = I (H, K ) ∩ S2(H, K ) and is bounded in | · |I , then ϕ is called a Schur
I -multiplier and ‖Sϕ‖I denotes the norm of the operator Sϕ acting on XI . Clearly,
Schur I -multipliers on X × Y are exactly (τX , τY , I )-multipliers.

Theorem 7.5. Let X, Y be locally compact spaces with countable bases and let
µ, ν be Borel σ -finite measures on X and Y , with supp(µ) = X , supp(ν) = Y .
Suppose that an s.n. ideal I is either coseparable or S2 ⊆ I . A function ϕ ∈

C0(X × Y ) is a (µ, ν, I )-multiplier on X × Y if and only if it is a Schur I -multiplier
on X × Y . In this case ‖Sϕ‖I = ‖ϕ‖

µ,ν
I .

Proof. Since L2(X, µ) is a separable space, rank(πµ( f ))≤ ℵ0, for f ∈ C0(X). Let
us show that

(7–2) rank(πµ( f ))= min{ℵ0, rank(τX ( f ))}.

If rank(τX ( f ))≥ ℵ0, then, by Lemma 7.2, rank(πµ( f )) can not be finite, so (7–2)
holds. If rank τX ( f ) = n < ∞, then the set S( f,Eτ ) consists of n points. By
the continuity of f , these points must be isolated in X . Hence, by Lemma 7.2,
rank(πµ( f )) = n, and (7–2) holds. Since the same equality holds for πν and τY ,
and the C*-algebras C0(X),C0(Y ) are separable, our result follows from Corollary
5.3. �

Problem 7.6. Let X and Y be locally compact spaces with countable bases and
I = Sp. Is each Schur I -multiplier ϕ ∈ C0(X × Y ) a (π ⊗ ρ, I )-multiplier for all
separable representations π of C0(X) and ρ of C0(Y )?
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The positive answer to this problem follows from the previous results in two
cases: if X and Y have no isolated points, and if I = S∞.

(1) Assume X and Y have no isolated points. Let µ, ν be Borel σ -finite measures
without atoms, with supp(µ)= X , supp(ν)= Y . Then πµ(C0(X)) and ρν(C0(Y ))
have no nonzero finite rank operators, and Ker(πµ)= Ker(ρν)= {0}. By Theorem
7.5, ϕ is a (µ, ν, I )-multiplier on X × Y . By Corollary 5.4, it is a (π ⊗ ρ, I )-
multiplier for all separable representations π of C0(X) and ρ of C0(Y ).

(2) Assume I = S∞. Let I = S∞. Every cyclic representation of C0(X)
is of the form πµ. Each separable representation π of C0(X) is equivalent to a
subrepresentation of πµ ⊗ 1H, for separable H and some cyclic representation πµ.
By Theorem 7.5, ϕ is a (µ, ν, I )-multiplier on X × Y . By Lemma 5.7, it is a
((πµ ⊗ 1H)⊗ (ρν ⊗ 1H), I )-multiplier. Hence it is a (π ⊗ ρ, I )-multiplier.

For I = S∞ (or equivalently Sb, S1), Schur I -multipliers were described by
Grothendieck in [1953] (see also Theorems 5.1 and 5.5 in [Pisier 2001]): ϕ is a
Schur S∞-multiplier if and only if there are bounded families {uλ} and {vλ} of
functions on X and Y , such that ϕ belongs to the pointwise closure of the convex
hull of {uλ(x)vλ(y)}. It can be easily seen from the proof in [Pisier 2001] that if
ϕ ∈ C0(X, Y ), one can choose uλ, vλ among Borel functions. Since each Borel
function u(x) with |u(x)| ≤ 1 can be pointwise approximated by functions from
b1(C0(X)), the inclusion of Theorem 6.2 is, in fact, an equality for commutative
A and B .

Corollary 7.7. If A and B are commutative, then (A � B)∼ = M(A ⊗ B).

