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MARIE FRANÇOISE BIDAUT-VÉRON

We study the self-similar solutions of the equation ut −div(|∇u| p−2∇u) = 0
in RN , where N ≥ 1, p ∈ (1, 2). We provide a complete description of the
signed solutions of the form u(x, t) = (±t)−α/βw((±t)−1/β |x|), regular or
singular at x = 0, with α, β real, β 6= 0, and possibly not defined on all of
RN × (0, ±∞).

1. Introduction and main results

In this article we study the existence of self-similar solutions of the degenerate
parabolic equation involving the p-Laplace operator in RN , N ≥ 1,

(Eu) ut − div(|∇u|
p−2

∇u)= 0,

with 1< p < 2. In the sequel we set

δ =
p

2 − p
,

so δ > 1. Two critical values P1, P2 are involved in the problem

P1 =
2N

N + 1
, P2 =

2N
N + 2

;

see [DiBenedetto and Herrero 1990], for example. They are connected with δ
through the relations

p > P1 ⇐⇒ δ > N , p > P2 ⇐⇒ δ >
N
2
.

If u(x, t) is a solution and α, β ∈ R, then uλ(x, t)= λαu(λx, λβ t) is a solution of
(Eu) if and only if

β = p − (2 − p)α = (2 − p)(δ−α);
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thus β > 0 if and only if α < δ. For given α ∈ R such that α 6= δ, the natural
way to construct particular solutions is to search for self-similar solutions, radially
symmetric in x , of the form

(1–1) u = u(x, t)= (εβt)−α/βw(r), r = (εβt)−1/β
|x |,

where ε = ±1. By translation, for any real T , we obtain solutions defined for any
t > T when εβ > 0, or t < T when εβ < 0. The hypersurfaces {r = constant} are of
focusing type if β > 0 and of spreading type if β < 0. We are led to the equation

(Ew) (|w′
|

p−2w′)′ +
N −1

r
|w′

|
p−2w′

+ ε(rw′
+αw)= 0 in(0,∞).

If we look for solutions of (Eu) under the form

u = Ae−εµtw(r), r = Me−εµt/δ
|x |, µ > 0,

then w solves (Ew) provided M = δ/α and A = (δ p/α p−1µ)1/(2−p), where α > 0
is arbitrary. This is another motivation for studying equation (Ew) for any real α.

In the huge literature on self-similar solutions of parabolic equations, many re-
sults deal with positive solutions u defined and smooth on RN

× (0,∞). Equation
(Ew) was studied in [Qi and Wang 1999] when α>0, ε=1. In our work we provide
an exhaustive description of the self-similar solutions of equation (Eu), possibly
not defined on all of (0,∞), with constant or changing sign. In particular, for
suitable values of α, we prove the existence of solutions w oscillating with respect
to 0 as r tends to 0 or ∞, or constant-sign solutions oscillating with respect to some
nonzero constant. Our main tool is the reduction of the problem to an autonomous
system with two variables and two parameters, p and α. We are led to a dynamical
system, which we study by phase-plane techniques. When p =

3
2 , this system is

nearly quadratic, and many devices from the theory of algebraic dynamical systems
can be used. In the general case such structures do not exist; then we use energy
functions associated to the system. The behavior of the solutions presents great
diversity, according to the possible values of p and α.

In the sequel we set

η =
N − p
p − 1

;

thus η > 0 if N ≥ 2, and η = −1 if N = 1. Observe the relation connecting η, δ
and N :

(1–2)
δ− N
p − 1

= δ− η =
N − η

2 − p
.

Explicit solutions. Obviously ifw is a solution of (Ew), so is −w. Many particular
solutions are well-known.
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The infinite point source solution U∞. The simplest positive solutions of equation
(Ew), which exist for any α such that ε(δ− N )(δ−α) > 0, are given by

(1–3) w(r)= `r−δ,

where

(1–4) `=

(
εδ p−1 δ−N

δ−α

)1/(2−p)
> 0.

They correspond to a unique solution u of (Eu) called U∞ in [Chasseigne and
Vazquez 2002], singular at x = 0, for any t 6= 0:

U∞(x, t)=

( Ct
|x |p

)1/(2−p)
, C = (2 − p)δ p−1(δ− N ).

The case α = N. Here the equation (Ew) has a first integral

(1–5) w+ εr−1
|w′

|
p−2w′

= Cr−N .

All the solutions corresponding to C = 0 are given by

(1–6)
w = wK ,ε(r)= ±(εδ−1r p′

+ K )−δ/p′

,

u = ±uK ,ε(x, t)= (εβN t)−N/βN (εδ−1(εβN t)−p′/βN |x |
p′

+ K )−(p−1)/(2−p),

K ∈ R,

with β = βN = (N + 1)(p − P1). For p > P1, ε = 1, K > 0, the solutions are
named after Barenblatt [1952]. For given c > 0, the function uK ,1, defined on
RN

× (0,∞), is the unique solution of equation (Eu) with initial data u(0)= cδ0,
δ0 being the Dirac mass at 0 and K begin determined by

∫
RN uK (x, t) dt = c; see

for example [Zhao 1993]. Moreover the functions uK ,1, with K > 0, are the only
nonnegative solutions defined on RN

×(0,∞), such that u(x, 0)= 0 for any x 6= 0;
see [Kamin and Vázquez 1992]. In the case K = 0, we find again the function U∞,
and U∞ is the limit of the functions uK ,1 as K → 0, or equivalently c → ∞.

The case α = η. We exhibit a family of solutions of (Ew):

(1–7) w(r)= Cr−η, u(t, x)= C |x |
−η

= C |x |
(p−N )/(p−1), C 6= 0,

Solutions u, independent of t , are the fundamental p-harmonic solutions of the
equation when p > P1.

The case α = − p′. Equation (Ew) admits solutions of the form

(1–8)
w(r)= ±K (N (K p′)p−2

+ εr p′

),

u(x, t)= ±K (N (K p′)p−2t + ε|x |
p′

), K > 0,
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and the functions u are solutions of the form ψ(t)+8(|x |) with 8 nonconstant.
They have constant sign when ε = 1, and a changing sign when ε = −1.

The case α = 0. Here equation (Ew) can be explicitly solved: either w′
≡ 0 (hence

w ≡ a ∈ R, and u is a constant solution of (Eu)), or there exists K ∈ R such that

(1–9) |w′
| = r (1−N )/(p−1)

×


(

K +
ε

δ−N
r N−η

)−1/(2−p)
if δ 6= N ,(2− p

p−1
(K + ε ln r)

)−1/(2−p)
if δ = N ,

which gives w by integration, up to a constant, and then u(x, t)=w(|x |/(εpt)1/p).

The case N = 1 and α = ( p − 1)/(2 − p) > 0. Here again we obtain explicit
solutions:

w(r)=±
(
εK (r−(Kα)p−1)

)−α
, u(x, t)=±

(
εK (|x |−ε(Kα)p−1t)

)−α
, K >0.

All the functions w above are defined on intervals of the form (R, 0), R ≥ 0 if
ε = 1, and (0, S), S ≤ ∞ if ε = −1.

Note. When α = δ, equation (Eu) is invariant under the transformation uλ(x, t)=
λαu(λx, t); searching solutions of the form u(x, t)= |x |

−δψ(t), we find again the
function U∞.

Different kinds of singularities. Consider equation (Ew). It is easy to get local
existence and uniqueness near any point r1 > 0; thus any solution w is defined on
a maximal interval (Rw, Sw), with 0 ≤ Rw < Sw ≤ ∞; and in fact Sw = ∞ when
ε = 1, and Rw = 0 when ε = −1 (see Theorem 2.2). Returning to solution the u
of (Eu) associated to w by (1–1), it is defined on a subset of RN

\ {0} × (0,±∞):

Dw = {(x, t) : x ∈ RN , εβt > 0, (εβt)1/βRw < |x |< (εβt)1/βSw}.

When w is defined on (0,∞), then u is defined on RN
\ {0} × (0,±∞).

Regular solutions. Among the solutions of (Ew) defined near 0, we also show the
existence and uniqueness of solutions w = w( . , a) ∈ C2([0, Sw)) such that, for
some a ∈ R,

(1–10) w(0)= a, w′(0)= 0.

These are called regular solutions. Obviously, they are defined on [0,∞) when
ε = 1. If w is regular, then Dw = RN

× (0,±∞), and u( . , t) ∈ C1(RN ) for t 6= 0;
we will say that u is regular. This does not imply the regularity up to t = 0: indeed
u presents a singularity at time t = 0 if and only if 0 < α < δ. In the sequel we
shall not mention the trivial solution w ≡ 0, corresponding to a = 0.
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Singular solutions. If Rw = 0 and w is not regular, u presents a singularity at
x = 0 for t 6= 0, called a standing singularity. Following [Vazquez and Véron
1996; Chasseigne and Vazquez 2002], for such a solution, we say that x = 0 is a
weak singularity if x 7→ w(|x |) ∈ L1

loc(R
N ), or equivalently if u( . , t) ∈ L1

loc(R
N )

for t 6= 0; and a strong singularity if not. If u has a strong/weak singularity, and
limt→0 u(t, x)= 0 for any x 6= 0, we call u a strong/weak razor blade. If u( . , t) ∈
L1(RN ) for t 6= 0, then u is called integrable.

Solutions with a reduced domain. If Rw > 0 or Sw < ∞, we say that u and w
have a reduced domain. Then Dw has a lateral boundary of the form 6w = {|x | =

C(εβt)1/β}, of parabolic type if β > 0 and of hyperbolic type if β < 0, and u has
an explosion near 6w. In Proposition 2.15 we calculate the blow-up rate, which is
of the order of d(x, t)−(p−1)/(2−p), where d(x, t) is the distance to 6w.

Main results. We give a summary of our main results, expressed in terms of the
function u, avoiding for simplicity particular cases (such as N = 1, or α = δ, or
p = P1) and solutions with a reduced domain (although there exist many such).
All cases omitted here and detailed statements in terms of w can be found inside
each section. An important critical value of α is given by

(1–11) α∗
= δ+

δ(N − δ)

(p − 1)(2δ− N )
;

it appears when ε = 1, p > P2, and then α∗ > 0, or ε = −1, p < P2, and then
α∗ < 0.

Note. To return from w to u, consider any solution w of (Ew) defined on (0,∞),
such that for some λ≥ 0 and µ∈ R, limr→0 rλw= c 6= 0 and limr→0 rµw= c′

6= 0.
Then:

(i) For fixed t , u has a singularity in |x |
−λ near x = 0, and a behavior in |x |

−µ

for large |x |. Thus x = 0 is a weak singularity if and only if λ < N , and u is
integrable if and only if λ < N < µ.

(ii) For fixed x 6= 0, the behavior of u near t = 0, depends on the sign of β:

lim
t→0

|x |
µ
|t |(α−µ)/βu(x, t)= C 6= 0 ifα < δ,

lim
t→0

|x |
λ
|t |(α−λ)/βu(x, t)= C 6= 0 ifδ < α.

Solutions defined for t > 0. Here we look for solutions u of (Eu) on RN
\ {0} ×

(0,∞) of the form (1–1). That means εβ > 0, or equivalently ε= 1 and α < δ (see
Section 3) or ε = −1, δ < α (see Section 4). We begin with the case ε = 1, and
examine the dependence on the sign of p − P1. For proofs, see Theorems 3.2, 3.4
and 3.5.
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Theorem 1.1. Assume ε = 1, −∞ < α < δ, p > P1, and N ≥ 2. Then U∞ is a
solution on RN

\ {0} × (0,∞) and a strong razor blade. There exist also positive
solutions having a strong singularity in |x |

−δ and satisfying limt→0 |x |
αu = L > 0

(for x 6= 0). For α ≤ N , any function u( . , t) has at most one zero at time t.

(1) For α < N , all regular solutions on RN
×(0,∞) have constant sign, are not

integrable, and they are solutions of (Eu) with initial data L|x |
−α

∈ L1
loc(R

N ).
There exist positive integrable razor blades having a singularity in |x |

−η.
There exist also positive solutions having a weak regularity in |x |

−η and sat-
isfying limt→0 |x |

αu = L; in particular if α = η, then u ≡ C |x |
−η. There exist

solutions with one zero and a weak or a strong singularity.

(2) For α = N , all regular (Barenblatt) solutions have constant sign and are
integrable. There exist solutions with one zero and a weak singularity.

(3) For N <α, all regular solutions have at least one zero. If α<α∗, any solution
has a finite number of zeros. If N < α∗, there exists α̌ ∈ (α∗, δ) such that if
α̌ < α, regular solutions are oscillating around 0 for large |x |, and r δw is
asymptotically periodic in ln r ; and there exists precisely a solution u such
that r δw is periodic in ln r .

Theorem 1.2. Assume ε= 1, −∞<α < δ, and p< P1. Then all regular solutions
on RN

× (0,∞) have constant sign, are not integrable, and are solutions of (Eu)
with initial data L|x |

−α
∈ L1

loc(R
N ). There is no other solution on RN

\{0}×(0,∞).

If α > 0, all the solutions w tend to 0 at ∞, whereas if α < 0, some of the
solutions are unbounded near ∞.

Next we come to the case ε = −1, which is treated in Theorems 4.1 and 4.2.

Theorem 1.3. Assume ε=−1, δ <α, p> P1, and N ≥ 2. There is no regular solu-
tion on RN

×(0,∞). Besides the function U∞, which is a strong razor blade, there
exist positive integrable razor blades having a singularity in |x |

−η, and positive
solutions having a strong singularity in |x |

−α and satisfying limt→0 |x |
αu = L.

Theorem 1.4. Assume ε = −1, δ < α, p < P1 (N ≥ 2). There is no regular
solution on RN

×(0,∞). There exists a positive solution on RN
\{0}×(0,∞) with

a singularity in |x |
−α (strong if and only if N ≤ α), and limt→0 |x |

αu = L.

Note. Weak singularities can occur even if p > P1. For example, the solutions
u(t, x)=C |x |

−η
=C |x |

(p−N )/(p−1) (N ≥2) given in (1–7) have a weak singularity.
There even exist positive solutions u with a standing singularity, and integrable;
see Theorems 1.1 and 1.3. This is not contradictory with the regularizing effect
L1

loc(R
N ) → L∞

loc(R
N ), which concerns solutions in (0,∞)× RN . The functions

constructed above are solutions in (0,∞)× RN
\ {0}, and the singularity x = 0 is

not removable.
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Solutions defined for t < 0. Next we consider the solutions defined for t < 0,
and more generally for t < T . They correspond to ε = 1, δ < α (Section 5), or
ε = −1, α < δ (Section 6). A main question in that case is the extinction problem:
do there exist regular solutions u vanishing identically on R at time T ? Do there
exist singular razor blades, vanishing on RN

\ {0} at time T ? Are they integrable?
One of our most significant results is the existence of two critical values αcrit> 0

(when P2 < p < P1) and αcrit < 0 (when 1 < p < P2), for which the regular
solutions uαcrit are positive, integrable, and vanish identically at time 0. Another
new phenomena is the existence of positive solutions such that C1U∞ ≤ u ≤ C2U∞

for some C1,C2 > 0, with a periodicity property, see Theorems 1.6 and 1.8.

First assume ε = 1. From Theorems 5.1 when p > P1 and 5.4, 5.6, 5.7 when
p < P1, we deduce:

Theorem 1.5. Assume ε = 1, δ < α, p > P1, with N ≥ 2. Any solution u on
RN

\ {0} × (0,−∞), in particular the regular ones, is oscillating around 0 for
fixed t < 0 and large |x |, and r δw is asymptotically periodic in ln r . There exists a
solution such that r δw is periodic in ln r . There exist weak integrable razor blades,
with a singularity in |x |

−η.

Theorem 1.6. Assume ε = 1, δ < α, p < P1. Then U∞ is a solution on RN
\ {0}×

(0,−∞), and a weak razor blade.

(1) If p < P2, all regular solutions on RN
× (0,−∞) have constant sign, are not

integrable, and vanish identically at t = 0, with ‖u( . , t)‖L∞(RN ) ≤ C |t |α/|β|.
All the solutions have a finite number of zeros.

(2) For α < η, regular solutions have constant sign, with the same behavior
(given by (1–6) if α = N ). There exists a positive solution u, which is not
integrable, with a singularity in |x |

−α (a strong one if and only if α ≥ N ), and
limt→0 |x |

αu = L. If α = η, then u(t, x)= C |x |
−η is a solution with a strong

singularity.

(3) If p > P2, there exists a critical value αcrit such that η < αcrit < α∗ and
the regular solutions uαcrit have constant sign, are integrable, and vanish
identically at t = 0, with ‖u( . , t)‖L∞(RN ) ≤ C |t |α/|β|.

(4) If α ∈ (αcrit, α
∗), there exist positive solutions u such that r δw is periodic in

ln r ; thus

C1U∞ ≤ u ≤ C2U∞ for someC1,C2 > 0.

There exist positive solutions u, with the same bounds, such that r δw is asymp-
totically periodic near 0 . There exist positive integrable solutions u such that
r δw is asymptotically periodic near 0.
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(5) If αcrit < α, all regular solutions are oscillating around 0 for fixed t < 0 and
large |x |, and r δw is asymptotically periodic in ln r . There exist solutions
oscillating around 0, such that r δw is periodic. If α∗ < α, there exist positive
integrable razor blades, with a singularity in |x |

−δ.

Finally suppose ε = −1. From Theorems 6.1, 6.2 when p > P1 and 6.4, 6.6,
6.8, 6.9 when p < P1, we obtain:

Theorem 1.7. Assume ε = −1, α < δ and p > P1, with N ≥ 2. If α > 0, there
exist positive solutions u with a weak singularity in |x |

−η, integrable if and only if
α> N , and limt→0 |x |

αu = L. If α< 0, any solution has at least a zero. If −p′<α,
there is no regular solution on RN

× (0,−∞). If α = −p′, all regular solutions,
given by (1–8), have one zero.

Theorem 1.8. Assume ε = −1, α < δ and p < P1. Then U∞ is a solution on
RN

\ {0} × (0,−∞), and a weak razor blade.

(1) If p > P2, all the solutions have a finite number of zeros. There exist positive
integrable razor blades, with a singularity in |x |

−δ.

(2) If −p′<α, there is no regular solution on RN
×(0,−∞). There exist positive

integrable razor blades as above. If α > 0, there exist positive solutions
u with a weak singularity in |x |

−δ, integrable if and only if α > N , and
limt→0 |x |

αu = L. If −p′ < α < 0, there exist solutions with one zero and
the same behavior. If α = −p′, all regular solutions, given by (1–8), have one
zero.

(3) If p< P2, there exists a critical value αcrit such that α∗<αcrit<−p′ for which
the regular solutions uαcrit have constant sign, are integrable, and vanish
identically at t = 0, with ‖u( . , t)‖L∞(RN ) ≤ C |t |α/|β|.

(4) If p < P2 and α ∈ (α∗, αcrit), there exist positive solutions u such that r δw is
periodic in ln r , and thus

C1U∞ ≤ u ≤ C2U∞ for someC1,C2 > 0.

There exist positive solutions with a weak singularity in |x |
−δ, with the same

bounds, such that r δw is asymptotically periodic near ∞. The regular solu-
tions have constant sign, are not integrable, vanish identically at t = 0, and
r δw is asymptotically periodic near ∞.

(5) If p < P2 and α < αcrit, there exist solutions oscillating around 0, such that
r δw is periodic. There exist solutions oscillating around 0, integrable, such
that r δw is asymptotically periodic. If α ≤ α∗, all regular solutions have
constant sign, are not integrable, and vanish identically at t = 0.
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Note. If p< P1, recall that the Harnack inequality does not hold, as can be shown
by the regular positive solutions constructed in Theorem 1.6, in particular those
given by (1–6) when α = N . The two kinds of regular, integrable, solutions con-
structed for the critical values αcrit > 0 and αcrit < 0 are of different types: the first,
constructed for p > P2, disappears in a spreading way, the second, for p < P2,
disappears in a focusing way.

The case p> 2 will be treated in a second article [Bidaut-Véron 2006b], where
we complete the results of [Gil and Vázquez 1997].

2. General properties

Different formulations of the problem. In the remainder of the article we can
assume that α 6= 0, since the solutions are given explicitly by (1–9) when α = 0.
Defining

(2–1)
JN (r)= r N (w+ εr−1

|w′
|

p−2w′),

Jα(r)= rα−N JN (r),

(Ew) can be written in an equivalent way under the form

(2–2)
J ′

N (r)= r N−1(N −α)w,

J ′

α(r)= −ε(N −α)rα−2
|w′

|
p−2w′.

If α = N , then JN is constant, so we find again (1–5).
We shall often use the following logarithmic substitution; for given d ∈R, setting

(2–3) w(r)= r−d yd(τ ), Yd = −r (d+1)(p−1)
|w′

|
p−2w′, τ = ln r,

we obtain the equivalent system

(2–4)
y′

d = dyd − |Yd |
(2−p)/(p−1)Yd ,

Y ′

d = (p − 1)(d − η)Yd + εe(p+(p−2)d)τ (αyd − |Yd |
(2−p)/(p−1)Yd).

And yd , Yd satisfy the equations

(2–5) y′′

d + (η− 2d)y′

d − d(η− d)yd

+
ε

p − 1
e((p−2)d+p)τ

|dyd − y′

d |
2−p(y′

d + (α− d)yd)= 0,

(2–6) Y ′′

d + (p − 1)(η− 2d − p′)Y ′

d + εe((p−2)d+p)τ
|Yd |

2−p
p−1

( Y ′

d
p−1

+ (α− d)Yd

)
−(p − 1)2(η− d)(p′

+ d)Yd = 0.
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Reduction to an autonomous system. The substitution (2–3) with d = δ is the
most helpful: setting

(2–7) y = yd , w(r)= r−δ y(τ ), Y = −r (δ+1)(p−1)
|w′

|
p−2w′, τ = ln r,

we are led to the autonomous system that plays a key role in the sequel:

(S)
y′

= δy − |Y |
(2−p)/(p−1)Y,

Y ′
= (δ− N )Y + ε(αy − |Y |

(2−p)/(p−1)Y ).

Since N − δp = η−2δ and N − δ = (p −1)(η− δ), Equation (2–5) takes the form

(Ey) (p − 1)y′′
+ (N − δp)y′

+ δ(δ− N )y + ε|δy − y′
|
2−p(y′

+ (α− δ)y)= 0,

while Equation (2–6) becomes

(EY ) Y ′′
+ (N − 2δ)Y ′

+
ε

p − 1
|Y |

(2−p)/(p−1)Y ′

+ε(α− δ)|Y |
(2−p)/(p−1)Y + δ(δ− N )Y = 0.

