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A GENERALIZATION OF RANDOM MATRIX ENSEMBLE
I. GENERAL THEORY

JINPENG AN, ZHENGDONG WANG AND KUIHUA YAN

We give a generalization of random matrix ensembles, which includes all
classical ensembles. We derive the joint-density function of the generalized
ensemble by one simple formula, giving a direct and unified way to compute
the density functions for all classical ensembles and various kinds of new en-
sembles. An integration formula associated with the generalized ensembles
is given. We propose a taxonomy of generalized ensembles encompassing
all classical ensembles and some new ones not considered before.

1. Introduction

One of the most fundamental problems in the theory of random matrices is to
derive the joint-density functions for the eigenvalues (or, equivalently, the measures
associated with the eigenvalue distributions) of various types of matrix ensembles.
Mehta [1991] summarized the classical analysis methods by which the density
functions for various types of ensembles were derived case by case; but a systematic
method to compute the density functions was desired.

The first achievement in this direction was made by Dyson [1970], who in-
troduced an idea of expressing various kinds of circular ensembles in terms of
symmetric spaces with invariant probability measures. From then on, guided by
Dyson’s idea, many authors observed new random matrix ensembles in terms of
Cartan’s classification of Riemannian symmetric spaces, and obtained the joint-
density functions for such ensembles by using the integration formula on symmet-
ric space (see, for example, [Altland and Zirnbauer 1997; Caselle 1994; Caselle
1996; Dueñez 2004; Ivanov 2001; Titov et al. 2001; Zirnbauer 1996]).

We briefly mention the recent work of Dueñez [2004]. He explored the random
matrix ensembles that correspond to infinite families of compact irreducible Rie-
mannian symmetric spaces of type I, including circular orthogonal and symplectic
ensembles, and various kinds of Jacobi ensembles. Using an integration formula

MSC2000: primary 15A52; secondary 58C35, 57S25.
Keywords: random matrix ensemble, Lie group, integration formula.
This work is supported by the 973 Project Foundation of China (#TG1999075102).
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2 JINPENG AN, ZHENGDONG WANG AND KUIHUA YAN

associated with the KAK decomposition of compact groups, he obtained the in-
duced measure on the space of eigenvalues associated to the underlying symmetric
space, and then derived the eigenvalue distribution of the corresponding random
matrix ensemble. These methods of deriving the eigenvalue distributions of random
matrix ensembles by means of Riemannian symmetric spaces were summarized in
the excellent article [Caselle and Magnea 2004].

In this paper we provide a generalization of random matrix ensembles, which
includes all classical ensembles, and then give a unified way to derive — with one
simple formula — the joint-density function for the eigenvalue distribution. The
proof of this formula makes no use of an integration formula. In fact, the corre-
sponding integration formula can be derived from this formula as a corollary. We
also show how these generalized ensembles encompass all classical ensembles and
some new ensembles that were not considered before.

Let σ : G × X → X be a smooth action of a Lie group G on a Riemannian
manifold X that preserves the induced Riemannian measure dx . Let p(x) be a G-
invariant smooth function on X , and consider the measure p(x) dx on X , which is
not necessarily a finite measure. We choose a closed submanifold Y of X consisting
of representation points for almost all G-orbits in X . The Riemannian structure on
X induces a Riemannian measure dy on Y . If K is the closed subgroup of G that
fixes all points in Y , then σ reduces to a map ϕ : G/K × Y → X . Suppose there
is a G-invariant measure dµ on G/K and that dim(G/K × Y ) = dim X ; it can
then be proved that the pull-back measure ϕ∗(p(x) dx) of p(x) dx is of the form
ϕ∗(p(x) dx) = dµ dν for some measure dν on Y , the latter being the measure
associated with the eigenvalue distribution. The measure dν can be expressed
as dν(y) = P(y) dy for some function P(y) on Y , this being the joint-density
function. If we write P(y) as P(y) = p(y) J (y), then, under some orthogonality
condition (that is, TyY ⊥ Ty Oy for almost all y ∈ Y ), we can compute the factor
J (y) by

(1–1) J (y)= C
∣∣det9y

∣∣,
where C is a constant that can be computed explicitly. This formula is the main
result of this paper, and the density function P(y) and the eigenvalue distribution
dν are determined by it. Here, the map 9y : l → Ty Oy is defined as

9y(ξ)=
d
dt

∣∣∣
t=0

σexp tξ (y),

where l is a linear subspace of the Lie algebra g of G such that g= k⊕l, with k being
the Lie algebra of K . We call the system (G, σ, X, p(x) dx, Y, dy) a generalized
random matrix ensemble. The measure dν on Y is called a generalized eigenvalue
distribution and the function P(y) is a generalized joint density function.
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Using (1–1), one can derive the joint-density function for the Gaussian ensem-
ble, chiral ensemble, new transfer matrix ensemble, circular ensemble, Jacobi en-
semble, as well as some other new generalized ensembles. The precise deriving
process will be the content of a sequel paper [An et al. 2005]. We should point out
that the proof of formula (1–1) is not difficult, but this formula is very effective
and useful; the derivation of all concrete examples in [An et al. 2005], including
all classical random matrix ensembles, will be based on it.

Once the eigenvalue distribution dν is derived from formula (1–1), under a cov-
ering condition we can get the associated integration formula. The Weyl integration
formula for compact Lie groups, the Harish-Chandra integration formula for com-
plex semisimple Lie groups and real reductive groups, the integration formulae on
Riemannian symmetric spaces of noncompact and compact types that appeared in
[Helgason 2000], as well as their Lie algebra versions, are all particular cases of it
(see [An et al. 2005]).

We sketch the contents of this paper. In Section 2 we develop some geometrical
preliminaries on the geometry of G-space, which will be required to establish the
generalized ensembles. After presenting four conditions — that is, the invariance
condition, the transversality condition, the dimension condition, and the orthogo-
nality condition — on which the definition of generalized ensembles will be based,
we prove in Theorem 2.5 a primary form of formula (1–1).

Section 3 is devoted to integration over G-spaces, which will be needed when
we derive the integration formula associated with a generalized random matrix
ensemble. Based on the four conditions from Section 2 and a covering condition,
we prove an integration formula in Theorem 3.3, converting the integration over a
G-space to, first, integrating over each G-orbit, and then integrating over the orbit
space. Two criteria on when the covering condition holds are also given.

Prepared by Section 2 and Section 3, in Section 4 we give the precise definition
of a generalized random matrix ensemble, as well as of the associated generalized
eigenvalue distribution and generalized joint-density function. In Theorem 4.1 is
presented formula (1–1), from which the associated eigenvalue distribution mea-
sure and density function will be derived in [An et al. 2005] for various concrete
examples of the generalized ensemble, in a unified way.

In Section 5 we discuss a number of classes of generalized ensembles: the linear
ensemble, the nonlinear noncompact ensemble, the compact ensemble, the group
and algebra ensembles, as well as the pseudogroup and pseudoalgebra ensembles.
Gaussian and chiral ensembles are included under linear ensembles; new transfer
matrix ensembles are included under nonlinear noncompact ensembles; circular
and Jacobi ensembles are included under compact ensembles. Some new ensem-
bles not considered before are also mentioned.
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2. Geometry of G-spaces

We develop some geometrical preliminaries needed for our theory of generalized
random matrix ensembles.

We start with measures on manifolds. Let M be an n-dimensional smooth man-
ifold. A measure dx on M is called smooth (or quasi-smooth) if on any local
coordinate chart (U ; x1, . . . , xn) of M , dx has the form dx = f (x) dx1 . . . dxn ,
where f is a smooth function on U with f > 0 (or f ≥ 0), and dx1 . . . dxn is the
Lebesgue measure on Rn . Note that the smooth measures on M are unique up to
multiplication with a positive smooth function on M , so the concept of a set of
measure zero makes sense independently of the choice of smooth measure.

Let M, N be two n-dimensional smooth manifolds, and let ϕ : M → N be a
smooth map. If dy is a smooth (or quasi-smooth) measure on N , expressed locally
as dy = f (y) dy1 . . . dyn , we can define its pull-back ϕ∗(dy) locally as

(2–1) ϕ∗(dy)= f (ϕ(x))
∣∣∣det

(
∂y
∂x

)∣∣∣ dx1 . . . dxn.

It is easy to check that the local definitions are compatible when different coordi-
nate charts are chosen, and that ϕ∗(dy) is a quasi-smooth measure on M . Even if
dy is smooth, we cannot expect ϕ∗(dy) to be smooth in general, since ϕ may have
critical points; but if ϕ is a local diffeomorphism and dy is smooth, then ϕ∗(dy) is
smooth.

If M, N are Riemannian manifolds and dx, dy are the associated Riemannian
measures, then we can express the pull-back measure ϕ∗(dy) globally. To do this,
first we need some comments on the “determinant” of a linear map between two
different inner-product vector spaces of the same dimension. Suppose V,W are
two n-dimensional vector spaces with inner products. For n vectors v1, . . . , vn ∈ V ,
set ai j = 〈vi , vj 〉 for 1 ≤ i, j ≤ n, and define

Vol(v1, . . . , vn)=
√

det(ai j ).

Note that if v1, . . . , vn is an orthogonal basis, then Vol(v1, . . . , vn)= |v1| . . . |vn|.
For vectors in W , define the same things. Supposing A : V → W is a linear map,
define

(2–2) |det A| =
Vol(Av1, . . . , Avn)

Vol(v1, . . . , vn)
,

where v1, . . . , vn is a basis of V . It is easy to check that the definition is indepen-
dent of the choice of the basis v1, . . . , vn . In the special case when v1, . . . , vn is
an orthogonal basis of V and Av1, . . . , Avn are mutually orthogonal, we have

(2–3) | det A| =
|Av1| . . . |Avn|

|v1| . . . |vn|
.
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We can expect only the norm | det A| of the determinant to be well defined, since
the sign ± depends on a choice of orientations for V and W .

Proposition 2.1. Suppose M, N are two n-dimensional Riemannian manifolds
with associated Riemannian measures dx, dy, respectively. If ϕ : M → N is a
smooth map, then

(2–4) ϕ∗(dy)=
∣∣det(dϕ)x

∣∣ dx .

Proof. Suppose that in local-coordinate charts the Riemannian metrics on M and
N are ds2

=
∑

i j gi j (x) dxi dxj and ds̃2
=

∑
i j g̃i j (y) dyi dyj , respectively, with

gi j (x)= 〈∂/∂xi , ∂/∂xj 〉 and g̃i j (y)= 〈∂/∂yi , ∂/∂yj 〉. By definition, the Riemann-
ian measures dx, dy are

dx =
√

det(gi j (x)) dx1 . . . dxn and dy =

√
det(g̃i j (y)) dy1 . . . dyn.

We have:

| det(dϕ)x |2 =

Vol
(
(dϕ)x

(
∂

∂x1

)
, . . . , (dϕ)x

(
∂

∂xn

))2

Vol
(
∂

∂x1
, . . . ,

∂

∂xn

)2

=

det
〈∑

k

∂yk
∂xi

(
∂

∂yk

)
ϕ(x)

,
∑

l

∂yl
∂xj

(
∂

∂yl

)
ϕ(x)

〉
det

〈
∂

∂xi
,
∂

∂xj

〉

=

det
(∑

kl

∂yk
∂xi

∂yl
∂xj

g̃kl
(
ϕ(x)

))
det(gi j (x))

=

det
((
∂yk
∂xi

)t(
g̃kl(ϕ(x))

)( ∂yl
∂xj

))
det(gi j (x))

=

det2
(
∂y
∂x

)
det

(
g̃i j (ϕ(x))

)
det(gi j (x))

.

Hence,

ϕ∗(dy)=

√
det

(
g̃i j (ϕ(x))

) ∣∣∣det
(
∂y
∂x

)∣∣∣ dx1 . . . dxn

=
∣∣det(dϕ)x

∣∣ √det(gi j (x)) dx1 . . . dxn =
∣∣det(dϕ)x

∣∣ dx . �

We now come to the main geometric problems that will concern us in the follow-
ing sections. Let G be a Lie group that acts on an n-dimensional smooth manifold
X . The action is denoted by σ : G × X → X and we write σg(x) = σ(g, x). Our
first goal is, roughly speaking, to choose a representation point in each G-orbit
Ox = {σg(x) | g ∈ G}, depending smoothly on the orbit. In general, this aim can
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be only partially achieved. Hence, suppose we have a closed submanifold Y of
X , consisting of chosen representation points of the orbits, such that Y intersects
“almost all” orbits transversally. More precisely, supposing there are closed zero-
measure subsets Xz ⊂ X and Yz ⊂ Y , set X ′

= X \ Xz and Y ′
= Y \Yz, and assume

that

(a) X ′
=

⋃
y∈Y ′ Oy (invariance condition).

(b) Ty X = Ty Oy ⊕ TyY for all y ∈ Y ′ (transversality condition).

It is clear that (a) implies that Y ′
= Y ∩ X ′ and Yz = Y ∩ Xz. Notice that X ′ and Y ′

are open and dense submanifolds of X and Y , respectively. So, for all y ∈ Y ′, we
have Ty X ′

= Ty X and TyY ′
= TyY .

Set K =
{
g ∈ G

∣∣ σg(y) = y, for all y ∈ Y
}
; it is a closed subgroup of G. For

g ∈ G, write [g] = gK in G/K . The map σ : G × X → X reduces to a map

ϕ : G/K × Y → X with ϕ
(
[g], y

)
= σg(y).

By restriction, the latter induces a map G/K ×Y ′
→ X ′, also denoted by ϕ. From

assumption (a), ϕ : G/K × Y ′
→ X ′ is surjective. For x ∈ X , let Gx = {g ∈ G |

σg(x)= x} be the isotropy subgroup of x . Then K ⊂ G y for all y ∈ Y . Let dx, dy
be smooth measures on X and Y , respectively. Suppose that dx is G-invariant. In
what follows we also assume that

(c) dim G y = dim K for all y ∈ Y ′ (dimension condition).

This means that G y and K have the same Lie algebra for all y ∈ Y ′, and that the
only difference between G y and K is that G y may have more components than K .
Then, for some y ∈ Y ′, we have

dim X = dim Ty X = dim TyY + dim Ty Oy

= dim Y + dim G − dim G y = dim Y + dim G − dim K .

So ϕ is a map between manifolds of the same dimension, and thus the pull-back
ϕ∗(dx) of dx makes sense. If there is a G-invariant smooth measure dµ on G/K ,
then the product measure dµ dy on G/K × Y is smooth, and so

(2–5) ϕ∗(dx)= J
(
[g], y

)
dµ dy

for some J ∈ C∞(G/K × Y ) with J ≥ 0.

Remark. The G-invariant smooth measure dµ on G/K exists if and only if
1G |K = 1K , where 1G and 1K are the modular functions on G and K , respec-
tively; see, for example, [Knapp 2002, Section 8.3]. For the concrete examples in
the following sections, this condition always holds.
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Proposition 2.2. The smooth function J ∈ C∞(G/K × Y ) is independent of the
first variable [g] ∈ G/K . So we can rewrite (2–5) as

(2–6) ϕ∗(dx)= J (y) dµ dy,

where J ∈ C∞(Y ) with J ≥ 0.

Proof. If we denote by lh the natural action of h ∈ G on G/K , then one can easily
verify that σh ◦ϕ = ϕ ◦ (lh × id). By the G-invariance of dx and dµ, we have

J
(
[g], y

)
dµ dy = ϕ∗(dx) = ϕ∗

◦ σ ∗

h (dx) = (lh × id)∗ ◦ϕ∗(dx)

= (lh × id)∗
(
J
(
[g], y

)
dµ dy

)
= J

(
h[g], y

)(
l∗h(dµ)× id∗(dy)

)
= J

(
[hg], y

)
dµ dy.

