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We exhibit an identity of abstract simplicial complexes between the well-
studied complex of trees Tn and the reduced minimal nested set complex of
the partition lattice. We conclude that the order complex of the partition
lattice can be obtained from the complex of trees by a sequence of stellar
subdivisions. We provide an explicit cohomology basis for the complex of
trees that emerges naturally from this context.

Motivated by these results, we review the generalization of complexes
of trees to complexes of k-trees by Hanlon, and we propose yet another
generalization, more natural in the context of nested set complexes.

1. Introduction

In this article we explore the connection between complexes of trees and nested
set complexes of specific lattices.

Nested set complexes appear as the combinatorial core in De Concini and Pro-
cesi’s [1995] wonderful compactifications of arrangement complements. They
record the incidence structure of natural stratifications and are crucial for descrip-
tions of topological invariants in combinatorial terms. Disregarding their geometric
origin, nested set complexes can be defined for any finite meet-semilattice [Feicht-
ner and Kozlov 2004]. Interesting connections between seemingly distant fields
have been established when relating the purely order-theoretic concept of nested
sets to various contexts in geometry. See [Feichtner and Yuzvinsky 2004] for a
construction linking nested set complexes to toric geometry, and [Feichtner and
Sturmfels 2005] for an appearance of nested set complexes in tropical geometry.

This paper presents yet another setting where nested set complexes appear in a
meaningful way and, this time, contribute to the toolbox of topological combina-
torics and combinatorial representation theory.

Complexes of trees Tn are abstract simplicial complexes with simplices corre-
sponding to combinatorial types of rooted trees on n labeled leaves. They made
their first appearance in [Boardman 1971], in connection with E∞-structures in
homotopy theory. Later, they were studied in [Vogtmann 1990] from the point of
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view of geometric group theory, and in [Robinson and Whitehouse 1996] from
the point of view of representation theory. In fact, Tn carries a natural action of
the symmetric group 6n that allows for a lifting to a 6n+1-action. For studying
induced representations in homology, Robinson and Whitehouse determined the
homotopy type of Tn to be a wedge of (n−1)! spheres of dimension n−3. Later
on, complexes of trees were shown to be shellable by Trappmann and Ziegler
[1998] and independently by Wachs (1998; see [Wachs 2003]). Recent interest in
the complexes is motivated by the study of spaces of phylogenetic trees from com-
binatorial, geometric and statistics point of view [Billera et al. 2001]. Complexes
of trees appear as links of the origin in natural polyhedral decompositions of the
spaces of phylogenetic trees.

Ardila and Klivans [2006] recently proved that the complex of trees Tn can be
subdivided by the order complex of the partition lattice 1(5n). Our result shows
that 1(5n), in fact, can be obtained by a sequence of stellar subdivisions from
the complex of trees. This and other corollaries rely on the specific properties of
nested set complexes that we introduce into the picture.

Our paper is organized as follows: After recalling the definitions of complexes
of trees and of nested set complexes in Section 2, we establish an isomorphism
between the complex of trees Tn and the reduced minimal nested set complex of
the partition lattice 5n in Section 3. Among several corollaries, we observe that
the isomorphism provides a 6n-invariant approach for studying tree complexes;
their 6n-representation theory can be retrieved literally for free.

In Section 4 we complement the by now classical combinatorial correspondence
between no broken circuit bases and decreasing EL-labeled chains for geometric
lattices by incorporating proper maximal nested sets as defined in [De Concini and
Procesi 2005]. We formulate a cohomology basis for the complex of trees that
emerges naturally from this combinatorial setting.

Mostly due to their rich representation theory, complexes of trees have been gen-
eralized to complexes of homeomorphically irreducible k-trees in [Hanlon 1996].
We discuss this and another, in the nested set context more natural, generalization
in Section 5.

2. Main characters

2.1. The complex of trees. Let us fix some terminology: A tree is a cycle-free
graph; vertices of degree 1 are called leaves of the tree. A rooted tree is a tree
with one vertex of degree larger 1 marked as the root of the tree. Vertices other
than the leaves and the root are called internal vertices. We assume that internal
vertices have degree at least 3. The root of the tree is thus the only vertex that
can have degree 2. Another way of saying this is that we assume all nonleaves to
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have outdegree at least 2, where the outdegree of a vertex is the number of adjacent
edges that do not lie on the unique path between the vertex and the root.