When w has constant sign, we define two functions associated to (y, Y ):

(2–8)
ζ(τ )=

|Y |
(2−p)/(p−1)Y

y
(τ )= −

rw′(r)
w(r)

,

σ (τ )=
Y
y
(τ )= −

|w′(r)|p−2w′(r)
rw(r)

.

They play an essential role in the asymptotic behavior: ζ describes the behavior of
w′/w and σ is the slope in the phase plane (y, Y ). They satisfy the equations

ζ ′
= ζ(ζ − η)+

ε

p − 1
|ζ y|

2−p(α− ζ )= ζ

(
ζ − η+

ε(α− ζ )

(p − 1)σ

)
,(2–9)

σ ′
= ε(α−N )+(|σ y|

2−p
p−1σ−N )(σ−ε)= ε(α−N )+(ζ−N )(σ−ε).(2–10)

Note. Since (S) is autonomous, for any solution w of (Ew) of the problem, all the
functions wξ (r)= ξ δw(ξr), ξ > 0, are also solutions. From uniqueness, all regular
solutions are completely described from one of them: w(r, a)= aw(a1/δr, 1); thus
they present the same behavior at infinity.

System (S) will be studied by using phase plane techniques, which was not done
in [Qi and Wang 1999], and gives our main results. The set of trajectories of system
(S) in the phase plane (y, Y ) is symmetric with respect to (0, 0). We define

(2–11) M = {(y, Y ) ∈ R2
: |Y |

(2−p)/(p−1)Y = δy},
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which is the set of the extremal points of y. We denote the four quadrants by

Q1 = (0,∞)× (0,∞), Q2 = (−∞, 0)× (0,∞), Q3 = −Q1, Q4 = −Q2.

Remarks 2.1. (i) The field at any point (ξ, 0)with ξ >0 satisfies y′
=−ξ 1/(p−1)<

0, and so points toward Q2. The field at any point (ϕ, 0) with ϕ > 0 satisfies
Y ′

= εαϕ, and so points toward Q1 if εα > 0 and toward Q4 if εα < 0.

(ii) The pair (y, Y ) defined by (2–7) is related to JN by the identity

(2–12) JN (r)= r N−δ(y(τ )− εY (τ )), τ = ln r,

and the formulae (2–2) can be recovered from the relations

(2–13) (y−εY )′ = (δ−α)y + ε(N −δ)Y = (δ−α)(y−εY )+ ε(N −α)Y

= (δ− N )(y−εY )+ (N −α)y.

(iii) In the sequel the monotonicity of the functions yd , Yd , in particular y, Y , ζ
and σ plays an important role. At any extremal point τ , these functions satisfy

y′′

d (τ )= yd(τ )
(

d(η− d)− ε(α−d)
p−1

e((p−2)d+p)τ
|dyd(τ )|

2−p
)
,(2–14)

Y ′′

d (τ )= Yd(τ )
(
(p − 1)2(η− d)(p′

+ d)(2–15)

−ε(α− d)e((p−2)d+p)τ
|Yd(τ )|

(2−p)/(p−1)
)
,

(p−1)y′′(τ )= δ2−p y(τ )
(
δ p−1(N − δ)− ε(α− δ)|y(τ )|2−p)(2–16)

= −|Y (τ )|(2−p)/(p−1)Y ′(τ ),

Y ′′(τ )= Y (τ )
(
δ(N − δ)− ε(α− δ)|Y (τ )|(2−p)/(p−1))

= εαy′(τ ),(2–17)

(p−1)ζ ′′(τ )= ε(2−p)
(
(α− ζ )|ζ |2−p

|y|
−p yy′

)
(τ )(2–18)

= ε(2−p)
(
(α− ζ )(δ− ζ )|ζ y|

2−p)(τ ),
(p−1)σ ′′(τ )= (2−p)

(
(σ − ε)|σ |

(2−p)/(p−1)Y |y|
(4−3p)/(p−1)y′

)
(τ )(2–19)

= ζ ′(τ )(σ (τ )− ε).

Energy functions for the system (S). There is a classical energy function associ-
ated to equation (Ew):

(2–20) E(r)=
1
p′

|w′
|

p
+ ε

α

2
w2,

which is nonincreasing when ε = 1, since E ′(r) = −(N − 1)r−1
|w′

|
p
− εrw′2.

This is not sufficient in our study: we need energy functions adapted to y and Y .
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Using the ideas of [Bidaut-Véron 1989], we construct two of them by using the
Anderson and Leighton formula [1968].

We find a first function W given by

(2–21) W (τ )= W(y(τ ), Y (τ )), where

W(y, Y )= ε

(
(2δ− N )δ p−1

p
|y|

p
+

|Y |
p′

p′
− δyY

)
+
α− δ

2
y2.

It satisfies

W ′(τ )= ε(2δ−N )(δy−|Y |
(2−p)/(p−1)Y )(|δy|

p−2δy−Y )−(δy−|Y |
(2−p)/(p−1)Y )2

= (δy − |Y |
(2−p)/(p−1)Y )(|δy|

p−2δy − Y )

×

(
ε(2δ− N )−

δy − |Y |
(2−p)/(p−1)Y

|δy|p−2δy − Y

)
.

When ε(2δ− N )≤ 0, then W is nonincreasing. When ε(2δ− N ) > 0, we consider
the curve

L =
{
(y, Y ) ∈ R2

: H(y, Y )= ε(2δ− N )
}
,

where
H(y, Y ) :=

δy − |Y |
(2−p)/(p−1)Y

|δy|p−2δy − Y

and by convention this quotient takes the value |δy|
2−p/(p − 1) if |δy|

p−2δy = Y .
L is a closed curve surrounding (0, 0), symmetric with respect to (0, 0). Let SL

be the domain with boundary L and containing (0, 0):

(2–22) SL =
{
(y, Y ) ∈ R2

: H(y, Y )≤ ε(2δ− N )
}
.

Then W ′(τ )≥ 0 if (y(τ ), Y (τ ))∈ SL and W ′(τ )≤ 0 if (y(τ ), Y (τ )) 6∈ SL. Observe
that SL is bounded: indeed, for any (y, Y ) ∈ R2,

(2–23) H(y, Y )≥
1
2

(
(δy)2−p

+ |Y |
(2−p)/(p−1)).

Also SL is connected; more precisely, for any (y, Y ) ∈ SL and any θ ∈ [0, 1], we
have (θy, θ p−1Y ) ∈ SL.

A second function, denoted by V , is also given by Anderson formula, or by
multiplication by Y ′ in (EY ): let

(2–24) V (τ )= V(Y (τ ), Y ′(τ )), where

V(Y, Z)=
ε

2

(
δ(δ− N )Y 2

+ Y ′2)
+
α− δ

p′
|Y |

p′

;

then
V ′(τ )=

(
ε(2δ− N )− 1

p−1
|Y |

(2−p)/(p−1)
)

Y ′2.
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When ε(2δ− N ) is not positive, V is nonincreasing. When it is positive, we have
V ′(τ )≥ 0 whenever |Y (τ )| ≤ D, where

(2–25) D =
(
ε(2δ− N )(p − 1)

)(p−1)/(2−p)
.

The function W gives more information on the system, because SL is bounded,
whereas the set of zeros of V ′ is unbounded.

Stationary points of system (S). If α = δ = N , system (S) has infinitely many
stationary points, given by ±(k, (δk)p−1), k ≥ 0. Otherwise, if ε(δ−N )(δ−α)≤ 0,
the system has a unique stationary point (0, 0). If ε(δ− N )(δ− α) > 0, it admits
the three stationary points

(2–26) (0, 0), M` = (`, (δ`)p−1) ∈ Q1, M ′

` = −M` ∈ Q3,

where ` is defined in (1–4). In that case, we find again that w≡ `r−δ is a particular
solution of equation (Ew).

Local behavior at (0, 0). The linearized problem at (0, 0) is given by

y′
= δy, Y ′

= (δ− N )Y + εαy,

and has eigenvaluesµ1 =δ−N andµ2 =δ. Thus (0, 0) is a saddle point when δ<N
and a source when N < δ. One can choose a basis of eigenvectors v1 = (0,−1)
and v2 = (N , εα).

Local behavior at M`. Setting

(2–27) y = `+ y, Y = (δ`)p−1
+ Y ,

system (S) is equivalent in Q1 to

(2–28) y′
= δy − εν(α)Y −9(Y ), Y ′

= εαy + (δ− N − ν(α))Y − ε9(Y ),

where

(2–29)
ν(α)=

δ(N − δ)

(p − 1)(α− δ)
,

9(ϑ)=
(
(δ`)p−1

+ϑ
)1/(p−1)

− δ`−
(δ`)2−p

p − 1
ϑ,

with ϑ >−(δ`)p−1. The linearized problem is given by

y′
= δy − εν(α)Y , Y ′

= εαy + (δ− N − ν(α))Y .

Its eigenvalues λ1 ≤ λ2 are the solutions of the equation

(2–30) λ2
− (2δ− N − ν(α))λ+ p′(N − δ)= 0.
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The discriminant 1 of this equation is

(2–31) 1= (2δ− N − ν(α))2 − 4p′(N − δ)= (N + ν(α))2 − 4ν(α)α.

The critical value α∗ of α, given in (1–11), arises when ε(δ− N/2) > 0:

α = α∗
⇐⇒ λ1 + λ2 = 0.

When δ < N and ε = 1, then δ < α and M` is a sink when δ ≤ N/2 or δ > N/2
and α < α∗, and a source when δ > N/2 and α > α∗. When δ < N , and ε = −1,
then α < δ and M` is a source when δ ≥ N/2 or δ < N/2 and α > α∗, and a sink
when δ < N/2 and α < α∗. When N < δ, then M` is always a saddle point, but,
as we will see later, the value α∗ also plays a role.

More specifically, the sign of α∗ and its position with respect to N or η play a
role. By computation,

(2–32) α∗
=

p′(δ2
− 3δ+ 2N )

2(2δ− N )
= η+

(δ− N )2

(p − 1)(2δ− N )

= N +
(δ− N )(δ2

− (N + 3)δ+ N )
(2δ− N )(δ− 1)

.

Thus, if ε = 1, then α∗ > η > 0 if N ≥ 2; if N = 1, α∗ > 0 if p > 4
3 . If ε = −1,

then α∗ <−p′ < 0.
Otherwise, when 1 > 0 a basis of eigenvectors u1 = (−εν(α), λ1 − δ), u2 =

(εν(α), δ− λ2) can be chosen. If 1 ≥ 0, then δ is exterior to the roots if εα > 0,
and λ1 < δ < λ2 if εα < 0.

Existence of solutions of equation (Ew).

Theorem 2.2. (i) Take r1 > 0 (r1 ≥ 0 if N = 1) and let a, a′ be reals. There
exists a unique solution w of equation (Ew) in a neighborhood V of r1, such
that w ∈ C2(V) and w(r1) = a, w′(r1) = a′. It has a unique extension to a
maximal interval of the form

(Rw,∞) with 0 ≤ Rw if ε = 1,

(0, Sw) with Sw ≤ ∞ if ε = −1.

If 0< Rw or Sw <∞, as the case may be, w is monotone near Rw or Sw with
an infinite limit.

(ii) For any a ∈ R, there exists a unique regular solution w of (Ew) satisfying
(1–10), and

(2–33) lim
r→0

|w′
|

p−2w′/rw = −εα/N .
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(iii) If N ≥ 2, any solution defined near 0 and bounded is regular. If N = 1, it
satisfies limr→0w

′
= b ∈ R, and limr→0w = a ∈ R.

Proof. (i) Local existence and uniqueness near r1>0 follow directly from Cauchy’s
theorem applied to equation (Ew) or to system (S), since the map ξ 7→ f p(ξ) =

|ξ |(2−p)/(p−1)ξ is of class C1. If N = 1, we can take r1 = 0, obtain a local solution
in a neighborhood of 0 in R and reduce it to [0,∞).

Any local solution around r1 has a unique extension to a maximal interval
(Rw, Sw). Suppose that 0 < Rw (or Sw < ∞) and that w is oscillating around
0 near Rw (or Sw). Making the substitution (2–3), with d 6= 0, if τ is a maximal
point of |yd |, we see that (2–14) holds. If we take d such that ε(d − α) > 0, the
sequence (yd(τ )) stays bounded, since the exponential has a positive limit; for
that reason yd stays bounded, w is bounded near Rw (or Sw) and then also J ′

N ,
JN and w′, which is contradictory. Thus w keeps a constant sign, for example
w > 0, near Rw (or Sw). At each extremal point r such that w(r) > 0, we find
(|w′

|
p−2w′)′(r) = −εαw(r); thus r is unique since α 6= 0. Thus w is strictly

monotone near Rw (or Sw), and w and |w′
| tend to ∞.

First suppose ε = 1. We show that Sw = ∞. This is easy when α > 0: since E
is nondecreasing, w and w′ are bounded for r > r1. Assume α < 0 and Sw <∞.
Then for examplew is positive near Sw, nondecreasing, and limr→Sw w=∞. Then
Jα is nonincreasing and nonnegative near Sw; hence again w and w′ are bounded,
which is contradictory.

Next suppose ε = −1. If Rw > 0, for example, w is positive and nonincreasing
and limr→Rw w=∞. Then either α< N and JN is nonnegative and nondecreasing
near Rw, and thus bounded, or α ≥ N and Jα is nonnegative and nondecreasing
near Rw, and still bounded. In either case we reach a contradiction, then Rw = 0.

(ii) By symmetry we can suppose a ≥ 0. Let ρ > 0. By (2–1) and (2–2), any
regular solution w on [0, ρ] satisfies

(2–34)
w(r)= a − ε

∫ r

0
f p(sT (w)) ds,

T (w)(r)= w(r)+ (α− N )
∫ 1

0
θ N−1w(rθ) dθ.

Conversely, any function w ∈ C0([0, ρ]) that solves (2–34) satisfies w ∈ C1((0, ρ])

and |w′
|

p−2w′(r)= rT (w); hence |w′
|

p−2w′
∈ C1((0, ρ]) and w satisfies (Ew) in

(0, ρ]. And limr→0 rT (w) = 0, thus w ∈ C1([0, ρ]) and |w′
|

p−2w′
∈ C1([0, ρ]).

Then w satisfies (Ew) in [0, ρ] and w′(0)= 0. From (Ew), we have

lim
r→0

|w′
|

p−2w′/rw = −εα/N ,
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and therefore w−a = O(r p′

) near 0. We look for w of the form a + r p′

ζ(r), with

ζ ∈ Bρ,M = {ζ ∈ C0([0, ρ]) : ‖ζ‖C0([0,ρ]) = max
r∈[0,ρ]

|ζ(r)| ≤ M}.

We are led to the problem ζ =2(ζ), where

2(ζ)(r)= −ε

∫ 1

0
θ1/(p−1) f p

(
T (a + (rθ)p′

ζ(rθ))
)

dθ

= −ε

∫ 1

0
θ1/(p−1) f p

(
αa
N

+ T ((rθ)p′

ζ(rθ))
)

dθ.

Taking for example M = (|α|a)1/(p−1), it follows that2 is a strict contraction from
Bρ,M into itself for ρ small enough, hence existence and uniqueness hold in [0, ρ].

(iii) If w is defined in (0, ρ) and bounded, then J ′

N is integrable. Set

l = lim
r→0

JN (r).

Then |w′
|

p−2w′
= εlr1−N (1+o(1). If N ≥ 2, this implies l = 0; thus from above,

w is regular. If N = 1, then limr→0w
′
= b ∈ R, and limr→0w = a ∈ R. �

Definition. Suppose p > 1. Let Tr be the trajectory in the plane (y, Y ) (see
(2–7)) starting from (0, 0) at −∞, with slope εα/N and y > 0 near time −∞. Its
opposite −Tr is also a trajectory with the same properties (except that y< 0). Both
are called regular trajectories. In this situation we say that y is regular. Observe
that Tr starts in Q1 if εα > 0, and in Q4 if εα < 0.

Remark 2.3. Let w be any solution of (Ew) such that w > 0 on some interval I .

(i) The function w has at most one extremal point on I , since (|w′
|

p−2w′)′ =

−εαw, and this point is a maximum if εα > 0 and a minimum if εα < 0.

(ii) From (2–33), if w is regular and w > 0 in (0, r1), r1 ≤ ∞, then w′ < 0 in
(0, r1) when εα > 0; thus Tr is in Q1. And w′ > 0 in (0, r1) when εα < 0;
hence Tr is in Q3 in (−∞, ln r1).

Remark 2.4. In the case δ 6= N , we can give a shorter proof of Theorem 2.2(ii). In-
deed, (0, 0) is either a source or a saddle point. Thus there exists precisely one tra-
jectory starting from (0, 0) at −∞, with y > 0, with slope εα/N . The correspond-
ing solutions are regular: the slope σ defined in (2–8) satisfies limτ→−∞ σ =εα/N .
Thus limr→0 |w′

|
p−2w′/rw = −εα/N , implying that w(2−p)/(p−1) has a limit

a > 0. Since limr→0w
′
= 0, this function w satisfies (1–10), and any a is obtained

by scaling.

Notation. For any point P0 = (y0, Y0) ∈ R2
\ {(0, 0)}, the unique trajectory in the

phase plane (y, Y ) going through P0 is denoted by T[P0]. Notice that T[−P0] =

−T[P0], from the symmetry of system (S).
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First sign properties.

Proposition 2.5. Let w 6≡ 0 be any solution of (Ew).

(i) If ε = 1 and α ≤ max(N , η), then w has at most one zero, and no zero if w is
regular.

(ii) If ε = 1 and N <min(δ, α) and w is regular, then w has at least one zero.

(iii) If ε = −1 and α ≥ min(0, η), then w has at most one zero. If α > 0 and w is
regular, then it has no zero.

(iv) If ε=−1 and −p′
≤α<min(0, η), thenw′ has at most one zero; consequently

w has at most two zeros, and at most one if w is regular.

Proof. (i) Let ε = 1. Take two consecutive zeros ρ0 < ρ1 of w, with w > 0 on
(ρ0, ρ1), sow′(ρ1)<0<w′(ρ0). If α≤ N , we find, using the function JN of (2–1),

JN (ρ1)− JN (ρ0)=−ρN−1
1 |w′(ρ1)|

p−2
−ρN−1

0 w′(ρ0)
p−1

= (N −α)

∫ ρ1

ρ0

s N−1w ds,

which is contradictory; thus w has at most one zero. If w is regular with w(0) > 0
and ρ1 is a first zero, then

JN (ρ1)= −ρN−1
1 |w′(ρ1)|

p−1
= (N −α)

∫ ρ1

0
s N−1w ds ≥ 0,

again a contradiction. Next suppose 0<α ≤ η and use the substitution (2–3), with
d = α. Then yα has at most one zero: indeed, if yα has a maximal point τ where
it is positive, and is not constant, then from (2–14),

(2–35) y′′

α(τ )= α(η−α)yd(τ );

hence y′′
α(τ )<0, which is impossible. In the same way the regular solution satisfies

limτ→−∞ yα = 0 since α > 0, and yα has no maximal point; thus yα is positive and
increasing.

(ii) Let ε=1 andw>0 on [0,∞). If N <α, then JN (r)= (N−α)
∫ r

0 s N−1w ds<0.
The function r 7→ δr p′

− w(p−2)/(p−1) is nonincreasing; hence w = O(r−δ) at
∞, so y is bounded at ∞. For any r ≥ 1, one gets JN (r) ≤ JN (1) < 0, hence
y(τ )+ |JN (1)|e(δ−N )τ

≤ Y (τ ) for any τ ≥ 0, from (2–12). Then limτ→∞ Y = ∞,
implying by (S) that limτ→∞ y′

= −∞, which is impossible.

(iii) Let ε = −1 and α ≥ min(η, 0). We use again the substitution (2–3) for some
d 6=0. If yd is not constant and has a maximal point where it is positive, then (2–14)
holds. Taking d ∈ (0,min(α, η)) if N ≥ 2 and α > 0 and d = −1 if N = 1 and
η= −1 ≤ α, we reach a contradiction. Now suppose w is regular and α > 0. Then
w′ > 0 near 0, from Theorem 2.2, and as long as w stays positive, any extremal
point r is a strict minimum; thus in fact w′ > 0 on [0, Sw).
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(iv) Let ε = −1 and −p′
≤ α < min(0, η). Suppose that w′ has two consecutive

zeros ρ1 < ρ2, and use (2–3) again with d = α. If the function Yα is not constant
and has a maximal point τ where it is positive, we get from (2–15)

(2–36) Y ′′

α (τ )= (p − 1)2(η−α)(p′
+α)Yα(τ );

thus Y ′′
α (τ ) < 0, and Yα has at most one zero. Next consider regular solutions:

they satisfy Yα = e(α(p−1)+p)τ (|α|a/N )(1 + o(1)) near −∞, by Theorem 2.2 and
(2–3). Thus limτ→−∞ Yα = 0; as above Yα cannot have any extremal point, so Yα
is positive and increasing. Then w′< 0 from (2–3), and w has at most one zero. �

Remark 2.6. From (2–35) and (2–36) we see that if 0 < α ≤ η then yα has only
minimal points on any set where it is positive, and the same conclusion holds for
Yα when −p′

≤ α ≤ min(η, 0)).

Proposition 2.7. Let y be any solution of (Ey), linked with w by (2–7), and having
constant sign in a semi-interval around the point ln Rw or ln Sw.

(i) If y is not strictly monotone near that same point, then Rw = 0 or Sw = ∞. If
y is not constant, then either ε= 1 and δ < N <α or ε= −1 and α < δ < N.
In any case, y oscillates around `.

(ii) If y is strictly monotone near ln Rw or ln Sw, then also Y, ζ, σ are monotone
near the same point.

Proof. Let s = Rw or Sw, and suppose that y has constant sign near s. Then so
does Y , by Remark 2.3.

(i) At each point τ where y′(τ ) = 0, we have y′′(τ ) 6= 0, and (2–16) holds with
y > 0. Suppose that y is not strictly monotone near s. There exists a strictly
monotone sequence (τn) converging to s and such that y′(τn) = 0, y′′(τ2n) > 0,
y′′(τ2n+1) < 0. Then either ε = 1 and δ < min(α, N ), or ε = −1 and α < δ < N ;
and y(τ2n) < `< y(τ2n+1). This cannot happen if s is finite, because y tends to ∞.
It is also impossible when ε = 1 and α ≤ N ; indeed, there exist at least two points
θ1 < θ2 such that y(θ1)= y(θ2)= ` and y ≥ ` on (θ1, θ2), with y′(θ1) > 0> y′(θ2).
Then from (S), Y (θ1) < (δ`)

p−1 < Y (θ2). And from (2–13), (e(N−δ)τ (y − Y ))′ =

(N −α)e(N−δ)τ y; and the constant (`, (δ`)p−1) is also a solution of (S), hence

(e(N−δ)τ (y − `− Y + (δ`)p−1))′ = (N −α)e(N−δ)τ (y − `)≥ 0

on (θ1, θ2). A contradiction follows by integration on this interval.