So J
(
[g], y

)
= J

(
[hg], y

)
for all g, h ∈ G, which means that J is independent of

the first variable. �

Corollary 2.3. There exists a quasi-smooth measure dν on Y such that

(2–7) ϕ∗(dx)= dµ dν.

The measure dν is given by

(2–8) dν(y)= J (y) dy.

The factor J (y) can also be given for more general smooth measures u(x) dx
and v(y) dy on X and Y . A direct calculation yields:

Proposition 2.4. Suppose conditions (a), (b), and (c) hold. If we replace the
measures with

dx ′
= u(x) dx, dy′

= v(y) dy, and dµ′
= λ dµ,

where u, v are positive smooth functions on X, Y , respectively, and if u is G-invar-
iant and λ is a positive constant, then J (y) changes to

J ′(y)=
u(y)
λv(y)

J (y).

Now we suppose that there is a Riemannian structure on X such that dx and dy
are the induced Riemannian measures on X and Y , respectively. We also assume
that the following condition holds:

(d) TyY ⊥ Ty Oy for all y ∈ Y ′ (orthogonality condition).

In this case, the next theorem computes the factor J (y) in a simple way.
Let l be a linear subspace of the Lie algebra g of G such that g = k⊕ l, where k

is the Lie algebra of K . If π : G → G/K is the natural projection, then

(dπ)e|l : l → T[e](G/K )
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is an isomorphism. If we endow G/K with a Riemannian structure such that its
associated Riemannian measure is dµ, then it also induces an inner product on
T[e](G/K ). For y ∈ Y , we define a linear map 9y : l → Ty Oy by

(2–9) 9y(ξ)=
d
dt

∣∣∣
t=0
σexp tξ (y) for all ξ ∈ l.

If y ∈ Y ′, then dim l = dim Ty Oy . We choose an inner product on l and endow
Ty Oy with the inner product induced from the Riemannian structure on X . The
“determinants” | det9y| and

∣∣det
(
(dπ)e|l

)∣∣ now make sense.

Theorem 2.5. Under these assumptions, we have

(2–10) J (y)= C
∣∣det9y

∣∣ for all y ∈ Y ′,

where C is the constant C =
∣∣det

(
(dπ)e|l

)∣∣−1.

Proof. By the transversality condition (b), the tangent map of ϕ at the point ([e], y),

(dϕ)([e],y) : T([e],y)(G/K × Y )→ Ty X,

can be regarded as

(dϕ)([e],y) : T
[e](G/K )⊕ TyY → Ty Oy ⊕ TyY.

Denote (dϕ)([e],y)|T[e](G/K ) : T[e](G/K ) → Ty Oy by 9̃y . It is then obvious that
9y = 9̃y ◦ (dπ)e|l , as one can easily prove it in its matrix form

(dϕ)([e],y) =
(
9̃y 0
0 id

)
.

Since dµ is the associated Riemannian measure on G/K , the product measure
dµ dy is the associated Riemannian measure on the product Riemannian manifold
G/K × Y ′. By Proposition 2.1 and the orthogonality condition (d),

J (y)=
∣∣det(dϕ)([e],y)

∣∣ =

∣∣∣(9̃y 0
0 id

)∣∣∣
=

∣∣det 9̃y
∣∣ =

∣∣det
(
9y ◦ ((dπ)e|l)−1)∣∣ = C

∣∣det9y
∣∣,

where C =
∣∣det

(
(dπ)e|l

)∣∣−1. �

Remark. Although formula (2–10) only holds on Y ′, since Y ′ is dense in Y and
J ∈ C∞(Y ), we can get J (y) for all y ∈ Y by smooth continuation.
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3. Integration over G-spaces

Occasionally we will be interested in some kinds of integration formulae. In this
section we give some preliminaries on integration. The reader who is more inter-
ested in the eigenvalue distributions of the generalized random matrix ensembles
may skip to Section 4 directly.

The next proposition generalizes the change-of-variables formula for multiple
integration.

Proposition 3.1. Let ϕ : M → N be a smooth map between two n-dimensional
smooth manifolds M and N , and dy a smooth measure on N. If ϕ is a local
diffeomorphism that is a d-sheeted covering map, then, for any f ∈ C∞(N ) with
f ≥ 0 or f ∈ L1(N , dy), we have

(3–1)
∫

N
f (y) dy =

1
d

∫
M

f (ϕ(x)) ϕ∗(dy).

Proof. It is a standard argument using a partition of unity. �

Remark. Formula (3–1) resembles a formula relating the degree of a map with the
integration of volume forms on manifolds. When M, N are compact and oriented,
then, under the conditions of Proposition 3.1 and up to a sign, formula (3–1) says
nothing if not this. In general, however, the integration of differential forms is not
suitable for us. What we need is a change-of-variables formula that ignores the
negative sign.

As in the previous section, take a G-space X , where X is an n-dimensional
smooth manifold and G is a Lie group. We then have a reduced map ϕ :G/K ×Y →

X . Suppose dx, dy, and dµ are smooth measures on X, Y , and G/K , respectively,
with dx and dµ being G-invariant. Our goal is to convert the integration over X
to integration over Y .

Proposition 3.2. If conditions (a), (b), and (c) hold, then ϕ : G/K × Y ′
→ X ′ is a

local diffeomorphism.

Proof. Let e be the unit element in G. At each ([e], y) ∈ G/K × Y ′ we have
dϕ([e],y)(0, v) = v for all v ∈ TyY ′, and so TyY ′

⊂ Im
(
dϕ([e],y)

)
. Furthermore,

ϕ|G/K×{y} : G/K × {y} → Oy ∼= G/G y is a local diffeomorphism, so Ty Oy ⊂

Im
(
dϕ([e],y)

)
. Thus, dϕ([e],y) is surjective. But dim(G/K × Y ′) = dim X ′, so

dϕ([e],y) is in fact an isomorphism.
For general ([g], y) ∈ G/K × Y ′, notice that ϕ ◦ lg = σg ◦ϕ, where lg([h], y)=

([gh], y), so dϕ([g],y) ◦ (dlg)([e],y) = (dσg)([e],y) ◦ dϕ([e],y), and dϕ([e],y) being an
isomorphism implies that dϕ([g],y) is one as well. Thus, ϕ is everywhere regular
and hence is a local diffeomorphism. �

To make Proposition 3.1 useful, we also require the following condition:
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(e) The map ϕ : G/K × Y ′
→ X ′ is a d-sheeted covering map, with d < +∞

(covering condition).

Theorem 3.3. If conditions (a), (b), (c), and (e) hold, then

(3–2)
∫

X
f (x) dx =

1
d

∫
Y

( ∫
G/K

f (σg(y)) dµ([g])

)
J (y) dy

for all f ∈ C∞(X) with f ≥ 0 or f ∈ L1(X, dx), and where J ∈ C∞(Y ) is
determined by formula (2–6).

Proof. By Proposition 3.2, ϕ : G/K × Y ′
→ X ′ is a local diffeomorphism. By the

covering condition (e), ϕ is a d-sheeted covering map. So, by Proposition 3.1, for
f ∈ C∞(X) with f ≥ 0 or f ∈ L1(X, dx), we have∫

X
f (x) dx =

∫
X ′

f (x) dx =
1
d

∫
G/K×Y ′

f
(
ϕ([g], y)

)
ϕ∗(dx)

=
1
d

∫
G/K×Y ′

f
(
σg(y)

)
J (y) dµ([g]) dy

=
1
d

∫
Y ′

( ∫
G/K

f
(
σg(y)

)
dµ([g])

)
J (y) dy

=
1
d

∫
Y

( ∫
G/K

f
(
σg(y)

)
dµ([g])

)
J (y) dy �

Corollary 3.4. Under the same conditions as in the previous theorem, if further-
more f (σg(x))= f (x) for all g ∈ G and x ∈ X , then

(3–3)
∫

X
f (x) dx =

µ(G/K )
d

∫
Y

f (y) J (y) dy. �

To make this conclusion more useful, we give some criteria on when the map
ϕ : G/K × Y ′

→ X ′ is a covering map.

Proposition 3.5. Let M, N be smooth n-dimensional manifolds. An everywhere-
regular smooth map ϕ : M → N is a d-sheeted covering map if and only if ϕ−1(y)
has d points for each y ∈ N.

Proof. The “only if” part is obvious; we prove the “if” part. For y ∈ N , let ϕ−1(y)=
{x1, . . . , xd}. Since ϕ is everywhere regular, there exist open neighborhoods Ui of
xi , i = 1, . . . , d, such that Ui ∩Uj = ∅ for i 6= j , and each ϕi = ϕ|Ui : Ui → ϕ(Ui )

is a diffeomorphism. Let V =
⋃d

i=1 ϕ(Ui ) and Vi = ϕ−1
i (V ). Then ϕ|Vi is also a

diffeomorphism onto V . We conclude that ϕ−1(V ) =
⋃d

i=1 Vi . In fact, if for all
z ∈ ϕ−1(V ) we set zi = ϕ−1

i (ϕ(z)), then zi ∈ ϕ−1(ϕ(z)) and zi 6= zj for i 6= j . But,
since z ∈ ϕ−1(ϕ(z)) and

∣∣ϕ−1(ϕ(z))
∣∣ = d, this forces z = zi0 for some i0. Hence

z ∈
⋃d

i=1 Vi . Therefore, ϕ−1(V )=
⋃d

i=1 Vi and the lemma is proved. �
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Corollary 3.6. Suppose conditions (a), (b), and (c) hold. If furthermore there exists
d ∈ N such that, for all y ∈ Y ′,

(1) the isotropy subgroup G y coincides with K ,

(2) |Oy ∩ Y ′
| = d ,

then ϕ : G/K × Y ′
→ X ′ is a d-sheeted covering map.

Proof. By Proposition 3.2, ϕ is a local diffeomorphism. So, by Proposition 3.5,
we need only show that ϕ−1(x) has d points for each x ∈ X ′.

For x ∈ Y ′, suppose that Ox ∩ Y ′
= {y1, . . . , yd}. Then there exists gi ∈ G such

that σgi (yi ) = x for each i ∈ {1, . . . , d}. It follows that ([gi ], yi ) ∈ ϕ−1(x). On
the other hand, if ([g], y) ∈ ϕ−1(x), then y = yi0 for some i0 ∈ {1, . . . , d}. We
have σgg−1

i0
(x) = σg(yi0) = x , that is, gg−1

i0
∈ Gx = K , and so [g] = [gi0] and

([g], y)= ([gi0], yi0). Thus, ϕ−1(x)=
{
([g1], y1), . . . , ([gd ], yd)

}
.

In general, for x ∈ X ′, suppose that σh(x)∈ Y ′ for some h ∈ G. Then the relation
ϕ−1(σh(x))= lh(ϕ

−1(x)) reduces the general case to the previous one. �

Both Proposition 3.5 and Corollary 3.6 will be used in a forthcoming article
devoted to concrete examples [An et al. 2005].

Remark. The converse of Corollary 3.6 is not true. That is, the isotropy subgroups
G y associated to y ∈ Y ′ may change “suddenly”, even if Y ′ is connected. For ex-
ample, the group SO(n) acts on RPn smoothly if we regard RPn as a quotient space
obtained by gluing opposite points on the boundary of the closed unit ball Bn . If Xz

is the image of {0} and Y is the image of the segment {(x, 0, . . . , 0) | |x | ≤ 1}, then
the conditions (a), (b), (c), and (e) hold. The isotropy subgroup associated with the
image of a point in Y ′ that is an interior point of Bn is diag(1, SO(n−1)), but, for
the image of the point (1, 0, . . . , 0), its isotropy subgroup is diag(±1, O±(n−1));
here, O±(n−1)= {g ∈ O(n−1) | det g = ±1}. Other examples exhibiting similar
phenomena will appear in [An et al. 2005], where we consider the group ensembles
associated with complex semisimple Lie groups. When such sudden variation of
the isotropy subgroups happens, it is in general an open problem whether we can
make them be the same by enlarging the set Xz.

4. Generalized random matrix ensembles

We are ready to present the generalized random matrix ensembles.
Let G be a Lie group acting on an n-dimensional smooth manifold X by σ :

G × X → X . For convenience, suppose X is a Riemannian manifold. Assume the
induced Riemannian measure dx is G-invariant (note that we do not require the
Riemannian structure on X to be G-invariant). Let Y be a closed submanifold of
X , endowed the induced Riemannian measure dy, and let

K =
{
g ∈ G

∣∣ σg(y)= y, for all y ∈ Y
}
.
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As in Section 2, we take the map ϕ : G/K × Y → X with ϕ
(
[g], y

)
= σg(y). Let

Xz ⊂ X and Yz ⊂ Y be closed zero-measure subsets of X and Y , respectively. Set
X ′

= X \ Xz and Y ′
= Y \ Yz. We assume that the conditions (a), (b), (c), and (d)

of Section 2 hold. For the reader’s convenience, we list them below.

(a) X ′
=

⋃
y∈Y ′ Oy (invariance condition).

(b) Ty X = Ty Oy ⊕ TyY for all y ∈ Y ′ (transversality condition).

(c) dim G y = dim K for all y ∈ Y ′ (dimension condition).

(d) TyY ⊥ Ty Oy for all y ∈ Y ′ (orthogonality condition).

Suppose dµ is a G-invariant smooth measure on G/K , and p(x) is a G-invariant
smooth function on X . Then, by Corollary 2.3, there is a quasi-smooth measure
dν on Y such that

(4–1) ϕ∗(p(x) dx)= dµ dν.

Definition. Let the conditions and notation be as above. The system

(G, σ, X, p(x) dx, Y, dy)

is called a generalized random matrix ensemble. The manifolds X and Y are called
the integration manifold and the eigenvalue manifold, respectively. The measure
dν on Y determined by (4–1) is called the generalized eigenvalue distribution.

Recall that in Section 2 we have defined the map 9y : l → Ty Oy by

9y(ξ)=
d
dt

∣∣∣
t=0

σexp tξ (y) for all ξ ∈ l,

where l is a linear subspace of g such that g = k ⊕ l. Thanks to the preliminar-
ies in Section 2, we can compute the generalized eigenvalue distribution directly
with the next theorem, which follows directly from Proposition 2.2, Corollary 2.3,
Proposition 2.4, and Theorem 2.5.

Theorem 4.1. Let (G, σ, X, p(x) dx, Y, dy) be a generalized random matrix en-
semble. The generalized eigenvalue distribution dν is given by

(4–2) dν(y) = P(y) dy = p(y) J (y) dy,

where

(4–3) J (y)= C
∣∣det9y

∣∣,
with C =

∣∣det
(
(dπ)e|l

)∣∣−1. �
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The function P(y)= p(y) J (y) in (4–2) is the generalized joint-density function.
One of the fundamental problems in random matrix theory is to compute the

eigenvalue distribution dν. In our generalized scheme, it is given by formulae (4–2)
and (4–3). Note that the power of (4–3) is reflected in the fact that it provides a
direct and unified method to compute the eigenvalue distributions of various kinds
of random matrix ensembles. In [An et al. 2005] we show how all classical ensem-
bles are included in our generalized scheme, and how the corresponding eigenvalue
distributions can be derived from (4–2) and (4–3). We will also present various
kinds of generalized ensembles that were not considered before, and compute their
eigenvalue distributions explicitly.

Now, we consider the integration formula associated with the generalized ran-
dom matrix ensemble. As in Section 3, we assume the following condition holds:

(e) The map ϕ : G/K × Y ′
→ X ′ is a d-sheeted covering map, with d < +∞

(covering condition).

