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We characterize the inversion invariant additive subgroups of any field, and,
more generally, those of a division ring (apart from division rings of char-
acteristic 2). We also show how a classical identity of Hua provides a bridge
between this problem and Jordan algebras.

Answering a question of Dan Mauldin, we characterize in this note the inversion
invariant additive subgroups of a field. We show in Section 2 that aside from the
case of imperfect fields of characteristic 2, a nonzero subgroup that is inversion
invariant is either a subfield or the set of trace-zero elements in a subfield with
respect to an automorphism of order 2. A key ingredient in the proof is a simple,
classical identity of Hua, through which we can bring to bear known results about
Jordan algebras and Jordan triple systems. We also solve in Section 1 the same
problem for division rings of characteristic not 2.

1. Division rings

We characterize pairs T C D, where D is a division ring of characteristic #2; T is
an additive of subgroup of D; for an arbitrary nonzero element of ¢ € T the inverse
t~! again lies in T, and T generates D as a ring.

Example 1. T = D.

Example 2. Let 0 : D — D be an involution of a division ring D (an additive
map such that o (o (a)) = a and o (ab) = o (b)o (a) for arbitrary elements a, b in
D). Then T = H(D, o) ={a € D | o(a) = a} is inversion invariant. The additive
subgroup H (D, o) generates D unless D is a quaternion algebra over its center
and o is a quaternionic involution; see [Herstein 1976].
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Example 3. The additive group of skew symmetric elements
S(D,0)={a€ D|o(a)=—a}
is also inversion invariant. It generates D unless D is a field and o = Id.

Example 4. Let o, T be two commuting involutions of a division ring D, and set
T =H(D,o)NS(D, t). The subgroup T is inversion invariant.

Example 5. Let g be an automorphism of a division ring D of order 2. Then
T =S8(D, g)=1{a e D|g(a) =—a} is inversion invariant and generates D.

Finally, we will describe somewhat special pairs which we will refer to as Clif-
ford pairs.

Let V be a vector space over a field F with a quadratic form g : V — F such
that the Clifford algebra C = C(V, q) is a division ring. Let J = F-14+V C C
and let 0 # x € C be an element such that xJx = J. Then

) T=xJCC

is inversion invariant and generates C.

Now suppose that the space V is finite dimensional over F and dimg V =n is
even. Choose an orthogonal basis vy, ..., v, of V. Let 0 # x € C be an element
such that x(J + Fvy---v,)x =J 4+ Fv; ---v,. Then

(i1) T=x(J+Fvy---v,)CC

is inversion invariant.

Let (T )evens (T )oda be the additive subgroups of C generated by products of
elements of 7" of even and odd lengths, respectively.

In the pairs of types (i) and (ii)

<T>even = (T)odd-

This does not always have to be the case. Let D be a Z/27-graded division ring,
D = Dy + Dy, whose even part Dy is isomorphic to the Clifford algebra C of a
quadratic form g : V — F. Suppose x € D satisfies xJx = J. Then

(iii) T=xJCD CD

is inversion invariant and generates D.
If dimp V =niseven, let vy, ..., v, be an orthogonal basis of V. If 0 = x € D,
satisfies x(J + Fvy---v,)x =J + Fuvy - - - vy, then

@iv) T=x(J+Fvy---vy)CDyCD
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is inversion invariant and generates D. In the pairs of types (iii) and (iv)
<T>even N <T>0dd =0.

Theorem 1.1. If T is an inversion invariant additive subgroup of a division ring
D, the characteristic of D is not 2, and T generates D, then T C D is a pair of
one of the types described in Examples 1-5 or of one of the Clifford types (1)—(iv).

The key observation is an elementary identity of L. K. Hua [Jacobson 1980,
Exercise 9, page 92].

Lemma 1.2 (Hua’s Identity). Let R be a ring with elements a, b € R such that a, b
and ab — 1 are invertible. Then

((a —pHt— a_l)_] =aba —a.

Corollary 1.3. If T is an inversion invariant additive subgroup of a division ring
D then for arbitrary elements a, b € T we have aba € T.

We will need a few definitions from the theory of Jordan systems.
A (not necessarily associative) ring J is called a Jordan ring if it satisfies

Jan Xy = yx,
J2) (x*y)x = x*(yx),
for all x and y in J.

Example 6. If R is an associative ring then the additive group of R with the new
multiplication x - y = xy 4 yx is a Jordan ring which is denoted R,

Example 7. If 6 : R — R is an involution, then H(R,0) ={a € R | o(a) = a} is
a Jordan subring of R™.

Example 8. Let V be a vector space over a field F, g : V — F a quadratic form,
and let C = C(V, g) be the Clifford algebra. The space J/ = F -1+ V is a Jordan
subalgebra of C*), which is called the Jordan algebra of the quadratic form g.

A Jordan ring J is said to be special if it is embeddable into R, where R is
an associative ring. If R is generated by J then R is an associative enveloping ring
of R.

Clearly, Examples 6, 7, and 8 are special. A Jordan ring that is not special is
called exceptional.