(ii) Suppose y strictly monotone near s. At any extremal point τ of Y , we find
Y ′′(τ )= εαy′(τ ) from (2–17); hence y′(τ ) 6= 0, and Y ′′(τ ) has constant sign; thus
τ is unique, and Y is strictly monotone near s.
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Next consider the function ζ satisfying (2–9). If there exists τ0 such that ζ(τ0)=

α, then ζ ′(τ0) = α(α − η). If α 6= η, then τ0 is unique, so α − ζ has a constant
sign near s. Then also ζ ′′(τ ) has constant sign at any extremal point τ of ζ , from
(2–18). Then ζ is strictly monotone near s. If α = η, then ζ ≡ α.

Finally consider σ , which satisfies (2–10). At each point τ such that σ ′(τ )= 0,
(2–19) holds and Y has a constant sign. If there exists τ0 such that σ(τ0)= ε, then
σ ′(τ0)= ε(α− N ). If α 6= N , then τ0 is unique, and σ − ε has constant sign near
s. Thus σ ′′(τ ) has constant sign at any extremal point τ of σ , by (2–19), since Y
has constant sign near s. If α = N , then σ ≡ ε. �

Behavior of w near 0 or ∞. Here we suppose w is defined near 0 or ∞, which
means the function y of (2–7) is defined near ±∞. We study the behavior of y
and then return to w. First we suppose y monotone, so we can assume y > 0 near
±∞. We do not look for a priori estimates, which could be obtained by successive
approximations as in [Bidaut-Véron 2006a]. Our method is based on monotonicity
and L’Hospital’s rule, which is much more rapid and efficient.

Proposition 2.8. Let (y, Y ) be any solution of (S) such that y is strictly monotone
and y > 0 near s = ±∞. Then ζ has a finite limit λ near s, which is equal to
0, α, η, δ. More precisely, we are in one of the following cases:

(i) (y, Y ) converges to a stationary point different from (0, 0). Then λ = δ, and
ε(δ− N )(δ−α) > 0 or α = δ = N.

(ii) (y, Y ) converges to (0, 0). Then
• either λ= 0, s = −∞, and y is regular, or N = 1;
• or λ= η; then either (s = ∞, δ < N ) or (s = ∞, δ = N , ε(α− N ) < 0))

or (s = −∞, N < δ) or (s = −∞, δ = N , ε(α− N ) > 0)).

(iii) limτ→s y = ∞ and λ = α. Then either (s = ∞, α < δ) or (s = ∞, α =

δ, ε(δ− N ) < 0) or (s = −∞, δ < α) or (s = −∞, α = δ, ε(δ− N ) > 0).

Proof. From Proposition 2.7, the functions y, Y, σ, ζ are monotone; hence ζ has
a limit λ ∈ [−∞,∞] and σ has a limit µ ∈ [−∞,∞], and (y, Y ) converges to a
stationary point, or lim y = ∞. Then lim |Y | = ∞, since α 6= 0 from system (S).
To apply the L’Hospital’s rule, we consider the two quotients

(2–37)
Y ′

y′
=
(δ− N )σ + ε(α− ζ )

δ− ζ

and

(2–38)
(|Y |

(2−p)/(p−1)Y )′

y′
=
ζ(δ− N + ε(α− ζ )/σ )

(p − 1)(δ− ζ )

=
ζ(δ− N )+ ε(α− ζ )|ζ y|

2−p

(p − 1)(δ− ζ )
.
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(i) First case: ε(δ− N )(δ− α) > 0 and (y, Y ) converges to the point M` defined
by (2–26). Then obviously λ = δ; or α = δ = N and limτ→s y = k > 0; then
limτ→s Y = (δk)p−1, so λ= δ.

(ii) Second case: (y, Y ) converges to (0, 0). Then λ is finite; indeed, if λ=±∞, the
quotient (2–38) converges to (N − δ)/(p − 1), because |ζ y| = |Y |

1/(p−1)
= o(1);

thus ζ = |Y |
(2−p)/(p−1)Y/y has the same limit, from L’Hospital’s rule, which is

contradictory.
We next consider N in relation to δ. If N < δ, then (0, 0) is a source, thus s =

−∞. Using the eigenvectors, either µ= εα/N , then |ζ |p−1
= |µ|y2−p(1 + o(1)),

thus λ = 0 and w is regular, from Remark 2.4. Or µ = ±∞; then λ = λ(δ −

N )/(p−1)(δ−ζ ) from (2–38), thus λ= 0 or λ= η. If λ= 0, then ζ ′/ζ converges
to −η from (2–9), and s = −∞, thus necessarily η < 0, which means N = 1.

If δ < N (so N ≥ 2), then (0, 0) is a saddle point. Thus either s = −∞ and
µ = εα/N , λ = 0 and w is regular. Or s = ∞, µ = ±∞, and as above, λ = 0 or
λ= η. Now if λ= 0 the quotient (2–37) converges to ∓∞, which is contradictory.
Thus λ= η.

If δ= N (so N ≥ 2), either λ= 0, so y′> 0, s = −∞, and µ= εα/N by (2–38);
or else λ > 0, in which case λ = N = η from (2–38). Moreover if s = ∞, then
ε(α − N ) < 0; if s = −∞, then ε(α − N ) > 0. Indeed (εy − Y )′ = ε(N − α)y
and y − εY converges to 0; thus if s = ∞ and ε(N − α) ≥ 0, or s = −∞ and
ε(N −α)≤ 0, then µ≤ ε, but µ= ∞, we reach again a contradiction.

(iii) Third case: y tends to ∞. If s = ∞, then y′ > 0, thus ζ < δ; if s = −∞,
then ζ > δ. If λ = ±∞, then the quotient (2–38) converges to ε∞; thus λ = ε∞

and s = −ε∞. In any case, ζ ′ < 0, so |µ| ≤ 1/(p − 1) by (2–9), and µ = ε by
(2–37); thus Y ′

= −ε|Y |
(2−p)/(p−1)Y (1 + o(1)), and we reach a contradiction by

integration. Thus λ is finite; moreover λ 6= 0 for otherwise we would have µ= 0,
seeing that σ = |ζ y|

p−2ζ ; but µ= α/δ by (2–37).
If α 6= δ, then λ=α or δ, by (2–38). In turn σ = |λy|

p−2λ(1+o(1)), thus µ= 0.
From (2–37), necessarily λ= α. And if s = ∞, then y′> 0, thus ζ < δ, thus α < δ.
If s = −∞, then similarly α > δ.

If α = δ, then λ = α = δ 6= N , and ε(δ − N )(δ − ζ ) < 0 from (2–38); thus if
s = ∞, then ε(δ− N ) < 0 since ζ < δ; if s = −∞, then ε(δ− N ) > 0. �

Next we improve Proposition 2.8 by giving a precise behavior of w in any case:

Proposition 2.9. We keep the assumptions of Proposition 2.8.

(i) If λ= α 6= δ, then lim rαw = L > 0 (near 0, or ∞).

(ii) If λ= η > 0, η 6= N , then lim rηw = c > 0.
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(iii) If λ= α = δ 6= N , then

(2–39) lim r δ(ln r)−1/(2−p)w = κ :=
(
(2 − p)δ p−1

|N − δ|
)1/(2−p)

.

(iv) If λ= η = N = δ 6= α, then

(2–40) lim r N (ln r)(N+1)/2w = ρ :=
1
N

(
N (N − 1)
2|α− N |

)(N+1)/2

.

(v) If N = 1, λ= η = −1 or λ= 0 (near 0) then

(2–41) lim
r→0

w = a ∈ R, lim
r→0

w′
= b;

and b 6= 0; moreover, a = 0 (hence b > 0) if and only if λ= −1.

Proof. (i) Let λ= α 6= δ. From (2–8) we have rw′(r)= −αw(r)(1 + O(1)). Next
we apply Proposition 2.8, and are led to two cases:

If s = ∞ and α < δ, then for any γ > 0 we have w = O(r−α+γ ) and 1/w =

O(rα+γ ) near ∞ and w′
= O(r−α−1+γ ). Then J ′

α(r) = O(rα(2−p)−p−1+γ ), so
J ′
α is integrable, hence Jα has a limit L , and lim rαw = L , seeing that Jα(r) =

rαw(1 + o(1)). If L = 0, then rαw = O(rα(2−p)−p+γ ), which contradicts the
estimate of 1/w = O(rα+γ ) for γ small enough. Thus L > 0.

Otherwise, we have s = −∞ and δ < α; hence limτ→s y = ∞, w = O(r−α−γ ),
1/w = O(rα−ν), w′

= O(r−α−1−γ ) near 0, and J ′
α(r)= O(rα(2−p)−p−1−γ ). Thus

J ′
α is still integrable; hence lim rαw= L ≥0. If L =0, then rαw= O(rα(2−p)−p−γ ),

which contradicts the estimate of 1/w. Therefore we again obtain L > 0.

(ii) Let λ= η > 0, η 6= N . From Proposition 2.8, either s = ∞, δ < N or s = −∞,
N <δ. As above we get w= O(r−η±γ ) and 1/w= O(rη±γ ) near ∞ or 0. Here we
make the substitution (2–3) with d = η. We find yη = O(e±γ τ ), 1/yη = O(e±γ τ ),
y′
η = O(e±γ τ ), thus Yη = O(e±γ τ ), and from (2–4), Y ′

η = O(e±γ τ ). Substituting in
(2–4), we deduce Y ′

η = O(e(2−p)((δ−η)±γ )τ ). When s = ∞, then δ < η, when s =

−∞, then δ>η from (1–2). In any case, Y ′
η is integrable, hence Yη has a limit k, and

Yη−k = O(e(2−p)((δ−η)±γ )τ ). Now (e−ητ yη)′ = −e−ητY 1/(p−1)
η , thus yη has a limit

c=k1/(p−1)/η; in other words, lim rηw=c. If c=0, then Yη= O(e(2−p)((δ−η)±γ )τ ),
yη = O(e((2−p)((δ−η)±γ )/(p−1))τ ), which contradicts 1/yη = O(eγ τ ) for γ small.

(iii) Now suppose λ=α= δ 6= N . Then either s = ∞ and ε(δ− N )< 0 or s = −∞

and ε(δ − N ) > 0; moreover, limτ→s y = ∞. Then Y = (δy)p−1(1 + o(1)), and
µ= 0; hence y − εY = y(1 + o(1)), and from (2–13),

(y − εY )′ = ε(N − δ)Y = ε(N − δ)δ p−1(y − εY )p−1(1 + o(1)).

Then y = (|N − δ|δ p−1(2− p)|τ |)1/(2−p)(1+o(1)), which is equivalent to (2–39)
by (2–7).
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(iv) Let λ= η= N = δ 6= α. Then either s = ∞ and ε(α− N ) < 0 or s = −∞ and
ε(α− N ) > 0; moreover, limτ→s y = 0. Then Y = (N y)p−1(1+o(1)) and µ= ∞,
so Y − εy = Y (1 + o(1)), and from (2–13) we have

(Y − εy)′ = ε(α− N )y = ε(α− N )N−1(Y − εy)1/(p−1)(1 + o(1)).

Hence y = c|τ |−(N+1)/2(1 + o(1)) with c = N−1
(
N (N−1)/2|α−N |

)(N+1)/2, and
(2–40) follows from (2–7).

(v) Let λ= 0. Then also rw′
= o(w); thus by integration we get w+|w′

| = O(r−k)

for any k > 0. Then J ′

1 is integrable, so J1 has a limit at 0, and limr→0 rw = 0.
Therefore limr→0w

′
= b ∈ R and limr→0w = a ≥ 0. Then b 6= 0, since regular

solutions satisfy (2–33), and a 6= 0, since a = 0 would imply w = −br(1 + o(1)),
ζ = −1. If λ = η = −1, then from (2–8), w is nondecreasing, so it has a limit
a ≥ 0 at 0, leading to w′

= −aλr−1(1 + o(1)), and by integration a = 0. And
((w′)p−1)′ = ε(1 −α)w(1 + o(1)), so w′ has a limit b 6= 0. �

Next we consider the cases where y is not monotone and possibly changes sign.

Proposition 2.10. Assume ε = 1.

(i) Suppose that N ≤ δ < α, or N < δ ≤ α. Then any solution y has a infinite
number of zeros near ∞.

(ii) Suppose that y has a infinite number of zeros near ±∞. Then either

N < α < δ and |y|< ` and |Y |< (δ`)p−1 near ± ∞,

or N < δ = α, or max(δ, N , η) < α. If moreover δ < N < α, then |y| exceeds
` at its extremal points and |Y | exceeds (δ`)p−1 at its extremal points.

Proof. (i) Suppose the conclusion does not hold. Then for example y > 0 for
large τ ; and y is monotone, from Proposition 2.7(i). Applying Proposition 2.8
with s = ∞, we reach a contradiction.
(ii) Suppose that y is oscillating around 0 near ±∞. Then from (2–16), at the
extremal points,

(2–42) |y(τ )|2−p(δ−α) < (δ− N )δ p−1,

and the inequality is strict, because in case of equality, y is constant by uniqueness.
Similarly Y is oscillating around 0, and at the extremal points one finds, from
(2–17),

(2–43) |Y (τ )|(2−p)/(p−1)(δ−α) < (δ− N )δ.

Then max(N , η) < α, thanks to Proposition 2.5; and the conclusions follow from
(2–42) and (2–43). �
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We can complete these results according to the sign of δ− N/2:

Proposition 2.11. Suppose that ε(δ− N/2) ≤ 0. Then any solution y has a finite
number of zeros near ln Rw or ln Sw. If y is defined near ±∞ and nonmonotone,
then (y, Y ) converges to ±M`. There is no cycle or homoclinic orbit in R2.

Proof. (i) Suppose that y has an infinity of zeros. Then Rw = 0 or Sw = ∞, and
there exists a strictly monotone sequence (rn) of consecutive zeros ofw, converging
to 0 or ∞. Since ε(δ − N/2) ≤ 0, the energy function V defined in (2–24) is
nonincreasing. We claim that V is bounded. This is not easy to prove; we define
for the purpose a function

U (r)= r N ( 1
2w

2
+ εr−1

|w′
|

p−2w′w
)
= e(N−2δ)τ y

( 1
2 y − εY

)
.

Then

U ′(r)= r N−1(( 1
2 N −α)w2

+ ε|w′
|

p)
= e(N−1−2δ)τ ((1

2 N −α)y2
+ ε|Y |

p′)
.

If ε = 1, then δ ≤ N/2 < N < α. If ε = −1, then α < 0, by Proposition 2.10.
Then U (rn) = 0 and εU ′(rn) > 0. Therefore there exists another sequence (sn)

such that sn ∈ (rn, rn+1), U (sn)= 0, and εU ′(sn)≤ 0. At the point τn = esn we find
21−p′

y2p′

= 2|Y |
p′

≤ ε(2α− N )y2, so (y(τn), Y (τn)) is bounded. Hence (V (τn))

is bounded, so V is bounded near ±∞. Therefore V has a finite limit χ , and Y
and Y ′ are bounded because ε(α− δ) > 0; in turn, (y, Y ) is bounded. Otherwise
(0, 0) and ±M` are not in the limit set at ±∞, since (0, 0) is a saddle point, and
±M` is a source or a sink. Then the trajectory has a limit cycle, and there exists a
periodic solution (y, Y ). The corresponding function V is periodic and monotone,
hence constant; then V ′

≡ 0 implies that Y is constant and hence also y, by (S).
But this is a contradiction.

(ii) Suppose that y is positive near ±∞, and nonmonotone. If ε = 1, then δ ≤

N/2<N<α; if ε=−1, then α<δ<N , by Proposition 2.7, and y oscillates around
`. There exists a sequence of minimal points (τn), where y(τn) < `, and |Y (τn)| =

δy(τn); thus again (y(τn), Y (τn)) is bounded, and as above (y, Y ) is bounded.
The trajectory has no limit cycle, and hence converges to M`. Finally, if there is an
homoclinic orbit, then Tr is homoclinic. Then limτ→−∞ V = limτ→∞ V =0; hence
V ≡ 0, and as above (y, Y ) is constant, so (y, Y )≡ (0, 0), again a contradiction. �

Proposition 2.12. If y is not monotone near ε∞ (positive or changing sign), then
y and Y are bounded.

Proof. From Proposition 2.11, it follows that ε(δ− N/2) > 0. When ε = 1, and y
is changing sign and N <α < δ, then |y| is bounded by ` from above. Apart from
this case, if y is changing sign, then ε(α−δ)> 0, from Proposition 2.11. If y stays
positive, either ε = 1, δ <min(α, N ), or ε = −1, α < δ < N , by Proposition 2.7.
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In any case ε(α− δ) > 0. Here we use the energy function W defined by (2–21).
We can write W(y, Y ) in the form

(2–44) W(y, Y )= ε(F(y, Y )+ G(y)),

with

(2–45) F(y, Y )=
|Y |

p′

p′
−δyY +

|δy|
p

p
, G(y)=

(δ−N )δ p−1

p
|y|

p
+
ε(α−δ)

2
y2.

Observe that F(y, Y )≥ 0, so εW(y, Y )≥ G(y) > 0 for large |y|. Then W ′(τ )≤ 0
whenever (y(τ ), Y (τ )) 6∈ SL, where SL is given in (2–22). Let τ0 be arbitrary in
the interval of definition of y. Since SL is bounded, there exists k> 0 large enough
that εW (τ ) ≤ k for any τ such that ε(τ − τ0) ≥ 0 and (y(τ ), Y (τ )) ∈ SL, and we
can choose k > W (τ0). Then εW (τ ) ≤ k for ε(τ − τ0) ≥ 0; hence y and Y are
bounded near ε∞. �

Further sign properties. We can improve Proposition 2.5 using Propositions 2.8
and 2.9:

Proposition 2.13. Assume ε = 1, −∞< α ≤ δ and α < N. Then all regular solu-
tions have constant sign, y is strictly monotone and limτ→∞ ζ = α. Any solution
has at most one zero, and limτ→∞ ζ = α.

Proof. Regular solutions have constant sign by Proposition 2.5. Moreover JN

is increasing from 0; thus it is positive for r > 0, which means Y < y. And y
is monotone near ∞, by Proposition 2.7. From Proposition 2.8, we have three
possibilities: either α < N < δ and limτ→∞ ζ = δ, in which case limτ→∞ Y/y =

(δ− α)/(δ− N ) > 1, which is impossible; or δ ≤ N and limτ→∞ ζ = η ≥ N , in
which case limτ→∞ Y/y =∞, which is also contradictory, or finally limτ→∞ ζ =α.
Moreover y is increasing on R from 0 to ∞; indeed, if y has a local maximum for
some τ , we get α<N <δ and y(τ )≤` from (2–16), and moreover `<δ(p−1)/(2−p);
but δy(τ )= Y (τ )1/(p−1) < y(τ )1/(p−1), which is contradictory.

For the second statement, we see from Proposition 2.5 that any solution w 6≡ 0
has at most one zero. If w(r1)= 0 and, say, w > 0 on (r1,∞), we get w′(r1) > 0;
thus JN (r)≥ JN (r1) > 0 for r ≥ r1, and we conclude as above. �

Proposition 2.14. Assume ε = −1.

(i) If α < 0 and N ≤ δ, all regular solutions have at least one zero.

(ii) If 0< α, all regular solutions have constant sign and satisfy Sw <∞.

(iii) If −p′ < α < min(0, η), all regular solutions have precisely one zero and
Sw <∞.
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Proof. (i) Let α < 0 and N ≤ δ. Since εα > 0, the trajectory Tr starts in Q1.
Suppose that y stays positive. Then Tr stays in Q1, from Remark 2.3. If N ≤ δ,
then y is monotone, since it can only have minimal points, from (2–16); and (0, 0)
is the only stationary point. Then limτ→∞ y = ∞, and limτ→∞ ζ = α < 0 from
Proposition 2.8; thus (y, Y ) is in Q4 for large τ , which is impossible.

(ii) Let 0 < α. Then εα < 0, so that Tr starts in Q4. Moreover y > 0 on R, by
Proposition 2.5. And Tr stays in Q4, by Remark 2.1(i) on page 211. Thus y′

=

δy+|Y |
1/(p−1)>0. If Sw=∞, we see from Proposition 2.8 that limτ→∞ ζ =α>0;

hence (y, Y ) ends up in Q1, which is false. Then Sw <∞.

(iii) Let −p′ < α < min(0, η). Then Tr starts in Q1. By Proposition 2.5, Yα stays
positive, Tr stays in Q1 ∪ Q2, and Yα is increasing:

Y ′

α = −(p − 1)(η−α)Yα + e(p−(2−p)α)τ (Y 1/(p−1)
α −αyα) > 0.

Suppose that Sw = ∞. Then limτ→∞ Yα(τ ) ≥ C > 0, so rα+1w′(r) ≤ −C1/(p−1)

for large r , and, by integration, rαw(r) ≤ −C1/(p−1)/2. In particular, we obtain
from (2–3) that limτ→∞ y = −∞. From Propositions 2.7, 2.8, and 2.9, it follows
that limr→∞ rαw = L < 0; thus limτ→∞ Yα(τ ) = (αL)p−1. And there exists a
unique τ0 such that yα(τ0)= 0, by Remark 2.1(i). But

(2–46) Y ′′

α (τ )−(p−1)2(η−α)(α+ p′)Yα

=
Y ′
α

Yα

( 1
p−1

e(p−(2−p)α)τY 1/(p−1)
α − (p−1)(η−2α− p′)Yα

)
≥

Y ′
α

Yα

(
α

p−1
e(p−(2−p)α)τ yα + (η−α)(2− p)+ (p−1)(α+ p′)Yα

)
.

Thus Y ′′
α (τ ) > 0 for any τ ≥ τ0, an impossibility. Then Sw <∞, limτ→ln Sw Y/y =

−1, and y has a zero. �

Behavior of w near Rw > 0 or Sw < ∞.

Proposition 2.15. Let w be any solution of (Ew) with a reduced domain (so either
ε = 1 and Rw > 0 or ε = −1 and Sw <∞). Let s = Rw or Sw. Then

(2–47) lim
r→s

|r − s|(p−1)/(2−p)s1/(2−p)w = ±

( p−1
2−p

) p−1
2−p and lim

τ→ln s
σ = ε.