We call a rooted tree binary if the vertex degrees are minimal, i.e., the root has
degree 2 and the internal vertices have degree 3; in other words, if the outdegree of
all nonleaves is 2. Observe that a rooted binary tree on n leaves has exactly n−2
internal edges, i.e., edges that are not adjacent to a leave.

The combinatorial type of a rooted tree with labeled leaves refers to its equiv-
alence class under label- and root-preserving homeomorphisms of trees as 1-dim-
ensional cell complexes.

Rooted trees on n leaves labeled with integers 1, . . . , n are in one-to-one cor-
respondence with trees on n+1 leaves labeled with integers 0, . . . , n where all
internal vertices have degree ≥ 3. The correspondence is obtained by adding an
edge and a leaf labeled 0 to the root of the tree. Though trees on n+1 labeled
leaves seem to be the more natural, more symmetric objects, rooted trees on n
leaves come in more handy for the description of Tn .

Definition 2.1. The complex of trees Tn , n ≥ 3, is the abstract simplicial complex
with maximal simplices given by the combinatorial types of binary rooted trees
with n leaves labeled 1, . . . , n, and lower-dimensional simplices obtained by con-
tracting at most n−3 internal edges.

The complex of trees Tn is a pure (n−3)-dimensional simplicial complex. As
we pointed out in the introduction, it is homotopy equivalent to a wedge of (n−1)!

spheres of dimension n−3; see [Robinson and Whitehouse 1996, Theorem 1.5].
The complex T3 consists of 3 points. For n = 4, there are 4 types of trees, we

depict labeled representatives in Figure 1. Observe that the first two correspond to
1-dimensional (maximal) simplices, whereas the other two correspond to vertices.
The last two labeled trees, in fact, are the vertices of the edge corresponding to the
first maximal tree. The third tree is a “vertex” of the second, and of the first.

2.2. Nested set complexes. We recall here the definition of building sets, nested
sets, and nested set complexes for finite lattices as proposed in [Feichtner and
Kozlov 2004].
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Figure 1. Simplices in T4.
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We use the standard notation for intervals in a finite lattice L,

[X, Y ] := {Z ∈ L | X ≤ Z ≤ Y },

for X, Y ∈ L, moreover, S≤X := {Y ∈ S | Y ≤ X}, and accordingly S<X , S≥X , and
S>X , for S ⊆ L and X ∈ L. With max S we denote the set of maximal elements
in S with respect to the order coming from L.

Definition 2.2. Let L be a finite lattice. A subset G in L
>0̂ is called a building

set if for any X ∈ L
>0̂ and max G≤X = {G1, . . . , Gk} there is an isomorphism of

partially ordered sets

ϕX :

k∏
j=1

[0̂, G j ]
∼=

−→ [0̂, X ]

with ϕX (0̂, . . . , G j , . . . , 0̂) = G j for j = 1, . . . , k. We call FG(X) := max G≤X

the set of factors of X in G.

The full lattice L
>0̂ is the simplest example of a building set for L. We will

sometimes abuse notation and just write L in this case. Besides this maximal
building set, there is always a minimal building set I consisting of all elements X
in L

>0̂ which do not allow for a product decomposition of the lower interval [0̂, X ],
the so-called irreducible elements in L.

Definition 2.3. Let L be a finite lattice and G a building set containing the maximal
element 1̂ of L. A subset S in G is called nested (or G-nested if specification is
needed) if, for any set of incomparable elements X1, . . . , X t in S of cardinality
at least two, the join X1 ∨ · · · ∨ X t does not belong to G. The G-nested sets form
an abstract simplicial complex, Ñ(L, G), the nested set complex of L with respect
to G. Topologically, the nested set complex is a cone with apex 1̂; its base N(L, G)

is called the reduced nested set complex of L with respect to G.