Theorem 4.2. Let (G, σ, X, p(x) dx, Y, dy) be a generalized random matrix en-
semble. If the covering condition (e) holds, then we have the integration formula

(4–4)
∫

X
f (x) p(x) dx =

1
d

∫
Y

( ∫
G/K

f
(
σg(y)

)
dµ([g])

)
dν(y)

for all f ∈C∞(X)with f ≥0 or f ∈ L1(X, p(x) dx). If moreover f (σg(x))= f (x)
for all g ∈ G and x ∈ X , then

(4–5)
∫

X
f (x) p(x) dx =

µ(G/K )
d

∫
Y

f (y) dν(y).

Proof. It is obvious from Theorem 3.3 and Corollary 3.4. �

If the measure p(x) dx in (4–5) is a probability measure and we let f =1, we get(
µ(G/K )/d

) ∫
Y dν(y)= 1. So, if G/K is compact, we can normalize the measure

dµ such that µ(G/K )= d , and then the generalized eigenvalue distribution dν is
a probability measure.

Remark. The condition f ∈ C∞(X) in Theorem 4.2 is superfluous. It is sufficient
to assume that f is measurable. The same is true for Proposition 3.1 and Theorem
3.3.

5. Special cases

In this section we discuss several classes of generalized random matrix ensembles:
linear ensembles, nonlinear noncompact ensembles, compact ensembles, group
ensembles, algebra ensembles, pseudo-group ensembles, and pseudo-algebra en-
semble. These account for all kinds of classical random matrix ensembles and
some new examples of generalized ensembles.
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Linear ensemble and the nonlinear noncompact ensembles. Let G be a real re-
ductive Lie group with Lie algebra g, in the sense of [Knapp 2002, Section 7.2].
The group G admits a global Cartan involution 2, inducing a Cartan involution θ
of g. Let the corresponding Cartan decomposition of g be g = k ⊕ p, and set

K = {g ∈ G |2(g)= g} and P = exp(p).

K is a maximal compact subgroup of G with Lie algebra k, while P is a closed
submanifold of G satisfying Te P = p. The spaces p and P are invariant under
the adjoint action Ad|K and the conjugate action σ of K , respectively. Let a be
a maximal abelian subspace of p, and let A be the connected subgroup of G with
Lie algebra a. Set

M =
{
k ∈ K

∣∣ (Ad|K )k(η)= η, for all η ∈ a
}
=

{
k ∈ K

∣∣ σk(a)= a, for all a ∈ A
}
.

It can be shown that there are Riemannian structures on p and P inducing K -
invariant Riemannian measures d X on p and dx on P . They also induce Riemann-
ian measures dY on a and da on A. Further, there is a K -invariant smooth measure
dµ on K/M . If p1(ξ) and p2(x) are K -invariant positive smooth functions on p

and P , then it can be proved that the systems

(K ,Ad|K , p, p1(ξ) d X (ξ), a, dY ) and (K , σ, P, p2(x) dx, A, da)

are generalized random matrix ensembles, which we call linear ensemble and non-
linear noncompact ensemble, respectively. It can be shown that the Gaussian en-
semble and the chiral ensemble are particular examples of linear ensembles, while
the new transfer matrix ensembles are particular examples of nonlinear noncompact
ensemble.

Compact ensembles. Let G be a connected compact Lie group G with Lie algebra
g. Suppose 2 is a global involution of G with induced involution θ = d2 on g.
Let K = {g ∈ G |2(g)= g}. Let p be the eigenspace of θ of eigenvalue −1, and let
P = exp(p). Then P is invariant under the conjugate action σ of K . It was proved
in [An and Wang 2006] that P is a closed submanifold of G satisfying Te P = p,
and that it is just the identity component of the set {g ∈ G |2(g)= g−1

}. Let a be
a maximal abelian subspace of p, and let A be the torus with Lie algebra a. There
is a Riemannian structure on P that induces a K -invariant Riemannian measure
dx on P and a Riemannian measure da on A. Let

M =
{
k ∈ K

∣∣ σk(a)= a, for all a ∈ A
}
.

There is a K -invariant smooth measure dµ on K/M . Take p(x) a K -invariant
positive smooth function on P . It can be proved that the system

(K , σ, P, p(x) dx, A, da)
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is a generalized random matrix ensemble, which we call compact ensemble. The
circular ensemble and the Jacobi ensembles are particular examples of compact
ensembles.

Group and algebra ensembles. Let G be a unimodular Lie group G with Lie
algebra g. There are Riemannian structures on G and g inducing a σ -invariant
Riemannian measure dg on G and an Ad-invariant Riemannian measure d X on
g, where σ denotes the conjugate action of G on itself. Let p1(g) and p2(ξ) be
two functions on G and g, respectively, that are invariant under the corresponding
actions of G. If there exists a closed submanifold Y of G such that

(G, σ,G, p(g) dg, Y, dy)

is a generalized random matrix ensemble, where dy is the induced Riemannian
measure on Y , then we call it a group ensemble. And, if there exists a closed
submanifold y of g such that

(G,Ad, g, p(ξ) d X (ξ), y, dY )

is a generalized random matrix ensemble, where dY is the induced Riemannian
measure on y, then we call it an algebra ensemble.

Among all unimodular Lie groups, connected compact Lie groups and connected
complex semisimple Lie groups are of particular interest. For a connected compact
Lie group G, we can let the submanifold Y of G be a maximal torus T of G, and
let the submanifold y of g be the Lie algebra of T . For a connected complex
semisimple Lie group G, we can let the submanifold y of g be a Cartan subalgebra
of g, and let the submanifold Y of G be the corresponding Cartan subgroup of G.
For these cases, it can be proved that the systems (G, σ,G, p(g) dg, Y, dy) and
(G,Ad, g, p(ξ) d X (ξ), y, dY ) are generalized random matrix ensembles.

Pseudogroup and pseudoalgebra ensembles. These are related to real reductive
groups. Let G be a real reductive group with lie algebra g. Let θ be a Cartan
involution of g, and h1, . . . , hm a maximal set of mutually nonconjugate θ -stable
Cartan subalgebras of g, with corresponding Cartan subgroups H1, . . . , Hm of G.
Denote the sets of all regular elements in G and g by Gr and gr , respectively. Let
H ′

j = Hj ∩ Gr and h′

j = hj ∩ gr . It is known that

Gr =

m⊔
j=1

⋃
g∈G

σg(H ′

j ) and gr =

m⊔
j=1

⋃
g∈G

Adg(h
′

j )

(see [Knapp 2002, Theorem 7.108] and [Warner 1972, Proposition 1.3.4.1], re-
spectively). Here, “t” means disjoint union. Each

⋃
g∈G σg(H ′

j ) is an open set in
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G, and each
⋃

g∈G Adg(h
′

j ) is an open set in g. Let

G j =
⋃

g∈G
σg(H ′

j ) and gj =
⋃

g∈G
Adg(h

′

j ).

It can be shown that some suitable Riemannian structures on G and g induce, for
each j , a σ -invariant measure dgj on G j , and an Ad-invariant measure d X j on gj ,
and that they also induce Riemannian measures dhj on Hj and dYj on hj . It is
known that

Z(Hj )=
{
g ∈ G

∣∣ σg(h)= h, for all h ∈ Hj
}
,

Hj =
{
g ∈ G

∣∣ Adg(ξ)= ξ, for all ξ ∈ hj
}
.

Let dµ′

j and dµj be G-invariant measures on G/Z(Hj ) and G/Hj , respectively. In
general, the spaces G j and gj may have singularities, but this doesn’t matter, since
these spaces are closures of open submanifolds in G and g, whose boundaries have
measure zero. If we ignore this ambiguity, it can be proved that

(G, σ,G j , dgj , Hj , dhj ) and (G,Ad, gj , d X j , hj , dYj )

are generalized random matrix ensembles, which we call pseudogroup ensemble
and pseudoalgebra ensemble, respectively.

The classes introduced above do not exhaust all generalized ensembles. But they
include all kinds of classical random matrix ensembles and some new examples of
generalized ensembles, which will be studied in [An et al. 2005].
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QUADRATIC FORMS OVER RATIONAL FUNCTION FIELDS
IN CHARACTERISTIC 2

ROBERTO ARAVIRE AND BILL JACOB

A basic result of Milnor and Scharlau determines the Witt ring of rational
function fields Wk(x) whenever char k 6= 2. An analogous result is obtained
here for the Witt group of quadratic forms WqF(x), where F is a field of
characteristic 2. This generalizes earlier work by the authors where F was
assumed to be perfect.

Milnor’s determination [1970] of the Witt ring of a rational function field in
terms of the Witt rings of the finite extensions of the base field is a fundamen-
tal result in the algebraic theory of quadratic forms, and was complemented by
Scharlau’s reciprocity law (see [Lam 1973] or [Scharlau 1972]). Here we give an
analogue of these results for the Witt group of rational function fields in charac-
teristic 2, extending earlier work where the base field was assumed to be perfect
[Aravire and Jacob 2004].

All our fields will have characteristic 2. We use the notation F for the base field
of our rational function field F = F(x). Whenever p ∈ F[x] is monic and irre-
ducible, we denote by F(x)p the completion at the discrete valuation vp :F(x)→Z

determined by p. Similarly, we denote by F(x)1
x

the completion at the 1
x -adic (or

infinite) valuation v1
x
: F(x)→ Z. We use Wq F and WF to denote the Witt group

and Witt ring of F , and we follow the standard notation. In particular, [a, b] denotes
the Witt class of quadratic form ax2

+ xy + by2. These classes form an additive
set of generators for Wq F , and 〈a〉 denotes the 1-dimensional symmetric bilinear
form (x, y) 7→ axy. The symbol [ , ] is biadditive and Wq F is a WF-module
via the action 〈a〉[c, d] = [ac, a−1c]. This means that Wq F is also generated by
the forms 〈a〉[1, b] and when considering such an element we will refer to a as
being in the multiplicative slot and b as being in the additive slot. We use the
standard notation I n F for the n-th power of the fundamental ideal in WF , so that
I nWq F is generated by the forms <<<< a1, a2, . . . , an >>>> [1, b]. Arason [1979, Satz 8]
gave a generator-relation description of Wq F as a WF-module, and we use these
relations throughout. We frequently use what we call the fundamental relation,

MSC2000: 11E04.
Keywords: Witt group, rational function fields, characteristic two.
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〈a+b〉[1, c] = 〈a〉[1, ac/(a+b)] + 〈b〉[1, bc/(a+b)], which shows how addition
in the multiplicative slot can be distributed across a sum of forms.

A key component of the classical Milnor–Scharlau sequence is the second residue
homomorphism ∂p : WF → WFp, where Fp is the residue class field of a discrete
valuation vp : F → Z. This map has proved to be of considerable importance in
quadratic form theory. For example, if X is a variety defined over F , the kernel
under all ∂p : WF(X)→ WFp is the unramified Witt group of X , which when X
is a nonsingular curve coincides with the Witt group of X . This paper gives the
appropriate version of ∂p in characteristic two, and in a subsequent paper this work
is applied to the study of Witt groups of curves in characteristic two.

Whenever vp : F → Z is a discrete valuation, we set

W1 Fp := coker(Wq Fp → Wq Fp),

where the map is induced by a Teichmüller lifting Fp ↪→ Fp. We show in Corollary
1.7 that the group W1 Fp is independent of the choice of a Teichmüller lifting. For
such a lifting we define the second residue map ∂p : Wq F → W1 Fp to be the
composite map induced by inclusion and projection:

Wq F → Wq Fp → W1 Fp.

We are also able to identify a quotient of W1 Fp with Wq Fp where, when p ∈ F[x]

is an irreducible polynomial, we have Fp ∼= F[x]/(p). Using this we obtain a
version of Scharlau’s transfer s∗

p : W1 Fp → WqF as a composite of maps W1 Fp →

WqF[x]/(p)→ WqF, where the latter map is the same transfer used by Scharlau.
Both maps ∂p and s∗

p are analogous to the classical maps, but as they depend upon
choices of Teichmüller liftings and of subgroups of W1 Fp, these selections must
be made to meet certain compatibility requirements for our main result to hold.

With this notation, the main result of this paper is the following.

Theorem 6.2 (Analogue of the Milnor–Scharlau Sequence). Suppose that F is a
field of characteristic 2 and F = F(x) is a rational function field in one variable
over F. There exists a compatible collection of second residue and transfer maps
that fit into an exact sequence

0 - WqF - Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF - 0,

where the direct sum is taken over discrete valuations on F.

We now provide an overview of the proof. As we do this we will recall the
main features of the proof in the classical case in order to illustrate the similarities
and differences. When char F 6= 2 and F is complete with respect to a discrete
valuation v : F → Z, a well-known result of Springer shows that WF ∼= WF ⊕
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〈π〉WF , where π is a uniformizing parameter for v. This decomposition enables
one to construct the second residue map and the transfer in the Milnor–Scharlau
sequence. When char F =2 and F is complete it is first necessary for us to compute
the Witt group Wq F . This is the main objective of Section 1. The main result
proved there, Theorem 1.3, shows that Wq F ∼= Wq F ⊕R⊕〈π〉Wq F , where again
π is a uniformizing parameter. The subgroup R is quite large and although its
description depends upon choosing a 2-basis for F and a Teichmüller lifting F ↪→
F it has adequate uniqueness properties. (When F is perfect, then there is a unique
Teichmüller lifting, however in general, such lifts depend upon the choice of a 2-
basis for F. See [Schilling 1950, p. 236] for details.) This decomposition shows
that W1 F ∼= R ⊕ 〈π〉Wq F and enables us to define both the second residue and
Scharlau transfer maps needed for the main theorem.

After defining the second residue maps, Milnor’s proof requires a filtration L0 ⊂

L1 ⊂ L2 ⊂ · · · ⊂ WF , where by Ld ⊂ WF he considered the subgroup generated
by all 〈 f 〉, where f is a polynomial of degree at most d . He then proves a key
result, namely that the successive quotients Ld/Ld−1 for d ≥ 1 are isomorphic to
the direct sum of groups

⊕
deg p=d WFp. To do this he shows there is a well defined

splitting of the sum of induced maps
⊕

deg p=d ∂p : Ld/Ld−1 →
⊕

deg p=d WFp. In
Section 2 we use the same idea and notation, except that our Ld are generated by
the forms 〈 f 〉[1, h/ue

], where now both f and u have degree at most d in F[x]

and h ∈ F[x] is arbitrary. These forms are needed for two reasons. First Wq F has
as generators 2-dimensional forms, and second, the quotients h/ue are needed to
take into account all the extra stuff in R. In the following section, Theorem 3.5
gives the exact analogue of Milnor’s key result, namely that the map⊕

deg p=d
∂p : Ld/Ld−1 →

⊕
deg p=d

W1 Fp

is a split isomorphism.
To prove the latter result we must take several detours. First there is the com-

plexity introduced by the existence of different ways to extend a 2-basis for F to
a 2-basis for F and Fp. If p is separable, one can either add x or p, with x the
natural choice for the rational function field F and with p the natural choice for
Fp. When p is not separable, we have to specify which element we choose to omit
from the 2-basis of F and then we must add both x and p to form a 2-basis for Fp.
Since the ∂p relate Wq F to W1 Fp, we need to be able to relate these choices. The
bulk of Section 2 accomplishes this, by establishing the equivalence of different
generating sets for the Ld in Lemma 2.5 and Proposition 2.8.

A second detour provides a generator-relation description of Wq F (Theorem 3.3)
needed to prove that the splitting maps are well defined (Lemma and Definition
3.4). The proof of the splitting is similar to that of the classical case, but is
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complicated again by the fact that 2-bases and Teichmüller liftings have to be
selected carefully and in a compatible fashion. The details of these choices are
set up in the discussion that follows Lemma 3.1. Finally one has to deal with the
structure of L0, which is just W F in the classical case. In our case it is gener-
ated by forms with polynomials f, g ∈ F[x] in the additive slots of binary forms,
[ f, g]. The result in Theorem 3.6 is that L0 is described by an exact sequence
0 → WqF → L0 → W1 F1

x
→ WqF → 0.