Proof. From Proposition 2.5, we can suppose that εw is decreasing near s and
limr→s w = ∞; thus y > 0, εY > 0 near ln s, and limτ→ln s y = ∞. Also, σ is
monotone near ln s, by Proposition 2.7; thus it has a limit µ such that εµ∈ [0,∞].
Suppose that µ= 0. Then Y = o(y)= o(y − εY ); from (2–13) we get

(y − εY )′ = (δ−α)(y − εY )+ ε(N −α)Y = (δ−α+ o(1))(y − εY ),
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so y cannot blow up in finite time. In the same way, if µ= ∞, then y = o(εY )=

o(εY − y), and

(y − εY )′ = (δ− N )(y − εY )+ (N −α)y = (δ− N + o(1))(y − εY ),

again leading to a contradiction; thus εµ ∈ (0,∞). Therefore limτ→ln Rw ζ = ε∞

and µ = ε from (2–37); then w′w−1/(p−1)
+ (ε + o(1))r1/(p−1)

= 0, and (2–47)
holds. �

More information on stationary points.

The Hopf bifurcation point. When ε(δ− N/2) > 0, a Hopf bifurcation appears at
the critical value α= α∗ given by (1–11). Then some cycles do appear near α∗, by
the Poincaré–Andronov–Hopf theorem; see [Hale and Koçak 1991, p. 344]. We
get more precise results by using the Lyapunov test for a weak sink or source; it
requires an expansion up to the order 3 near M`, in a suitable basis of eigenvectors,
where the linearized problem has a rotation matrix.

Theorem 2.16. Let ε(δ− N/2) > 0.

(i) Suppose ε = 1. If α = α∗, then M` is a weak source. If α < α∗ with α∗
− α

small enough, there exists a unique limit cycle in Q1 attracting at −∞.

(ii) Suppose ε = −1. If α = α∗, then M` is a weak sink. If α > α∗ with α − α∗

small enough, there exists a unique limit cycle in Q1, attracting at ∞.

Proof. The eigenvalues are given by λ1 = −ib, λ2 = ib, with b =
√

p′(N − δ).
From (2–29) we get

ν(α∗)= 2δ− N =
δ(N − δ)

(p − 1)(α∗ − δ)
=
ε(δ`)2−p

(p − 1)
.

First we make the substitution (2–27) as above, which leads to (2–28). The function
9 defined in (2–29) has an expansion near t = 0 of the form

9(ϑ)= B2ϑ
2
+ B3ϑ

3
+ · · · ,

where

B2 =
(2 − p)(δ`)3−2p

2(p − 1)2
, B3 =

(2 − p)(3 − 2p)(δ`)4−3p

6(p − 1)6
=

2(3 − 2p)B2
2

3(2 − p)ν(α∗)
.

Next we make the substitution

τ = −θ/b, y(τ )= εν(α)x1(θ), Y (τ )= δx1(θ)+ bx2(θ),

and obtain

x ′

1(θ)= x2 +
ε

bν(α)
9(δx1 + bx2), x ′

2(θ)= −x1 −
ε(N − δ)

b2ν(α)
9(δx1 + bx2).
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We write the expansion of order 3 in the form

x ′

1 = x2 + ε(a2,0x2
1 +a1,1x1x2+a0,2x2

2 +a3,0x3
1 +a2,1x2

1 x2+a1,2x1x2
2 +a0,3x3

2 +· · · ),

x ′

1 = −x1+ε(b2,0x2
1+b1,1x1x2+b0,2x2

2+b3,0x3
1+b2,1x2

1 x2+b1,2x1x2
2+b0,3x3

2+· · · ),

and we compute the Lyapunov coefficient

LC = ε(3a3,0 + a1,2 + b2,1 + 3b0,3)

−a2,0a1,1 + b1,1b0,2 − 2a0,2b0,2 − a0,2a1,1 + 2a2,0b2,0 + b1,1b2,0.

After simplification, we obtain

(2 − p)bν(α)2

2B2
2 (δ

2 + b2)
LC = (N − 2δ)(1 − ε(3 − 2p))

=

{
2(N − 2δ)(p − 1) < 0 if ε = 1,

2(N − 2δ)(2 − p) > 0 if ε = −1,
.

The nature of M` follows from [Hubbard and West 1995, p. 292], taking into
account that θ has opposite sign from τ . If ε = 1, M` is a week source, and there
exists a small limit cycle attracting at −∞ for all α near α∗ such that M` is a sink;
this means that α < α∗. If ε = −1, M` is a weak sink and there exists a small
limit cycle attracting at ∞ for all α near α∗ such that M` is a source; this means
α∗ < α. �

Node points or spiral points. When the system (S) has three stationary points, and
M` is a source or a sink (so δ < N ), it is interesting to know if M` is a node point.
When α∗ exists, it is a spiral point, by (2–30).

If ε=1, we see from (2–31) that M` is a node point when δ≤ N/2−
√

p′(N − δ)

or δ > N/2 −
√

p′(N − δ) and α ≤ α1, or δ > N/2 +
√

p′(N − δ) and α2 ≤ α,
where

(2–48)

α1 = δ+
δ(N − δ)

(p − 1)(2δ− N + 2
√

p′(N − δ))
,

α2 = δ+
δ(N − δ)

(p − 1)(2δ− N − 2
√

p′(N − δ))
.

If ε = −1, M` is a node when δ ≥ N/2+
√

p′(N − δ), or δ < N/2+
√

p′(N − δ)

and α2 ≤ α, or δ < N/2 −
√

p′(N − δ) and α ≤ α1. In any case α1 < α2.

Remarks 2.17. (i) Let ε = 1. One can verify that N ≤ α1 and that N = α1 if and
only if N = δ/(p−1)= p′/(2− p). Also α1<η if and only if δ2

+(7−N )δ+N >0,
which is true for N ≤ 14, but not always.
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(ii) Let ε = −1. It is easy to see that α2 ≤ 0 and that α2 = 0 if and only if
N (2 − p) = δ, or equivalently N = p/(2 − p)2. Also α2 > −p′ if and only if
δ2

+ 7δ− 8N < 0, which is true for δ < N/2< 9, but not always.

Nonexistence of cycles. If the system (S) admits a cycle O in R2, then O surrounds
at least one stationary point. If it surrounds (0, 0), the corresponding solutions y
are not of constant sign. If it only surrounds M`, then it stays in Q1, so y stays
positive. Indeed α 6= 0 from (1–9), and O cannot intersect {(ϕ, 0), ϕ > 0} at two
points, and similarly {(0, ξ), ξ > 0}, by Remark 2.1(i) on page 211.

For suitable values of α, δ, N , we can show that cycles cannot exist, by using
Bendixson’s criterion or the Poincaré map. Writing (S) under the form

(2–49) y′
= f1(y, Y ), Y ′

= f2(y, Y ),

we obtain

(2–50)
∂ f1

∂y
(y, Y )+

∂ f2

∂Y
(y, Y )= 2δ− N − ε|Y |

(2−p)/(p−1).

For example, as a direct consequence of Bendixson’s criterion, if ε(δ− N/2) < 0,
we find again the nonexistence of any cycle in R2, which was obtained in Propo-
sition 2.11. Now we consider cycles in Q1.

First we extend to system (S) a general property of quadratic systems, proved in
[Chicone and Tian 1982], stating that there cannot exist a closed orbit surrounding
a node point. Note that the restriction of our system to Q1 is quadratic if p =

3
2 .

Theorem 2.18. Let δ < N and ε(δ−α) < 0. When M` is a node point, there is no
cycle or homoclinic orbit in Q1.

Proof. We use the linearization (2–27), (2–28), (2–29). Consider the line L with
equation Ay + Y = 0, where A is a real parameter. The points of L are in Q1

whenever −(δ`)p−1 < Y and −` < y. As in [Chicone and Tian 1982], we study
the orientation of the vector field along L: we find

Ay′
+ Y ′

= (εν(α)A2
+ (N + ν(α))A + εα)y − (A + ε)9(Y ).

Using (2–31), apart from the case ε = 1, α = N = α1, we can find an A such
that εν(α)A2

+ (N + ν(α))A + εα = 0, and A + ε 6= 0. Moreover 9(Y ) ≥ 0 on
L ∩Q1; indeed, (p −1)9 ′(t)= ((δ`)p−1

+ t)(2−p)/(p−1)
− t (2−p)/(p−1), so 9 has a

minimum on (−(δ`)p−1,∞) at 0, and hence is nonnegative on this interval. Then
the orientation of the vector field does not change along L ∩ Q1; in particular no
cycle can exist in Q1; and similarly no homoclinic trajectory can exist. In the case
ε = 1, α = N = α1, Y ≡ y ∈ [0, `) defines the trajectory Tr , corresponding to the
solutions given by (1–6) with K > 0, and again no cycle can exist in Q1: it would
intersect Tr . �
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Next we prove the nonexistence of cycles on one side of the Hopf bifurcation
point:

Theorem 2.19. Assume δ < N and ε(δ− α) < 0 < ε(δ− N/2). If ε(α− α∗) ≥ 0,
there exists no cycle or homoclinic orbit in Q1.

Proof. M` is a source or weak source if ε = 1, and a sink or weak sink if ε = −1.
Suppose there exists a cycle in Q1. Then any trajectory starting from M` at −ε∞

has a limit cycle in Q1, which is attracting at ε∞. Such a cycle is not unstable (if
ε = 1) or not stable (if ε = −1); in other words the Floquet integral on the period
[0,P] is nonpositive if ε= 1 and nonnegative if ε= −1. From (2–50) we then get

(2–51) ε

∫ P

0

(
∂ f1

∂y
(y, Y )+

∂ f2

∂Y
(y, Y )

)
dτ

=

∫ P

0

(
|2δ− N | −

1
p−1

Y (2−p)/(p−1)
)

dτ ≤ 0.

Now, from (2–28),

0 = δ

∫ P

0
ydτ − ν(α)

∫ P

0
Y dτ −

∫ P

0
9(Y ) dτ,

0 = α

∫ P

0
ydτ + (δ− N − ν(α))

∫ P

0
Y dτ −

∫ P

0
9(Y ) dτ.

Moreover, since 9 is nonnegative,∫ P

0
9(Y ) dτ = −p′

∫ P

0
ydτ = −

p′(N − δ)

α− δ

∫ P

0
Y dτ > 0;

and since y′
= δy − Y 1/(p−1),∫ P

0
Y 1/(p−1)dt = δ

∫ P

0
y dt < δ`P.

From this, (2–51), and Jensen’s inequality, it follows that

(p − 1)|2δ− N | ≤

∫ P

0
Y (2−p)/(p−1) dτ

≤ Pp−1
(∫ P

0
Y 1/(p−1)dτ

)2−p

< (δ`)2−p
=
εδ(N − δ)

α− δ
.

Hence ε(α − α∗) < 0, a contradiction. Next, suppose that there is an homoclinic
orbit. From [Hubbard and West 1995, Theorem 9.3, p. 303] we see that the saddle
connection is repelling if ε = 1 and attracting if ε = −1, because the sum of the
eigenvalues µ1, µ2 of the linearized problem at (0, 0) is 2δ− N . That means that
the solutions just inside it spiral toward the loop near −ε∞. Because M` is a
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source or weak source or sink or weak sink, such solutions have a limit cycle that
is attracting at ε∞. As before, we reach a contradiction. �

Finally we get the nonexistence of cycles in nonobvious cases, where we have
shown that any solution has at most one or two zeros.

Theorem 2.20. Assume δ < N and ε(δ−α)< 0< ε(δ− N/2). If ε= 1 and α ≤ η,
or ε = −1 and −p′

≤ α < 0, there exists no cycle and no homoclinic orbit in Q1.

Proof. (i) Suppose there exists a cycle. There are two possibilities:

Suppose ε = 1 and α ≤ η. M` is a sink since α < α∗, so any trajectory converging
to M` at ∞ has a limit cycle O in Q1, attracting at −∞. Let (y, Y ) describe the
orbit O, of period P. Then O is not stable, so the Floquet integral is nonnegative,
and from (2–51), ∫ P

0

(
2δ− N −

1
p − 1

Y (2−p)/(p−1)
)

dτ ≥ 0.

Otherwise y is bounded from above and below; thus the function yα, defined by
(2–3) with d = α, satisfies limτ→−∞ yα = 0 and limτ→∞ yα = ∞; moreover yα
has only minimal points, from (2–35), since α ≤ η; thus y′

α > 0 on R. From (2–5)
and (2–4) with d = α,

y′′
α

y′
α

+ η− 2α+
1

p − 1
Y (2−p)/(p−1)

=
α(η−α)yα

y′
α

=
α(η−α)yα

αyα − Y 1/(p−1)
α

> η−α.

Upon integration over [0,P], this implies η − 2α + 2δ − N > η − α, which is
impossible, since δ− N + δ−α < 0.

Alternatively, suppose ε = −1 and −p′
≤ α < 0. M` is a source since α∗ < α,

and any trajectory converging to it at −∞ has a limit cycle O′ attracting at ∞. Let
(y, Y ) describe the orbit O′, of period P. Then O′ is not unstable, so the Floquet
integral is nonpositive, hence∫ P

0
(2δ− N +

1
p − 1

Y (2−p)/(p−1)) dτ ≤ 0.

Moreover Y is bounded from above and below; thus Yα, defined by (2–3) with d =

α, satisfies limτ→−∞ Yα = ∞, limτ→∞ Yα = 0. And Yα has only minimal points,
by (2–36), since −p′

≤ α < 0; thus Y ′
α < 0 on R. From (2–6) and (2–4) we get

Y ′′
α

Y ′
α

+ (p − 1)(η− 2α− p′)−
1

p − 1
Y (2−p)/(p−1)

=
(p − 1)2(η−α)(p′

+α)Yα
Y ′
α

<−(p − 1)(p′
+α).

Upon integration over [0,P], this implies (p−1)(η−2α−p′)+2δ−N<−(p−1)×
(p′

+α), which means pδ+ (p − 1)|α|< 0; but this is false.
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(ii) Suppose there exists an homoclinic orbit. Since δ < N , the origin is a saddle
point, so Tr is the only trajectory starting from (0, 0) in Q1, and there exists a
unique trajectory Ts converging to (0, 0), lying in Q1 for large τ , having infinite
slope at (0, 0), and satisfying limr→0 rηw = c > 0.

If ε = 1, then Tr satisfies limτ→−∞ e−ατ yα = a > 0, so limτ→−∞ yα = 0;
also yα has only minimal points, so it is increasing and positive; and Ts satisfies
limτ→∞ e(η−α)τ yα = c> 0. If α < η, then limτ→∞ yα = 0, thus Tr 6= Ts . If α = η,
Ts is given explicitly by (1–7), that means yα is constant, thus again Tr 6= Ts .

If ε=−1, then Ts satisfies limτ→−∞ e(η−α)(p−1)τYα > 0, because limτ→−∞ ζ =

η; so limτ→∞ Yα = 0. Moreover Yα has only minimal points, and hence is increas-
ing and positive; otherwise Tr satisfies limτ→−∞ e−(α(p−1)+p)τYα = −aα/N > 0,
by (2–33). If α >−p′, we get limτ→∞ Yα = 0, which implies Tr 6= Ts . If α= −p′,
then Tr is given explicitly by (1–8); in other words Yα is constant, and again
Tr 6= Ts . �

Boundedness of cycles. When there do exist cycles, except for a few cases, we
cannot prove their uniqueness, but we can show:

Theorem 2.21. When nonempty, the set C of cycles of system (S) is bounded in R2.

Proof. Suppose there exists a cycle O in R2. By Propositions 2.5, 2.7, 2.10, 2.11
and Theorem 2.20, this can happen only in four cases: ε=1, N <α<δ; ε=1, N <
δ = α; ε= 1, max(δ, N , η) < α, N/2< δ; ε= −1, δ < N/2, α <−p′. In the first
case, C is bounded and lies in (−`, `)×(−(δ`)p−1, (δ`)p−1), by Proposition 2.10.
In the other cases we use the energy function W . Let (y, Y ) describe the trajectory
O. Then W is periodic, and its maximum and minimum points are precisely the
points of the curve L. Indeed if W ′(τ1)= 0 and the point (y(τ1), Y (τ1) is not on L,
it lies on the curve M defined in (2–11); hence y′(τ1)= 0 and y′′(τ1) 6= 0, since O is
not just a stationary point. Therefore (δy − |Y |

(2−p)/(p−1)Y )(|δy|)p−2δy − Y ) > 0
near τ1; then W ′ has constant sign, and τ1 is not a maximum or a minimum. In
this way we obtain estimates for W independently of the trajectory:

max
τ∈R

|W (τ )| = M = max
(y,Y )∈L

|W(y, Y )|.

At the maximal points τ of y, one has |Y (τ )|(2−p)/(p−1)Y (τ )= δy(τ ), so

W (τ )=
ε(δ− N )δ p−1

p
|y(τ )|p

+
α− δ

2
y2(τ ).

By the Hölder inequality, y is bounded by a constant independent of the trajectory,
and

|Y |
p′

p′
≤ δyY +

|2δ− N |δ p−1

p
|y|

p
+

|α− δ|

2
y2

+ M.

Thus Y is also uniformly bounded, and C is bounded. �
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3. The case ε = 1, α < δ or α = δ < N

Lemma 3.1. Assume ε = 1 and −∞< max(α, N ) < δ(α 6= 0). In the phase plane
(y, Y ), there exist

(i) a trajectory T1 converging to M` at ∞, such that y is increasing as long as it
is positive;

(ii) a trajectory T2 in Q1 ∪ Q4 converging to M` at −∞, and unbounded at ∞,
with limτ→∞ ζ = α;

(iii) a trajectory T3 converging to M` at −∞, such that y has at least one zero;

(iv) a trajectory T4 in Q1, converging to M` at ∞, with limτ→ln Rw Y/y = 1;

(v) trajectories T5 in Q1 ∪ Q4 unbounded at ±∞, with

lim
τ→∞

ζ = α and lim
τ→ln Rw

Y/y = 1.

Proof. Here the system (S) has three stationary points, defined by (2–26). The
point (0, 0) is a source, and the point M` is a saddle point. The eigenvalues satisfy
λ1 < 0< λ2 < δ. The eigenvectors u1 = (−ν(α), λ1 − δ) and u2 = (ν(α), δ− λ2)

form a positively oriented basis, and u1 points toward Q3, while u2 points toward
Q1. There exist four particular trajectories converging to M` at ±∞, namely:

• T1 converging to M` at ∞, with tangent vector u1; then y<` and Y <(δ`)p−1

and y′ > 0 near ∞; as above, y cannot have a local minimum, so y′ > 0
whenever y > 0.

• T2 converging to M` at −∞, with tangent vector u2; then y′ > 0 near −∞.
If y has a local maximum at some τ , then y′′(τ ) ≤ 0, so that y(τ ) ≤ ` from
(2–16), which is impossible. Then y is increasing on R and limτ→∞y = ∞,
and limτ→∞ ζ = α from Proposition 2.8. In particular T2 stays in Q1 if α > 0,
and enters Q4 if α < 0.

• T3 converging to M` at −∞, with tangent vector −u2; then y′ < 0 near −∞.
If y has a local minimum at some τ , then y(τ )≥ `, which is still impossible.
Thus y is decreasing at long as the trajectory stays in Q1. It cannot stay in it,
because it cannot converge to (0, 0). It cannot enter Q4 by Remark 2.1(i) on
page 211. Then it enters Q2 and y has at least one zero.

• T4 converging to M` at ∞, with tangent vector −u1; then y′< 0 near ∞. As
above, y cannot have a local maximum, it is decreasing and limτ→ln Rw y =

∞. From Proposition 2.8, y cannot be defined near −∞, hence Rw > 0 and
limτ→ln Rw Y/y = 1.

For any trajectory T in the domain delimited by T2 and T4, the function y is
positive, and T cannot converge to M` at ∞, and y is monotone for large τ from
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Proposition 2.7, because α < δ; thus limτ→∞ ζ = α from Proposition 2.8, and y is
not defined near −∞, and T is of type (5). �

We now study the various global behaviors, according to the values of α. The
results are expressed in terms of w.

α ≤ N < δ

Theorem 3.2. Assume the ε = 1 and −∞ < α ≤ N < δ, with α 6= 0. All regular
solutions w of (Ew) have constant sign, and limr→∞ rα|w| = L > 0 if α < N ,
limr→∞ r δ|w| = ` if α = N. And w(r) = `r−δ is also a solution. There exist
solutions satisfying any one of these characterizations:

(1) (only if α < N ) w is positive, limr→0 rηw= c> 0, if N ≥ 2 (and (2–41) holds
with a > 0> b if N = 1), and limr→∞ r δw = `;

(2) w is positive, limr→0 r δw = `, limr→∞ rαw = L > 0;

(3) w has precisely one zero, limr→0 r δw = `, limr→∞ rαw(r)= L < 0;

(4) w is positive, Rw > 0, limr→∞ r δw = `;

(5) w is positive, Rw > 0, limr→∞ rαw = L > 0;

(6) w has one zero, Rw > 0, and limr→∞ rαw = L 6= 0;

(7) (only if α < N ) w is positive, limr→0 rηw= c> 0 if N ≥ 2 (and (2–41) holds
with a > 0> b if N = 1), and limr→∞ rαw = L > 0;

(8) w has one zero, with limr→0 rηw = c > 0 if N ≥ 2 (and (2–41) holds with
a > 0> b if N = 1), and limr→∞ rαw = −L < 0;

(9) N = 1, w > 0 and (2–41) holds with a ≥ 0, b > 0 and limr→∞ rαw = L.

Up to symmetry, all the solutions of (Ew) are as above.

α = 1< N α = 2 = N

Figure 1. Theorem 3.2: N = 2< δ = 3.
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Proof. (i) We first assume that α 6= N , and refer to Figure 1, left. The trajectory Tr

starts in Q1 for α > 0, in Q4 for α < 0, and y stays positive. Then limτ→∞ y = ∞,
and limτ→∞ ζ = α, and limr→∞ rαw = L > 0, by Propositions 2.10 and 2.13,
since α < N . Moreover y is increasing: indeed if it has a local maximum, at this
point y ≤ `, and then y has no local minimum, since at such a point y ≥ `, so that
y cannot tend to ∞. Then Tr stays in Q1, and Y is increasing from 0 to ∞. Indeed
each extremal point τ of Y is a local minimum, from (2–17). If α < 0, in the same
way, then Y is decreasing from 0 to −∞, and Tr stays in Q4.

First we follow the trajectory T1: it does not intersect Tr , and cannot enter Q2

by Remark 2.1(i). Thus y stays positive and increasing. It cannot enter Q4, seeing
that it does not meet Tr if α > 0, or (by the same remark) if α < 0. Thus T1 stays
in Q1, and (y, Y ) converges necessarily to (0, 0). If N ≥ 2, then limτ→−∞ ζ = η,
limr→0 rηw = c > 0 from Proposition 2.8 and 2.9. If N = 1, since T1 stays in Q1,
then necessarily limτ→−∞ ζ = 0, thus (2–41) holds with a > 0> b.