We will mostly be concerned with reduced nested set complexes due to their
more interesting topology. If the underlying lattice is clear from the context, we
will write N(G) for N(L, G).

Nested set complexes can be defined analogously for building sets not contain-
ing 1̂, and, even more generally, for meet semilattices. For a definition in the full
generality, see [Feichtner and Kozlov 2004, Section 2].

For the maximal building set of a lattice L, subsets are nested if and only if
they are linearly ordered in L. Hence, the reduced nested set complex N(L, L)

coincides with the order complex of L, more precisely, with the order complex
of the proper part, L \ {0̂, 1̂}, of L, which we denote by 1(L) using customary
notation.
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If L is an atomic lattice, the nested set complexes can be realized as simplicial
fans (see [Feichtner and Yuzvinsky 2004]), and for building sets G ⊆ H in L, the
nested set complex Ñ(L, H) can be obtained from Ñ(L, G) by a sequence of stellar
subdivisions [Feichtner and Müller 2005, Theorem 4.2]. In particular, any reduced
nested set complex N(L, G) is obtained by a sequence of stellar subdivisions from
the minimal reduced nested set complex N(L, I), and can be further subdivided
by stellar subdivisions so as to obtain the maximal nested set complex 1(L).

Example 2.4. Let 5n denote the lattice of set partitions of [n] := {1, . . . , n} par-
tially ordered by reversed refinement. As explained above, the reduced maximal
nested set complex N(5n, 5n) is the order complex 1(5n). Irreducible elements
in 5n are the partitions with exactly one nonsingleton block. They can be identified
with subsets of [n] of cardinality at least 2. Nested sets for the minimal building
set I are collections of such subsets of [n] such that any two either contain one
another or are disjoint. For n = 3, the reduced minimal nested set complex consists
of 3 isolated points; for n = 4, it equals the Petersen graph.

3. Subdividing the complex of trees

We now state the core fact of our note.

Theorem 3.1. The complex of trees Tn and the reduced minimal nested set complex
of the partition lattice N(5n, I) coincide as abstract simplicial complexes.

Proof. We exhibit a bijection between simplices in Tn and nested sets in the reduced
minimal nested set complex N(5n, I) of the partition lattice 5n .

Let T be a tree in Tn with inner vertices t1, . . . , tk . We denote the set of leaves
in T below an inner vertex t by `(t). We associate a nested set S(T ) in N(5n, I)

to T by defining
S(T ) := {`(ti ) | i = 1, . . . , k}.

Conversely, let S = {S1, . . . , Sk} be a (reduced) nested set in 5n with respect to
I. We define a rooted tree T̃ (S) on the vertex set S ∪ {R}, where R will be the root
of the tree. Cover relations are defined by setting S > T if and only if T ∈ maxS<S ,
and requiring the root R to cover any element in maxS. Observe that we allow the
“root” of T̃ (S) to have degree 1 in this intermediate stage of the construction.

To obtain a tree with n leaves, i.e., a simplex in Tn , we need to “grow leaves”
on T̃ (S). To do so, expand any leaf S of T̃ (S) into |S| many leaves labeled with
the elements in S. For every internal vertex T of T̃ (S) add leaves labeled with
the elements of T \

⋃
S∈S,S<T S, analogously, add leaves labeled with [n] \

⋃
S

to the root R. Denote the resulting tree by T (S).
The two maps are inverse to each other, hence we have an (order-preserving)

bijection between the faces of Tn and the reduced minimal nested set complex
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N(5n, I) of the partition lattice. We see that Tn and N(5n, I), in fact, are identical
as abstract simplicial complexes. �

Corollary 3.2. The order complex of the partition lattice 1(5n) can be obtained
from the complex of trees Tn by a sequence of stellar subdivisions.

Proof. Referring to [Feichtner and Müller 2005, Theorem 4.2], we see that the
order complex 1(5n), i.e., the reduced maximal nested set complex N(5n, 5n)

of 5n , can be obtained from the complex of trees Tn = N(5n, I) by a sequence of
stellar subdivisions.