Recall one of the equivalent definitions (cf. [Birman and Solomyak 1967]) of
a double operator integral (DOI). Let E, F be spectral measures on X and Y with
values in the sets P(H) and P(K ) of all projections in B(H) and B(K ), respec-
tively. One defines their direct product G as a spectral measure on X × Y with
values in P(S2(H, K )) by G(A × B)(T ) = F(B)T E(A), and further extends it
from rectangulars to all Borel sets. For a bounded Borel function ϕ on X ×Y , one
defines the operator Iϕ on S2(H, K ) by

Iϕ =

∫
ϕ(x, y) dG.

If Iϕ is bounded on I ∩ S2 in | · |I , then one says that ϕ defines DOI on I .
Let now ϕ ∈ C0(X × Y ), and let spectral measures Eπ , Fρ correspond to rep-

resentations π and ρ of C0(X) and C0(Y ), respectively. Then ϕ defines DOI on
I if and only if ϕ ∈ Mπ,ρ

I (C0(X)⊗ C0(Y )). Thus the DOI theory, restricted to
continuous functions, can be considered as a part of the general operator multi-
pliers theory for tensor products of representations of C*-algebras. In particular,
Corollary 7.3 states that the space of continuous functions that define bounded DOI
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depends only on the supports of the spectral measures and (if I 6= S1,S∞,Sb)
on the multiplicity of their atoms.

Some results in this section are known or can be deduced from the DOI theory.
Proposition 7.1 was, in fact, proved by Birman and Solomyak [1967; 1973]. We
presented the proof here because it is short and “coordinate free”. For functions
that define DOI on S∞ (or, equivalently, on S1, Sb), a precise description was
obtained by Peller [1985], completing previous results of Birman and Solomyak
[1967; 1973] (a transparent proof of Peller’s theorem can be found in the recent
book [Hiai and Kosaki 2003]). Without stating this directly, Peller’s theorem shows
that only supports of the spectral measures are essential in the description of Mπ,ρ .
No definitive description of Mπ,ρ

I is known for other I . We will discuss Peller’s
theorem at the end of Section 8.

8. The notion of ω-continuity and an analog of Luzin’s theorem

Our goal now is to remove the restriction of continuity on (µ, ν, I )-multiplier in
the main results of Section 6. Moreover, we are going to extend these results to
functions on the product of measure spaces (X, µ) and (Y, ν)without distinguished
topologies. On the other hand, even in this case, in order to be a (µ, ν, I )-multiplier
(at least if I = S∞; see Proposition 9.1), a function still has to be “continuous”
in some natural pseudotopology, called ω-pseudotopology, associated in [Erdos
et al. 1998] with the product of measure spaces. In this section we establish some
auxiliary results on ω-continuous functions.

Recall that a pseudotopology on a set is defined by a family of its subsets (called
pseudoopen), which is closed under finite intersections and countable unions. The
complements of pseudoopen sets are called pseudoclosed. A complex-valued func-
tion is pseudocontinuous if the preimages of open sets are pseudoopen.

Theω-pseudotopology on the product of measure spaces is defined as follows. A
subset N of X × Y is called marginally null if there are subsets F ⊆ X and S ⊆ Y
of zero measure such that N ⊆ (F × Y ) ∪ (X × S). A set E is ω-open if there
is a countable family of measurable rectangles An × Bn such that the symmetric
difference of

⋃
(An × Bn) and E is marginally null. The space of all ω-continuous

functions on X × Y is denoted by Cµ,ν(X × Y ).
A measure space (X, µ) is called standard if there is a topology on X (called

admissible) with respect to which µ is a σ -finite Radon measure, that is, for each
measurable set A of finite measure and each ε > 0, there is a compact set F such
that F ⊆ A and µ(A \ F) < ε. A standard space (X, µ) is separable if there is an
admissible topology in which X has a countable base.

Lemma 8.1. Let Z × W ⊆
⋃n

i=1(Ai × Bi ) for Ai ⊆ X , Bi ⊆ Y and n <∞. Then
there are finite families of disjoint sets {X p}

m
p=1 in Z and {Y j }

k
j=1 in W such that
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each X p × Y j is contained in at least one of Ai × Bi and

Z =

m⋃
p=1

X p , W =

k⋃
j=1

Y j .