When Theorems 3.5 and 3.6 are combined with the definitions, we obtain a
version of what Milnor did, namely that the sequence in Theorem 6.2 is exact if
truncated to

0 - WqF - Wq F
⊕
∂p-

⊕
p,finite

W1 Fp ⊕ (W1 F1
x
/〈x〉W F) - 0,

where the reciprocity law provided by the transfer is omitted. However, because
the reciprocity law has important applications, we continue with its development
in subsequent sections. Section 4 is devoted to defining the transfer maps. The
subgroups of W1 Fp needed to define the maps are given in Definition 4.1 and are
selected in a compatible way to ensure that the resulting s∗

p vanish on the subgroup
R ⊂ W1 Fp. The definition of s∗

p when p fails to be separable, Definition 4.3(ii),
is adjusted to take into account the change in the 2-basis resulting from the failure
of the 2-basis of F to extend to Fp. In this case the exact terms necessary to make
the reciprocity law work are added to the transfer of the residue form.

Having defined the s∗
p, we check the reciprocity law for elements of L0 +〈p〉L0

(Theorem 5.4). This requires computing the ordinary transfer t∗
p : WqF[x]/(p)→

WqF on generators [λ1x i , λ2x j
] of WqF[x]/(p). There are quite a few cases to

consider, but it is a straightforward computation. With this result, the main the-
orem, with the reciprocity law in general, is proved in Section 6, where the final
stages of the proof consist of checking that the definitions involved in setting up
W1 Fp and the s∗

p are arranged properly to ensure cancellation of the appropriate
terms. Although the definition of s∗

p is based on the same linear functional as
in the classical case, this portion of the paper differs from the approach in that
case. Because of the additive nature of generators for Wq F we are able to reduce
to forms that vanish on all but two ∂p’s, and therefore we don’t have to consider
more complex transfers from algebras such as F[x]/(p1 p2 · · · pn), as did Scharlau.

1. Local information

If F has characteristic 2, a collection of elements t1, t2, . . . , tn ∈ F is said to form
a 2-basis of F if we have a strictly increasing sequence of subfields

F2 $ F2(t1)$ F2(t1, t2)$ · · · $ F2(t1, t2, . . . , tn)= F.
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A field F can have many different 2-bases; if [F : F2
] = 2n , every 2-basis has

exactly n elements. We will assume that fields in this paper have finite 2-bases,
since our main results are readily reduced to this case.

For fixed n we denote by T the set of n-tuples I = (i1, i2, . . . , in), where
i j ∈ {0, 1} for all j . We order T lexicographically, with minimal element O :=

(0, 0, . . . , 0), then (1, 0, . . . , 0), then (0, 1, 0, . . . , 0), and so forth. It will be con-
venient to add elements of T as in the Z/2Z-vector space (Z/2Z)n and let T0 denote
the nonzero elements of T . Whenever t1, t2, . . . , tn ∈ F and I ∈ T , we abbreviate
t i1
1 t i2

2 · · · t in
n by t I . In this notation, whenever t1, t2, . . . , tn form a 2-basis for F and

f ∈ F , there exist unique elements x I ∈ F indexed by I ∈ T such that

f =

∑
I∈T

t I x2
I .

For the remainder of this section we assume that v : F → Z is a complete
discrete-valued field of characteristic 2 with residue class field F and uniformizing
parameter π . We assume that t1, t2, . . . , tn−1 are units in F whose residues form
a 2-basis for F . Since v is complete and discrete, we know that t1, t2, . . . , tn−1, π

form a 2-basis for F . We will use the notation t I , where I = (I1, I2, . . . , In) ∈ T ,
to represent elements in this 2-basis:

t I
= t I1

1 t I2
2 · · · t In−1

n−1π
In .

From [Schilling 1950, pp. 230–238] we also know that there is a unique monomor-
phism of fields ρ : F ↪→ F with ρ(t i ) = ti for i = 1, 2, . . . , n − 1. Since we will
regard this map as an inclusion, we will drop the residue bars from the ti and view
t1, t2, . . . , tn−1 as lying in F ⊂ F . With these conventions, v(t J )= Jn ∈ {0, 1} for
all J ∈ T .

Since F is complete, we can view F = F((π)) as formal Laurent series in its
fixed uniformizing parameter π . We let R := F[π−1

] ⊂ F be the “backwards”
polynomial ring, and with this, if f ∈ F then there exists a unique r ∈ π−1 R with
v( f − r) ≥ 0. Moreover, every element r ∈ π−1 R can be uniquely expressed as
r =

∑
I∈T t I r2

I , where rI ∈ R.

Definition 1.1. We set R to be the subgroup of Wq F of all forms∑
I∈T

〈t I
〉

[
1,

∑
J, J+I>I

t J r2
I,J

]
∈ R with rI,J ∈ π−1 R.

Whenever v(a) > 0 (that is, a ∈ F((π))), we must have a ∈ ℘(F) since F is
complete with respect to v; consequently, [1, a] = 0 ∈ Wq F . We will use this fact
repeatedly. When r ∈ π−1 R, however, we are in the opposite situation, since then
v(r) < 0; in this case, if v(r) is odd or the lead coefficient is not a square in F,
then r cannot lie in ℘(F). This is why the module R is of interest.
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Lemma 1.2. Every element φ ∈ Wq F can be expressed as φ =
∑

I∈T 〈t I
〉[1, AI ],

where AI =
∑

J,J+I>I t J r2
I,J and rI,J ∈ F.

Proof. Applying the Wq -relations we know that every element of Wq F is a sum of
elements 〈t I

〉[1, t J b2
] for b ∈ F . Applying the Wq -relation 〈t〉[1, a] = 〈ta〉[1, a]

we find for I , J with I + J < I that 〈t I
〉[1, t J b2

] = 〈t I+J
〉[1, t J b2

], and when
I = J we find that 〈t I

〉[1, t I b2
] = 〈1〉[1, t I b2

]. Hence every element of φ ∈ Wq F
can be expressed as φ =

∑
I∈T 〈t I

〉
[
1,

∑
J,J+I>I t J b2

I,J

]
, with bI,J ∈ F . (In fact

this much is true for any 2-basis of any field F of characteristic 2.) The statement
for R follows applying this same argument to that case. �

Theorem 1.3. Suppose that v : F → Z is a complete discrete valued field of
characteristic 2 with residue field F ⊂ F and uniformizing parameter π . Then
every class φ ∈ Wq F can be expressed uniquely as

φ = φ1 ⊥ ψ ⊥ 〈π〉φ2,

where φ1, φ2 ∈ Wq F and ψ =
∑

I∈T 〈t I
〉[1,

∑
J,J+I>I t J r2

I,J ] ∈ R with rI,J ∈

π−1 R. The classes of φ1, φ2 and the rI,J are uniquely determined by φ. In partic-
ular, there is a split exact sequence

0 → Wq F → Wq F →
(
R ⊕ 〈π〉Wq F

)
→ 0.

Proof. Consider
∑

I∈T 〈t I
〉[1,

∑
J,J+I>I t J b2

I,J ] ∈ Wq F . Since F is complete and
discretely valued, we can express each bI,J as rI,J + f I,J +b′

I,J , where rI,J ∈π−1 R,
f I,J ∈ F ⊂ F and v(b′

I,J )> 0. Since v(t J )≥ 0 we have t J b′

I,J
2
∈℘(F) and hence

[1, t J b′

I,J
2
] = 0. We observe:

• If Jn = 0 then t J
∈ F and we have t J r2

I,J ∈ π−1 R while t J f 2
I,J ∈ F ⊂ F . When

In = 0 we have 〈t I
〉[1, t J f 2

I,J ] ∈ Wq F , and when In = 1 we have 〈t I
〉[1, t J f 2

I,J ] ∈

〈π〉Wq F . So

〈t I
〉[1, t J b2

I,J ] = 〈t I
〉[1, t J r2

I,J ] + 〈t I
〉[1, t J f 2

I,J ] ∈ Wq F + R + 〈π〉Wq F

in this case.

• If Jn = 1, then we know v(t J ) = 1 and consequently t J r2
I,J ∈ π−1 R while

v(t J f 2
I,J ) > 0, so [1, t J f 2

I,J ] = 0. Therefore, 〈t I
〉[1, t J b2

I,J ] = 〈t I
〉[1, t J r2

I,J ] ∈ R

in this case.

Altogether this shows that every element of φ ∈ Wq F can be expressed as φ =

φ1 +ψ + 〈π〉φ2, with φ1, φ2 ∈ Wq F and ψ ∈ R.
To prove the uniqueness assertions and the exactness of the sequence we need a

bit more notation. We denote by ns the set of all subsets of {1, 2, . . . , n} containing
s elements. For any I = (I1, I2, . . . , In) ∈ T we use Ĩ to denote { j | I j 6= 0}. Note
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that Ĩ ∈ ns for some s = 0, 1, . . . , n, and that any subset Ĩ ∈ ns is determined by a
unique I ∈ T . For any subset S ⊆ {1, 2, . . . , n} we write

<<<< tS >>>> =
⊗
i∈S

<<<< ti >>>> ,

where, when S = ∅, <<<< t∅ >>>> = 〈1〉 by convention. Whenever I ∈ T , we define
`(I ) = max( Ĩ ). Finally, we define [ Ĩ ]0 := {J ∈ T | J 6= (0, 0, . . . , 0) and J̃ ⊆ Ĩ }
and [ Ĩ c

] := {J ∈ T | J̃ ∩ Ĩ = ∅}.

Lemma 1.4 [Aravire and Jacob 1996, Lemma 1.6]. Suppose that t1, t2, . . . , tn are
2-independent in a field F and let a Ĩ ∈ F. Suppose

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] ∈ I s+1Wq F.

Then each

a Ĩ ∈

(
℘(F)+

∑
J∈[ Ĩ ]0+[ Ĩ c]

t J F2
)

=

(
℘(F)+

∑
J, J̃∩ Ĩ 6=∅

t J F2
)

�

The next result is a modification of [Aravire and Jacob 1996, Proposition 1.7].

Proposition 1.5. Suppose that v : F → Z is a complete discrete valued field and
t1, t2, . . . , tn are as above. Suppose

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] ∈ I s+1Wq F,

where a Ĩ ∈
∑

J+I>I t J (π−1 R)2. Then a Ĩ = 0 for each I . �

Proof. Assume the contrary. Let M be the maximal index among the I with
Ĩ ∈ ns and a Ĩ 6= 0. We express aM̃ as a sum

∑
K+M>M t K A2

K ,M , where each
AK ,M ∈ π−1 R. Since aM̃ 6= 0, there is some J with J + M > M and t J A2

J,M 6= 0.
The result will be proved when we derive the contradiction that t J A2

J,M = 0.
Since J + M > M we have `(J ) 6∈ M̃ . We denote by t ′

1, t ′

2, . . . , t ′
n the 2-basis

obtained from t1, t2, . . . , tn by replacing t`(J ) by t J . Then, since `(J ) 6∈ M̃ , we
have <<<< tM̃ >>>> = <<<< t ′

M̃ >>>> . Also, we have

<<<< t ′

`(J ) >>>> = <<<< t J
>>>> ≡

∑
j∈ J̃

<<<< t j
>>>> (mod I 2 F).
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We now suppose that K ∈ T , K̃ ∈ ns , and `(J )∈ K̃ . We express K̃ as {`(J )}∪ Q̃
for Q̃ ∈ ns−1. Computing in WF modulo I s+1 F we have

<<<< t ′

K̃ >>>> = <<<< t ′

Q̃ >>>> <<<< t ′

`(J ) >>>> = <<<< tQ̃ >>>> <<<< t J
>>>> ≡

∑
j∈ J̃

<<<< tQ̃ >>>> <<<< t j >>>>

≡ <<<< tK̃ >>>> +

∑
j∈ J̃

j 6=`(J )

<<<< tQ̃ >>>> <<<< t j >>>> ≡ <<<< tK̃ >>>> +

∑
j∈ J̃ , j 6=`(J )

j 6∈Q̃

<<<< tQ̃ >>>> <<<< t j >>>> .

The conditions j ∈ J̃ , j 6= `(J ), and j 6∈ Q̃, are equivalent to the single condition
j ∈ J̃ − K̃ . So, as each such j < `(J ) we find <<<< tQ̃ >>>> <<<< t j >>>> = <<<< t ′

Q̃ >>>> <<<< t ′

j >>>> = <<<< t ′

L̃ >>>>

for some L ∈ T with L < K . Altogether this shows that whenever K ∈ T , K̃ ∈ ns ,
and `(J ) ∈ K̃ ,

(1) <<<< tK̃ >>>> ∈ <<<< t ′

K̃ >>>> +

( ∑
L∈T

L̃∈ns, L<K

<<<< t ′

L̃ >>>> WF + I s+1 F
)
.

Expanding using (1) we can rewrite q in terms of the new 2-basis involving the
t ′. We find

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] =

( ∑
K<M
K̃∈ns

<<<< tK̃ >>>> [1, aK̃ ]

)
+ <<<< tM̃ >>>> [1, aM̃ ]

≡

( ∑
K<M
K̃∈ns

<<<< t ′

K̃ >>>> [1, a′

K̃
]

)
+ <<<< t ′

M̃ >>>> [1, aM̃ ] (mod I s+1Wq F),

where the a′

K̃
for K < M are the elements of F that arise in the expansion using

(1) repeatedly. Observe that aM̃ remains unchanged when passing to the 2-basis
using the t ′. We now apply Lemma 1.2, where the 2-basis used is the one with the
t ′. We find that

(2) aM̃ =

∑
K+M>M

t K A2
K ,M ∈ ℘(F)+

∑
L ,L̃∩M̃ 6=∅

t ′L F2.

When constructing the 2-basis involving t ′ we replaced t`(J ) by t J , which means
that t J

= t ′J ′

, where J̃ ′ = {`(J )} ∈ n1. Since `(J ) 6∈ M̃ , this gives J̃ ′ ∩ M̃ = ∅.
Therefore, moving all the other terms on the left side of (2) to the right we find

t J A2
J,M ∈ ℘(F)+

∑
I∈T0,I 6=J

t I F2.

We claim that this gives AJ,M = 0. As t J A2
J,M ∈ π−1 R, if t J A2

J,M 6= 0 we must
have v(t J A2

J,M)= s < 0, where s is even if Jn = 0 and is odd if Jn = 1. For K ∈ T
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let K ′ be such that K ′
n = 0 and K ′

i = Ki for 1 ≤ i < n. With this notation,

π−s t J A2
J,M ∈ t J ′

F2.

Next, if w = ℘(b) +
∑

I∈T0,I 6=J t I b2
I,J ∈ ℘(F) +

∑
I∈T0,I 6=J t I F2 is such that

v(b)= s < 0, then

pi−sw ∈


F2

+
∑

I∈T0,I 6=J
In=0

t I F2 when s is even,

∑
I ′

∈T0,I 6=J
In=1

t I ′

F2 when s is odd.

In either case, because t1, t2, . . . , tn−1 is a 2-basis for F , we cannot have

π−s t J A2
J,M = π−sw,

contrary to the assumption that AJ,M 6= 0. This proves the proposition. �

We may now complete the proof of Theorem 1.3. The main task is showing that
ifψ=

∑
I∈T 〈t I

〉
[
1,

∑
J,J+I>I t J r2

I,J

]
=0∈R with rI,J ∈π−1 R, then each rI,J =0.