Explicitly, the subdivision is given by the choice of a linear extension order on
(5n \ I)op, and by performing stellar subdivisions in simplices FI(X) for poset
elements X in (5n \ I)op along the given linear order. �

Both the complex of trees and the partition lattice carry a natural action of the
symmetric group 6n , which induces a 6n-action on the respective homology, each
concentrated in top dimension (compare [Robinson and Whitehouse 1996] for the
complex of trees, and [Stanley 1982] for the partition lattice). We recover the
well-known isomorphism of 6n-modules in

Corollary 3.3. The top degree homology groups of Tn and of 5n are isomorphic
as 6n-modules:

H̃n−3(Tn) ∼=6n H̃n−3(5n).

Proof. The maps defined in the proof of Theorem 3.1 are 6n-equivariant, hence
they induce a 6n-module isomorphism in homology. Moreover, the subdivision
referred to in the proof of Corollary 3.2 is 6n-equivariant, where the action on
1(5n) comes from the action of 6n on 5n . Observe that not any individual sub-
division step is equivariant, but simultaneous subdivisions for a fixed partition type
are. �

Remarks 3.4. (1) In recent work, Ardila and Klivans showed that the complex
of trees Tn coincides as a simplicial complex with the matroid stratification of
the Bergman complex of the graphical matroid M(Kn) [Ardila and Klivans 2006,
Section 3]. This implies that 1(L(M(Kn))) = 1(5n) subdivides the complex of
trees, in fact, the order complex coincides with the weight stratification of the
Bergman complex. Our result gives an explicit sequence of stellar subdivisions
relating one complex to the other. Independently, Ardila (personal communication,
2004) has described a sequence of subdivisions connecting Tn and 1(5n) which
remains to be compared to the one presented here.

(2) For an arbitrary matroid M , the matroid stratification of the Bergman com-
plex B(M) can be subdivided so as to realize the order complex of the lattice of
flats L(M) [Ardila and Klivans 2006, Theorem 1]. This stratification, in fact, is
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23|45

145

23|145

23 45

Figure 2. Subdivision of T = {23, 45, 145} in 1(55).

the finest in a family of subdivisions having the combinatorics of reduced nested
set complexes N(L(M), G), the coarsest of which, corresponding to N(L(M), I),
still subdivides the matroid stratification of B(M) [Feichtner and Sturmfels 2005].

Our theorem implies that for the particular case of the graphic matroid M(Kn)

the coarsest nested set stratification coincides with the matroid stratification of
the Bergman complex. This is not true in general; for an example as well as a
characterization of when the stratifications coincide, see [Feichtner and Sturmfels
2005, Example 1.2 and Theorem 5.3].

(3) The subdivision of Tn described in Corollary 3.2 can not be connected to the
barycentric subdivision of the complex of trees, bsd(Tn), by further stellar subdi-
visions. In earlier work, M. Wachs (personal communication, 2004) related cells
in Tn to simplices in the barycentric subdivision of Tn in a way that suggested such
a connection.

As an example, let us observe that the subdivision 1(55) of T5 is not refined
by bsd(T5):

Consider the triangle T = {23, 45, 145} in N(55, I) = T5. The sequence of
stellar subdivisions found in Corollary 3.2 has to be nonincreasing on nonbuilding
set elements, hence, in the course of subdividing T5, we first do a stellar subdivision
in the edge (23, 145), and later in the edge (23, 45). The resulting subdivision of
T is depicted in Figure 2. The edge (23|45 < 23|145) in 1(T5) is not refined by
the barycentric subdivision of T.

4. A cohomology basis for the complex of trees

We start this section by recalling some standard constructions associated with geo-
metric lattices. For standard matroid terminology used throughout, we refer to
[Oxley 1992].

Let L be a geometric lattice of rank r with a fixed linear order ω on its set of
atoms A(L). A broken circuit in L is a subset D of A(L) that can be written as a
circuit in L with its minimal element removed, D = C \ min C , C a circuit in L.
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The maximal independent sets in L that do not contain any broken circuits are
known as the no broken circuit bases of L, denoted by nbcω(L). The no broken
circuit bases play an important role for understanding the (co)homology of 1(L).