Proof. When z spans Z , there is only a finite number of different sets

Az = Z ∩

( ⋂
z∈Ai

Ai

)
∩

( ⋂
z /∈Ai

(Z \ Ai )
)
.

Denote them by X1, . . . , Xm . Choosing, similarly, sets Y1, . . . , Yk in W , we obtain
the sets {X p}, {Y j } satisfying all conditions of the lemma. �

Denote by χE the characteristic function of a set E . We say that a function g
on X × Y is simple if there are measurable, disjoint sets {X i }

n
i=1, {Y j }

m
j=1, with

n,m <∞, such that

X =

n⋃
i=1

X i , Y =

m⋃
j=1

Y j , and g =
∑
i, j
αi jχX iχY j with αi j ∈ C.

Let ϕ be a function on X × Y and let Z ⊆ X , W ⊆ Y be measurable. Set

λ(ϕ, Z × W )= sup
{
|ϕ(x, y)−ϕ(x ′, y′)| : x, x ′

∈ Z , y, y′
∈ W

}
.

For ε > 0, a function ϕ is called ε-decomposable on Z ×W if there are measurable
sets {X i }

n
i=1, {Y j }

m
j=1, with n,m <∞, such that

Z ⊆

n⋃
i=1

X i , W ⊆

m⋃
j=1

Y j , and λ(ϕ, X i × Y j ) < ε for all i, j.

Theorem 8.2. Let (X, µ) and (Y, ν) be standard finite measure spaces. For a
function ϕ on X × Y , the following conditions are equivalent.

(i) ϕ is ω-continuous.

(ii) For each ε > 0, there are measurable sets Xε and Yε such that µ(X \ Xε) < ε,
ν(Y \ Yε) < ε and ϕ is ε-decomposable on Xε × Yε.

(iii) For each ε > 0, there are measurable sets Xε and Yε such that µ(X \ Xε) < ε,
ν(Y \ Yε) < ε and ϕ|Xε × Yε is a uniform limit of simple functions.

Proof. (i) H⇒ (ii). Choosing admissible topologies on X, Y and compacts Q ⊂ X
and K ⊂ Y such that µ(X \ Q) < ε/2 and ν(Y \ K ) < ε/2, we only need to prove
the implication for Q, K and ε/2. Thus we may assume that X and Y are compacts
in these topologies.

Cover the range of ϕ by open disks Dk of radius ε/2. Since ϕ is continuous,
the sets ϕ−1(Dk) are ω-open. Hence, for each k, there are marginally null sets Nk
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in X × Y and measurable sets Ak
i in X and Bk

i in Y such that

ϕ−1(Dk)= Nk ∪

∞⋃
i=1
(Ak

i × Bk
i )

Thus
X × Y = N ∪

∞⋃
i=k=1

(Ak
i × Bk

i ),

where N is a marginally null set, and λ(ϕ, Ak
i × Bk

i ) < ε, for all i, k.
Choose U ⊂ X, V ⊂ Y such that

N ⊆ (X × V )∪ (U × Y ), µ(U )≤ ε/2, ν(V )≤ ε/2.

The set κ = (X \ U )× (Y \ V ) is ω-closed and

κ ⊆

∞⋃
i=k=1

(Ak
i × Bk

i ).

By [Erdos et al. 1998, Lemma 3.4], there are sets Rε ⊂ X and Tε ⊂ Y , with
µ(X \ Rε) < ε/2 and ν(Y \ Tε) < ε/2, such that the set

κ ∩ (Rε × Tε)= (Rε \ U )× (Tε \ V )

is covered by a finite number of the rectangles Ak
i × Bk

i . Setting Xε = Rε \ U ,
Yε = Tε \ V , we obtain what we need.

(ii) H⇒ (iii). For εn = 2−nε, choose Xεn , Yεn as in (ii): µ(X \ Xεn ) < εn ,
ν(Y \ Yεn ) < εn and Xεn × Yεn is covered by a finite family of rectangles

{An
j × Bn

j }
p(n)
j=1 , with λ(ϕ, An

j × Bn
j ) < εn.

Set

Xε =

∞⋂
n=1

Xεn , Yε =

∞⋂
n=1

Yεn .