Assuming this temporarily for all such complete discrete valued fields, to prove the
uniqueness statements we consider an expression φ = φ1 ⊥ ψ ⊥ 〈π〉φ2 = 0. Let
L be a separable finite unramified extension of F chosen so that (φ1)L = 0 and
(φ2)L = 0. Then L is still complete and discretely valued, the 2-basis is unchanged,
R ⊂ RL , and we have that φL = ψL . So our temporary assumption applies to
ψL = 0 ∈ RL , the rI,J vanish in this case, and we now have φ1 ⊥ 〈π〉φ2 = 0. Now,
by valuation theory, if both φ1 and φ2 are anisotropic over F , then φ1 ⊥ 〈π〉φ2

anisotropic as well, since π is a uniformizing parameter. So this gives φ1 = φ2 = 0
and the uniqueness assertion follows.

Thus we are reduced to studying ψ =
∑

I∈T 〈t I
〉
[
1,

∑
J,J+I>I t J r2

I,J

]
= 0 ∈ R,

where we want to show that each rI,J = 0.

Lemma 1.6 [Aravire and Jacob 1996, Lemma 1.5]. Suppose that t1, t2, . . . , tn are
2-independent in a field F and f ∈ F. Then <<<< t1, t2, . . . , tn >>>> [1, f ] = 0 ∈ Wq F if
and only if

f ∈ ℘(F)+
∑
J∈T0

t J F2.

Applying the identity in WF (symmetric bilinear forms)

<<<< xy >>>> = <<<< x >>>> + <<<< y >>>> + <<<< x, y >>>> ,

we obtain
<< t I

>> =

∑
K , K̃⊆ Ĩ

<<<< tK̃ >>>>
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(recall that <<<< t∅ >>>> = 〈1〉.) Abbreviating aI :=
∑

J,J+I>I t J r2
I,J and rewriting ψ

using this identity we obtain

0 = ψ =

∑
I∈T

<< t I
>> [1, aI ] =

∑
I∈T

( ∑
K , K̃⊆ Ĩ

<<<< tK̃ >>>>

)
[1, aI ]

=

∑
K∈T

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

]
=

∑
s=0,...,n

( ∑
K̃∈ns

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

])
.

By induction on s we shall show that∑
I, K̃⊆ Ĩ

aI = 0

whenever K ∈ ns . When s = 0, K̃ = ∅ and since
∑

I∈T aI is the Arf invariant of q
we find

∑
I∈T aI ∈ ℘(F). Since nonzero elements of π−1 R have negative value,

by valuation theory we find
∑

I∈T0
t I (π−1 R)2 ∩ ℘(F) = {0} and we are done if

s = 0. Assuming the result for 1, 2, . . . , s − 1, we have∑
K̃∈ns

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

]
∈ I s+1Wq F.

We observe that if K̃ ⊆ Ĩ and J + I > I , then J + K > K . Therefore Proposition
1.5 applies and we conclude for fixed K̃ ∈ ns that∑

I, K̃⊆ Ĩ

aI = 0.

Using aI =
∑

I+J>I t J r2
I,J we obtain

0 =

∑
I, K̃⊆ Ĩ

aI =

∑
I, K̃⊆ Ĩ

( ∑
I+J>I

t J r2
I,J

)
=

∑
J∈T0

t J
( ∑

I, K̃⊆ Ĩ
I+J>I

r2
I,J

)
.

Since t1, t2, . . . , tn form a 2-basis of F , for fixed K , J we find

(3)
∑

I, K̃⊆ Ĩ
I+J>I

r2
I,J = 0.

We next show that r2
I,J = 0 for all I, J such that I + J > I . We proceed by

reverse induction on card( Ĩ ). If card( Ĩ )= n we have I = (1, . . . , 1) and I + J > J
is impossible, so the conclusion is vacuous. Now suppose the desired conclusion is
known for all I with card( Ĩ ) > r . Fix some K with card(K̃ )= r and some J with
J + K > K . If I 6= K , and if K̃ ⊂ Ĩ , we have card( Ĩ )> r . Our inductive hypothesis
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implies that r2
I,J = 0 for these I , J , and since these are all but one summand of

(3), we find that r2
K ,J = 0 as well. This completes the induction. The definitions

give aI = 0 and the proof of Theorem 1.3 is complete.

Since the ring R = F[π−1
] ⊂ F is simply a polynomial ring over the residue

field F of F , the choice of the lift to F of the 2-basis t1, t2, . . . , tn−1 of F does not
affect the isomorphism type of R or R. This, together with the uniqueness results,
implies:

Corollary 1.7. Suppose that v : F → Z is a complete discrete valued field of
characteristic 2 with residue field F and uniformizing parameter π . Then up to
isomorphism, the submodule R is independent of the choice of lift of the 2-basis
t1, t2, . . . , tn−1 of F. In particular, the cokernel

W1 F := coker(Wq F → Wq F)

is independent of the choice of lift of this 2-basis.

Remark 1.8. Both residue forms φ1 and φ2 in Theorem 1.3 depend upon the choice
of the uniformizing parameter π .

When F is complete and discretely valued, the group W1 F defined in Corollary
1.7 will play the role of the “second residue forms” in characteristic 2. The pro-
jection map ∂v : Wq F → W1 F , is the analogue of the second residue map. It is an
immediate consequence of this definition that

0 - Wq F - Wq F
∂v- W1 F - 0

is split exact. (This definition also coincides with the second residue map away
from characteristic 2, for in that case Springer’s Theorem gives a group isomor-
phism WF ∼= WF ⊕ 〈p〉WF , so W1 F ∼= WF .)

Remark 1.9. Arason [2003] has proved a result that captures all the information in
Theorem 1.3. His proof uses the generator-relation structure of the Witt group. His
description of R is different (it uses a filtration based on negative exponents of the
uniformizing parameter) and his proof does not require powers of the fundamental
ideal since he directly uses the generator relation structure for the Witt group.

2. The filtration of WqF(x)

We now denote by F a fixed field of characteristic 2 with 2-basis t1, t2, . . . , tn . We
study the Witt group of the field of rational functions F = F(x). The results of the
previous section will be applied to the completions of F at its discrete valuations,
which are trivial on F. Following Milnor’s original approach away from charac-
teristic 2, we also filter the Witt group Wq F by degree. We denote by F[x]≤d the
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set of polynomials in F[x] of degree at most d , and by F[x]<d those of degree less
than d.

Definition 2.1. For d ≥ 1, let Ld be the subgroup of WqF(x) generated by all
forms 〈 f 〉[1, h/ue

], where f, u ∈ F[x]≤d and h ∈ F[x]. When d = 0, let L0 be the
subgroup of WqF(x) generated by the forms [λ1x i , λ2x j

], where λ1, λ2 ∈ F and
i, j ∈ N.

Lemma 2.2. (i) For any polynomials p, g, h ∈ F[x] we have 〈p〉[g, ph] ∈ L0.

(ii) For d ≥1, Ld is generated by the forms 〈axε〉[1, h/ue
], where a ∈F, ε∈{0, 1},

h ∈ F[x] and u factors as a product of elements in F[x]≤d .

(iii) If f, u ∈ F[x]<d and p ∈ F[x] then 〈p f 〉[1, pg/ue
] ∈ Ld−1.

Proof. (i) The first statement follows from the identity 〈a〉[b, c] = [ab, c/a]. For
then 〈p〉[g, ph] = [pg, h], and using the biadditivity of the symbol [ , ] this can
be expressed as a sum of generators for L0.

(ii) For the second statement, since the u’s used as generators in this version are
products of elements in F[x]≤d , we can use apply partial fractions to h/ue to-
gether with the additivity of [ , ] to express 〈axε〉[1, h/ue

] as a sum of generators
of the type in specified in Definition 2.1. Conversely, given 〈 f 〉[1, h/ue

] as in
Definition 2.1, where f, u ∈ F[x]≤d , and given h ∈ F[x], we write f =

∑d−1
i=0 ai x i

with ai ∈ F and use the fundamental relation to express 〈 f 〉[1, h/ue
] in the form∑d−1

i=0 〈ai x i
〉[1, hai x i/ f ue

]. Since 〈x i
〉 = 〈xεi 〉, where εi ∈ {0, 1} and i ≡ εi (mod

2), and since hai x i/ f ue
= hai x i f e−1/( f u)e, we have a generator of the desired

type.

(iii) We apply the fundamental relation, expressing p f as
∑n−1

i=1 ai x i with ai ∈F, so
〈p f 〉[1, pg/ue

] =
∑n−1

i=1 〈ai x i
〉[1, pi x i pg/p f ue

] =
∑n−1

i=1 〈ai x i
〉[1, pi x i g/ f ue

] =∑n−1
i=1 〈ai x i

〉[1, pi x i g f e−1/( f u)e] ∈ Ld−1 by part (ii). �

In particular, by the lemma, for any λ ∈ F and h ∈ F[x], both 〈λ〉[1, h] and
〈λx〉[1, hx] lie in L0. This will be used frequently.

Lemma 2.3. Suppose that p is a monic irreducible polynomial of degree d. If
r ∈ F is a vp-unit, and if s is vp-integral, then ∂p(〈r〉[1, s]) = 0. Consequently, if
deg p = d and φ ∈ Ld−1, we have ∂p(φ)= 0.

Proof. Since r is a vp-unit we can write r = r0 + pr ′ with 0 6= r0 ∈ Fp, where r ′

is vp-integral. Next, in Fp we can write s(r0/r)= s0 + ps ′, where s0 ∈ Fp and s ′

is vp-integral in Fp. Since vp(s(pr ′/r)) > 0 and vp(ps ′) > 0, we know that both
s(pr ′/r) and ps ′ lie in ℘(Fp). Computing in Wq Fp we find that

〈r〉[1, s] = 〈r0 + pr ′
〉[1, s] = 〈r0〉[1, s(r0/r)] + 〈pr ′

〉[1, s(pr ′/r)]

= 〈r0〉[1, s0 + ps ′
] = 〈r0〉[1, s0].
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Since each of r0 and s0 lie in Fp we see 〈r〉[1, s] ∈ im(Wq Fp → Wq Fp) and
∂p(〈r〉[1, s])= 0 follows.

Now consider a generator 〈 f 〉[1, h/ue
] for Ld−1. As f, u ∈ F[x]<d , we know

that h/ue is vp-integral and f is a vp-unit, so ∂p(〈 f 〉[1, h/ue
]) = 0 and we are

done in this case. Next consider a generator [λ1x i , λ2x j
] = 〈λ1x i

〉[1, λ1λ2x i+ j
]

of L0. If p 6= x then λ1x i is a p-adic unit and λ1λ2x i+ j is vp-integral. If p = x
and i = 0, then again λ1 is an x-adic unit and λ1λ2x j is vp-integral. Otherwise if
p = x and i > 0 we know that vx(λ1λ2x i+ j ) > 0 and so λ1λ2x i+ j

∈℘(Fvx ), giving
[λ1x i , λ2x j

] = 0 ∈ Wq Fvx . This proves the lemma. �

Definition 2.4. Whenever p is a monic irreducible polynomial we define Sp to
be the subgroup of WqF(x) generated by all forms 〈r〉[1, h/ps

], where r ∈ F,
h ∈ F[x], and s ≥ 0. When p =

1
x we denote by S1

x
the subgroup generated by all

forms generated by 〈r〉[1, hx], where r ∈ F and h ∈ F[x].

We observe that WqF(x) =
⋃

∞

d=0 Ld . This is because the usual additive gen-
erators for WqF(x) are included in some Ld for large enough d. The next lemma
describes several generating sets for the Ld .

Lemma 2.5. (i) Ld =
∑

p, deg p≤d(Sp + 〈x〉Sp).

(ii) WqF(x)=
∑

p(Sp + 〈x〉Sp).

(iii) When d ≥ 1, Ld is generated by Ld−1 and Sp ∪ 〈x〉Sp, where deg p = d.

Proof. Part (i) follows from Lemma 2.2(ii) and partial fractions. Part (ii) follows
from (i) since WqF(x) =

⋃
∞

d=0 Ld . Part (iii) follows using partial fractions and
(i). �

We next establish a result from linear algebra needed to relate 〈x〉Sp and 〈p〉Sp.
For p = xd

+ p1xd−1
+ · · · + pd−1x + pd we express each pi as

∑
K∈T t K p2

i,K ,
where pi,J ∈ F. For each K ∈ T we define PK ∈ F(x)p by

(4) PK :=

t K (p2
1,K xd−1 + p2

3,K xd−3 + · · · + p2
d−1,K x) when d is even,

t K (xd + p2
2,K xd−2 + · · · + p2

d−1,K x) when d is odd.

Next let M be the 2n
× 2n-matrix with entries indexed by the group T and with

(I, J )-th entry PI+J . We show that M is invertible:

Lemma 2.6. Assume T is an elementary abelian 2-group with 2n elements and PK

are elements of a field of characteristic 2 indexed by K ∈ T . Suppose that M is the
(2n

×2n)-matrix with (I, J )-th entry PI+J . If
∑

K∈T PK 6= 0, then M is invertible.

Proof. Let Perm T denote the set of permutations of T . We know that

det M =

∑
σ∈Perm T

( ∏
τ∈T

Pτ+σ(τ)

)
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For each s ∈ T we define σs ∈ Perm T by σs(τ )= τ + s. In this case τ +σs(τ )= s
for all τ and we have

∏
τ∈T Pτ+σs(τ ) = P2n

s .
Now let T act on Perm T via σ ε(τ )= σ(τ+ε)+ε for all ε ∈ T . (That this is an

action is readily checked using the fact that T is abelian.) If σ ε = σ for all ε ∈ T ,
then σ(ε)= σ ε(ε)= σ(ε+ ε)+ ε = σ(0)+ ε for all ε, and we see that σ = σσ(0)

in this case. In particular, if σ 6= σs for some s ∈ T then the orbit of σ under T has
more than one element. We next note that for any σ ∈ Perm T and ε ∈ T we have∏

τ∈T

Pτ+σ ε(τ ) =
∏
τ∈T

Pτ+σ(τ+ε)+ε =

∏
(τ+ε)∈T

P(τ+ε)+σ(τ+ε) =
∏
τ∈T

Pτ+σ(τ),

and consequently for any σ different from the σs we have∑
θ∈Orbit(σ )

( ∏
τ∈T

Pτ+θ(τ )

)
= card(Orbit(σ ))

∏
τ∈T

Pτ+σ ε(τ ) = 0,

since card(Orbit(σ )) is a proper power of 2. Decomposing the sum in the determi-
nant over the orbits in Perm T shows that

det M =

∑
K∈T

P2n

K =

( ∑
K∈T

PK

)2n

.

If M fails to be invertible, we have det M = 0, which implies
∑

K∈T PK = 0,
contrary to our hypothesis. The lemma is proved. �

Corollary 2.7. If p is irreducible and separable and if the PK are defined as in (4),
then M is invertible as a matrix over F(p) := F[x]/(p).

Proof. Suppose that det M = 0. Then
∑

K∈T PK = 0. Each PK lies in t K xF(x)2p,
and since the t1, t2, . . . , tn remain 2-independent in F(x)p (because p is separable),
we see that each PK = 0. Now, since 1, x, x2, . . . xd−1 are linearly independent
over F, we find for all K that each pi,K vanishes, where i is odd when d is even
and even when d is odd. So the same follows for the pi . The first case contradicts
the separability of p and the second case contradicts the irreducibility of p. �

We are now able to apply Corollary 2.7 and relate Sp, 〈x〉Sp and 〈p〉Sp. When-
ever p is not separable we choose i so that ti ∈ F(p)2(t1, . . . , ti−1) and then we
denote by S̃p the subgroup of Sp +〈x〉Sp generated by the elements 〈t I

〉[1, h/pe
],

where t I is a product of t1, t2, . . . t j−1, t j+1, . . . , tn, x .