Next we follow T3: here y has a zero, which is unique by Proposition 2.5, since
α< N . Then y< 0, and limτ→∞ y =−∞, limr→∞ rαw=−L< 0 by Propositions
2.8 and 2.9. T3 stays in Q2 if α < 0, or goes from Q2 into Q3 if α > 0.

Trajectories T2, T4, T5 of Lemma 3.1 yield solutions w of type (2), (4), (5).
For any trajectories T6 in the domain delimited by T3,T4, y has one zero, and

limr→∞ rαw = L 6= 0; and w is of type (6).
The solutions of type (7) correspond to the trajectories T in the domain de-

limited by Tr ,T1,T2. Indeed limτ→∞ y = ∞, and limr→∞ rαw = L > 0. And
limτ→−∞ y = 0. If N ≥ 2, then limτ→−∞ ζ = η, limr→0 rηw= c> 0, from Propo-
sition 2.8 and 2.9. If N = 1, T cannot meet Tr , thus necessarily limτ→−∞ ζ = 0,
and (2–41) holds with a > 0> b.

Up to a change of w into −w, the solutions of type (8) and (9) correspond
to the trajectories in the domain delimited by −Tr ,T1,T3. Indeed they satisfy
limτ→∞ y = −∞, and limr→∞ rαw = L < 0; and limτ→−∞ y = 0. If N ≥ 2, then
limr→0 rηw= c> 0 and w has a zero. If N = 1, either (2–41) holds with a = 0> b
and w stays negative, or a < 0, b < 0 and w has a zero. Such solutions exist from
Theorem 2.2. By symmetry, all the solutions are described.

(ii) Now assume α = N (Figure 1, right). Then M` belongs to the line y = Y , and

u1 = (−δ/(p − 1),−δ/(p − 1))

has the same direction. Moreover JN is constant, which means y −Y = Ce(δ−N )τ ,
with C ∈ R. The solutions corresponding to C = 0 satisfy y ≡ Y , thus T1 =

Tr = {(ξ, ξ) : ξ ∈ [0, `)}, corresponding to the regular Barenblatt solutions. And
T4 = {(ξ, ξ) : ξ > `} yields the solutions defined by (1–6) for K < 0. All other
solutions exist as before, apart from type (7). �
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Note. The trajectory T1 is the only one joining the stationary points (0, 0) and M`.
Hence, for α < N , solutions w of type (1) are unique, up to the scaling mentioned
in the note on page 210. Solutions of types (2), (4), and (5) are also unique.

N < α < δ

Here we prove that some periodic trajectories can exist, according to the value
of α with respect to α∗. By (2–32), N < α∗ whenever δ2

− (N +3)δ+ N > 0, and
in particular for any p ≤

3
2 . Our main tool is the Poincaré–Bendixson theorem,

using the level curves of the energy function W:

Lemma 3.3. Assume ε = 1 and N < α < δ. Consider, for k ∈ R, the level curves

Ck = {(y, Y ) ∈ R2
: W(y, Y )= k}

of the function W defined in (2–21). They are symmetric with respect to (0, 0). Let

k` = W(`, (δ`)p−1)=
1
2(δ− N )δ p−2`p.

If k > k`, then Ck has two unbounded connected components. If 0< k < k`, Ck has
three connected components, of which one is bounded. If k = k`, Ck` is connected
with a double point at M`. If k = 0, one of the three connected components of C0

is {(0, 0)}. If k < 0, Ck has two unbounded connected components.

Proof. The energy k` of the statement is positive. Also (y, Y ) ∈ Ck if and only if
F(y)= k − G(y), where F,G are defined in (2–45). By symmetry we can reduce
the study of Ck to the set y > 0. Let ϕ(s)= |s|p′

/p′
− s + 1/p for any s ∈ R, and

set θ = Y/(δy)p−1. Then (2–44) reduces to

ϕ(θ)= (k − G(y))/(δy)p.

The function ϕ is decreasing on (−∞, 1) from ∞ to 0, and increasing on (1,∞)

from 0 to ∞. Let ψ1 be the inverse of the restriction of ϕ to (−∞, 1] and ψ2 the
inverse of the restriction of ϕ to [1,∞), both defined on [0,∞). For any y > 0,

y ∈ Ck ⇐⇒ Y =81(y) < (δy)p−1 or Y =82(y)≥ (δy)p−1,

where

(3–1) 8i (y)= (δy)p−1ψi

(k − G(y)
(δy)p

)
for i = 1, 2,

81 lies below M whereas82 lies above M, and81,82 ∈ C1((0,∞)). The function
G has a maximal point at y = `, and G(`)= k`. Using symmetry we see that either
k > k` and y ranges over R, in which case Ck has two unbounded connected
components; or 0< k < k` and Ck has three connected components, one of which,
Cb

k , is bounded; or k = k` and Ck` is connected with a double point at M`; or yet
k = 0 and one of the three connected components of C0 is {(0, 0)}; or k < 0 and Ck
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has two unbounded connected components. The unbounded components satisfy
lim|y|→∞Y/y2/p′

= ±(p′(δα)/2)1/p′

, by (3–1). The zeros of 8′

i are contained in

N =
{
(y, Y ) ∈ R2

: y > 0, δY = −(δ−α)y + (2δ− N )(δy)p−1},
and N lies above M as long as y < `.

We now describe Cb
k when 0 < k ≤ k`. The function 81 is increasing on a

segment [0, y] such that y < `, and 81(0)= −(kp′)1/p′

and (y,81(y)) ∈ M, with
an infinite slope at this point; 82 is increasing on some interval [0, ỹ) such that
(ỹ,82(ỹ)) ∈ N and then decreasing on (ỹ, y], and 82(0)= (kp′)1/p′

and 82(y)=
81(y). By symmetry with respect to (0, 0), the curve Cb

k is completely described.
Next consider Ck` for y > 0: the function 82 is increasing on [0,∞) from

(p′k`)1/p′

to ∞, and 82(`) = (δ`)p−1; the function 81 is increasing on some
interval [0, ŷ) such that (ŷ,81(ŷ)) ∈ N, so ŷ > `; and (ŷ,81(ŷ)) is below M,
and 81(`) = (δ`)p−1, and 81 is decreasing on (ŷ,∞), with limy→∞81 = −∞.
Setting Ck`,1 = {(y,81(y)) : y > `} and Ck`,2 = {(y,82(y)) : y > `}, one has
Ck` = Cb

k` ∪ ±Ck`,1 ∪ Ck`,2. �

Theorem 3.4. Assume ε = 1 and N < α < δ. Then w(r) = `r−δ is a solution of
(Ew).

(i) If α ≤ α∗, any solution of (Ew) has at most a finite number of zeros.
(ii) There exist α̌ such that max(N , α∗) < α̌ < δ, such that if α > α̌, in the phase

plane (y, Y ), there exists a cycle surrounding (0, 0).
(iii) Let α be such that there exists no such cycle. Then all regular solutions have a

finite positive number of zeros and limr→∞ rαw = Lr 6= 0 or limr→∞ r δw =

±`. There exist solutions of types (2)–(6) of Theorem 3.2, and solutions such
that

(1′) (only if Lr 6= 0) limr→0 r δw = `, and limr→0 rηw = c 6= 0 (or (2–41) holds if
N = 1);

(7′) limr→0 rηw = c 6= 0 (or (2–41) holds if N = 1) and limr→∞ rαw = L 6= 0.
(iv) For any α such that there exists such a cycle, there exist solutions w which

oscillate near 0 and ∞, and r δw is periodic in ln r . All regular solutions
w oscillate near ∞, and r δw is asymptotically periodic in ln r . There exist
solutions of types (2), (4), (5), and solutions

(1′′) with precisely one zero, Rw > 0, and limr→∞ r δw = `;
(3′′) such that limr→0 r δw = `, and oscillating near ∞;
(9) such that limr→0 rηw= c 6= 0 (or (2–41) holds if N = 1) and oscillating near

∞;
(10) with precisely one zero, Rw > 0, and limr→∞ rαw = L 6= 0;
(11) with Rw > 0 and oscillating near ∞.
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Proof. There always exist solutions of type (2), (4), and (5), by Lemma 3.1.

(i) Assume α ≤ α∗ (see Figure 2, left). Consider any trajectory T. Suppose y has
infinitely many zeros near ±∞. From Proposition 2.10, T is contained in the set

D = {(y, Y ) ∈ R2
: |y|< `, |Y |< (δ`)p−1

}

near ±∞. Then T is bounded near ±∞, hence the limit set at ±∞ is contained
in D. But M` 6∈ D, and (0, 0) is a source and a node point, so it cannot be in the
limit set 0 at ∞. From the Poincaré–Bendixson theorem, 0 is a closed orbit, so
that there exists a cycle. Moreover, from (2–25), (2–49) and (2–50),

∂ f1

∂y
(y, Y )+

∂ f2

∂Y
(y, Y )=

1
p − 1

(D(2−p)/(p−1)
− |Y |

(2−p)/(p−1));

thus, by Bendixson’s criterion, the set {|Y |< D} contains no cycle. Now note that

(3–2) α ≤ α∗
⇐⇒ (δ`)p−1

≤ D.

Then there is no cycle in D, and we reach a contradiction.

(ii) Now assume α >max(N , α∗). The curve L intersects M at (δ−1 D1/(p−1), D).
Then

SL ∩ M =
{
(δ−1(θD)1/(p−1), θD) : θ ∈ [0, 1]

}
;

and D < (δ`)p−1 by (3–2), so SL does not contain M`. We can find k1 > 0 small
enough that Cb

k1
is interior to SL. Next we search for k ∈ (0, k`) such that L is in the

domain delimited by Cb
k . By symmetry we only consider the points of L such that

y ≥ 0. In any case for any point of L we have |δy|
p
+ |Y |

p′

≤ M = (2(2δ− N ))δ,
by (2–23) and by convexity. By a straightforward computation this implies that

α = 2.41 α = 2.42

Figure 2. Theorem 3.4: ε = 1, N = 2< α < δ = 3.
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W(y, Y )≤ K M , where K = max(2/p′, (3δ− N )/δp). Let α̌ = α̌(δ, N ) be given
by K M = k`. This means that

δ− α̌ =

( δ− N
2K δ2−p

)1/δ δ p−1(δ− N )
2(2δ− N )

.

If α > α̌, there exists k2 < k` such that L is contained in the set

{(y, Y ) ∈ R2
: W(y, Y ) < k2},

which has three connected components; because SL is connected, it is contained
in the interior to Ckb

2
. Then the domain delimited by Cb

k1
and Cb

k2
is bounded and

forward invariant. It does not contain any stationary point, and so it contains a
cycle, by the Poincaré–Bendixson theorem (see Figure 2, right).

(iii) Let α be such that there exists no cycle. Since N < α, all regular solutions
y have at least one zero. They have a finite number of zeros. For if not, (y, Y )
is bounded near ∞, so it has a limit cycle. Then either limτ→∞ y = ±∞ and
limτ→∞ ζ =α>0, so that the trajectory Tr ends up in Q1∪Q3 and lim rαw= Lr 6=0,
or else limτ→∞ y = ±` and limr→∞ r δw = ±`.

T3 cannot meet Tr or −Tr , thus y has a unique zero, and limτ→∞y = −∞, and
limτ→∞ζ = α. The same happens for the trajectories T6 in the domain delimited
by T3,T4. Thus there exist solutions of types (3) and (6).

Suppose Lr 6= 0 and consider T1: the trajectories Tr ,−Tr ,T1 have a last inter-
section point at time τ0 with the half-axis {y = 0, Y < 0} at some points Pr , P ′

r , P1,
and P1 ∈ [Pr , P ′

r ]. The domain delimited by Tr ,−Tr and [Pr , P ′
r ] is bounded and

backward invariant, by Remark 2.1(i) on page 211. Then T1 stays in it for τ < τ0,
it has a finite number of zeros, and converges to (0, 0) near −∞; thus w is of type
(1′). If N ≥ 2, then limτ→∞ζ = η, so that y has at least one zero.

Since (0, 0) is a source, there exist other solutions converging to (0, 0) near
−∞, they have a finite number of zeros, and limτ→∞ζ = α, and w is of type (7′).
(iv) Let α such that there exists a cycle, thus Tr has a limit cycle O.

Consider again T1. Since M` 6∈ SL, the function W is decreasing near ∞, so
that W (τ ) > k`; thus T1 is exterior to Cb

k` for large τ , in the domain exterior to Cb
k`

delimited by Ck`,1 and −Ck`,2; and it cannot cut Ck` . Moreover y is decreasing at
long as y > 0, then T1 enters Q4 as τ decreases. It cannot stay in it, because it
would converge to (0, 0), which is impossible. Then y has at least one zero, and T1

enters Q3. It stays in it, since it cannot cross −Ck`,2. Thus y has a unique zero, and
limτ→−∞ y = −∞, and Rw > 0 from Proposition 2.8, because T1 cannot converge
to (0, 0) at −∞, and w is of type (1′′).

Next consider T3. Here W is decreasing near −∞, hence W (τ ) < k`; thus T3

is in the interior of Cb
k` near −∞. Now the domain delimited by Cb

k1
and Cb

k` is
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forward invariant, thus T3 stays in it; then it is bounded, and has a limit cycle at
∞, and w is of type (3′′).

The solutions of type (9) correspond to trajectories T in the domain delimited
by O, and distinct from Tr . Indeed T is bounded, in particular the limit-set at −∞

is (0, 0), or a closed orbit. But T cannot intersect Tr . Then T converges to (0, 0)
near −∞.

The solutions of type (10) correspond to a trajectory T in the domain delimited
by T1 ∪ T2 (or its opposite): indeed y has constant sign near ∞ and near ln Rw,
and limr→∞ rαw = L 6= 0, and Rw > 0, from Proposition 2.8. Then T starts
in Q3, and ends up in Q1; and y has at most one zero, because at such a point
y′

= −|Y |
1/(p−1)Y > 0, thus it has precisely one zero.

Solutions of type (11) correspond to a trajectory T in the domain delimited by
T1,T4,−T1,−T4. Then y cannot have constant sign near ∞: indeed this implies
lim ζ = α > 0; this is impossible since the line Y = y is an asymptotic direction
for T1,T4. Thus T is bounded near ∞, and it has a limit cycle at ∞. Near −∞, y
a constant sign, because T cannot meet T3; and Rw > 0 from Proposition 2.8, and
T has the same asymptotic direction Y = y as T1,T4. �

Note. From numerical studies, we conjecture that α̌ is unique, and the number
of zeros of w increases with α in the range (N , α̌); and moreover there exists
α1 = N < α2 < · · · < αn < αn+1 < . . . , such that regular solutions have n zeros
for any α ∈ (αn, αn+1), with limr→∞ rαw= Lr 6= 0, and n +1 zeros for α= αn+1,
with limr→∞ r δw = ±`.

α ≤ δ ≤ N , α 6= N

Here (0, 0) is the only stationary point, and N ≥ 2.

Theorem 3.5. Assume ε= 1 and −∞<α≤ δ≤ N , α 6= 0, N. Then all regular so-
lutions of (Ew) have constant sign, and the positive ones satisfy limr→∞ rαw(r)=
L > 0 if α 6= δ, or (2–39) holds if α = δ. All the other solutions have a reduced
domain (Rw > 0). Among them, there exist solutions satisfying any one of these
characterizations:

(1) w is positive, limr→∞ rηw= c 6= 0 if δ < N , or limr→∞ r N (ln r)(N+1)/2w=%

defined in (2–40) if δ = N ;

(2) w is positive, limr→∞ rαw = L > 0 if α 6= δ, or (2–39) holds if α = δ;

(3) w has one zero, and limr→∞ rαw= L 6= 0 if α 6= δ, or (2–39) holds if α = δ.

Up to symmetry, all the solutions are as above.

Proof. Any solution has at most one zero, by Proposition 2.5. The trajectory Tr

starts in Q4 if α< 0 (Figure 3, left) and in Q1 if α> 0 (Figure 3, right). Moreover y
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α = −2 α = 2

Figure 3. Theorem 3.5: ε = 1, α < δ = 3< N = 4.

stays positive, and limτ→∞ y = ∞ and limτ→∞ ζ = α, by Proposition 2.13. Then
limr→∞ rαw(r)= L > 0 if α < δ, or (2–39) holds if α = δ, from Proposition 2.9.
Moreover y is increasing: indeed it has no local maximum from (2–16). Thus Tr

does not meet M, and so stays below M. If α > 0, then Tr stays in Q1, and Y is
increasing from 0 to ∞; indeed each extremal point τ of Y is a local minimum,
by (2–17). Likewise, if α < 0 the function Y is decreasing from 0 to −∞, and
Tr stays in Q4. The only solutions y defined on (0,∞) are the regular ones, by
Proposition 2.8.

For any point P = (ϕ, (δϕ)p−1)∈ R2 with ϕ > 0, in other words on the curve M,
the trajectory T[P] intersects M transversally: the vector field is (0,−(N−α)ϕ).
Moreover the solution going through this point at time τ0 satisfies y′′(τ0) > 0 from
(Ey), then τ0 is a point of local minimum. From (2–16), τ0 is unique, so that it is
a minimum. Then y > 0, limτ→∞ ζ = α, limτ→ln Rw Y/y = 1, and T[P] stays in Q1

if α > 0, or goes from Q1 into Q3 if α < 0. The corresponding w is of type (2).
For any point P = (0, ξ), ξ > 0, the trajectory T[P] goes through P from Q1

into Q2, by Remark 2.1(i). Then y has only one zero, and as above, it is decreasing
on R and limτ→∞ y = −∞, and limτ→∞ ζ = α, limτ→ln Rw Y/y = 1. Thus T[P]

starts in Q1, then stays in Q2 if α < 0, and enters Q3 and stays in it if α > 0. The
corresponding w is of type (3).

It remains to prove the existence of a solution of type (1). If δ < N , then (0, 0) is
a saddle point. There exists a trajectory T1 converging to (0, 0) at ∞, with y > 0,
and limτ→∞ ζ = η > 0, thus in Q1 near ∞, with y′ < 0. As above, y has no local
maximum, it is increasing, so that y > 0. If δ = N , we consider the sets

A = {P ∈ (0,∞)× R : T[P] ∩ M 6= ∅},

B = {P ∈ (0,∞)× R : T[P] ∩ {(0, ξ) : ξ > 0} 6= ∅}.
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They are nonempty, and open, because the intersections are transverse. Since Tr

is below M, the sets A and B are contained in the domain R of Q1 ∪ Q2 above
Tr , and A ∪ B 6= R. As a result there exists at least a trajectory T1 above Tr ,
which does not intersects M and the set {(0, ξ) : ξ > 0}. The corresponding y is
monotone. Suppose that y is increasing, then limτ→−∞ y =0; it is impossible since
T1 6= Tr . Then y is decreasing, and limτ→∞ y = 0. In any case w is of type (1),
by Propositions 2.8 and 2.9. All the solutions are described, because any solution
has at most one zero, and at most one extremum point. And T1 is unique when
δ < N . �

4. The case ε = −1, δ < α

N < δ < α

Theorem 4.1. Assume ε = −1 and N < δ < α. Then all regular solutions of (Ew)
have constant sign and satisfy Sw < ∞. And w ≡ `r−δ is a solution. There exist
solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 rηw= c 6= 0 if N ≥ 2 (and limr→0w= a> 0, limr→0w
′

= b(a) < 0 if N = 1) and limr→∞ r δw = `;

(2) w is positive, limr→0 r δw = ` and Sw <∞;

(3) w has one zero, limr→0 r δw = ` and Sw <∞;

(4) w is positive, limr→0 rαw = L 6= 0 and limr→∞ r δw = `;

(5) w is positive, limr→0 rαw = L 6= 0 and Sw <∞;

(6) w has one zero, limr→0 rαw = L 6= 0 and Sw <∞;

(7) w is positive, limr→0 rηw = c 6= 0 if N ≥ 2 (and limr→0w = a > 0 for any
a > 0 and limr→0w

′
= b < 0, b 6= b(a) if N = 1), and Sw <∞;

(8) w has one zero and the same behavior;

(9) (only if N = 1) w is positive, limr→0w = a > 0, and limr→0w
′
= b > 0, and

Sw <∞.

Up to symmetry, all solutions are as above.

Proof. Here we still have three stationary points, (0, 0) is a source and M` a
saddle point (see Figure 4). By Propositions 2.5 and 2.14, all regular solutions
have constant sign and satisfy Sw <∞. Also, Tr stays in Q4 by Remark 2.3, and
limτ→ln Sw Y/y = −∞ by Proposition 2.15. Since α > 0, any solution y has at
most one zero, by Proposition 2.5, and y is monotone near ln Sw (finite or not)
and near −∞, by Proposition 2.7. In the linearization near M` the eigenvectors
u1 = (ν(α), λ1−δ) and u2 = (−ν(α), δ−λ2) form a positively oriented basis, where
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N = 2, α = 4 N = 1, α = 5

Figure 4. Theorem 4.1: ε = −1, N < δ = 3< α.

now ν(α) < 0 and λ1 < δ < λ2; thus u1 points toward Q3 and u2 points toward Q4.
There exist four particular trajectories converging to M` near ±∞, namely:

• T1 converging to M` at ∞, with tangent vector u1. Here y is increasing near
∞, and as long as y> 0; indeed, if there exists a minimal point τ , (Ey) shows
that y(τ ) > `. And T1 stays in Q1 on R, by Remark 2.1(i) on page 211.
Therefore T1 converges to (0, 0) at −∞, and w is of type (1), where b(a) is
a function of a, by the note on page 210.

• T2 converging to M` at −∞, with tangent vector u2. Here again y′ > 0 as
long as y > 0. Also Y ′ < 0 near −∞, and Y is decreasing as long as Y > 0:
if there exists a minimal point of Y in Q1, (EY ) shows that Y (τ ) > (δ`)p−1.
But (y, Y ) cannot stay in Q1, as this would imply limτ→∞ y = ∞, which is
impossible by Proposition 2.8. Thus T2 enters Q4 at some point (ξ2, 0) with
ξ2 > 0 and stays in it since y′ > 0. Thus Sw <∞ and limτ→∞ Y/y = −1, and
w is of type (2).

• T3 converging to M` at −∞, with tangent vector −u2. Here again y′ < 0 as
long as y > 0. And Y ′ > 0 as long as Y > 0; thus Y ′ > 0 on R. Then again
(y, Y ) cannot stay in Q1, so y has a unique zero, and T3 enters Q2 at some point
(0, ξ3) with ξ3 > 0 and stays in it. Hence Sw < ∞ and limτ→∞ Y/y = −1,
and w is of type (3).

• T4 converging to M` at ∞, with tangent vector −u1. In the same way, y is
decreasing near ∞, and y is everywhere decreasing: if there exists a maximal
point τ , then y(τ )< ` by (Ey). Then Y stays positive, thus T4 stays in Q1. By
Proposition 2.8, limτ→−∞ y = ∞ and limτ→−∞ ζ = α, so w is of type (4).