Then µ(X \ Xε) < ε, ν(Y \ Yε) < ε, and, for each n,

Xε × Yε ⊆ Xεn × Yεn ⊆

p(n)⋃
j=1
(An

j × Bn
j ).

It follows from Lemma 8.1 that there is a simple function ϕn on X × Y such that
sup

{
|ϕ(x, y)−ϕn(x, y)| : (x, y) ∈ Xε × Yε

}
< εn .

(iii) H⇒ (i). Every simple function is ω-continuous. By [Erdos et al. 1998,
Lemma 3.3], the uniform limit of ω-continuous functions is ω-continuous. Hence,
for each ε > 0, the function ϕ|Xε × Yε is ω-continuous. The set

N = (X × Y ) \
∞⋃

n=1

(
X1/n × Y1/n

)
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is marginally null. Hence, for any open set G ⊂ C,

ϕ−1(G) \
∞⋃

n=1
(ϕ−1(G)∩

(
X1/n × Y1/n

)
)= ϕ−1(G)∩ N

is a marginally null set. Since all ϕ−1(G)
⋂(

X1/n × Y1/n
)

are ω-open, ϕ−1(G) is
ω-open and ϕ is ω-continuous. �

A sequence {Xn} of measurable sets in (X, µ) is exhaustive if

Xn ⊆ Xn+1 and µ
(

X −

∞⋃
n=1

Xn

)
= 0.

Fix an admissible topology on a standard measure space (X, µ). Then X has an
exhaustive sequence {Xn} of compact sets. For each n, there are disjoint compacts
{Ki (n)} in Xn+1 such that K1(n)= Xn and µ

(
Xn+1 −

⋃
i Ki (n)

)
= 0. Hence there

are disjoint compact sets {Kn} in X such that µ
(
X −

⋃
n Kn

)
= 0.

The following result can be considered as an ω-version of Luzin’s theorem.

Theorem 8.3. Let µ and ν be Radon σ -finite measures on topological spaces X
and Y . For a function ϕ on X × Y the following conditions are equivalent.

(i) ϕ is ω-continuous.

(ii) For any ε > 0, there are measurable sets Xε ⊆ X and Yε ⊆ Y such that
µ(X − Xε) < ε, ν(Y − Yε) < ε and ϕ is continuous on X × Y .

(iii) There are exhaustive sequences {Xn} and {Yn} of compacts in X and Y such
that ϕ is continuous on each Xn × Yn .

Proof. Step 1. First we will prove the theorem for compact X and Y .

(i) ⇒ (ii). Let E be a measurable subset of X . By Luzin’s theorem, for δ > 0, there
is a compact subset K of X such that µ(X \ K ) < δ and χE is continuous on K .
Hence if g is a simple function on X × Y , there are compacts K ⊆ X , R ⊆ Y such
that µ(X \ K ) < δ, ν(Y \ R) < δ and g is continuous on K × R.

Let ϕ be ω-continuous. For ε > 0, let sets Xε and Yε be chosen as in Theorem
8.2 (iii) and let simple functions ϕn uniformly converge to ϕ|Xε × Yε. Set εn =

2−nε. By the argument above, there are compacts Kn ⊆ X , Rn ⊆ Y such that
µ(X \ Kn) < εn , ν(Y \ Rn) < εn and the functions ϕn are continuous on Kn × Rn .
Set

L(ε)= Xε ∩

∞⋂
n=1

Kn and M(ε)= Yε ∩

∞⋂
n=1

Rn.

Thenµ(X\L(ε))≤2ε and ν(Y\M(ε))≤2ε. All ϕn are continuous on L(ε)× M(ε)
and uniformly converge to ϕ|L(ε)× M(ε). Hence ϕ is continuous on L(ε)× M(ε).
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(ii) ⇒ (iii). Set

Ln =

∞⋂
k=n

L(εk) and Mn =

∞⋂
k=n

M(εk).

Then Ln ⊆ Ln+1, Mn ⊆ Mn+1, and ϕ is continuous on Ln × Mn . Furthermore,

µ(X \ Ln)≤

∞∑
k=n

µ(X \ L(εk)) < ε22−n,

ν(Y \ Mn)≤

∞∑
k=n

ν(Y \ M(εk)) < ε22−n.