Proposition 2.8. (i) For all p, we have Sp + 〈p〉Sp ⊆ Sp + 〈x〉Sp.

(ii) If p is separable, Sp + L0 + 〈x〉Sp = Sp + L0 + 〈p〉Sp.

(iii) If p is not separable, Sp + L0 + 〈x〉Sp = S̃p + L0 + 〈p〉S̃p.



QUADRATIC FORMS OVER k(x) WHEN char k = 2 33

Proof. Part (i) essentially follows from Lemma 2.2(ii), but we give a direct calcu-
lation here because it is necessary for part (ii). Consider 〈p〉[1, h/ps

] ∈ 〈p〉Sp and
apply the fundamental relation in Wq to obtain

〈p〉

[
1,

h
ps

]
=

d∑
j=0

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
.

Whenever d − j is even, we have

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
= 〈p j 〉

[
1,

p j xd−j h
ps+1

]
∈ Sp,

from which we find, modulo Sp,

〈p〉

[
1,

h
ps

]
≡

∑
d−j odd

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
≡

∑
d−j odd

( ∑
K∈T

〈t K x〉

[
1,

t K p2
j,K xd−j h

ps+1

])

≡

∑
K∈T

〈t K x〉

[
1,

t K
(∑

d−j odd p2
j,K xd−j

)
h

ps+1

]
≡

∑
K∈T

〈t K x〉

[
1,

PK h
ps+1

]
,

where the second equivalence uses p j =
∑

K∈T t K p2
j,K , the third changes order of

summation, and the fourth uses the definition of the PK . Part (i) follows from this.
For (ii) we consider the problem of reversing this process when p is separable.

Namely, we must express an element 〈x〉[1, g/ps+1
] ∈ WqF(x) as a sum, modulo

Sp + L0, of elements of the form
∑

J 〈t
J p〉[1, h J/ps

]. For this we denote by Sp,s

the subgroup of Sp generated by the generators of Sp, where the exponent of p
doesn’t exceed s. We can then proceed by backwards induction on s and calculate
in F(x)vp . Multiplying the equivalence in the previous paragraph by 〈t J

〉 gives a
system of 2n such equivalences, one for each J ∈ T :

〈t J p〉

[
1,

h J

ps

]
≡

∑
K∈T

〈t K+J x〉

[
1,

PK h J

ps+1

]
(mod Sp).

Taking the sum gives, again modulo Sp,∑
J

〈t J p〉

[
1,

h J

ps

]
≡

∑
J

∑
K∈T

〈t K+J x〉

[
1,

PK h J

ps+1

]
≡

∑
L

〈t L x〉

[
1,

∑
J PL+J h J

ps+1

]
,

where in the second sum the variable L is introduced to collect terms with like
K + J . Since we want the latter sum to equal 〈x〉[1, g/ps+1

], we obtain for the h J

the equations ∑
J

PJ h J = g and
∑

J

PL+J h J = 0 when L 6= O
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in F(x)p. In matrix form this system is

M · (h J )=
(
g 0 · · · 0)T ,

where (h J )means the column with 2n entries aligned with corresponding entries of
M , whose (I, J )-th entry is PI+J . Since M is invertible over F(x)p by Corollary
2.7, we can find elements h J ∈ F[x]<deg p such that

〈x〉

[
1,

g
ps+1

]
≡

∑
J

〈t J p〉

[
1,

h J

ps

]
(mod Sp + 〈x〉Sp,s).

By backwards induction on s we can reduce to s = 0. When s = 0, the error terms
are sums

∑
J 〈t

J p〉[1, h J p] lying in L0 by Lemma 2.2(i). The result in (ii) follows.
For part (iii) we write p =

∑
j p j xd−j and note that since p is not separable, each

d−j is even, and we have a 2-dependence between t1, t2, . . . tn−1, tn, p. Reordering
t1, t2, . . . , tn we can assume that tn ∈ F(x)2(t1, t2, . . . , tn−1, p). This relabeling
guarantees that t1, t2, . . . tn−1, x, p is a basis for F(x) as well as F(x)p. We express
each p j as p0, j + p1, j tn , where pi, j ∈ F(x)2(t1, t2, . . . , tn−1), and further express
each p1, j as

∑
J t J p2

1, j,J ; here each Jn vanishes. Then we can form

P̃K = t K (p2
1,0,K xd

+ p2
1,2,K xd−2

+ · · · + p2
1,d,K )

and note that
∑

K P̃K = ∂p/∂tn 6= 0 ∈ F2(t1, t2, . . . , tn−1)[x2
].

We can write

〈p〉

[
1,

h
pe

]
=

∑
i

〈pi 〉

[
1,

pi xd−i h
pe+1

]
=

∑
i

〈p0,i + p1,i tn〉
[
1,

pi xd−i h
pe+1

]
,

and so, modulo S̃p,

〈p〉

[
1,

h
pe

]
≡

∑
i

〈p1,i tn〉
[
1,

p1,i tnxd−i h
pe+1

]
≡

∑
i,K

〈t K tn〉
[
1,

t K p2
1,i,K tnxd−i h

pe+1

]
≡

∑
K

〈t K tn〉
[
1,

P̃K tnh
pe+1

]
.

What we must do is reverse this process and solve, modulo S̃p+L0, the congruence

〈tn〉
[
1,

g
pe+1

]
≡

∑
L

〈t L p〉

[
1,

hL

pe

]
≡

∑
K ,L

〈t L+K tn〉
[
1,

P̃K tnhL

pe+1

]
≡

∑
J

〈t J tn〉
[
1,

∑
L P̃J+L tnhL

pe+1

]
,
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for appropriate polynomials hL . As in part (ii) it suffices to reduce the exponent
e by 1. This system is equivalent to solving the system in 2n−1 variables in F(p),
g =

∑
L P̃L tnhL and 0 =

∑
L P̃K+L tnhL , where K 6= O . This can be written in

matrix form as
M̃ · (hL)=

(
g 0 · · · 0)T ,

for the hL ∈ F(p). Here M̃ is the matrix with (K , L)-th entry P̃K+L tn ∈ F(p).
However, we have noted that

∑
K P̃K 6= 0, so the invertibility of M̃ follows from

Lemma 2.6. This gives what is needed. �

3. The maps ∂ p and their splitting

From now on, unless stated otherwise, p denotes either a monic irreducible poly-
nomial in F[x] or 1

x . Then vp denotes the associated valuation and we continue
to use Fp to denote the completion of F = F(x) at vp. We use Fp to denote the
completion of F = F(x) at vp. We continue to assume that F has a finite 2-basis
t1, t2, . . . , tn . To apply the results from Section 1 we will need to specify a 2-basis
for F(p) := F[x]/(p) = Fp. So in this section we will have to be careful and
keep track of separability conditions. We recall a well-known result, whose proof
is embedded in the subsequent discussion, where we set up notation.

Lemma 3.1. A 2-basis for F is a 2-basis for F(p) if and only if p is separable.

Since t1, t2, . . . , tn is the fixed 2-basis for F, t1, t2, . . . , tn, x is a 2-basis for
F = F(x). We express the monic irreducible p ∈ F[x] as

p =

∑
I∈T

t I (pI (x))2,

where pI (x) ∈ F[x] and the multiindices t I refer to the 2-basis for F (which
includes x). Since Fp ∼= F[x]/(p), we find that t1, t2, . . . , tn remain 2-independent
in Fp if and only if for some I with In+1 6= 0 we also have pI (x) 6= 0. But this
happens if and only if p(x) has a nonzero summand of odd degree, i.e., if and only
if p is separable. Now, when p is separable, if In+1 6= 0 for some pI (x) 6= 0 we
take t1, t2, . . . , tn as our 2-basis for Fp ⊂ Fp and then we can use t1, t2, . . . , tn, p
as our 2-basis for Fp.

Otherwise, when p is not separable, we choose j maximal with I j 6= 0 for some
pI (x) 6= 0 and we note that in this case t1, t2, . . . , t j−1, t j+1, . . . , tn, x is a 2-basis
for Fp. We then take t1, t2, . . . , t j−1, t j+1, . . . , tn, x, p as our 2-basis for Fp. In
this case we use the lifting to t1, t2, . . . , t j−1, t j+1, . . . , tn−1, x ∈ F to define the
embedding Fp ↪→ Fp needed to define ∂p : Wq F → W1 Fp.

We will need to keep track of products of elements of these various 2-bases.
This will be accomplished by using three different notations for multiindex sets:
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• We use {t I
| I ∈ T } to denote products of elements of the original 2-basis for F.

• We use {t I
| I ∈ Tp} to denote products of elements of the residue 2-basis of

F(p) as described above (which vary depending upon whether p is separable).

• We use {t I
| I ∈ T̃p} to denote products of elements of the local 2-basis of Fp as

described above.

In our study of Wq F we will need to understand how Wq F elements map to
elements of W1 Fp, so we need to represent W1 Fp classes in a special way. The
next result is a consequence of Theorem 1.3. Whenever s ∈ F[x] we denote by
s ∈ F[x]<deg p the unique polynomial with s ≡ s (mod p). When applying Theorem
1.3, the Teichmüller lifting used is the one associated with the 2-basis T̃p.

Theorem 3.2. (i) If p is monic and irreducible, every class φ in W1 Fp can be
expressed uniquely as

φ = ψ ⊥ 〈p〉φ2,

where
ψ =

∑
I∈T̃p

〈t I
〉

[
1,

∑
J,J+I>I

t J u I,J

]
,

u I,J =
∑

r≥1 s2
I,J,r/p2r with sI,J,r ∈ F[x]< deg p and φ2 ∈ WqvFp, and where sI,J,r

and the Witt classes of ψ in Wq Fp and φ2 in WqvFp are uniquely determined by
the class of φ.

(ii) Every class φ in W1 F1
x

can be expressed as

φ = ψ ⊥

〈1
x

〉
φ2,

where ψ =
∑

I∈T̃1
x
〈t I

〉
[
1,

∑
J,J+I>I t J u2

I,J

]
with u I,J ∈ x · F[x] and φ2 ∈ WqF,

and where the Witt classes of ψ in WFp and φ2 in WqF are uniquely determined
by the class of φ. In this expression we note that

∑
J,J+I>I t J u2

I,J ∈ x · F[x].

Proof. In (i), since Fp = F(p), applying valuation theory we conclude that every
element f ∈ Fp ⊂ Fp can be expressed as f1 + f2, where f1 ∈ F[x]< deg p, f2 ∈ Fp,
and vp( f2) > 0. Consequently, any element r ∈ R = F(x)p[p−1

] can be expressed
in the form r = s1 + s2, where s1 ∈ F[x]

2
< deg p[p−1

] and vp(s2) > 0. Part (i)
now follows, interpreting Theorem 1.3 in this setting and making the appropriate
substitutions. Part (ii) is a direct consequence of Theorem 1.3, since there is no
ambiguity about viewing the residue field as a subfield of F1

x
. �

We next digress slightly and give a generator-relation structure for the Witt
group. A very similar characterization was found by Arason [2003].
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Theorem 3.3. For any field F of characteristic 2 the Witt group Wq F is isomorphic
to (F+

⊗ F+)/W, where W is the subgroup generated by

(i) a ⊗ b for ab ∈ ℘(F),

(ii) a ⊗ b + b ⊗ a for all a, b ∈ F , and

(iii) a ⊗ b + c ⊗ ab/c whenever c ∈ DF [a, b].

Proof. We show that the epimorphism F+
⊗ F+

→ Wq F defined by a⊗b 7→ [a, b]

has kernel W. First we note that the generators of W map to trivial elements of
Wq F . For type (i) generators, the Arf invariant of ax2

+ xy + by2 is ab, and
therefore [a, b] = 0 ∈ Wq F if and only if ab ∈ ℘(F). Type (ii) generators vanish
by the symmetry of [a, b]. For type (iii) generators, since c ∈ DF [a, b], we know
the form [a, b] ⊥ 〈c〉[1, ab] = 〈a, c〉[1, ab] is isotropic, hence hyperbolic. So
[a, b] = 〈c〉[1, ab] = [c, ab/c], which is what we want.

We next note that whenever [a, b] = [c, d] ∈ Wq F , and since c ∈ DF [a, b], we
find [a, b]= [c, ab/c]= [c, d], the later equality being equivalent to [c, ab/c+d]=

0. By our observations about (i) this is equivalent to ab + cd ∈ ℘(F). This shows
that all equalities [a, b] = [c, d] ∈ Wq F are a consequence of multilinearity and
the relations (i), (ii), and (iii).

Next, given an isomorphism q = [a1, b1] ⊥ ψ ∼= [c, d] ⊥ χ , we must show that
it follows from the relations defining W. For this we view each representation q
as having the same underlying vector space V = F2n and we let v,w ∈ V denote
the first two symplectic basis elements in the second expression. Hence q(v)= c,
q(w)= d and the inner product (v,w)q equals 1. We suppose ψ = [a2, b2] ⊥ · · · ⊥

[an, bn]. If we view v ∈ V according to the decomposition given by the first form,
we can express c as a sum c1 +c2 +· · ·+cn , where ci ∈ DF [ai , bi ]. Applying (iii)
at each summand, we can write [a1, b1] ⊥ [a2, b2] ⊥ · · · ⊥ [an, bn] ∼= [c1, e1] ⊥

[c2, e2] ⊥ · · · ⊥ [cn, en] for ei = ai bi/ci ∈ F . Using the bilinearity of the symbol
[ , ], and since c = c1 +c2 +· · ·+cn , we have [c1, e1] ⊥ [c2, e2] ⊥ · · · ⊥ [cn, en] ∼=

[c, e1] ⊥ [c2, e1 + e2] ⊥ · · · ⊥ [cn, e1 + en]. If v1 = v,w1, v2, w2, . . . , vn, wn

is the symplectic basis corresponding to this new decomposition q = [c, e1] ⊥

[c2, e1 +e2] ⊥ · · · ⊥ [cn, e1 +en], we can express w as z1 + z2 +· · ·+ zn with each
zi a linear combination of vi andwi . This means that if di =q(zi ) for 1≤ i ≤n, then
d =q(w)=d1+d2+· · ·+dn . Since (v,w)q =1 while (v, zi )q =0 for 2≤ i ≤n, we
see that (v, z1)q = 1. Since span(v,w1) = span(v, z1), restricting our attention to
this subspace we see that in fact [c, e1] ∼= [c, d1]. We now apply relation (iii) to the
other summands to obtain [ci , e1 +ei ] ∼= [c′

i , di ] for c′

i = ci (e1 +ei )/di ∈ F . Using
bilinearity again we find [c, e1] ⊥ [c2, e1 + e2] ⊥ · · · ⊥ [cn, e1 + en] ∼= [c, d1] ⊥

[c′

2, d2] ⊥ · · · ⊥ [c′
n, dn] ∼= [c, d] ⊥ [c + c′

2, d2] ⊥ · · · ⊥ [c + c′
n, dn]. Altogether,

using only bilinearity and the rules (i), (ii), (iii), we have shown that our original
[a1, b1] ⊥ ψ is Witt equivalent to [c, d] ⊥ ψ ′ for some ψ ′. By Witt cancellation
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we now have ψ ′ ∼= χ . By induction on n we can reduce to the case [a, b] ∼= [c, d]

already considered. This proves the theorem. �

We now define the Milnor splittings.