Next we describe all the other trajectories T[P] with one point P in the domain
R above Tr ∪ (−Tr ).
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If P = (ϕ, 0) with ϕ > ξ2, then T[P] stays in Q4 after P , because it cannot
meet T2; before P it stays in Q1, by Remark 2.1(i). Thus again Sw = ∞, and
limτ→−∞ ζ = α > 0, and y has a unique minimal point, and w is of type (5). For
any P is in the domain delimited by T2,T4, the trajectory T[P] is of the same type.

If P = (0, ξ) with ξ > ξ3, then T[P] stays in Q2 after P , in Q1 before P , since
it cannot meet T2,T4. Then limτ→−∞ ζ = α > 0, and Sw = ∞, and w is of type
(6). If P is in the domain delimited by T3,T4, then T[P] is of the same type.

If P = (ϕ, 0) with ϕ ∈ (0, ξ2), then T[P] stays in Q4 after P , in Q1 before P; it
cannot meet Tr , thus Sw <∞; and T[P] converges to (0, 0) in Q1 at −∞; thus w
is of type (7), by Theorem 2.2. If P is in the domain delimited by T1,T2,Tr , then
T[P] is of the same type.

If P = (0, ξ) for some ξ ∈ (0, ξ3), then T[P] stays in Q2 after P , in Q1 before
P; and T cannot meet −Tr , so that Sw <∞. Then T[P] converges to (0, 0) in Q1

at −∞, and w is of type (8).
If P lies in the domain delimited by T1, T3 and −Tr , either y has one zero,

and T[P] is of the same type; or y < 0 on R, and y′
= δy − Y 1/(p−1) < 0. Hence

Sw <∞ and T[P] converges to (0, 0) in Q2 at −∞. It implies N = 1 (see Figure
4, right), and −w is of type (9), by Propositions 2.8 and 2.9; and such a solution
does exist, by Theorem 2.2. Up to symmetry, all the solutions have been obtained.
Here again, up to a scaling, the solutions w of types (1)–(4) are unique. �

δ ≤ min(α, N) (apart from α = δ = N)

Theorem 4.2. Suppose ε = −1 and δ ≤ min(α, N ) (apart from α = δ = N ). Then
all regular solutions of (Ew) have constant sign and a reduced domain (Sw <∞).
There exist solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 rαw = L 6= 0 and limr→∞ rηw = c 6= 0 if δ < N , or
(2–40) holds if δ = N < α;

(2) w is positive, limr→0 rαw = L 6= 0 if δ < α, or (2–39) holds if α = δ < N ,
and Sw <∞;

(3) w has one zero and the same behavior.

Up to symmetry, all solutions are as above.

Proof. Here (0, 0) is the only one stationary point, and N ≥ 2 (Figure 5). By
Propositions 2.5 and 2.14, all regular solutions have constant sign, and Sw <

∞. Moreover w′ > 0 near 0, by Theorem 2.2; and w can only have minimal
points, by Remark 2.3, so w′ > 0 on (0, Sw). In other words, Tr stays in Q4, and
limτ→ln Sw Y/y = −1. By Propositions 2.5 and 2.7, any solution y has at most one
zero and is monotone at the extremities. By Proposition 2.8, apart from Tr , any
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N < α = 8 δ < α = 3.1< N

Figure 5. Theorem 4.2: ε = −1, δ = 3< N = 4.

trajectory T satisfies limτ→−∞ |y| = ∞, and so limτ→−∞ ζ = α > 0; hence T

starts from Q1 or Q3 at −∞.
For any P = (ϕ, 0) with ϕ > 0, the trajectory T[P] goes from Q1 into Q4 at P , by

Remark 2.1(i) on page 211; it stays in Q4 after P , since it cannot meet Tr ; and it
stays in Q1 before P: it cannot start from Q3, because it does not meet −Tr . Thus
y remains positive and w is of type (2).

For any P = (0, ξ) with ξ > 0, T[P] goes from Q1 into Q2 by the same remark;
thus T[P] stays in Q2 after P , since it cannot meet −Tr , and in Q1 before P , and
w is of type (3).

It remains to prove the existence of solutions of type (1). If δ < N , the origin
is a saddle point, so there exists a trajectory T1 converging to (0, 0) at ∞; and
limτ→∞ ζ = η > 0, by Proposition 2.8. Thus T1 lies in Q1 for large τ , and stays
there, because Q1 is backward invariant. The conclusion follows. If δ = N , we
consider the sets

A = {P ∈ Q1 : T[P] ∩ {(ϕ, 0) : ϕ > 0} 6= ∅},

B = {P ∈ Q1 : T[P] ∩ {(0, ξ) : ξ > 0} 6= ∅}.

They are nonempty and open, since the vector field is transverse at (ϕ, 0) and
(0, ξ); thus A ∪ B 6= Q1. Hence there exists a trajectory T1 staying in Q1; therefore
Sw = ∞ and T1 converges to (0, 0) at ∞, and w is of type (1), by Proposition 2.9.
All solutions have been described, up to symmetry. �

5. The case ε = 1, δ ≤ α

N ≤ δ ≤ α

Theorem 5.1. Assume ε = 1, N ≤ δ ≤ α and α 6= N.
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N = 2< δ N = 3 = δ

Figure 6. Theorem 5.1: ε = 1, < δ = 3< α = 3.5.

(i) There exists a cycle surrounding (0, 0), and thus also solutionsw of (Ew) with
changing sign and such that r δw is periodic in ln r . All other solutions w, in
particular the regular ones, are oscillating near ∞, and r δw is asymptotically
periodic in ln r . There exist solutions w such that limr→0 rηw = c 6= 0 if
2 ≤ N < δ and (2–40) holds if N = δ, or (2–41) holds if N = 1.

(ii) There exist solutions such that Rw > 0, or limr→0 rαw = L 6= 0 if α 6= δ, or
(2–39) holds if α = δ.

Proof. (i) Here (0, 0) is the only stationary point. From Proposition 2.8, any
trajectory is bounded and y is oscillating around 0 near ∞.

First assume N<δ<α (Figure 6, left). Then (0, 0) is a source and all trajectories
have a limit cycle at ∞ or are periodic. In particular there exists at least one
cycle, with orbit Op. The trajectory Tr has a limit cycle O ⊆ Op. There exist also
trajectories Ts starting from (0, 0) with an infinite slope, such that limr→0 rηw =

c 6= 0 if N ≥ 2 or (2–41) if N = 1, and all the Ts have the same limit cycle O.
Next assume N = δ < α (Figure 6, right). Then Tr cannot converge to (0, 0),

since it would intersect itself. Thus again the limit set at ∞ is a closed orbit O.
No trajectory can converge to (0, 0) at ∞, as it would spiral around this point and
hence intersect Tr . Consider any trajectory T 6= Tr in the connected component of
O containing (0, 0). T is bounded, so its limit set at −∞ is (0, 0) or a closed orbit.
The second case is impossible, since T does not meet Tr . Thus T is of the form
Ts , and the corresponding w satisfies (2–40).

(ii) By Theorem 2.21, all cycles are contained in a ball B of R2. Take any point
P0 exterior to B. Then T[P0] has a limit cycle at ∞ contained in B. If it has a limit
cycle at −∞, it is contained in B, so T[P0] is contained in B, which is impossible.
Thus y has constant sign near ln Rw. By Proposition 2.8, either Rw > 0 or y is
defined near −∞. �
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Figure 7. Theorem 5.2: ε = 1, α = δ = N = 3.

Theorem 5.2. Assume ε = 1 and α = δ = N. All regular solutions of (Ew) have
constant sign, and are given by (1–6). For any k ∈ R, w(r) = kr−N is a solution.
There exist solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 r Nw = c1 > 0, limr→0 r Nw = c2 > 0 (c2 6= c1);

(2) w has one zero, limr→0 r Nw = c1 > 0 and limr→∞ r Nw = c2 < 0;

(3) w is positive, Rw > 0, and limr→0 r Nw = c 6= 0;

(4) w has one zero and the same behavior.

Up to symmetry, all solutions are as above.

Proof. Since α = N , equation (Ew) admits the first integral (1–5), so JN ≡ C for
C ∈R. We gave in (1–6) the regular (Barenblatt) solutions for the case C =0. Since
δ = N , (1–5) is equivalent to the equation Y ≡ y − C , by (2–12) (refer to Figure
7). For any k ∈ R, (y, Y )≡ (k, |Nk|

p−2 Nk) is a solution of the system (S) located
on the curve M, so that w(r) = kr−N is a solution. Any solution has at most one
zero, by Proposition 2.5. By Propositions 2.8 and 2.10, any trajectory converges
to a point (k, |Nk|

p−2 Nk) of M at ∞. Let C < 0 be such that the line Y = y − C
is tangent to M. For any C ∈ (C, 0), the line Y = y − C cuts M at three points
k1 < 0< k2 < k3. And y′ > 0 if the trajectory is below M and y′ < 0 if it is above
M. We find two solutions y defined on R: one is positive and limτ→−∞ y = k2,
limτ→−∞ y = k3, and the other has one zero. All other solutions satisfy Rw > 0,
limτ→ln Rw Y/y = 1; some of them are positive, the others have one zero. �

δ < min(α, N)

Here the system has three stationary points: (0, 0) is a saddle point, while M`,
M ′

` are sinks if δ ≤ N/2, or N/2 < δ and α < α∗, and sources when N/2 <
δ and α > α∗, and node points whenever α ≤ α1 or α2 ≤ α, where α1, α2 are
defined in (2–48) (recall that α1 can be greater or less than η). This case is one
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of the most delicate, since two types of periodic trajectories can appear, either
surrounding (0, 0), corresponding to changing sign solutions, or located in Q1 or
Q3, corresponding to solutions of constant sign. Notice that δ < N implies δ <
N < η by (1–2), and N/2< δ implies η < α∗ by (2–32).

Remark 5.3. (i) Tr starts in Q1. Since (0, 0) is a saddle point, Propositions 2.8 and
2.9 show there is a unique trajectory Ts converging to (0, 0), residing in Q1 for large
τ , having an infinite slope at (0, 0), and satisfying limr→0 rηw= c> 0. Moreover
if Tr does not stay in Q1, then Ts stays in it, and is bounded and contained in the
domain delimited by Q1 ∩ Tr , by Remark 2.1(i). Thus if Tr is homoclinic, it stays
in Q1.

(ii) Any trajectory T is bounded near ∞, by Propositions 2.8 and 2.12. From the
strong form of the Poincaré–Bendixson theorem [Hubbard and West 1995, p. 239],
any trajectory T bounded at ±∞ either converges to (0, 0) or ±M`, or its limit
set 0± at ±∞ is a cycle, or it is homoclinic hence T = Tr and 0± = Tr (indeed,
for any P ∈ 0±, T[P] converges at ∞ and −∞ to (0, 0) or ±M`; if one of them
is ±M`, then ±M` ∈ T[P] ⊂ 0±, and M` is a source or a sink, so T converges to
±M`; otherwise T is homoclinic and T[P] = Tr ).

(iii) If there exists a limit cycle around (0, 0), then by (2–42) this cycle also sur-
rounds the points ±M`.

We begin with the case α ≤ η, where there exists no cycle in Q1 and no homo-
clinic orbit, by Theorem 2.20.

Theorem 5.4. Assume that ε = 1 and δ <min(α, N ), and α ≤ η. Then all regular
solutions of (Ew) have constant sign, and limr→∞ r δ|w(r)| = `. And w(r)= `r−δ

is a solution.
If α < η, there exist solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 rαw = L and limr→∞ r δw = `;

(2) w is positive, Rw > 0 and limr→∞ rηw = c > 0;

(3) w is positive, Rw > 0 and limr→∞ r δw = `;

(4) w has one zero, Rw > 0 and limr→∞ r δw = `;

If α = η, then w = Cr−η is a solution and there exist solutions of type (4), but
not of type (2) or (3).

Proof. By Proposition 2.5 and Remark 2.3, Tr stays in Q1 and converges to M` at
∞; indeed there is no cycle in Q1, by Propositions 2.8, 2.12 and 2.20.

(i) Assume α < η (Figure 8, left). Consider any trajectory in Q1. Then Yα > 0.
If there exists τ such that Y ′

α(τ ) = 0, at this point Y ′′
α (τ ) ≥ 0 by (2–36), and τ
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α = 4.7< η α = 5 = η

Figure 8. Theorem 5.4: ε = 1, δ = 3< N = 4< η = 5.

is a local minimum. Tr satisfies limτ→−∞ Yα = 0, and so Y ′
α > 0 on R. This is

equivalent to αy > Y 1/(p−1)
+ (p − 1)(η−α)Y . Therefore Tr stays strictly below

the curve

Mα =
{
(y, Y ) ∈ Q1 : αy = Y 1/(p−1)

+ (p − 1)(η−α)Y
}
.

First consider Ts . Since α < η, this trajectory satisfies limτ→∞ Yα = 0. Then
Y ′
α < 0 on (ln Rw,∞), so Ts stays strictly above Mα. Hence it stays above M:

indeed, if it meets M at a first point (y1, (δy1)
p−1), the function y has a maximum

at this point. Thus by (2–16), we have ` < y1 and

(α− δ)y2−p
1 = δ p−1(p − 1)(η−α) < δ p−1(p − 1)(η− δ),

contradicting (1–2) and (1–4). This shows that y′< 0. Suppose that y is defined on
R; then limτ→−∞ y = ∞ and limτ→−∞ ζ = α. If ζ ′ > 0 on R, then ζ(R)= (α, η),
which contradicts (2–9). Then ζ has at least one extremal point τ , and ζ(τ ) is
exterior to (α, η), by (2–9); if it is a minimum, ζ(τ ) > α by (2–18), since y′ < 0,
and if it is a maximum, ζ(τ ) < α. Thus we reach again a contradiction. Therefore
Rw > 0 and limτ→ln Rw Y/y = 1, and the corresponding w is of type (2).

For any P = (ϕ, 0), ϕ > 0, the trajectory T[P] stays in Q1 after P . The solution
(y, Y ) originating at P at time 0 satisfies Yα(0)= 0; hence Y ′

α(τ )> 0 for any τ ≥ 0.
Thus T[P] stays below Mα. Moreover it enters Q4 as τ decreases. But y′ > 0 in
Q4, by (S); thus T[P] does not stay in Q4, by Proposition 2.8; it goes into Q3 and
must stay there because it cannot meet −Ts . This shows that Rw > 0 and y has
precisely one zero, and w is of type (4).

Next consider any trajectory T[P1] going through some point P1 = (y1, Y1) in
Q1, lying below Ts and such that αy1 < Y 1/(p−1)

1 . Such a trajectory exists because
y = Y is an asymptotic direction of Ts . Let (y, Y ) be the solution issuing from P1

at time 0. Suppose y is defined on R; then limτ→−∞ y = ∞ and limτ→−∞ ζ = α.
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Also, ζ(0) > α. Then ζ > δ on (−∞, 0): otherwise there would exist τ < 0 such
that ζ(τ )= α and ζ ′(τ )≥ 0, contradicting (2–9). Thus y′< 0 on (−∞, τ1). Either
ζ ′ > 0 on (−∞, 0), in which case ζ > η > 0 by (2–9), which is impossible; or ζ
has at least an extremal point τ . If it is a minimum, then ζ(τ ) > α from (2–18);
if it is a maximum, then ζ(τ ) < α; and again we reach a contradiction. Therefore
Rw > 0, and the trajectory stays in Q1 and converges to M`, because there is no
cycle in Q1, by Theorem 2.20. Hence w is of type (3).

Let O be the domain of Q1 bounded above by Ts . It is forward invariant. Any
trajectory going through any point of O converges to M` at ∞. Either it meets the
axis Y = 0 at some point (ξ, 0) with ξ > 0, or it stays in O, satisfies Rw > 0 and
limτ→ln Rw T/y = 1, and meets Mα, since M` lies strictly below Mα. Let

A = {P ∈ O : T[P] ∩ {(ϕ, 0) : ϕ > 0} 6= ∅},

B = {P ∈ O : T[P] ∩ Mα 6= ∅}.

These sets are nonempty and open: indeed, one can check that the intersection with
Mα is transverse, because α 6= η. Thus A ∪ B 6= O, so there exists a trajectory T1

with w of type (1).

(ii) Assume α = η (Figure 8, right). There is no positive solution with Rw > 0,
thus no solution of type (2) or (3). Indeed all the trajectories stay below Ts , and
Ts is defined by the equation ζ ≡ η, meaning that w ≡ Cr−η, or equivalently
Yη ≡ C ; thus Y ′

η ≡ 0 and Ts = Mη. Consider any trajectory T[P] going through
some point P = (ϕ, 0) with ϕ > 0, and the solution (y, Y ) issuing from P at time
0. Then Yη(0) = 0 and Yη < 0, so Y ′

η = ηy − |Y |
(2−p)/(p−1)Y > 0 on (−∞, 0),

seeing that T[P] does not meet −Ts . Suppose Rw = 0. Then T[P] starts from
Q3, with limτ→−∞ ζ = α = η. Then limτ→−∞ yη = L < 0; thus limτ→−∞ Yη =

−(α|L|)(2−p)/(p−1). A straightforward computation gives

Y ′′

η = Y ′

η

(
N −

1
p−1

|Y |
(2−p)/(p−1)

)
.

This leads to Y ′′
η < 0 near −∞, which is impossible; thus Rw < ∞ and w is of

type (4). �

Remarks. (i) For α ≤ η, both trajectories Tr and Ts stay in Q1.

(ii) When α ≤ N , one can verify that the regular positive solution y is increasing
and y ≤ ` on R, so r δw(r)≤ ` for any r ≥ 0.

(iii) When α = N , we have Tr = {(ξ, ξ) : ξ ∈ [0, `)}, and the corresponding
solutions w are given by (1–6) with K > 0. And T3 = {(ξ, ξ) : ξ > `)} is a
trajectory corresponding to particular solutions w of type (3), given by (1–6)
with K < 0.
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Next we come to the most interesting case, where η < α.

Lemma 5.5. Assume ε= 1, δ <min(α, N ) and η < α. If N/2< δ and α < α∗ and
Ts stays in Q1, Ts has a limit cycle at −∞ in Q1 or is homoclinic. If δ ≤ N/2, then
Ts does not stay in Q1.

Proof. In any case M` is a sink, so Ts cannot converge to M` at −∞. Suppose Ts

has no limit cycle in Q1, and is not homoclinic and stays in Q1. (This happens when
δ ≤ N/2, by Proposition 2.11.) Then either limτ→−∞ y = ∞ and limr→0 rαw =

3 6= 0, or Rw > 0. In either case, for any d ∈ (η, α), the function yd(τ )= rdw =

rd−δ y satisfies limτ→ln Rw yd = ∞ = limτ→∞ yd . Then it has a minimum point,
contradicting (2–5). �

Theorem 5.6. Assume ε = 1 and N/2< δ <min(α, N ). Then w(r)= `r−δ is still
a solution.

(i) There exists a (maximal) critical value αcrit of α, such that

max(η, α1) < αcrit < α
∗,

and the regular trajectory is homoclinic: all regular solutions of (Ew) have
constant sign and satisfy limr→∞ rηw = c 6= 0.

(ii) For any α ∈ (αcrit, α
∗), there does exist a cycle in Q1, in other words there

exist positive solutions w such that r δw is periodic in ln r . There exist pos-
itive solutions such that r δw is asymptotically periodic in ln r near 0 and
limr→∞ r δw = δ. There exist positive solutions such that r δw is asymptoti-
cally periodic in ln r near 0 and limr→∞ rηw = c 6= 0.

(iii) For any α ≥ α∗ there does not exist such a cycle, but there exist positive
solutions such that limr→0 r δw = ` and limr→∞ rηw = c > 0.

(iv) For any α > αcrit, there exists also a cycle, surrounding (0, 0) and ±M`, thus
r δw is changing sign and periodic in ln r . All regular solutions change signs
and are oscillating at ∞, and r δw is asymptotically periodic in ln r . There
exist solutions such that Rw > 0, or limr→0 rαw = L 6= 0, and oscillating at
∞, and r δw is asymptotically periodic in ln r .

Proof. (i) For any α ∈ (α1, α2) such that η ≤ α, we have by Remark 5.3 three
possibilities for the regular trajectory Tr :

• Tr converges to M` and spirals around it, or else it has a limit cycle in Q1

around M`. Then Tr meets the set E = {(`, Y ) : Y > (δ`)p−1
} at a first point

(`, Yr (α)). Note that ` and E depend continuously on α. Then Ts meets E at
some last point (`, Ys(α)) such that Ys(α)−Yr (α) > 0. See Figure 9, top left.
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N < η = 5< α = 5.1 N < η = 5< α = 5.62

N < α = 5.9< α∗
= 6 N < α∗

= 6< α = 6.2

Figure 9. Theorem 5.6: ε = −1, N/2< δ = 3< N = 4.

• Tr does not stay in Q1; then Ts is bounded at −∞, and so converges to M`

at −∞ and spirals around this point, or it has a limit cycle around M`. Then
Ts meets E at a last point (`, Ys(α)) and Tr meets E at a first point (`, Yr (α))

such that Ys(α)− Yr (α) < 0. See Figure 9, bottom row.

• Tr is homoclinic, which is equivalent to Ys(α)−Yr (α)= 0. See Figure 9, top
right.

Now the function α 7→ g(α) = Ys(α)− Yr (α) is continuous. If α1 < η, then g(η)
is defined and g(η) > 0, by Theorem 5.4. If η ≤ α1, we observe that for α = α1,
the trajectory Ts leaves Q1, by Theorem 2.18, because α1 is a sink, and does so
transversally by Remark 2.1(i). The same holds for α=α1+γ for γ small enough,
by continuity, so Tr stays in Q1 and g(α1 + γ ) > 0. If α ≥ α∗ (Figure 9, bottom
right), then M` is a source or a weak source, by Theorem 2.16; thus Tr cannot
converge to M`. By Theorem 2.19, there exists no cycle in Q1 and no homoclinic
orbit. By Remark 5.3(i), Tr cannot stay in Q1, so g(α) < 0 for α∗

≤ α < α2. As a
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consequence, there exists at least one αcrit ∈ (max(η, α1), α
∗) such that g(αcrit)= 0.

If it is not unique, we can choose the largest one.

(ii) Suppose α < α∗. The existence and uniqueness of the desired cycle O in Q1

follows by Theorem 2.16 when α is close to α∗ (Figure 9, bottom left). In fact,
existence holds for any α ∈ (αcrit, α

∗); indeed g(α) < 0 on this interval, and Ts

cannot converge to M` at −∞, so it has a limit cycle around M` at −∞. Since M`

is a sink, there exist also trajectories converging to M` at ∞, with a limit cycle at
−∞ contained in O. Now Tr does not stay in Q1 and is bounded at ∞, so it has a
limit cycle at ∞ containing the three stationary points.