Thus {Ln}, {Mn} are exhaustive sequences. Since µ, ν are Radon measures, there
are compacts En ⊆ Ln and Fn ⊆ Mn such that µ(Ln\En)<1/n, ν(Mn\Fn)<1/n.
Hence

Xn =

n⋃
k=1

Ek and Yn =

n⋃
k=1

Fk

form exhaustive sequences of compacts in X and Y .

Step II. Now assume that X and Y are not compact spaces. Let {Fn} and {Gn} be
disjoint compact sets in X and Y such that µ(X \

⋃
n Fn)= ν(Y \

⋃
nGn)= 0. For

ε > 0, set εn = ε2−n .

(i) ⇒ (ii). It follows from step I that, for each pair (n,m), there are sets Rn,m(ε)⊂

Fn and Tn,m(ε) ⊂ Gm such that ϕ is continuous on Rn,m(ε)× Tn,m(ε), µ(Fn \

Rn,m(ε))≤ εnεm , and ν(Gm \ Tn,m(ε))≤ εnεm . Set

(8–1) Rn(ε)=

∞⋂
m=1

Rn,m(ε) and Tm(ε)=

∞⋂
n=1

Tn,m(ε).

Then µ(Fn \ Rn(ε))≤ εnε, µ(Gm \ Tm(ε))≤ εmε, and the map ϕ is continuous on
Rn(ε)× Tm(ε) for each pair (n,m). Set

(8–2) Xε =

∞⋃
n=1

Rn(ε) and Yε =

∞⋃
m=1

Tm(ε).

These are the sets we need.

(ii) ⇒ (iii). We preserve the notations above. Let εk = 2−k . It follows from
step I that, for each pair (n,m), there are increasing sequences of compact sets
{Rn,m(εk)}

∞

k=1 in Fn and {Tn,m(εk)}
∞

k=1 in Gm such that

µ(Fn \ Rn,m(εk))≤ εnεmεk, ν(Gm \ Tn,m(εk))≤ εnεmεk,

and ϕ is continuous on Rn,m(εk)× Tn,m(εk). The compact sets Rn(εk) ⊆ Fn and
Tm(εk)⊆ Gm (see (8–1)) increase with k, µ(Fn \ Rn(εk))≤ εnεk , µ(Gm \Tm(εk))≤

εmεk , and ϕ is continuous on Rn(εk)× Tm(εk). The compact sets Xk = Xεk and
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Yk = Yεk (see (8–2)) form exhaustive sequences in X and Y , and ϕ is continuous
on each Xk × Yk .

The proof of (iii) ⇒ (i) is the same as in Theorem 8.2. �

9. Schur multipliers and discontinuous (µ, ν)-multipliers

In contrast to Schur multipliers, (µ, ν, I )-multipliers are not sensitive to changes on
null sets. Therefore one cannot expect that the classes of noncontinuous (µ, ν, I )-
multipliers and of Schur I -multipliers coincide. In this section we will show that
for any I , ω-continuous (µ, ν, I )-multipliers coincide marginally a.e. with Schur
I -multipliers. More precisely, an ω-continuous function is a (µ, ν, I )-multiplier if
and only if it becomes a Schur I -multiplier after deleting a marginally null subset.

Remark. Two ω-continuous functions ϕ, ϕ′ coincide a.e. if and only if they coin-
cide marginally a.e. Indeed, set ψ = ϕ− ϕ′. If ψ ≡ 0 marginally a.e., then ψ ≡ 0
a.e. Suppose that ψ vanishes a.e. The set L = {z ∈ C : ψ(z) 6= 0} is ω-open and
(µ⊗ ν)(L)= 0. Therefore it coincides with some union of rectangles An × Bn up
to a marginally null set. Hence µ(An)ν(Bn) = 0, so all An × Bn are marginally
null. Thus L is a marginally null set.

Our restriction to ω-continuous functions is strongly motivated by the following
result.

Proposition 9.1. If (X, µ) and (Y, ν) are standard measure spaces, then

Mµ,ν(S∞)⊆ Cµ,ν(X × Y ).