Lemma and Definition 3.4. Suppose p is a monic irreducible polynomial of de-
gree d ≥ 1 and that φ ∈ W1 Fp is of the form

φ = ψ ⊥ 〈p〉φ2,

where
ψ =

∑
I∈Tp

〈t I
〉

[
1,

∑
J,J+I>I

t J r2
I,J

]
with r I,J ∈ p−1F[x]< deg p[p−1

] and φ2 ∈ WqvFp. Here the t I depend upon the 2-
basis for F(x)p, which has last element p and will include x in the case where p is
not separable. We further write φ2 =

∑
i [ri (x), si (x)], where x denotes x modulo

p(x) and the ri (x), si (x) lie in F[x]<deg p. Then the map τp defined by

τp(φ)= ψ ⊥ 〈p〉

(∑
i

[ri (x), si (x)]
)
(mod Ld−1) ∈ Ld/Ld−1

is a well defined homomorphism τp : W1 Fp → Ld/Ld−1.

Proof. According to Theorem 3.2(i) every class φ in W1 Fp can be expressed as
stated, and the Witt classes of ψ ∈ Wq Fp and φ2 ∈ Wq Fp are uniquely deter-
mined. Further, the Witt class of ψ uniquely determines the rI,J as elements of
p−1F[x]< deg p[p−1

].
The expression of φ2 as

∑
i [ri (x), si (x)] need not be unique so we suppose

also that φ2 =
∑

j [u j (x), v j (x)] ∈ WqF(p), where each u j (x) and v j (x) lies in
F[x]<deg p. By Theorem 3.3, using the biadditivity of the symbol [ , ] we have the
expansion ∑

i

[ri (x), si (x)] +

∑
j

[u j (x), v j (x)] =

∑
k

[ak(x), bk(x)],

where the latter sum is a sum of relations of the form given in Theorem 3.3(i),
(ii) or (iii). Since we only used the biadditivity of [ , ] in the expansion, we
know that each ak(x), bk(x) ∈ F[x]<deg p and we also have

∑
i [ri (x), si (x)] +∑

j [u j (x), v j (x)] =
∑

k[ak(x), bk(x)] ∈ WqF(x). Checking for each of the types
of relations given in Theorem 3.3 we will show that 〈p〉 times this sum lies in Ld−1.

Suppose first we have a summand [a, b] with a, b ∈ F[x]<deg p, where ab ∈

℘(F(p)) . Then we can write ab = ℘(z)+ pg in F[x] and we find that [a, b] =

〈a〉[1, ab] = 〈a〉[1, ℘ (z)+ pg] = 〈a〉[1, pg] in Wq F . By Lemma 2.2(iii) the form
〈p〉〈a〉[1, pg] lies in Ld−1 since a ∈ F[x]<deg p. Next, any pair in the sum of the
form [a, b] + [b, a] is zero in Wq F as well. Finally, suppose we have a pair in
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the sum [a, b] + [c, d], where c ∈ DF(p)[a, b] and d = ab/c where a, b, c, d ∈

F[x]<deg p. Then we can write c = ar2
+ rs + bs2

+ pg and ab = cd + ph in
F[x] where r, s ∈ F[x]<deg p also. Since (s/r + bs2/r2)b ∈ ℘(F), we obtain
[s/r + bs2/r2, b] = 0. Rewriting the expression for c, we find a = c/r2

+ s/r +

bs2/r2
+ pg/r2, so in Wq F we have

[a, b] + [c, d] = [c/r2, b] + [s/r + bs2/r2, b] + [pg/r2, b] + [c, d]

= 〈c〉[1/r2, bc] + [pg/r2, b] + 〈c〉[1, cd]

= 〈c〉[1, bc/r2
] + 〈c〉[1, cd] + [pg/r2, b].

Next, substituting bc/r2
= ab + bs/r + b2s2/r2

+ bpg/r2 and cd = ab + ph we
find

[a,b]+ [c,d] = 〈c〉[1,ab+bs/r +b2s2/r2
+ pgb/r2

]+〈c〉[1,ab+ ph]+[pg/r2,b]

= 〈c〉[1, pgb/r2
+ ph]+[pg/r2,b],

since bs/r+b2s2/r2
∈℘(F). Applying Lemma 2.2(iii) to each of these latter forms

we find that 〈p〉([a, b] + [c, d]) lies in Ld−1. It follows that τp is well defined. It
is clear from the defining formula that τp is additive in ψ , and the proof that the
lift of φ2 is well defined shows that τp is additive in that term as well. Hence τp is
a homomorphism. �

Our goal is to prove the surjectivity of the Milnor splitting. This requires the
information provided in Proposition 2.8 and is given next.

Theorem 3.5. The map
⊕
τp :

⊕
p, deg p=d W1 F(x)vp → Ld/Ld−1 is an isomor-

phism for d ≥ 1.

Proof. It suffices to show the map is surjective, since for any p the composite
W1 F(x)vp → Ld/Ld−1 → W1 F(x)vp is the identity. (Here, the first map is τp

and the second map is ∂p, which vanishes on Ld−1 by Lemma 2.3.) By the
definition of τp, every element ψ =

∑
I∈Tp

〈t I
〉
[
1,

∑
J,J+I>I t J r2

I,J

]
with rI,J ∈

p−1F[x]< deg p[p−1
] lies in the image. When p is separable, these elements gen-

erate Sp + 〈p〉Sp so we have Sp + 〈p〉Sp ⊆ im(τp), and when p is not separable,
these elements generate S̃p + 〈p〉S̃p and we have S̃p + 〈p〉S̃p ⊆ im(τp). Further,
if p is separable, then Sp + 〈p〉Sp + L0 = Sp + 〈x〉Sp + L0 by Proposition 2.8(ii)
and in case p is not separable we have S̃p + 〈p〉S̃p + L0 = Sp + 〈x〉Sp + L0 by
Proposition 2.8(iii). However, Ld is generated by Sp ∪〈x〉Sp for p with deg p = d
together with Ld−1 by Lemma 2.5. From this the theorem is proved. �

The definition of L0 combined with Theorem 3.2(ii) gives:

Theorem 3.6. There is an exact sequence

0 → WqF → L0 → W1 F1
x
→ WqF → 0,
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where the first two maps are induced by inclusion and the last map is φ 7→ φ2,
where φ2 is as given in Theorem 3.2(ii).

Proof. Since L0 is generated by the forms [λ1x i , λ2x j
] = 〈λ1x i

〉[1, λ1λ2x i+ j
],

applying the relations in Wq F we see that every element φ ∈ L0 can be expressed
as φ=φ1 ⊥ψ , where φ1 ∈ WqF andψ=

∑
I+J>I 〈t

I
〉[1, t J r2

I,J ] with rI,J ∈ x ·F[x].
Moreover, the expression ofψ as such a sum is unique, according to the local theory
at the v1

x
-adic valuation as given in Theorem 3.2(ii). This means that the natural

map from L0 to W1 F1
x

has kernel WqF and cokernel the elements in 〈
1
x 〉WqF. The

result follows. �

4. The transfer maps s∗
p

We continue to use the 2-bases for F(p) and F(x)p defined in the discussion fol-
lowing Lemma 3.1, as well as the notation T , Tp and T̃p. When p fails to be
separable and I ∈ Tp, we denote by Ix the entry corresponding to the exponent
of x (so x occurs in t I if and only if Ix = 1.) In the next definition, we define
subgroups Sp,r of Sp + 〈p〉Sp, for each r ≥ 1. We include p =

1
x in our list. We

set d = deg p and d = 1 when p =
1
x . As in the last section, when considering

elements of Sp of the form 〈t I
〉[1, h/pr

] for h ∈ F[x], we write h ∈ F[x]<deg p for
the unique element with h ≡ h (mod p).

Definition 4.1. (i) Suppose p is separable or is 1
x . We define Sp,r ⊂ Sp + 〈p〉Sp

as the subgroup generated by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , r is even, and where I + J > I .

(ii) Suppose p is not separable. We define Sp,r ⊂ S̃p + 〈p〉S̃p as the subgroup
generated by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , r is even, and where I + J > I .
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(iii) Suppose p is not separable. We define S0
p,r ⊂ Sp,r as the subgroup generated

by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where Ix = 0, I, J ∈ Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where Ix = 0, I, J ∈ Tp, r is even, sI,J ∈ F[x]<d , and where I + J > I .

(iv) We define Up :=
∑

r≥1 Sp,r for all p and U 0
p :=

∑
r≥1 S0

p,r when p is not
separable.

The definitions in (i) and (ii) are formally the same, except that the Tp’s differ
according to whether p is separable or not, which also accounts for using Sp or
S̃p. In part (iii) the listed elements are a subcollection of those listed in (ii), and
are precisely those without an x in the t I . The reason for the restrictions on I , J , r
in the definition will become clear in the proof of the next lemma, where we apply
Theorem 3.2.

Lemma 4.2. (i) For each p, Sp + 〈p〉Sp ⊆ Up + L0 + 〈p〉L0.

(ii) The group
Up =

⊕
r≥1

Sp,r ⊂ Sp + 〈p〉Sp

is a direct sum.

(iii) Let the image of this group in W1 Fp also be denoted by Up. Then

W1 Fp/Up ∼= 〈p〉 · WqF(p).

Thus every element in W1 Fp/Up can be represented by an element of 〈p〉L0.

Proof. (i) This follows from the additive property of the symbol [1, a], expanding
elements of Sp into sums of Sp,r elements one power of p at a time, leaving an
element of the form [1, g] where g ∈ F[x]. The last summands lie in L0.

(ii) The summands from ψ in Theorem 3.2 can be uniquely expressed as a sum of
elements of the form

〈t I
〉[1, t J s2

I,J,r/p2r
],

where I, J ∈ T̃p satisfy I + J > I and sI,J,r ∈ F[x]<deg p. Given this, we claim
that the generators identified in Definition 4.1 are equivalent to those required to
apply Theorem 3.2. There are four cases, depending upon whether I, J ∈ Tp or
not. In case both I, J ∈ Tp , then the condition that I + J > I is the same for Tp

elements as for T̃p elements, and this is recorded in Definition 4.1 in the first type
where r is even. In case I ∈ Tp but J 6∈ Tp, then I + J > I is automatic and this
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corresponds to the first type in Definition 4.1 where r is odd. In case, I 6∈ Tp but
J ∈ Tp then I + J > I in T̃p is equivalent to I ′

+ J > I ′ in Tp where I ′ is the same
as I except the p component is deleted, and this is the case of the second type of
generator in Definition 4.1. Finally, if both I, J 6∈ Tp, then I + J > I is impossible
as elements of T̃p, and this case is ignored by Definition 4.1. So we are ready to
apply Theorem 3.2.

First, every sum of elements of Sp,r can be represented as

∑
r≥1

∑
I+J>I

〈t I
〉

[
1,

t J s2
I,J,r

pr

]
+

∑
r≥2, even

∑
I+J>I

〈t I p〉

[
1,

t J s ′2
I,J,r

pr

]
,

where sI,J,r , s ′
I,J,r lie in F[x]<d and as elements of Tp we have I + J > I in each

summand. These expressions can be rewritten as

∑
I+J>I

〈t I
〉

[
1,

∑
r≥1

t J s2
I,J,r

pr

]
+

∑
I+J>I

〈t I p〉

[
1,

∑
r≥2, even

t J s ′2
I,J,r

pr

]
.

Now, in Theorem 3.2 the 2-basis T̂p is used, which is in this case consists of the
elements of Tp and p · Tp. So each of the sums in the additive slots of the last
expression, ∑

r≥1

t J s2
I,J,r

pr and
∑

r≥2, even

t J s ′2
I,J,r

pr ,

correspond uniquely to elements listed as t J s2
I,J,r in the statement of Theorem

3.2(i). The directness of the sum is follows. The statement in (iii) is also a conse-
quence of Theorem 3.2, proving the lemma. �

We are now able to define the transfer maps s∗
p.

Definition 4.3. Forψ ∈ W1 Fp we define θp(ψ)∈ WqF(p) to be the unique element
of WqvFp for which ψ ≡ 〈p〉θp(ψ) (mod Up). We denote by t∗

p : F(p)→ F the
Scharlau transfer associated to the linear functional tp for which tp(xd−1)= 1 but
tp(x i ) = 0 when 0 ≤ i < d − 1. Finally, whenever f ∈ F[x] is a polynomial we
denote by fc its constant term.

(i) Suppose p is separable or 1
x . Then we define s∗

p(ψ) := t∗
p(θp(ψ)) ∈ WqF.

(ii) If p is not separable we express ψ − θp(ψ) modulo U 0
p as

∑
Ix=1,r

〈t I
〉

[
1,

t J s2
I,J,r

pr

]
+

∑
Ix=1,r

〈(t I )p〉

[
1,

t J s ′2
I,J,r

pr

]
.
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Then we define s∗
p(ψ) ∈∈ WqF by

s∗

p(ψ) := t∗

p(θp(ψ))+
∑

Ix=1,r

〈t I /x〉

[
1,
(t J s2

I,J,r )c

pr
c

]
+

∑
Ix=1,r

〈t I pc/x〉

[
1,
(t J s ′2

I,J,r )c

pr
c

]
.

(Note that t I /x ∈ F since Ix = 1.)

To prove reciprocity, we must check it for each 〈p〉L0 and each Up. This will
be done in the next two sections.

5. The reciprocity law for L0 + 〈 p〉L0

In this section we prove the reciprocity law in a critical special case. We assume
p = xd

+ p1xd−1
+ · · · + pd ∈ F[x] is a monic irreducible polynomial of degree

d = 2e when d is even, and of degree d = 2e + 1 when d is odd. Since we will be
calculating in both F[x] and F[x]/(p) we will use x to represent the variable in
F[x] as well as its residue in F[x]/(p), since no confusion will arise. For h ∈{0, 1},
λ1, λ2 ∈ F, and k ≥ 0 we will compute the transfer t∗

p([λ1xh, λ2xk
]) = φ ∈ WqF

described in Definition 4.3. We note that in case h′>1 we can write h′
=h+2h0 for

h ∈ {0, 1} and as [λ1xh′

, λ2xk
] = 〈λ1xh′

〉[1, λ1λ2xk+h′

] = 〈λ1xh
〉[1, λ1λ2xk+h′

] =

[λ1xh, λ2xk+h′
−h

] we see there is no loss of generality in our restriction on h.
For 0 ≤ j ≤ e we define the polynomials f j = xe+ j

+ p1xe+ j−1
+· · ·+ p2 j xe−j

and g j = xe+ j
+ p1xe+ j−1

+· · ·+ p2 j+1xe−j−1. Thus g j = f j + p2 j+1xe−j−1. We
next define γi ∈F by expressing xd+i−1

=γi xd−1
+Gi ∈F[x]/(p)where Gi ∈F[x]

is a polynomial of degree at most d −2. Note that this means that tp(xd+i−1)= γi .
Clearly, γ0 = 1, and using the equation xd

= p1xd−1
+· · ·+ pd ∈ F(p) := F[x]/(p)

we see that γ1 = p1 and by induction for i ≥ 1,

xd+i−1
= p1xd+i−2

+ p2xd+i−3
+ · · · + pd x i−1

= (p1γi−1 p2γi−2 + · · · + piγ0)xd−1
+ p1Gi−1 p2Gi−2 + · · · + pi G0.

This shows that in general the γi satisfy the recurrence relation

γi = γi−1 p1 + γi−2 p2 + · · · γ0 pi for i ≥ 1.

In fact, this recurrence relation is the same as the relation that guarantees that, as
power series, (1 + p1 X + p2 X2

+ · · · )(1 + γ1 X + γ2 X2
+ · · · )= 1 ∈ F((X)), and

which we use below in proving Lemma 5.3.

Lemma 5.1. (i) Suppose d = 2e. We have tp( f 2
0 )= γ1 = p1 and tp(x f 2

0 )= γ2 =

p2
1 + p2. For all j with 1 ≤ j ≤ e we have tp( f 2

j )= p2 j+1, tp(x f 2
j )= p2 j+2.