(iii) Suppose α ≥ α∗. Then Ts stays in Q1, is bounded on R, and converges at −∞

to M`. At the same time, Tr does not stay in Q1 for the same reason as above;
thus it has a limit cycle at ∞, containing the three stationary points (see Figure 9,
bottom right).

(iv) For any α > αcrit, apart from Ts and the cycles, all the trajectories have a limit
cycle at ∞ containing the three stationary points. By Theorem 2.21, all the cycles
are contained in a ball B of R2. Take any point P exterior to B. By Remark 5.3(ii),
T[P] has a limit cycle at ∞ contained in B and cannot have a limit cycle at −∞.
Thus y has constant sign near ln Rw. By Proposition 2.8, either Rw > 0 or y is
defined near −∞ and limτ→−∞ ζ = L , limr→0 rαw = L . �

Note. It is an open question whether αcrit is unique. It can be shown that if there
exist two critical values α1

crit > α
2
crit, the first orbit is contained in the second.

When δ ≤ N/2, or equivalently p ≤ P2, there are no cycles in R2 and we get:

Theorem 5.7. Assume ε = 1, δ ≤ N/2, and δ < α. All regular solutions of (Ew)
have constant sign, and limr→∞ r δ|w| = `. All solutions have a finite number of
zeros. The function w(r) = `r−δ is a solution. If α ≤ η, Theorem 5.4 applies. If
η < α, all other solutions have at least one zero. There exist solutions satisfying
limr→∞ rηw = c 6= 0 and having m zeros, for some m > 0. All other solutions
satisfy limr→∞ r δw = ±`, and have m or m + 1 zeros. There exist solutions with
m + 1 zeros.

Proof. (i) By Proposition 2.11, all solutions have a finite number of zeros. Since
δ ≤ N/2, the function W defined in (2–21) is nonincreasing. The regular solutions
(y, Y ) satisfy limτ→−∞ W (τ ) = 0, so W (τ ) ≤ 0 on R. If y(τ0) = 0 for some real
τ0, then W (τ0) = |Y (τ0)|

p′

> 0, and we reach a contradiction. From Propositions
2.8 and 2.11 we obtain limτ→∞ y = ±`, so limr→∞ r δw = ±`.

(ii) Assume η < α. By Lemma 5.5, Ts does not stay in Q1. By Propositions 2.8
and 2.15, Ts cannot stay in Q4, so it intersects the line y = 0 at points (0, ξ1), . . . ,
(0, ξm). By Remark 5.3, any trajectory other than Ts converges to ±M`. Given
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any P = (0, ξ), with ξ > |ξi | for 1 ≤ i ≤ m, the trajectory T[P] cannot intersect Ts

or −Ts , so y has m+1 zeros. Any other solution has m or m+1 zeros, because the
trajectory does not meet Tr or −Tr or T[P]. Finally, Rw>0 or limr→0 rαw= L 6=0.

�

Note. Theorems 5.4, 5.6 and 5.7 recover, in particular, the results in [Qi and Wang
1999, Theorem 2].

6. The case ε = −1, α ≤ δ

max(α, N) ≤ δ

Here (0, 0) is the only stationary point, and it is a source when δ 6= N . We first
suppose 0< α.

Theorem 6.1. Suppose ε = −1, max(α, N )≤ δ and 0< α.

(i) Suppose α 6= N or α 6= δ. Then all regular solutions of (Ew) have constant
sign and a reduced domain (Sw < ∞). There exist solutions satisfying any
one of these characterizations:

(1) w is positive, limr→0 rηw = c 6= 0 if N ≥ 2 (limr→0w = a > 0, limr→0w
′
=

b< 0 if N = 1), and limr→∞ rαw = L 6= 0 if α 6= δ, or (2–39) holds if α = δ;

(2) w is positive, limr→0 rηw = c 6= 0 if N ≥ 2 (limr→0w = a > 0, limr→0w
′
=

b 6= 0, or a = 0< b if N = 1), and Sw <∞;

(3) w has one zero, limr→0 rηw= c 6= 0 if N ≥ 2 (limr→0w= a> 0, limr→0w
′
=

b < 0 if N = 1), and Sw <∞.

(ii) Suppose α= δ= N. Then the regular solutions, given by (1–6), have constant
sign, with Sw < ∞. For any k ∈ R, w(r) = kr−N is a solution. Moreover
there exist positive solutions such that limr→0 r Nw= c> 0 and Sw <∞, and
solutions with one zero, such that limr→0 r Nw = c > 0 and Sw <∞.

Up to symmetry, all solutions are as above.

Proof. (i) Here α 6= N or α 6= δ (Figure 10, left). Since α > 0, Propositions 2.5,
2.7 and 2.14 imply that y > 0 and Sw <∞ for Tr ; and any solution y has at most
one zero, and y, Y are monotone near −∞ and near ln Sw. By Proposition 2.8,
any trajectory T converges to (0, 0) at −∞; and apart from Tr , such a trajectory is
tangent to the axis y = 0. Now suppose y > 0 near −∞. If N ≥ 2, then T starts in
Q1, since limτ→−∞ ζ = η> 0; if N = 1, then limr→0w= a ≥ 0 and limr→0w

′
= b,

and T starts in Q1 if b < 0 and in Q4 if b > 0 (in particular when a = 0).
For any P = (ϕ, 0) with ϕ > 0, the trajectory T[P] satisfies y > 0 on R, and by

Remark 2.1(i), it stays in Q4 after P , because it cannot meet Tr (hence Sw <∞);
also it stays in Q1 before P , so w is of type (2). In the same way for any P = (0, ξ)
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N = 2< α = 2.5< δ = 3 α = δ = N = 3

Figure 10. Theorem 6.1: ε = −1.

with ξ > 0, the trajectory T[P] stays in Q2 after P , since it cannot meet −Tr (hence
Sw <∞), and it stays in Q1 before P , so w is of type (3).

Next consider the sets

A = {P ∈ Q1 : T[P] ∩ {(ϕ, 0) : ϕ > 0} 6= ∅},

B = {P ∈ Q1 : T[P] ∩ {(0, ξ) : ξ > 0} 6= ∅}.

From the previous discussion we know they are nonempty and open, so A∪B 6=Q1.
There exists a trajectory T1 starting at (0, 0) and staying in Q1. By Proposition
2.8, necessarily limτ→∞ y = ∞ and limτ→∞ ζ = α > 0, so w is of type (1) by
Proposition 2.9.

Finally we describe all other trajectories T[P] with one point P in the domain
R above Tr ∪ (−Tr ). If P is in the domain delimited by Tr ,T1, then w is still of
the type (2). If P is in the domain delimited by −Tr ,T1, then either y has a zero
and w is of type (3), or N = 1, y < 0 and −w is of type (2). Up to a symmetry, all
the solutions have been obtained.

(ii) Here α = δ = N (Figure 10, right). Since α = N equation (1–5) holds, and
the regular solutions relative to C = 0 are given by (1–6). Since δ = N , (1–5) is
equivalent to y+Y ≡C , from (2–12). For any k ∈R, (y, Y )≡ Pk = (k, |Nk|

p−2 Nk)
is a solution of system (S), located on the curve M, thus w(r)= kr−N is a solution
of (Ew). Any solution has at most one zero, by Proposition 2.5. From Propositions
2.8, and 2.10, any other trajectory converges to a point Pk ∈ M at ∞, and Sw <∞.
There exists trajectories such that y has constant sign, and other ones such that y
has one zero. All solutions have been obtained. �

Next we suppose α < 0, and distinguish the cases N ≥ 2 and N = 1.

Theorem 6.2. Suppose ε = −1 and α < 0 < 2 ≤ N ≤ δ. Then any solution of
(Ew) has a finite number of zeros. Regular solutions have at least one zero, and
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precisely one if −p′
≤ α. Any solution has at least one zero, and any nonregular

solution satisfies limr→0 rηw = c 6= 0.

If −p′<α, all regular solutions have a reduced domain (Sw <∞), and they fall
into the following types, all of which occur:

(1) solutions with two zeros and Sw <∞;

(2) solutions with one zero and limr→∞ rαw = L 6= 0;

(3) solutions with one zero and Sw <∞.

If α = −p′, all regular solutions satisfy limr→∞ rαw = L 6= 0. The other
solutions are of type (1).

Proof. By Proposition 2.8, any trajectory converges necessarily to (0, 0) at −∞,
and apart from Tr , it is tangent to the axis y = 0. Any solution y has a finite
number of zeros, and y is monotone near −∞, and near Sw (finite or not), by
Propositions 2.7 and 2.11, since δ > N/2. Either Sw<∞, so limτ→ln Sw Y/y =−1,
or Sw = ∞ and limτ→∞ ζ = α < 0. In any case (y, Y ) is in Q2 or Q4 for large τ .
By Proposition 2.14, Tr has at least one zero, and starts in Q1. Since N ≥ 2, any
trajectory T 6= ±Tr satisfies limτ→−∞ ζ = η > 0. Thus it starts in Q1 (or Q3), and
has at least one zero. Any trajectory T starting in Q1 enters Q2, by Remark 2.1(i).
And y′

= δy − Y 1/(p−1), so y decreases as long as T stays in Q2. Then either T

enters Q3, hence also Q4, and y has at least two zeros; or it stays in Q2, and either
Sw <∞ and limτ→ln Sw Y/y = −1, or Sw = ∞ and limτ→∞ ζ = α.

(i) Suppose −p′ < α (Figure 11, left). Then Tr has precisely one zero, by Propo-
sition 2.14, thus it stays in Q2, and Sw < ∞, limτ→ln Sw Y/y = −1. Any other
solution has at most two zeros, because the trajectory does not meet ±Tr . Recall
that the function Yα defined by (2–3) with d = α has only minimal points on the

−p′
= −3< α = −2.5< 0< N −p′

= −3 = α < 0< N

Figure 11. Theorem 6.2: ε = −1, N = 2< δ = 3.
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sets where it is positive, by Remark 2.6. By Proposition 2.14, Tr satisfies

Y ′

α = −(p − 1)(η−α)Yα + e(p−(2−p)α)τ (Y 1/(p−1)
α −αyα) > 0,

which is equivalent to

(6–1) Y 1/(p−1)
− (p − 1)(η−α)Y > αy.

Tr stays strictly to the right of the curve

(6–2) Nα = {(y, Y ) ∈ R × (0,∞) : αy = Y 1/(p−1)
− (p − 1)(η−α)Y },

which intersects the axis y = 0 at the points (0, 0) and (0, (p − 1)(η−α)).
For P = (ϕ, 0) with ϕ < 0, the trajectory T

[P]
enters Q3 after P , by Re-

mark 2.1(i); the solution passing through P at τ = 0 satisfies Yα(0) = 0 (so Yα
stays positive for τ < 0) and Y ′

α(τ ) < 0, since Yα has no maximal point. Thus
T

[P]
stays in Q1 ∪ Q2 before P , to the left of Nα, and starts and (0, 0) in Q1 and

ends up in Q4. Hence y has two zeros. If Sw = ∞ then limτ→∞ |y| = ∞ and
limτ→∞ ζ = α < 0; this is impossible, because T

[P]
does not meet −Tr . Thus

Sw <∞, and w is of type (1).
Next consider T[P], for P = (ϕ, ξ)∈ Nα, with ϕ≤ 0. The solution going through

P at τ =0 satisfies Y ′
α(0)=0, Yα(0)>0, and 0 is a minimal point; hence Y

′′

α(0)>0.
Indeed, if Y ′′

α (0) = 0, then Yα is constant on R by uniqueness; by (2–6), in turn,
we have Yα ≡ 0 (since α 6= −p′); but this is false. Therefore Y ′

α(τ ) > 0 for τ > 0
and Y ′

α(τ ) < 0 for τ < 0. Thus T[P] stays in Q1 ∪ Q2, to the right of Nα after P ,
with y < 0 by Remark 2.1(i); it stays to the left of Nα before P , and converges to
(0, 0) at −∞ in Q1. Suppose that Sw = ∞. Then limτ→∞ |y| = ∞, limτ→∞ ζ =α,
and limτ→∞ yα = L < 0 by Proposition 2.9; thus limτ→∞ Yα = (αL)p−1. As in
Proposition 2.14, one finds that Y ′′

α (τ )>0 for any τ >0, which is impossible. Thus
T[P] satisfies Sw <∞, showing that limτ→ln Sw Y/y = −1. The corresponding w
is of type (3).

Finally, let R be the domain of Q1 ∪Q2 delimited by Tr and containing Nα, and
define the sets

(6–3)
A = {P ∈ R : T[P] ∩ {(ϕ, 0) : ϕ < 0} 6= ∅},

B = {P ∈ R : T[P] ∩ Nα 6= ∅},

corresponding to trajectories of type (1) or (3). These sets are nonempty and open,
because here again the intersection with Nα is transverse (recall that α 6= −p′).
Thus A∪ B 6= R. There exists a trajectory in R disjoint from Nα, starting at (0, 0)
in Q1 and ending up in Q2. It cannot satisfy limτ→ln Sw Y/y = −1, so Sw = ∞ and
limτ→∞ ζ = α. Hence w is of type (2).
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(ii) Suppose α = −p′ (Figure 11, right). The regular solutions are given by (1–8),
they have one zero, but Sw = ∞ and limτ→∞ ζ = α. They satisfy Y−p′ ≡ C , thus
Y ′

−p′ ≡ 0, thus Tr = M−p′ . Consider T
[P]

; the solution passing through P at τ = 0
satisfies and Y−p′(0)= 0, thus Y−p′ stays negative for τ > 0 and Y ′

−p′ < 0. Suppose
that Sw = ∞, then limτ→∞ yα = L > 0, limτ→∞ Yα = −(|α|L)p−1. But as in
(2–46), Y ′′

α (τ ) < 0 for any τ > 0, which leads to a contradiction. Thus Sw < ∞,
and w is of type (1). Finally suppose that there exists a trajectory T 6= Tr staying
in Q1 ∪Q2. Then Yα > 0, limτ→∞ Yα = 0, and it cannot meet Tr , thus Sw = ∞, and
limτ→−∞ Yα = ∞, limτ→∞ Yα = C > 0. As in Proposition 2.14, it is impossible.
Thus there does not exist solution of type (2) or (3). �

Theorem 6.3. Suppose ε = −1 and α < 0 < N = 1 < δ. Then any solution of
(Ew) has still a finite number of zeros. Regular solutions have at least one zero,
and precisely one if −p′

≤ α.

If −1<α<0, all regular solutions have a reduced domain (Sw<∞). Moreover:

(1) the solutions with limr→0w = a > 0 and limr→0w
′
= b < 0 have one zero

and Sw <∞;

(2) the solutions with limr→0w = 0 and limr→0w
′
= b > 0 are positive and

Sw <∞;

(3) there exist solutions with one zero and limr→0w = a > 0, limr→0w
′
= b > 0

and Sw <∞;

(4) there exist positive solutions with limr→0w = a > 0, limr→0w
′
= b > 0 and

Sw <∞;

(5) for any a > 0 there exists b > 0 such that w is positive and limr→∞ rαw =

L 6= 0.

If α = −1, for any b > 0, w ≡ br is a solution. The other solutions such that
limr→0w 6= 0 have one zero, and satisfy Sw <∞.

If −p′ < α <−1, then

(6) there exist solutions with one zero, with limr→0w= a> 0, limr→0w
′
= b< 0,

and Sw <∞;

(7) the solutions with limr→0w = 0 and limr→0w
′
= b > 0 have one zero and

Sw <∞;

(8) there exist solutions with one zero, with limr→0w= a> 0, limr→0w
′
= b> 0

and Sw <∞;

(9) there exist solutions with limr→0w = a > 0, limr→0w
′
= b < 0, with two

zeros and Sw <∞;
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−1< α = −0.5< N −p′
= −3< α = −2.9<−1< N

Figure 12. Theorem 6.3: ε = −1, N = 1< δ = 3.

(10) for any a > 0 there exists b > 0 and a solution with limr→0w = a > 0,
limr→0w

′
= b < 0, with one zero and limr→∞ rαw = L 6= 0.

Proof. The case N = 1 is still the more complex one, since some trajectories
start in Q2 (or Q4), corresponding to the solutions such that limr→0w = a and
limr→0w

′
= b, with b 6= 0, ab ≥ 0. Any solution has still a finite number of zeros,

by Proposition 2.11.

(i) Suppose −1 < α < 0 (Figure 12, left). By Proposition 2.5, any solution has
at most one zero, so regular solutions have precisely one zero. Thus Tr meets the
axis y = 0 at some point (0, ξr ).

Consider the trajectory Ts such that limr→0w=0 and limr→0w
′
=b<0 (which

means limτ→−∞ ζ = η = −1), starting from (0, 0) in Q2, so w < 0 near 0. For
any d ∈ (−1, α), the function yd satisfies yd(τ ) = be(d+1)τ (1 + o(1)) near −∞,
so limτ→−∞ yd = 0. Then yd has no zeros, because |yd | has no maximal point, by
(2–14); thus Ts stays in Q2. If Ts satisfies Sw = ∞, then limτ→∞ yα = L < 0, so
limτ→∞ yd = 0, which is impossible; thus w is of type (2). The domain is reduced
since Tr cannot meet Ts .

For P = (ϕ, 0) with ϕ < 0, the trajectory T
[P]

does not meet Ts , thus converges
to (0, 0) at − ∞ in Q2; then limr→0(−w)= a > 0 and limr→0(−w)

′
= b> 0, and

T
[P]

ends up in Q4; thus y has one zero and −w is of type (3).
For P = (0, ξ), with ξ ∈ (0, ξr ), T[P] has one zero and converges to (0, 0) at −∞

in Q1; hence limr→0w = a > 0 and limr→0w
′
= b < 0. The domain is reduced

since T[P] and Ts do not meet. Thus w is of type (1). Conversely, any solution
such that limr→0w = a > 0 and limr→0w

′
= b < 0 has one zero and satisfies

Sw <∞.
Next consider a trajectory T such that limr→0(−w)=a>0 and limr→0(−w

′)=

b> 0; that is, T starts in Q2 below Ts . Then ζ(τ )= −(b/a)eτ (1+o(1) near −∞,
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so limτ→−∞ ζ = 0. If ζ has an extremal point θ , we have

(p − 1)ζ ′′(θ)= (2 − p)(ζ −α)(δ− ζ )|ζ y|
2−p,

by (2–18); thus θ is a minimal point if ζ(θ)>α, and maximal if ζ(θ)<α. (Equality
is impossible since it would require ζ ≡ α.) Thus either ζ has a first zero τ1 and
α < ζ(τ) < 0 for τ < τ1, and T is one of the T

[P]
; or ζ remains negative, in

which case if Sw = ∞, then limτ→∞ ζ = α, so ζ is necessarily decreasing, and
α < ζ(τ) < 0 for any τ . In both cases, T stays below the curve

M′
=

{
(y, Y ) ∈ R × (0,∞) : αy = Y 1/(p−1)},

as long as it is in Q2. Hence, for any P ∈ Q2 such that P is on or above M′,
the trajectory T[P] satisfies Sw < ∞; in particular on finds again Ts . For any P
between M′ and Ts , the solution has constant sign, T[P] converges to (0, 0) at −∞

and limr→0(−w) = a > 0 and limr→0(−w
′) = b > 0, and limτ→ln Sw Y/y = −1,

so T[P] meets Mα. Thus −w is of type (4).
Finally, let R1 be the domain of Q2 delimited by Ts and the axis Y = 0, and set

A1 =
{

P ∈ R1 : T[P] ∩ {(ϕ, 0) : ϕ < 0} 6= ∅
}
,

B1 =
{

P ∈ R1 : T[P] ∩ Nα 6= ∅
}
.

These sets are open, since the intersection is transverse (recall that α 6= −1). They
are also nonempty, so A1 ∪ B1 6= R1, and there exists a trajectory such that y is
defined on R and limτ→∞ ζ = α. By scaling, we can find for any a > 0 at least
one b such that the corresponding w has constant sign and limr→∞ rαw = L 6= 0;
thus |w| is of type (5).

(ii) Suppose α = −1. Then Ts is given explicitly by w ≡ br , so Y ≡ −y p−1, or
equivalently Y−1 ≡ b; hence Ts = N−1. For any other solution, one finds Y ′′

−1 =

Y ′

−1(1+ e2τ
|Y−1|

(2−p)/(p−1)), so Y−1 is strictly monotone, by uniqueness, and Y ′′

−1
has the sign of Y ′

−1. Any trajectory such that limr→0w = a > 0 and limr→0w
′
=

b < 0, starting in Q1, satisfies Y ′

−1 > 0, and Y−1 is convex. Thus Y−1 cannot have
a finite limit, Sw < ∞, and the trajectory ends up in Q2, so y has a zero. Any
trajectory such that limr→0(−w) = a > 0 and limr→0(−w)

′
= b > 0, starting in

Q2, satisfies Y ′

−1 < 0, so Y−1 has a zero and the trajectory ends up in Q4. Hence,
apart from Ts , all trajectories satisfy Sw <∞, and y has one zero.

(iii) Suppose −p′ < α < −1 (Figure 12, right). Then Tr starts in Q1, y has one
zero from Proposition 2.14, and Tr ends up in Q2, with Sw <∞. Any solution has
at most two zeros.

Consider Ts : we claim that it cannot stay in Q2. Suppose that it stays in it, thus
y < 0< Y . Then ζ < 0, and limτ→−∞ ζ = η = −1, and ζ is monotone near −∞;
if ζ ′

≤ 0, then ζ ≤ −1 near −∞, and we reach a contradiction from (2–9). Then
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ζ ′
≥ 0 near −∞; but any extremal point of ζ is a minimal point by (2–18). Hence

ζ remains increasing, is defined on R and has a limit λ ∈ [−1, 0]; but λ = α, by
Proposition 2.8, again leading to a contradiction. Therefore Ts enters Q3 at some
point (ϕs, 0) with ϕs < 0, then enters Q4, and y has precisely one zero; and w is of
type (7).