There is a standard labeling λ of cover relations X>Y in L. For X ∈ L, let
bXc := {A ∈ A(L) | A ≤ X}, the set of atoms in L below X , and define

λ(X > Y ) := min(bXc \ bY c).

This labeling in fact is an E L-labeling of L in the sense of [Björner and Wachs
1983], thus, by ordering maximal chains lexicographically, it induces a shelling of
the order complex 1(L). Denote by dcω(L) the set of maximal chains in L with
(strictly) decreasing label sequence:

dcω(L) := {0̂ < c1 < · · · < cr−1 < 1̂ | λ(c1 > 0̂) > λ(c2 > c1) > · · · > λ(1̂ > cr−1)}.

The characteristic cohomology classes [c∗
] for c ∈ dcω(L), i.e., classes represented

by cochains that evaluate to 1 on c and to 0 on any other top-dimensional simplex
of 1(L), form a basis of the only nonzero reduced cohomology group of the order
complex, H̃ r−1(1(L)).

We add the notion of proper maximal nested sets to the standard notions for
geometric lattices with fixed atom order that we listed so far. The concept has
appeared in [De Concini and Procesi 2005]. Define a map φ : I → A(L) by setting
φ(S) := minbSc for S ∈ I. A maximal nested set S in the (nonreduced) nested set
complex Ñ(L, I) is called proper if the set {φ(S) | S ∈ S } is a basis of L. Denote
the set of proper maximal nested sets in L by pnω(L).

We define maps connecting nbcω(L), dcω(L), and pnω(L) for a given geo-
metric lattice L. In the following proposition we will see that these maps provide
bijective correspondences between the respective sets.

To begin with, define 9 : nbcω(L) → dcω(L) by

9(a1, . . . , ar ) = (0̂ < ar < ar ∨ ar−1 < · · · < ar ∨ ar−1 ∨ · · · ∨ a1 = 1̂),

where the a1, . . . , ar are assumed to be in ascending order with respect to ω.
Next, define 2 : dcω(L) → pnω(L) by

(1) 2(0̂ < c1 < · · · < cr−1 < 1̂) = F(c1) ∪ F(c2) ∪ · · · ∪ F(cr−1) ∪ F(1̂),

for a chain c : 0̂ < c1 < · · · < cr−1 < 1̂ in L with decreasing label sequence, where
F(ci ) denotes the set of factors of ci with respect to the minimal building set I

in L.
Finally, define 8 : pnω(L) → nbcω(L) by

(2) 8(S) = {φ(S) | S ∈ S},

for S ∈ pnω(L).
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Example 4.1. Consider the partition lattice 55 with lexicographic order lex on its
set of atoms i j , 1 ≤ i < j ≤ 5. For b = {12, 14, 23, 45} ∈ nbclex(55) we have

9(b) = (0 < 45 < 23|45 < 23|145 < 1̂).

Observe that the chain is constructed by taking consecutive joins of elements in
the opposite of the lexicographic order.

Going further using 2 we obtain the following proper nested set,

2(0 < 45 < 23|45 < 23|145 < 1̂) = {45} ∪ {23, 45} ∪ {23, 145} ∪ {12345}

= {23, 45, 145, 12345}.

Applying 8 we retrieve the no broken circuit basis we started with:

8({23, 45, 145, 12345}) = {12, 23, 14, 45}.

Proposition 4.2. For a geometric lattice L with a given linear order ω on its atoms
the maps 9, 2, and 8 defined above give bijective correspondences between (1)
the no broken circuit bases nbcω(L) of L, (2) the maximal chains in L with de-
creasing label sequence, dcω(L), and (3) the proper maximal nested sets pnω(L)

in Ñ(L, I), respectively.