Theorem 1.4. A simple Jordan ring of characteristic # 2 is either isomorphic to
R, where R is a simple associative ring, or to H(R, o), where R is a simple
associative ring with an involution o, or to a Jordan algebra of a nondegenerate
quadratic form or is an exceptional 27-dimensional algebra over its center (called
an Albert algebra).
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Simple (quadratic) Jordan algebras of characteristic 2 were classified in [Mc-
Crimmon and Zelmanov 1988].

Let T be an additive group equipped with group endomorphisms P (x) for each x
in 7. We assume that the map from x to P(x) is quadratic; thatis, P(nx) = n?P(x)
and the map P (x| 4+ x3) — P(x1) — P(xy) is bilinear in x; and x;.

In other words, the product P(x)y is quadratic in x and linear in y. We write

{x,y,z2}=Px+2)y—Px)y—P(2)y.

We say that T is a Jordan triple system if it satisfies the identities

JT1) {z, P(x)y, y} ={z, x, P(y)x},
JT2) P(P(x)y)z= P(x)P(y)P(x)z,
(JT3) {P(xX)z,y,x} = P(x){z, x, y}

and all their linearizations (i.e., identities of lower degree coming from bilinearity:
these are superfluous if we are working over a field F of at least four elements).

Example 9. If R is an associative ring then the additive group of R with a product
P(x)y = xyx is a Jordan triple system which we will also denote by R).

Any Jordan triple system 7 gives rise to a family of Jordan rings 7@, the a-
homotopes, by fixing the middle element: x - y = {x, a, y}.

A Jordan triple system T is called special if it is embeddable into R, where
R is an associative ring, T € R™). If the ring R is generated by T then we say R
is an associative enveloping algebra of T. An associative enveloping algebra R of
T is said to be tight if T NI # (0) for any nonzero ideal I of R.

Let G be the ideal of the free Jordan triple system constructed in [Zelmanov
1984]. The identities from G distinguish triples of Clifford type assuming that the
characteristic # 2, 3. Similar ideals for characteristics 2 and 3 were constructed
in [D’Amour and McCrimmon 2000].

Proposition 1.5 [Zelmanov 1984]. Let T be a simple special Jordan triple sys-
tem such that G(T) # (0). Then T is isomorphic to one of the triples R™;
H(R,o0)={aeR|o(a)=a}; S(R,o0)={aeR|o(a)=—a}; H(R,o)NS(R, 7);
S(R, g), where R is a simple associative ring; o, T are involutions, 6T = 10 g is
an automorphism of order 2.

Moreover, the ring R is in some sense unique.

Proposition 1.6 [Zelmanov 1984]. Let Ty, T, be simple Jordan triple systems, such
that G(T;) # (0). Let T; C R; be their tight associative enveloping algebras. Then
any isomorphism Ty — T, can be extended to an isomorphism or anti-isomorphism
Rl — Rz.
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Proposition 1.7 [Zelmanov 1984]. Let T be a simple special Jordan triple system
such that G(T) = (0). Then T is isomorphic to a mutation or a polarization of
a Jordan triple system of a quadratic form. In particular, an arbitrary homotope
T'D is the Jordan algebra of a quadratic form.

Proof of Theorem 1.1. Let T € D be an inversion invariant additive subgroup that
generates D. By the corollary to Hua’s identity, T is a Jordan subtriple of D™ and
D is a tight associative enveloping algebra of 7. If G(T') # (0), Propositions 1.5
and 1.6 imply that 7 € D is one of the types in Examples 1-5.

Suppose now that G(T') = (0). Choose an arbitrary nonzero element x € T.
Then J = x~'T is a unital Jordan subalgebra of D™ Indeed if a, b, € T then
Gl D)+ DY a)=x " Nax T b+bxla)ex ' T = . By Proposition
1.7, J is isomorphic to the Jordan algebra of a symmetric nondegenerate bilinear
form, J = F -1+ V, where F is a subfield of D, V is an F-space; vw + wv =
qg(v,w)l;v,w,eVand q(v,w) € F.

Case 1. J generates D and the dimension dimp V is either infinite or even. In this
case the only associative enveloping algebra of J is the Clifford algebra C(V, q)
(see [Jacobson 1968]). Hence D=C(V, g), T =xJ and T C D is a pair of type ().

Case 2. J generates D and the dimension dimg V is odd. Choose an orthogonal
basis vy, ..., vy41 of V. Then the element z = vy - - - v, lies in the center of the
Clifford algebra C(V, q), where z2 =4¢(v1) - - - ¢ (v,+1) depending on whether or
not n is divisible by 4. If z? is not the square of an element of F then C(V, q) is
simple. In this case, D = C(V,g) and T C D is again a pair of type (i).

Suppose now that 2=0% acF. Thenz=« or —« in D and Upt1 € Fop--- v,
Let V=37, Fv;. Wehave D=C(V',q),J =F -1+ V' + Fv;---v,, and
T =xJ C D is a pair of type (ii).