Any solution such that limr→0(−w) = a > 0 and limr→0(−w)
′
= b > 0 also

has one zero, since its trajectory stays under Ts in Q2; thus w is of type (8).
As in the case N ≥ 2, for any P = (ϕ, ξ) ∈ Nα with ϕ ≤ 0, T[P] stays in Q1 ∪Q2

and Sw<∞. In particular for P0 = (0, ξ0), where ξ0 = ((p−1)(−1−α))(p−1)/(2−p),
the trajectory T[P0] starts from Q1, so limr→0w = a > 0, limr→0w

′
= b0(a) > 0;

also w has one zero, and Sw <∞. Thus w is of type (6).
The sets A,B defined as in (6–3) are still open in this case, and B contains

T[P0]. Also, A contains Ts ; hence A contains any T[P], where P = (ϕ, 0) with
ϕ < ϕs . Such a trajectory satisfies limr→0w = a > 0 and limr→0w

′
= b < 0, and

w is of type (9). Moreover A ∪ B 6= R; thus for any a > 0 there exists b < 0 such
that the corresponding w has one zero and limr→∞ rαw = L 6= 0, so w is of type
(10). �

α < δ < N

As in the case ε = 1, δ < min(α, N ) of page 246, here two kinds of periodic
trajectories can appear, and the study is delicate. Here also N ≥ 2, and we still have
three stationary points, and (0, 0) is a saddle point. M` is a source if N/2 ≤ δ or
δ < N/2 and α∗ <α, and a sink if δ < N/2 and α < α∗; notice that α∗ <−p′ < 0,
by (2–32). Also M` is a node whenever α≤ α1 or α2 ≤ α, where α1, α2 are defined
in (2–48), and α2 can be greater or less than −p′. We begin with the simplest case.

Theorem 6.4. Assume ε = −1 and 0 < α < δ < N. All regular solutions have
constant sign and a reduced domain (Sw<∞). The functionw≡`r−δ is a solution.
There exist solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 r δw = ` and Sw <∞;

(2) w has one zero, limr→0 r δw = ` and Sw <∞;

(3) w is positive, limr→0 r δw = ` and limr→∞ rηw = c > 0;

(4) w is positive, limr→0 r δw = ` and limr→∞ rαw = L > 0.

Up to symmetry, all solutions are as above.

Proof. Since α > 0, regular solutions have constant sign and satisfy Sw < ∞,
by Propositions 2.5 and 2.14. Here Tr starts in Q4 and stays in it, by Remark 2.3
(Figure 13). Any solution has at most one zero by Proposition 2.5. The point M` is
a source, and a node point, by Remark 2.17, and 0<λ1<δ<λ2. The eigenvectors
u1 = (ν(α), λ1−δ) and u2 = (−ν(α), δ−λ2) form a positively oriented basis, where
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now ν(α)< 0; thus u1 points toward Q3 and u2 toward Q4. There are two particular
trajectories T1,T2 starting from M` at −∞, with respective tangent vectors u2 and
−u2. All other trajectories T approaching M` at −∞ do so along u1; and y is
monotone at the extremities, by Proposition 2.7, since T cannot meet T1,T2.

First consider T1. The function y is nondecreasing near −∞ and remains so as
long as T1 stays in Q1; indeed, Y is nonincreasing near −∞, so Y (τ ) < (δ`)p−1.
If y has a maximal point τ , then y(τ ) > ` by (2–16), and Y 1/(p−1)

= δy; hence
Y (τ ) > (δ`)p−1, so Y has a minimal point τ1 in Q1; therefore Y (τ1) < (δ`)

p−1 by
(EY ); and Y ′(τ1)= 0, so α` < αy(τ1) < (N − δ)αY (τ1)/(δ− α), a contradiction.
If T1 stays in Q1, then limτ→−∞ ζ = α > 0 by Proposition 2.8, which is also
contradictory. Thus T1 enters Q4 at some point (ϕ1, 0) and stays in it; Sw < ∞

because T1 and Tr don’t meet, so w is of type (1).
Next consider T2. Near −∞, the function Y is nondecreasing, and y is nonin-

creasing; y is monotone as long as y > 0: if there existed a minimal point τ , we
would have y(τ ) > ` by (2–16). Also Y is nondecreasing as long as Y > 0: if Y
has a maximal point τ , then Y (τ ) > (δ`)p−1 by (EY ); and

α` > αy(τ ) > (N − δ)αY (τ )/(δ−α),

which is again impossible. Thus T2 cannot stay in Q1; it enters Q2 at some point
(0, ξ2) and stays in Q2, since it does not meet −Tr . Hence Sw <∞, and w is of
type (2).

There exists also a unique trajectory T3 converging to (0, 0) at ∞, ending up in
Q1, since (0, 0) is a saddle point. It stays in the domain of Q1 delimited by T1,T2,
because Q1 is backward invariant. Thus T3 converges to M` at −∞, tangentially
to u1. And y is increasing on R: indeed y′ < 0 near ±∞, and y cannot have two
extremal points. Then w is of type (3).

For any point P = (ϕ, 0) with ϕ > ϕ1, the trajectory T[P] goes from Q1 into
Q4, by Remark 2.1(i). It does not meet Tr or T1; hence it stays in Q4 after P , and

Figure 13. Theorem 6.4: ε = −1, 0< α = 2< δ = 3< N = 4.



262 MARIE FRANÇOISE BIDAUT-VÉRON

Sw <∞. Before P , it stays in Q1 because it does not meet T1 or T2, by the same
remark. By Proposition 2.8, either limτ→−∞ ζ = α < δ, so y′

= y(δ− ζ ) > 0 near
−∞, and limτ→−∞ y = ∞, which is impossible; or (necessarily) T[P] converges
to M`, tangentially to u1, and T[P] is of type (2). Similarly, for any P ′

= (0, ξ)
with ξ > ξ2, the trajectory T[P ′] goes from Q1 into Q2; it remains there after P (so
Sw < ∞) and remains in Q1 before P , converging to M` at −∞, tangentially to
−u1. Thus w is still of type (2).

The sets
A = {P ∈ Q1 : T[P] ∩ {(ϕ, 0) : ϕ > 0} 6= ∅},

B = {P ∈ Q1 : T[P] ∩ {(0, ξ) : ξ > 0} 6= ∅},

are open and nonempty, so A ∪ B 6= Q1. There is at least one trajectory T4 in Q1

converging to M` at −∞ and such that limτ→∞ ζ=α; thus w is of type (4).
For any point P in the bounded domain R′ of Q1 delimited by T2 and T3, the

trajectory T[P] is confined to R′ before P , and y has no maximal point; thus y
is monotone, and T converges to M` at −∞. It cannot stay in Q1 since it cannot
converge to (0, 0). Thus it goes from Q1 into Q2 and stays there, because it does
not meet −Tr . Thus Sw <∞, and w is again of type (2).

For any P in the domain of Q1 delimited by T1 and T3, the trajectory T[P]

converges to M` at −∞, tangentially to u1; it enters Q4 and stays there. Thus
Sw < ∞ and w is of type (1). No trajectory can stay in Q4(Q2) except Tr (−Tr );
thus all the solutions have been described, up to a symmetry. �

Now we come to the case α<0, and discuss according to the sign of α− p′. This
situation is different from the case ε = 1, δ < min(α, N ) discussed on page 246,
by Remark (i) on page 249 and part (i) of the next remark.

Remark 6.5. Assume ε = −1 and α < 0.

(i) The regular trajectory Tr starts in Q1. There exists a unique trajectory Ts con-
verging to (0, 0), lying in Q1 for large τ , having an infinite slope at (0, 0), and
satisfying limr→0 rηw = c > 0. If Ts does not stay in Q1, then Tr does stay
in it, and it is bounded and contained in the domain delimited by Q1 ∩ Ts , by
Remark 2.1(i). If Tr is homoclinic, it stays in Q1.

Conversely, if Ts stays in Q1 and is not homoclinic, Tr does not stay in Q1, for the
following reason. Ts either converges to M` at −∞ or has a limit cycle around it;
if Tr stays in Q1, either the corresponding y is increasing, so limτ→ln Sw Y/y = −1;
or limτ→∞ ζ = α < 0, by Propositions 2.15 and 2.8, so Tr enters Q4 and we reach
a contradiction; or y oscillates around ` near ∞, by Proposition 2.7, so it meets
Ts , which is impossible.

(ii) Any trajectory T is bounded near −∞ from Propositions 2.8 and 2.10. Any
trajectory T bounded at ±∞ converges to (0, 0) or ±M`, or its limit set 0± at ±∞

is a limit cycle; or Tr is homoclinic and 0± = Tr .
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(iii) If there exists a limit cycle around (0, 0), it also surrounds ±M`, by (2–42)
and (2–43).

Next we study the case −p′
≤ α, where there is no cycle and no homoclinic

orbit in Q1, by Theorem 2.20.

Theorem 6.6. (i) Assume ε = −1 and −p′ < α < 0 < δ < N. Then all regular
solutions have precisely one zero, and Sw<∞. The functionw≡`r−δ is a solution.
There exist solutions satisfying any one of these characterizations:

(1) w is positive, limr→0 r δw = ` and limr→∞ rηw = c > 0;

(2) w has one zero, limr→0 r δw = `, and limr→α rαw = L < 0;

(3) w has one zero, limr→0 r δw = `, and Sw <∞;

(4) w has two zeros, limr→0 r δw = `, and Sw <∞.

(ii) Assume α = −p′. Then the regular solutions, given by (1–8), have one zero,
and limr→α rαw = L < 0. There exist solutions of type (1) and (4).

Up to symmetry, all solutions are as above.

Proof. (i) Assume −p′ < α < 0 (Figure 14, left). By Proposition 2.5, any solution
y has at most two zeros, and Y has at most one zero.

First consider Ts . The function Yα defined by (2–3) with d = α satisfies Yα =

O(e(α−η)τ ) near ∞, thus limτ→∞ Yα = 0. Then from Remark 2.6, Yα is decreasing,
thus Yα > 0, and Ts stays in Q1 ∪Q2. In fact it stays in Q1, by Remark 2.1(i). From
Propositions 2.8, 2.7, 2.11, and Theorem 2.20, Ts converges to M` at −∞. Indeed
if lim y = ∞, then limτ→∞ ζ = α < 0; if Sw < ∞, then lim Y/y = −1; which
contradicts Y > 0. Then w is of type (1).

The trajectory Tr stays in Q1 ∪ Q2, and y has precisely one zero, and Sw <∞,
so limτ→ln Sw Y/y = −1. We claim that Tr cannot stay in Q1. Indeed, it cannot

−p′
= −3< α = −2< δ −p′

= −3 = α < δ

Figure 14. Theorem 6.6: ε = −1, δ = 3< N/2< N = 9.
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converge to M`, which is a source, or oscillate around Q1, because it does not meet
Ts , or tend to ∞, or satisfy Sw <∞ with Y > 0. Thus y has precisely one zero,
Tr enters Q2 and stays in it. Moreover the corresponding Yα satisfies Y ′

α > 0, or
equivalently (6–1). Consider again the curve Nα defined in (6–2). Here Tr stays
strictly to the right of Nα, and Ts to the left of Nα.

For any P = (ϕ, 0) with ϕ < 0, the trajectory T
[P]

enters Q3 after P , by Re-
mark 2.1(i). The solution going through P at τ = 0 satisfies Yα(0) = 0; thus Yα
stays positive as before, and Y ′

α < 0, since Yα has no maximal point, by Remark
2.6. Thus T

[P]
stays in Q1 ∪ Q2 before P , to the left of Nα. It cannot stay in Q2,

by Propositions 2.7 and 2.8. As τ decreases, it enters Q1, and converges to M`,
by Theorem 2.20. If Sw = ∞, then lim |y| = ∞ and limτ→∞ ζ = α < 0; this is
impossible, since T

[P]
does not meet −Tr . Thus Sw<∞, lim Y/y =−1, T

[P]
goes

from Q3 into Q4 and stays in it, and w is of type (4). The solution y has precisely
two zeros.

Next consider T[P] for any P = (ϕ, ξ) ∈ Nα with ϕ < 0. The solution passing
through P at τ = 0 satisfies Y ′

α(0) = 0 and Yα(0) > 0, and 0 is a minimal point.
Therefore Y ′′

α (0) > 0; indeed, if Y ′′
α (τ ) = 0, we conclude from uniqueness that Yα

is constant on R; then (2–6) yields Yα ≡ 0, since α 6= −p′. But this cannot be.
Therefore Y ′

α(τ )> 0 for τ > 0, Y ′
α(τ )< 0 for τ < 0, and T[P] stays in Q1∪Q2, to the

right of Nα after P , with y< 0 by Remark 2.1(i), and to the left of Nα before P . As
above it cannot stay in Q2 near −∞, and converges to M`. Suppose that it satisfies
Sw=∞. Then lim |y|=∞, limτ→∞ ζ =α, and limτ→∞ yα = L<0 by Proposition
2.9; hence limτ→∞ Yα = (αL)p−1. As in Proposition 2.5(iii), we find Y ′′

α (τ ) > 0
for any τ > 0, which is impossible. Then Sw <∞, so limτ→ln Sw Y/y = −1 and w
is of type (3).

Finally consider the domain R of Q1∪Q2 delimited by Tr and Ts and containing
Nα. Form the sets

A = {P ∈ R : T[P] ∩ Nα 6= ∅},

B = {P ∈ R : T[P] ∩ {(ξ, 0) : ξ > 0} 6= ∅},

corresponding to trajectories of type (3) or (4). They are nonempty and open, since
here again the intersection with Nα is transverse (α 6= −p′). Thus A∪ B is distinct
from R: there exists a trajectory in R that does not meet Nα; it converges to M`

at −∞ or oscillates around it, and it is located below Nα in Q2. It cannot satisfy
limτ→ln Sw Y/y = −1, so Sw = ∞ and we have limτ→∞ ζ = α. Hence w is of
type (2).

(ii) Assume α = −p′ (Figure 14, right). Then regular solutions have a different
behavior: they are given explicitly by (1–8). They satisfy Y−p′ ≡ C , thus Y ′

−p′ ≡ 0,
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thus Tr = M−p′ . Here y has a zero, and Sw = ∞, and limτ→∞ ζ = −p′. As above
Ts stays in Q1 and w is of type (1).

Next consider again T
[P]

. The solution going through P at τ = 0 satisfies
Y−p′(0)=0, thus Y−p′ stays negative for τ >0 and Y ′

−p′ <0. Suppose that Sw=∞,
and limτ→∞ ζ =−p′, then limτ→∞ yα = L > 0, limτ→∞ Yα =−(|α|L)p−1. But as
in (2–46), Y ′′

α (τ ) < 0 for any τ > 0, which leads to a contradiction. Then Sw <∞

and w is of type (4).
Finally suppose that there exists a trajectory T 6= Tr staying in Q1 ∪Q2. Then it

converges to M`, thus Yα>0, Sw=∞, and limτ→−∞ Yα=∞, limτ→∞ Yα=C>0.
If T has a minimal point, then it has an inflection point where Y ′

α > 0, which as
above is impossible. Then Y ′

α < 0; (2–6) yields

(p − 1)Y ′′

−p′ = Y ′

−p′

(
ep′τY (2−p)/(p−1)

−p′ − N (p − 1)
)
= Y ′

−p′(Y − N (p − 1)),

and limτ→∞ Y = ∞, so Y ′′

−p′ < 0 for large τ , which is impossible. Thus there exist
no solutions of type (2) or (3). �

We now come to the most difficult case: α <−p′.

Lemma 6.7. Assume ε= −1 and α <−p′. If δ < N/2 and α∗<α, either Tr has a
limit cycle in Q1, or is homoclinic, or all regular solutions have at least two zeros.
If N/2 ≤ δ < N , they have at least two zeros.

Proof. In any case M` is a source. Suppose that Tr has no limit cycle in Q1, or is
not homoclinic (in particular it happens when N/2 ≤ δ < N , by Proposition 2.11),
and stays in Q1 ∪ Q2, thus Y stays positive. Then from Propositions 2.8, 2.9 and
2.15, either limτ→−∞ y = ∞, limτ→∞ yα = L 6= 0, limτ→∞ Yα = (αL)p−1, or
Sw <∞. In any case, for any d ∈ (α,−p′), the function Yd = e(d−α)τYα satisfies
limτ→ln Sw Yd =∞= limτ→∞ Yd . Then it has a minimum point, and this contradicts
(2–15). Thus Tr enters Q3. If it stays in it, it has a limit cycle; then −Tr has a limit
cycle in Q1. But −Tr does not meet Tr , and M` is in the domain of Q1 delimited
by Tr , since Tr meets M to the right of M`, by (2–16); this is impossible. Then Tr

enters Q4, and y has at least two zeros. �

Theorem 6.8. Assume ε = −1 and δ < N/2, α <−p′. Then w(r)= `r−δ is still a
solution.

(i) There exists a (minimal) critical value αcrit of α, such that

α∗ < αcrit <min(−p′, α2) < 0,

and Tr is homoclinic: all regular solutions have constant sign and satisfy

lim
r→∞

rηw = c 6= 0.
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α = −5<−p′
= −3< 0< δ α = −7.4< 0< δ

α∗
= −9< α = −8< δ α = −13< α∗

= −9< δ

Figure 15. Theorem 6.8: ε = −1, δ = 3< N/2< N = 9.

(ii) For any α ∈ (α∗, αcrit) there does exist a cycle in Q1; equivalently there exist
solutions such that r δw is periodic in ln r . All regular solutions have constant
sign and r δw is asymptotically periodic in ln r . There exist positive solutions
such that limr→0 r δw = ` and r δw is asymptotically periodic in ln r .

(iii) For any α ≤ α∗, there does not exist such a cycle, regular solutions have
constant sign, and limr→∞ r δ|w| = `.

(iv) For any α<αcrit, there exists also a cycle surrounding (0, 0) and ±M`, thusw
is changing sign and r δw is periodic in ln r . There exist solutions oscillating
near 0, and r δw is asymptotically periodic in ln r , and limr→∞ rηw = c 6= 0.
There exist solutions oscillating near 0, and r δw is asymptotically periodic in
ln r , and Sw <∞ or limr→∞ rαw = L 6= 0.

Proof. (i) For any α ∈ (α1, α2), such that α ≤ −p′ we have three possibilities, by
Remark 6.5:

• Ts converges to M` at −∞, spiraling around this point, since α is a spiral
point, or it has a limit cycle around M`. Then Ts meets the set E = {(`, Y ) :
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Y >(δ`)p−1
} at a first point (`, Ys(α)); and Tr meets E at a last point (`, Yr (α))

such that Yr (α)− Ys(α) > 0. Moreover Tr enters Q2, by Proposition 2.8. See
Figure 15, top left.

• Ts enters Q4; hence Tr converges to M` at ∞ and spirals around this point,
or it has a limit cycle around M`. Then Ts meets E at a last point (`, Ys(α)),
Tr meets E at a first point (`, Yr (α)) such that Yr (α)−Ys(α) < 0. See Figure
15, bottom row.

• Tr is homoclinic, or equivalently Yr (α)−Ys(α)= 0. See Figure 15, top right.

Now the function α 7→ h(α)= Yr (α)− Ys(α) is continuous. If −p′ < α2, then
h(−p′) is defined and h(−p′) > 0, by Theorem 6.6. If α2 ≤ −p′, we observe that
for α = α2, by Theorem 2.18, Tr must leave Q1 (because α2 is a source) and does
so transversally; thus the same holds for α = α2 − γ if γ > 0 is small enough.
Therefore Ts stays in Q1 by Remark 6.5, so h(α2 − γ ) > 0. If α ≤ α∗, then M`

is a sink or a weak sink, by Theorem 2.16; therefore Ts cannot converge to M`

at −∞. By Theorem 2.19, there are no cycles in Q1 and no homoclinic orbits.
By Remark 6.5, Ts cannot stay in Q1; hence Tr stays in Q1 and is bounded and
converges at ∞ to M`. Thus h(α) < 0 for α1 < α ≤ α∗, so there exists at least an
αcrit

∈ (α∗,min(−p′, α2) such that h(αcrit) = 0. If it is not unique, we choose the
smallest one.

(ii) Let α > α∗. The existence and uniqueness of such a cycle in Q1 follows from
Theorem 2.16 if α − α∗ is small enough (Figure 15, lower left). For any α ∈

(α∗, αcrit), we still have existence: indeed, h(α) < 0 on this interval, so Tr stays
in Q1, and Tr cannot converge to M` at ∞, hence it has a limit cycle around M`

at ∞. Since M` is a source, there also exist trajectories converging to M` at −∞,
with a limit cycle at ∞. And Ts does not stay in Q1, and it is bounded at −∞.
Thus it has a limit cycle at −∞ surrounding (0, 0) and ±M`.

(iii) Let α ≤ α∗ (Figure 15, lower right). Then Tr stays in Q1, is bounded on R,
and converges to M` at ∞, while Ts does not stay in Q1 as above. Thus Ts has a
limit cycle at −∞, containing the three stationary points.

(iv) For any α<αcrit apart from Tr and the cycles, all trajectories have a limit cycle
at −∞ containing the three stationary points. By Theorem 2.21, all the cycles are
contained in a ball B of R2. Take any point P exterior to B. By Remark 6.5,
T[P] has a limit cycle at −∞ contained in B and cannot have a limit cycle at ∞.
Therefore y has constant sign near ln Sw. By Proposition 2.8, either Sw <∞ or y
is defined near ∞ and limτ→∞ ζ = L , limr→∞ rαw = L . �

Finally we consider the case N/2 ≤ δ, where no cycle can exist.
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Theorem 6.9. Assume ε=−1 and α<0<N/2≤δ<N. Then all solutions of (Ew)
have a finite number of zeros, and w(r)= `r−δ is a solution. If −p′

≤ α, Theorem
6.6 applies. If α <−p′, there exist positive solutions such that limr→0 r δw= ` and
limr→∞ rηw = c > 0. All regular solutions have the same number m ≥ 2 of zeros.
All other solutions satisfy limr→−∞ r δw = ±`, and have m or m + 1 zeros; there
exist solutions with m + 1 zeros.

Proof. By Proposition 2.11, all solutions have a finite number of zeros, and any
solution is monotone near 0 and ln Sw, or converges to ±M`. By Remark 6.5,
apart from Tr , all trajectories converge to ±M` at −∞. The functions V and W
are nonincreasing. The trajectory Ts satisfies limτ→∞ V = limτ→∞ W = 0, so
V ≥ 0, W ≥ 0. If y has a zero at some point τ , then W (τ )= −|Y (τ )|p′

/p′, which
is impossible. If Y has a zero at some point θ , then V (θ) = −Y ′(θ)2/2, also a
contradiction. Thus Ts stays in Q1. By Remark 6.5 and Proposition 2.11, Tr does
not stay in Q1, but enters Q2. By Lemma 6.7, Tr enters Q4, and y has at least two
zeros. Let m be the number of its zeros. Then Tr cuts the axis y = 0 at points
(0, ξ1), . . . , (0, ξm). Consider any trajectory T[P] with P = (0, ξ), where ξ > |ξi |

for 1 ≤ i ≤ m. It cannot intersect Tr or −Tr , so y has m +1 zeros. Any trajectory
has m or m + 1 zeros, because it does not meet Tr or −Tr or T[P]. And Sw <∞

or limr→∞ rαw = L 6= 0. �
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