Proof. Choose admissible topologies on X and Y , so that X =
⋃

n Xn and Y =⋃
n Yn , with µ(Xn) < ∞ and ν(Yn) < ∞. Let ϕ ∈ Mµ,ν(S∞) and let G be an

open set in C. Since

ϕ−1(G)=
⋃
n

(
ϕ−1(G)∩ (Xn × Yn)

)
,

we only need to show that each set ϕ−1(G)∩ (Xn ×Yn) is ω-open. Hence we may
assume that µ(X) <∞ and ν(Y ) <∞.

Set H = L2(X, µ) and K = L2(Y, ν). All results of Proposition 4.2 hold if
L(I ) is replaced by Mµ,ν(I ). Hence ϕ ∈ Mµ,ν(S1). The operator A with kernel
a(x, y)≡ 1 is a rank one operator. Hence the operator 8ϕ(A) with kernel ϕ(x, y)
belongs to S1(H, K ). Hence ϕ(x, y) belongs to the projective tensor product
H ⊗̂ K and is ω-continuous by Theorem 6.5 of [Erdos et al. 1998]. �

Let {Xn}, {Yn} be exhaustive sequences of measurable subsets of (X, µ) and
(Y, ν), and let χn and χ ′

n be the characteristic functions of Xn and Yn . Let µn and
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νn be the restrictions of µ and ν to Xn and Yn . For ϕ ∈ L∞(X × Y, µ⊗ ν), set

ϕn = χnχ
′

nϕ and ϕ̂n = ϕ|Xn × Yn.

Lemma 9.2. (i) Let an s.n. ideal I be either coseparable, or contain S2. Then
ϕ is a (µ, ν, I )-multiplier if and only if all ϕn are (µ, ν, I )- multipliers and
supn ‖8ϕn‖I <∞. In this case

‖8ϕ‖I = sup
n

‖8ϕn‖I .

(ii) Let I be either a separable or coseparable s.n. ideal, or Sb. Let X =
⋃

n Xn

and Y =
⋃

n Yn . Then ϕ is a Schur I -multiplier if and only if all ϕn are Schur
I -multipliers and supn ‖Sϕn‖I <∞. In this case ‖Sϕ‖I = supn ‖Sϕn‖I .

(iii) ϕn is a (µ, ν, I )-multiplier on X×Y if and only if ϕ̂n is a (µn, νn, I )-multiplier
on Xn × Yn . Moreover, ‖8ϕn‖I = ‖8ϕ̂n‖I .

(iv) ϕn is a Schur I -multiplier on X × Y if and only if ϕ̂n is a Schur I -multiplier
on Xn × Yn . Moreover, ‖Sϕn‖I = ‖Sϕ̂n‖I .

Proof. Set 8=8ϕ and 8n =8ϕn . The operators Pn on H = L2(X, µ) (identified
with H d as usual) and Qn on K = L2(Y, ν), acting by the multiplication by χn and
χ ′

n , respectively, are projections, and

(9–1) 8n(R)= Qn8(R)Pn, for R ∈ S2(H, K ).

Since Pn and Qn strongly converge to the identity operators, 8n(R) strongly con-
verge to 8(R).

Let I be coseparable. If ϕn are (µ, ν, I )-multipliers, then8n(R)∈ I , for R ∈XI .
If supn ‖8n‖I <∞, then supn |8n(R)|I <∞, and it follows from Theorem III.5.1
of [Gohberg and Kreı̆n 1965] that 8(R)∈ I and |8(R)|I ≤ supn |8n(R)|I . On the
other hand, by (9–1), all

|8n(R)|I ≤ ‖Qn‖|8(R)|I ‖Pn‖ ≤ |8(R)|I .

Hence ‖8‖I = supn ‖8n‖I . The proof of the converse statement follows from
(9–1) immediately.

If S2 ⊆ I , then S2 ⊆ I ⊆ J , for some coseparable ideal J . Since all results
of Proposition 4.2 hold, if L(I ) is replaced by Mµ,ν(I ), the sets of (µ, ν, I )- and
(µ, ν, J )-multipliers coincide. Part (i) is proved.