Proof. The map 9 : nbcω(L) → dcω(L) is well known in the theory of geometric
lattices. It is the standard bijection relating no broken circuit bases to cohomology
generators of the lattice; compare [Björner 1992, Section 7.6] for details. The
composition of maps η := 2 ◦ 9 : nbcω(L) → pnω(L) is shown to be a bijection
with inverse 8 : pnω(L) → nbcω(L); see [De Concini and Procesi 2005, Theorem
2.2]. This implies that 2 : dcω(L)→ pnω(L) is bijective as well, which completes
the proof of our claim. �

The aim of the next proposition is to trace the support simplices for the cohomol-
ogy bases { [c∗

] | c ∈ dcω(5n) } of 1(5n) through the inverse stellar subdivisions
linking 1(5n) to the complex of trees Tn = N(5n, I). For the moment we can
stay with the full generality of geometric lattices and study support simplices for
maximal simplices of 1(L) in the minimal reduced nested set complex N(L, I).

Proposition 4.3. Let L be a geometric lattice, c : c1 < . . . < cr−1 a maximal
simplex in 1(L). The maximal simplex in N(L, I) supporting c is given by the
union of sets of factors

F(c1) ∪ F(c2) ∪ · · · ∪ F(cr−1).

Proof. There is a sequence of building sets

L = G1 ⊇ G2 ⊇ · · · ⊇ Gt = I,
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connecting L and I which is obtained by removing elements of L \ I from L

in nondecreasing order: Gi \ Gi+1 = {Gi } with Gi minimal in Gi \ I for i =

1, . . . , t−1. The corresponding nested set complexes are linked by inverse stellar
subdivisions:

N(Gi ) = st(N(Gi+1), V (FI(Gi ))), for i = 1, . . . t−1,

where V (FI(Gi )) denotes the simplex in N(Gi+1) spanned by the factors of Gi

with respect to the minimal building set I.
We trace what happens to the support simplex of c along the sequence of inverse

stellar subdivisions connecting 1(L) with N(I). The support simplex of c remains
unchanged in step i unless Gi coincides with a (reducible) chain element c j (the
irreducible chain elements can be replaced any time by their “factors”: F(ck)={ck}

for ck ∈ I).
We can assume that the support simplex of c in N(Gi ) is of the form

S = F(c1) ∪ · · · ∪ F(c j−1) ∪ {c j } ∪ · · · ∪ {cr−1},

and we aim to show that the support simplex of c in N(Gi+1) is given by

T = F(c1) ∪ · · · ∪ F(c j−1) ∪ F(c j ) ∪ {c j+1} ∪ · · · ∪ {cr−1}.

Recall that the respective face posets of the nested set complexes are connected by
a combinatorial blowup

(3) F(N(Gi )) = BlF(Gi )(F(N(Gi+1))).

See [Feichtner and Kozlov 2004, 3.1] for the concept of a combinatorial blowup
in meet semilattices. Hence, the support simplex S of c in N(Gi ) is of the form
S = S0 ∪ {c j } with S0 ∈ N(Gi+1) (it is an element in the “copy” of the lower ideal
of elements in F(N(Gi+1)) having joins with F(Gi )). Due to (3) we know that
S0 6⊇ F(Gi ) and S0 ∪ F(Gi ) ∈ N(Gi+1), which in fact is the new support simplex
of c. Let us mention in passing that, since we are talking about maximal simplices,
S0 contains F(Gi ) up to exactly one element X i ∈ L.

Since c j is not contained in any of the F(ci ), i = 1, . . . , j−1, we have

S0 = F(c1) ∪ · · · ∪ F(c j−1) ∪ {c j+1} ∪ · · · ∪ {cr−1},

and we find that T = F(c1) ∪ · · · ∪ F(c j−1) ∪ F(c j ) ∪ {c j+1} ∪ · · · ∪ {cr−1} as
claimed. �

Example 4.4. Let us again consider the partition lattice 55. The support simplex of
c : 45 < 23|45 < 23|145 in N(55, I) is {23, 45, 145}. We depict in Figure 3 how
the support simplex of c changes in the sequence of inverse stellar subdivisions
from 1(55) to N(55, I).
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23|45
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23|145

4523

145

23|145

4523

145

4523

c ∈ 1(55) suppN(55,I)c

Figure 3. Support simplices of c.

We now combine our findings to provide an explicit cohomology basis for the
complex of trees Tn .