Case 3. The subring (J) of D generated by J is not equal to D and the dimension
dimg V is infinite or even. Then D = Dy + Dy, where Dy = (J), Dy =x(J) is a
Z/2Z-grading. As above, Dy = C(V, ¢) and the pair T < D is of type (iii).
Case 4. (J) # D and dimp V is odd. Choose an orthogonal basis vy, ..., v,41 of
V.SetV'=3"_|Fv;and z = v - vpy. If z? is not equal to the square of an
element of F then (J) =C(V,q) and T C D is of type (i).

Otherwise, v,y1 € Fvy---vy liesin Dand T =x(F -1+ V' + Fvy---v,) C
D C D is a pair of type (iv). This finishes the proof of the proposition. g

2. Fields

In this section, we classify the inversion invariant additive subgroups of fields. Of
course this result is included in the main theorem from the previous section as long
as the characteristic is not 2. We include the proof for all characteristics.
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Let K be a field. Write k for the prime subfield of K. Let V be an inversion
invariant additive subgroup of K. Since V C k(V), there is no harm in assuming
that K = k(V). If the characteristic p of the field L is positive, write

L ={x?|x €L}

for the subfield consisting of p-th powers of elements of L.
Our main result for the commutative case is:

Theorem 2.1 (Commutative Theorem). Let K be a field of characteristic p > 0.
Let V be a nonzero subset of K that is a subgroup under addition. Let k be the
prime field of K and assume that K = k(V). Then V is closed under inversion if
and only if one of the following holds:

(1) p # 2 and either V. = K or there is an automorphism o of K of order 2 such
thatV={xe K |o(x)=—x};

(2) p=2andV is a K*-module.

It is straightforward to verify that the possibilities mentioned in the theorem
are inversion invariant. In particular, if K has characteristic 2, then (aK -1 =
a'K?*=a(a"2K?) =aK? and so any K 2_submodule of K is inversion invariant.

Corollary 2.2. Let K be a field of characteristic p > 0. Assume that 1 € V and
that either p # 2 or that the field generated by V is perfect (in particular, if K
is contained in the algebraic closure of the field of size 2). Then V is inversion
invariant if and only if V is a subfield of K.

The remainder of this section is devoted to the proof of Theorem 2.1.

Lemma 2.3. Let K be a field and V an additive subgroup of K closed under
inversion. Let0 #a € V. Then a’ € V and a®>V = V.

Proof. We saw in the corollary to Hua’s identity that if a, b in V, then aba € V.
Taking b = a, we conclude that a® € V. We also have >V C V. We get equality
by multiplying by a . O

Let K be afield and V a nonzero additive subgroup of K closed under inversion.
Let V; be the set of all products xy with x, y € V.
We have the following lemma.

Lemma 2.4. Assume that p #?2. Let 0 #a € V. Then
() a=Va; (2 Vaa=V;  (3) Va*=V.

Proof. We have already seen that a’V C V. Thus, 2ab = (a + b)> — a*> — b?
also sends V back to itself for any a,b € V. Since the characteristic of K is
not 2, the identity v/2 = 1/(1/v 4+ 1/v) for nonzero v shows that (1/2)V C V.
Hence abV C 2abV C V. If a # 0, then using a~! instead of a gives Vb C Va.
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Hence V, C Va since b was arbitrary in V. The reverse inclusion follows from the
definition of V;. This proves (1).
Taking a~! for a gives (2), and (3) follows from (1) and (2). O

We now complete the proof in characteristic not 2.

Theorem 2.5. Let K be a field of characteristic not 2 with V a nontrivial additive
subgroup of K closed under inversion. Then

(1) Vyisafield.
(2) The ring R generated by V (over Z) is a field.
(3) Either R=V =V o0r[R: V] =2

Proof. We have V, = Va for any nonzero a € V. Fix such an a. Thus, V,V, =
VaVa =VVa?> =VV = V,. Hence V> is a subgroup under addition and closed
under multiplication. Since it also closed under inverses, it follows that V, is a
field. This proves (1).

Let R = Z[V] be the ring generated by V. Since V,V =V and VV = V,, we
see that R = V 4 V,. Thus, R is a field (since it is algebraic over the field V; and
is contained in the field K). This proves (2).

We have already seen that R = V + V, and that V and V, are each one-
dimensional modules over the field V,. So either the sum is direct and [R : V>] =2,
orR=V =1V, [l

This gives the main result for fields of characteristic not 2— for either V itself is
a field or the ring R generated by V isafield and [R: V2] =2. We seethat V =aV,
with a®> € V,, whence V is the —1 eigenspace of a nontrivial automorphism of
R/ V5.

It remains to prove Theorem 2.1 in the case that the field K has characteristic 2.

We have a?b € V whenever a, b in V. It follows that V is a k[V?] module. Set
J=k[V?].SoJa ' CVif0 # a € V. Therefore J~'a C V since V is inversion
invariant.

This shows that V is in fact a module over k(V?) = K? and completes the proof
of Theorem 2.1. Also note that since V is a K*>-module, the same is true for the
ring R generated by V, whence this ring is a field.

Remark 2.6. From the arguments above, it follows that if 7' is a nonzero additive
subgroup of a division ring D that is closed under inversion and either the charac-
teristic is not 2 or D is a field, then the ring generated by T (over Z) is a division
ring.
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