Let I be a coseparable ideal, let I0 be the corresponding separable ideal and
( Î0, Î ) be the pair of the dual ideals. It is well known and follows from duality
(see, for example, [Kissin and Shulman 2005a, Lemma 5.1]) that the sets of Schur
I -, I0-, Î - and Î0-multipliers (in particular, Sb-, S1- and S∞-multipliers) coincide
and the norms of the multipliers are equal. Hence we only need to prove (ii) for
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coseparable ideals. This proof is identical to the proof of (i) with 8 replaced by S,
L2(X, µ) by l2(X) and L2(Y, ν) by l2(Y ).

Set Hn = L2(Xn, µn), Kn = L2(Yn, νn). For R ∈ S2(H, K ) with kernel r , let
δn(R) be the integral operator from Hn into Kn with kernel r̂ = r |Xn × Yn . Then
δn maps XI (H, K ) onto XI (Hn, Kn), and it is an isometry from QnXI (H, K )Pn

onto XI (Hn, Kn). Conversely, for R̂ ∈ S2(Hn, Kn) with kernel r̂ , let1n(R̂) be the
integral operator from H into K with kernel r that vanishes outside Xn × Yn and
r |Xn × Yn = r̂ . Then 1n is an isometry from XI (Hn, Kn) onto QnXI (H, K )Pn ,
and

δn(1n(R̂))= R̂ for R̂ ∈ XI (Hn, Kn),

1n(δn(R))= R for R ∈ QnXI (H, K )Pn.

We also have 8ϕn (R) ∈ QnXI (H, K )Pn for R ∈ XI (H, K ), δn8ϕn = 8ϕ̂nδn ,
8ϕn1n =1n8ϕ̂n , and

‖8ϕn‖I = sup{
∣∣8ϕn (R)

∣∣
I : R ∈ QnXI (H, K )Pn, |R|I = 1}.

Making use of these formulae, one obtains a proof of (iii). Part (iv) is evident. �

We will prove now an analogue of Theorem 7.5 for ω-continuous functions.

Theorem 9.3. Let I be either a coseparable ideal, or a separable ideal containing
S2. Let (X, µ) and (Y, ν) be standard measure spaces with countable bases. An
ω-continuous function ϕ on X × Y is a (µ, ν, I )-multiplier if and only if there are
null sets X0 ⊂ X , Y0 ⊂ Y such that ϕ is a Schur I -multiplier on (X \ X0)× (Y \Y0).
In this case the sets X0, Y0 can be chosen in such a way that ‖ϕ‖

µ,ν
I = ‖Sϕ̃‖I ,

where ϕ̃ = ϕ|(X \ X0)× (Y \ Y0).

Proof. Choose admissible topologies on X and Y . By Theorem 8.3, there are
exhaustive sequences {Xn} and {Yn} of compact sets in X and Y such that ϕ is
continuous on each Xn × Yn . Let µn and νn be the restrictions of µ and ν to Xn

and Yn . One can assume that supp(µn)= Xn and supp(νn)= Yn . Indeed, set Kn =

supp(µn). If Kn 6= Xn , replace Xn by Kn . If x ∈ Kn then, for each neighbourhood
Ux of x in X , we have µ(Xn ∩ Ux) 6= 0. Hence µ(Xn+1 ∩ Ux) 6= 0, so x ∈ Kn+1.
Thus Kn ⊆ Kn+1. Since Xn = Kn ∪ Nn and µ(Nn) = 0, the sequence {Kn} is
exhaustive and supp(µ|Kn)= Kn .

By Lemma 9.2(i), ϕ is a (µ, ν, I )-multiplier if and only if all its restrictions
ϕn to Xn × Yn are (µ, ν, I )-multipliers and the norms are bounded. Moreover,
‖8ϕ‖I = supn ‖8ϕn‖I . Since ϕ̂n is continuous on Xn × Yn , it follows from The-
orem 7.5 that ϕ̂n is a (µn, νn, I )-multiplier if and only ϕ̂n is a Schur I -multiplier
on Xn × Yn; in this case ‖Sϕ̂n‖I = ‖ϕ̂n‖