We call a binary rooted tree T with n leaves labeled 1, . . . , n admissible, if,
when recording the 2nd smallest label on the sets of leaves below any of the n−1
nonleaves of T , we find each of the labels 2, . . . , n exactly once. For an example
of an admissible tree in T5 see Figure 4.

Proposition 4.5. The characteristic cohomology classes associated with admissi-
ble trees in Tn ,

{ [T ∗
] ∈ H̃ n−3(Tn) | T admissible in Tn },

form a basis for the (reduced) cohomology of the complex of trees Tn .

Proof. We set out from the linear basis for H̃ n−3(1(5n)) provided by characteristic
cohomology classes associated with the decreasing chains dcω(5n) in 5n . Com-
bining Proposition 4.3 with the definition of the bijection 2 : dcω(5n)→pnω(5n)

in (1) we find that the characteristic cohomology classes associated with (reduced)
proper maximal nested sets pnω(5n) provide a linear basis for H̃ n−3(N(5n, I)).
We tacitly make use of the bijection between maximal simplices in Ñ(L, I) and
N(L, I) given by removing the maximal element 1̂ of L.

145

12345

1

4 5

45
2 3

23

Figure 4. An admissible tree in T5.
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To describe support simplices explicitly, recall that proper maximal nested sets
are inverse images of no broken circuit bases under 8 : pnω(5n) → nbcω(5n) as
defined in (2). The no broken circuit bases of 5n with respect to the lexicographic
order on atoms, i.e., on pairs (i, j), 1 ≤ i < j ≤ n, are (n−1)-element subsets of
the form

(1, 2), (i2, 3), . . . , (in−1, n)

with 1 ≤ i j ≤ j for j = 2, . . . , n−1. Inverse images under 8 are maximal nested
sets S ∈ Ñ(5n, I) such that {φ(S) | S ∈ S} gives collections of pairs with each
integer from 2 to n occurring exactly once in the second coordinate. Applying the
isomorphism between N(5n, I) and Tn from Theorem 3.1 shows that the char-
acteristic cohomology classes on admissible trees in Tn indeed form a basis of
H̃ n−3(Tn). �

Remark 4.6. Our basis of admissible trees differs from the one presented in [Trapp-
mann and Ziegler 1998, Corollary 5] as a consequence of their shelling argument
for complexes of trees.

5. Complexes of k-trees and other generalizations

The intriguing representation theory of complexes of trees Tn in [Robinson and
Whitehouse 1996] has given rise in [Hanlon 1996] to a generalization to complexes
of k-trees.

Definition 5.1. The complex of k-trees T (k)
n , n ≥ 1, k ≥ 1, is the abstract sim-

plicial complex with faces corresponding to combinatorial types of rooted trees
with (n−1)k+1 leaves labeled 1, . . . , (n−1)k+1, with all outdegrees at least k+1
and congruent to 1 modulo k, and at least one internal edge. The partial order
among the rooted trees is given by contraction of internal edges.

Alternatively, we could define T (k)
n as the simplicial complex with faces corre-

sponding to (nonrooted) trees with (n−1)k+2 labeled leaves, all degrees of non-
leaves at least k+2 and congruent to 2 modulo k, and at least one internal edge.
Again, the order relation is given by contracting internal edges. Observe that for
k = 1 we recover the complex of trees Tn . The face poset of our complex T (k)

n is
the poset L(k)

n−1 of [Hanlon 1996].
The complexes T (k)

n are pure simplicial complexes of dimension n−3. They are
Cohen–Macaulay [Hanlon 1996, Theorem 2.3]; later, as mentioned in the intro-
duction for the special case k = 1, a shellability result was obtained by Trappmann
and Ziegler and, independently, by Wachs.

The complexes T (k)
n carry a natural 6N -action for N = (n−1)k+1 by permu-

tation of leaves, which induces a 6N -action on top degree homology. It follows
from [Hanlon 1996, Theorem 1.1; Hanlon and Wachs 1995, Theorems 3.11 and
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4.13] that H̃n−3(T (k)
n ) is isomorphic as an 6N -module to H̃n−3(5

(k)
N ), where 5

(k)
N

is the subposet of 5N consisting of all partitions with block sizes congruent 1
modulo k. The poset 5

(k)
N had been studied before on its own right: it was shown

to be Cohen–Macaulay in [Björner 1980], its homology and 6N -representation
theory was studied by Calderbank, Hanlon and Robinson [Calderbank et al. 1986].