µn,νn
I . By Lemma 9.2(ii), the restriction ϕ̃

of ϕ to
(⋃

n Xn
)

×
(⋃

n Yn
)

is a Schur I -multiplier if and only if all ϕn are Schur
I -multipliers and the norms are bounded. In this case, ‖Sϕ̃‖I = supn ‖Sϕn‖. Taking
now into account Lemma 9.2(iii) and (iv), we complete the proof. �
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Remark. Theorem 9.3 allows us to deduce Peller’s [1985] description of dou-
ble operator integrable functions from Grothendieck’s description of Schur S∞-
multipliers. Indeed, let E, F be spectral measures on locally compact spaces X and
Y . Denote by π and ρ the representations of C0(X) and C0(Y ) corresponding to E

and F. Then (see the discussion at the end of Section 6) the set of double operator
integrable functions with respect to E, F coincides with Mπ,ρ . Let µ, ν be scalar
measures such that supp(E) = supp(µ) and supp(F) = supp(ν). Then it follows
from Corollary 7.3 that Mπ,ρ

= Mµ,ν . By Proposition 9.1, every function ϕ ∈ Mµ,ν

is ω-continuous. Hence, by Theorem 9.3, ϕ becomes a Schur S∞-multiplier after
deleting some null subsets from X and Y . Applying [Pisier 2001, Theorem 5.1], we
get ϕ(x, y)= (a(x), b(y)), where a, b are bounded Hilbert space valued functions.
This is the first part of Peller’s theorem. Furthermore, by the proof of Theorem
5.5 of [Pisier 2001], there are a probability space (T, τ ) and bounded functions
a(x, t), b(y, t) on X × T and Y × T such that ϕ(x, y)=

∫
T a(x, t)b(y, t) dτ . This

is the second (much stronger) statement in Peller’s result.

We now relateω-continuous (µ, ν, I )-multipliers for different pairs of measures,
just as we did for continuous (µ, ν, I )-multipliers in Corollary 7.4. Let µ be a σ -
finite Radon measure on a topological space X and let 6 be the σ -algebra of all
µ-measurable sets in (X, µ). Let a measure µ′ on 6 be absolutely continuous with
respect to µ, that is, µ(E) = 0 implies µ′(E) = 0 for E ∈ 6. Then, for every
µ-measurable subset Z of X , supp(µ′

|Z)⊆ supp(µ|Z).

Theorem 9.4. Let I be either a coseparable ideal, or S2 ⊆ I . Let µ and ν be
σ -finite Radon measures on topological spaces X and Y with countable bases. Let
σ -finite measures µ′ and ν ′ on X and Y be absolutely continuous with respect to µ
and ν, respectively. Then every (µ, ν, I )-multiplier ϕ is also a (µ′, ν ′, I )-multiplier
and ‖8ϕ,µ′,ν′‖I ≤ ‖8ϕ,µ,ν‖I .

Proof. By Theorem 8.3, there are exhaustive (with respect to µ and ν) sequences
{Xn} and {Yn} of compact sets in X and Y such that the functions

ϕ̂n = ϕ|Xn × Yn

are continuous. Then {Xn} and {Yn} are also exhaustive sequences with respect to
µ′ and ν ′. Let µn and µ′

n be the restrictions of µ and µ′ to Xn , and let νn and ν ′
n

be the restrictions of ν and ν ′ to Yn . By Lemma 9.2(i) and (iii), the functions ϕ̂n

are (µn, νn, I )-multipliers and ‖8ϕ,µ,ν‖I = supn ‖8ϕ̂n,µn,νn‖I .
Since supp(µ′

n)⊆ supp(µn) and supp(ν ′
n)⊆ supp(νn), it follows from Corollary

7.4 that ϕ̂n are also (µ′
n, ν

′
n, I )-multipliers and ‖8ϕ̂n,µ′

n,ν
′
n
‖I ≤ ‖8ϕ̂n,µn,νn‖I . Ap-

plying again Lemma 9.2(i) and (iii), we conclude that ϕ is a (µ′, ν ′, I )-multiplier
and ‖8ϕ,µ′,ν′‖I ≤ ‖8ϕ,µ′,ν′‖I . �
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