In fact, both 6N -modules H̃n−3(T (k)
n ) and H̃n−3(5

(k)
N ) are isomorphic to the 1N

homogeneous piece of the free Lie k-algebra constructed in [Hanlon and Wachs
1995].

This certainly provides enough evidence to look for a topological explanation
of the isomorphism of 6N -modules:

Question 5.2. Is the complex of k-trees T (k)
n related to the order complex of

5
(k)
(n−1)k+1 in the same way as Tn is related to the order complex of 5n , i.e., is T (k)

n

homeomorphic to 1(5
(k)
(n−1)k+1)? More than that, can 1(5

(k)
(n−1)k+1) be obtained

from T (k)
n by a sequence of stellar subdivisions?

An approach to this question along the lines of Section 3 does not work right
away: The poset 5

(k)
(n−1)k+1 is not a lattice, and a concept of nested sets for more

general posets is not (yet) at hand.

The generalization of Tn to complexes of k-trees T (k)
n thus turns out to be some-

what unnatural from the point of view of nested set constructions. We propose
another generalization which is motivated by starting with a natural generalization
of the partition lattice that remains within the class of lattices.

Definition 5.3. For n > k ≥ 2, the k-equal lattice 5n,k is the sublattice of the par-
tition lattice 5n that is join-generated by partitions with a single nontrivial block
of size k.

Observe that we retrieve 5n for k=2. There is an extensive study of the k-equal
lattice in the literature, mostly motivated by the fact that 5n,k is the intersection
lattice of a natural subspace arrangement, the k-equal arrangement. Its homology
has been calculated in [Björner and Welker 1995], it was shown to be shellable in
[Björner and Wachs 1996], and its 6n-representation theory has been studied in
[Sundaram and Wachs 1997].

The irreducibles I in 5n,k are partitions with exactly one nontrivial block, this
time of size at least k. Sets of irreducibles are nested if and only if for any two
elements the nontrivial blocks are either contained in one another or disjoint.

Constructing trees from nested sets, analogous to the construction of Tn from
N(5n, I) in the proof of Theorem 3.1, suggests the following definition:

Definition 5.4. The complex of k-equal trees Tn,k is a simplicial complex with
maximal simplices given by combinatorial types of rooted trees T on n labeled
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leaves which are binary except at preleaves, where they are k-ary. Here, preleaves
of T are leaves of the tree that is obtained from T by removing the leaves. Lower-
dimensional simplices are obtained by contracting internal edges.

We depict the tree types occurring as maximal simplices of T7,3 in Figure 5.
Observe that one is a 3-dimensional simplex in T7,3, whereas the two others are
2-dimensional. The definition of Tn,k does not appeal as natural, however, it is a
trade off for the following Proposition and Corollary which are obtained literally
for free, having the arguments of Section 3 at hand.

5

6

7

4 5

7

7

4 5 6

3
4

1 2 3

1 2 3 6

1 2

Figure 5. Maximal simplices in T7,3

Proposition 5.5. The complex of k-equal trees, Tn,k , and the minimal nested set
complex of the k-equal lattice, N(5n,k, I), coincide as abstract simplicial com-
plexes. In particular, the order complex 1(5n,k) can be obtained from Tn,k by a
sequence of stellar subdivisions.

Proof. There is a bijection between trees in Tn,k and nested sets in N(5n,k, I)

analogous to the bijection between Tn and N(5n, I) that we described in the proof
of Theorem 3.1. Referring again to [Feichtner and Müller 2005, Theorem 4.2], the
complexes are connected by a sequence of stellar subdivisions. �

Corollary 5.6. The graded homology groups of the complex of k-equal trees and
of the k-equal lattice are isomorphic as 6n-modules:

H̃∗(Tn,k) ∼=6n H̃∗(5n,k)

Note added in proof

Question 5.2 has been answered affirmatively by Delucchi [2005].
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