For all k ≥ 0 we have tp(xk g2
0)= γk+1 + p2

1γk−1.
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(ii) Suppose d = 2e + 1. We have tp( f 2
0 ) = γ0 = 1 and tp(x f 2

0 ) = γ1 = p1. For
all j with 1 ≤ j ≤ e we have tp( f 2

j )= p2 j , tp(x f 2
j )= p2 j+1. For all k ≥ 0 we

have and tp(xk g2
0)= γk + p2

1γk−2.

Proof. Since f0 = xe we have t (xh f 2
0 ) = t (xh+2e) so when d = 2e we find

t (xh f 2
0 ) = γh+1 and when d = 2e + 1 we find t (xh f 2

0 ) = γh as required. When
j > 0 and d = 2e we have in F(p)

f 2
j = (xe+ j

+ p1xe+ j−1
+ · · · + p2 j xe−j )2

= (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )(x2 j
+ p1x2 j−1

+ · · · + p2 j )

= (p2 j+1xd−2 j−1
+ · · · + pd)(x2 j

+ p1x2 j−1
+ · · · + p2 j )

= p2 j+1xd−1
+ (p2 j+1 p1 + p2 j+2)xd−2

+ · · · + pd p2 j .

We find that tp( f 2
j ) = tp(p2 j+1xd−1) = p2 j+1γ0 = p2 j+1 and that tp(x f 2

j ) =

tp(p2 j+1xd
+ (p2 j+1 p1 + p2 j+2)xd−1)= p2 j+1γ1 + (p2 j+1 p1 + p2 j+2)γ0 = p2 j+2

as γ0 = 1 and γ1 = p1.
When j > 0 and d = 2e + 1 we have

f 2
j = (xe+ j

+ p1xe+ j−1
+ · · · + p2 j xe−j )2

= (x2e+1
+ p1x2e

+ · · · + p2 j x2e−2 j+1)(x2 j−1
+ p1x2 j−2

+ · · · + p2 j−1)

+ (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )p2 j

= (p2 j+1xd−2 j−1
+ · · · + pd)(x2 j−1

+ p1x2 j−2
+ · · · + p2 j−1)

+ (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )p2 j

= p2 j xd−1
+ (p2 j+1 + p1 p2 j )xd−2

+ · · · + pd p2 j−1.

So we find tp( f 2
j ) = p2 j and tp(x f 2

j ) = p2 jγ1 + (p2 j p1 + p2 j+1)γ0 = p2 j+1, as
γ0 = 1 and γ1 = p1.

Finally, as g0 = xe
+p1xe−1, we find that xk g2

0 = x2e+k
+p2

1x2e+k−2 and therefore
tp(xk g2

0)=γk+1+p2
1γk−1 when d =2e and tp(xk g2

0)=γk+p2
1γk−2 when d =2e+1.

This proves the lemma. �

The next lemma calculates the transfers.

Lemma 5.2. Let λ1, λ2 ∈ F, h ∈ {0, 1}, and k ≥ 0. When d = 2e, the transfer is
given by

t∗

p([λ1xh, λ2xk
])= [λ1h, λ2(γk+1 + p2

1γk−1)] +

e−1∑
i=1

[λ1 p2(e−i)+h+1, λ2γk+2i−d−1]

+ [λ1γh+1, λ2γk−1]
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and when d = 2e + 1 by

t∗

p([λ1xh, λ2xk
])=

e∑
i=0

[λ1 p2(e−i)+h, λ2γk+2i−d+1].

Proof. We first give a symplectic basis for t∗
p([λ1xh, λ2xk

]). For (r, s)∈F[x]/(p)×
F[x]/(p), applying the quadratic form we have

t∗

p([λ1xh, λ2x j
])(r, s)= tp(λ1xhr2

+ rs + λ2x j s2).

If d = 2e is even we consider the basis

{(1, 0), (0, ge−1); (x, 0), (0, ge−2); . . . ; (xe−1, 0), (0, g0);

( fe−1, 0), (0, 1); ( fe−2, 0), (0, x); . . . ; ( f0, 0), (0, xe−1)}.

If d = 2e + 1 is odd we consider the basis

{(1, 0), (0, ge); (x, 0), (0, ge−1); . . . ; (xe−1, 0), (0, g1);

( fe, 0), (0, 1); ( fe−1, 0), (0, x); . . . ; (0, xe), ( f0, 0)}.

In each case we claim the basis is symplectic. When d = 2e, since each polynomial
x i−1 fe−i and x i−1ge−i is monic of degree d − 1 when 1 ≤ i ≤ e we see that the
inner products ((x i−1, 0), (0, ge−i )) and ((0, x i−1), ( fe−i , 0)) equal 1. Likewise,
when d = 2e + 1 each of ((x i , 0), (0, ge−i )) and ((0, x i ), ( fe−i , 0)) equal 1. Next,
whenever i + j ≤ d −2 we have ((x i , 0), (0, x j ))= 0, showing that such pairs are
always orthogonal. Since the product x i fe−j has degree i + 2e − j , when d = 2e
and i < j we have tp(x i−1 fe−j ) = 0, and when d = 2e + 1 with i < j we have
tp(x i fe−j )= 0. For i > j , when d = 2e, we have

x i−1 fe−j = x i−1(x2e−j
+ · · · + p2(e−j)x j )

= (xd
+ · · · + p2(e−j)x2 j )x i−j−1

= (p2(e−j)+1x2 j−1
+ · · · + pd)x i−j−1,

this last having degree i + j − 2 < d − 1. For i > j , when d = 2e + 1, we
have x i fe−j = x i−1(x2e−j

+ · · · + p2(e−j)x j ) = (xd
+ · · · + p2(e−j)x2 j )x i−j−1

=

(p2(e−j)+1x2 j−1
+ · · · + pd)x i−j−1, this last having degree i + j − 2 < d − 1. So

we see that the inner products (( fe−j , 0), (0, x i−1)) vanish whenever i 6= j and
d = 2e, while (( fe−j , 0), (0, x i )) vanish whenever i 6= j and d = 2e +1. This also
shows that when i 6= j the inner product ((0, ge−j ), (x i−1, 0)) vanishes as well
when d = 2e:

((0, ge−j ), (x i−1, 0))= ((0, fe−j + p2(e−j)+1x j−1), (x i−1, 0))

= tp(p2(e−j)+1x i+ j−2)= 0.

Similarly ((0, ge−j ), (x i , 0))= 0 when d = 2e + 1.
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So to check the required orthogonality we must calculate tp(gi f j ) where 0 ≤

i, j ≤ e − 1 and j = e as well as when d = 2e + 1. When d = 2e and j > i or
d = 2e + 1 and j > i + 1 we calculate

tp(gi f j )= tp((xe+i
+ · · · + p2i+1xe−i−1)(xe+ j

+ · · · + p2 j xe−j ))

= tp((x2i+1
+ · · · + p2i+1)(x2e+ j−i−1

+ · · · + p2 j x2e−j−i−1))

= tp((x2i+1
+ · · · + p2i+1)(p2 j+1x2e−j−i−2

+ · · · + pd x j−i−1))= 0,

because the latter polynomial has degree 2e + i − j −1< d −1. When d = 2e and
j ≤ i or d = 2e + 1 and i ≤ j + 1 we calculate

tp(gi f j )= tp((xe+i
+ · · · + p2i+1xe−i−1)xe−j (x2 j

+ · · · + p2 j ))

= tp((x2e+i−j
+ · · · + p2i+1x2e−i−j−1)(x2 j

+ · · · + p2 j ))

= tp((p2i+2x2e−i−j−2
+ · · · + pd x i−j )(x2 j

+ · · · + p2 j ))= 0,

because the latter polynomial has degree 2e−i + j −2< d −1. This shows that the
inner products (( fi , 0), (0, g j ))= 0 and therefore both bases listed are symplectic.

We are now able to compute the transfer t∗
p([λ1xh, λ2xk

]), where h ∈ {0, 1}.
When d = 2e, since h ≤ 1 the vectors (x i , 0) are isotropic as long as 0 ≤ i < e−1.
So we can apply the previous lemma and we only need to use the portion of the
symplectic basis that involves g0 and the f j . We find

t∗

p([λ1xh,λ2xk
])=[tp(λ1xhx2(e−1)),tp(λ2xkg2

0)]+
e∑

i=1
[tp(λ1xh f 2

e−i),tp(λ2xkx2(i−1))]

=[λ1h,λ2(γk+1 + p2
1γk−1)]

+

e−1∑
i=1

[λ1 p2(e−i)+h+1,λ2γk+2i−d−1] + [λ1γh+1,λ2γk−1],

where in this last summand we have used t (xh f 2
0 ) = γh+1. When d = 2e + 1 we

note that, since h ≤ 1, each of the vectors (x i , 0), where 0 ≤ i ≤ e−1, is isotropic.
Hence we need only consider the part of the symplectic basis involving the f j and
we find

t∗

p([λ1xh, λ2xk
])=

e∑
i=0

[tp(λ1xh f 2
e−i ), tp(λ2xk x2i )]

=

e∑
i=0

[λ1 p2(e−i)+h, λ2γk+2i−d+1],

where in the latter sum we have used γh = ph for h = 0, 1 when i = e. This proves
the lemma. �

We next have to compute ∂ 1
x
(〈p〉[λ1xh, λ2xk

])= ∂ 1
x
(〈pxh

〉[λ1, λ2xh+k
]). There

are four cases, depending upon the parity of h and d:
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Lemma 5.3.

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=


∑e−1

j=0[λ1 p2 j+1, λ2γk−2 j−1] if d is even,∑e
j=0[λ1 p2 j , λ2γk−2 j ] if d is odd;

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk+1

]))=


∑e

j=0[λ1 p2 j , λ2γk−2 j+1] if d is even,∑e
j=0[λ1 p2 j+1, λ2γk−2 j ] if d is odd.

Proof. As p = xd
+ p1xd−1

+ · · · + pd we are able to express 〈pxh
〉[1, xh+k

] as

〈xd+h
〉[1, xh+k+d p−1

] + 〈p1xd+h−1
〉[1, p1xh+k+d−1 p−1

]

+ · · · + 〈pd xh
〉[1, pd xh+k p−1

].

Since p = xd(1 + p1x−1
+ p2x−2

+ · · · pd x−d), inside the completion F(x)1
x

we
can write p−1

= x−d(1 + γ1x−1
+ γ2x−2

+ · · · ). When d + h − i is even we have
s∗

1
x
(〈pi xd+h−i

〉[λ1, λ2 pi xh+k+d−i p−1
])= 0 and when d + h − i is odd we have

s∗
1
x
(〈pi xd+h−i

〉[λ1, λ2 pi xh+k+d−i p−1
])

= s∗
1
x
(〈pi x−1

〉[λ1, λ2 pi xh+k−i (1 + γ1x−1
+ · · · )])

= 〈pi 〉[λ1, λ2 piγh+k−i ].

So when h = 0 and d is even we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))= 〈p1〉[λ1, λ2 p1γk−1] + 〈p3〉[λ1, λ2 p3γk−3]

+ · · · + 〈pd−1〉[λ1, λ2 pd−1γk−d+1]

=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j−1].

Similarly, if h = 1 and d is even we find

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk+1

]))= 〈p0〉[λ1, λ2 p0γk+1] + 〈p2〉[λ1, λ2 p2γk−1]

+ · · · + 〈pd〉[λ1, λ2 pdγk−d+1]

=

e∑
j=0

[λ1 p2 j , λ2γk−2 j+1].

Next, if h = 0 and d is odd,

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk+1

]))= 〈p0〉[λ1, λ2 p0γk] + 〈p2〉[λ1, λ2 p2γk−2]

+ · · · + 〈p2e〉[λ1, λ2 p2eγk−2e]

=

e∑
j=0

[λ1 p2 j , λ2γk−2 j ].
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Finally, if h = 1 and d is odd,

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk

]))= 〈p1〉[λ1, λ2 p1γk] + 〈p3〉[λ1, λ2 p3γk−2]

+ · · · + 〈pd−1〉[λ1, λ2 pd−1γk−d+1]

=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j ]. �

Theorem 5.4. The reciprocity law
∑

q s∗
q (∂q(φ))= 0 holds for all φ ∈ L0 +〈p〉L0.

Proof. We first consider a generator φ= [λ1x i , λ2x j
] of L0. By Lemma 2.3, ∂p(φ)

vanishes for all p 6=
1
x . When p =

1
x , Theorem 3.6 shows that s∗

1
x
(φ) = 0. So

the reciprocity law holds for elements of L0. We next note that for any generator
φ = 〈p〉[λ1xh, λ2xk

] of 〈p〉L0 we have s∗
q (∂q(φ))= 0 as long as q 6= p, 1

x . So we
must check that s∗

p(∂p(φ))= s∗
1
x
(∂ 1

x
(φ)) for all such generators.

When d = 2e and h = 0, we have by Lemma 5.2

t∗

p([λ1, λ2xk
])=

e−1∑
i=1

[λ1 p2(e−i)+1, λ2γk+2i−d−1] + [λ1γ1, λ2γk−1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j−1],

But p1 = γ1; therefore the terms in these sums match exactly, which shows that
s∗

p(∂p(〈p〉[λ1, λ2xk
]))= t∗

p([λ1, λ2xk
])= s∗

1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])) in this case.
When d = 2e and h = 1, we have by Lemma 5.2

t∗

p([λ1x, λ2xk
])= [λ1, λ2(γk+1 + p2

1γk−1)] +

e−1∑
i=1

[λ1 p2(e−i)+2, λ2γk+2i−d−1]

+ [λ1γ2, λ2γk−1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1x, λ2xk

]))=

e∑
j=0

[λ1 p2 j , λ2γk−2 j+1].

These two expressions will be equal provided we can show

[λ1, λ2(γk+1 + p2
1γk−1)] + [λ1γ2, λ2γk−1] = [λ1, λ2γk+1] + [λ1 p2, λ2γk−1]

since the summands
∑e−1

i=1 [λ1 p2(e−i)+2, λ2γk+2i−d−1] correspond exactly to the
summands

∑e
j=2[λ1 p2 j , λ2γk−2 j+1]. So we need that

[λ1, λ2 p2
1γk−1] + [λ1γ2, λ2γk−1] = [λ1 p2, λ2γk−1]
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which follows because [λ1, λ2 p2
1γk−1] = 〈p2

1〉 · [λ1 p2
1, λ2γk−1] and γ2 = p2

1 + p2.
When d = 2e + 1 and h = 0, we have by Lemma 5.2

t∗

p([λ1, λ2xk
])=

e∑
i=0

[λ1 p2(e−i), λ2γk+2i−d+1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=

e∑
j=0

[λ1 p2 j , λ2γk−2 j ],

which shows that t∗
p([λ1, λ2xk

])= s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])), since the summations are
the same apart from indexing.

When d = 2e + 1 and h = 1, we have by Lemma 5.2

t∗

p([λ1x, λ2xk
])=

e∑
i=0

[λ1 p2(e−i)+1, λ2γk+2i−d+1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1x, λ2xk

]))=

e∑
j=0

[λ1 p2 j+1, λ2γk−2 j ],

which shows that t∗
p([λ1, λ2xk

]) = s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])) again since the summa-
tions are the same. This gives the reciprocity law for 〈p〉L0. �

6. The reciprocity law and the analogue of Milnor’s theorem

We next turn to the reciprocity law for WqF(x).

Theorem 6.1. The composite Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF is zero.

Proof. According to Lemma 2.5(ii), WqF(x) =
∑

p(Sp + 〈x〉Sp). So it suffices
to check the composite vanishes on Sp + 〈x〉Sp for each p. In case p =

1
x then

S1
x
+ 〈x〉S1

x
⊂ L0 + 〈

1
x 〉L0 = L0 + 〈x〉L0. Since the reciprocity law holds for

L0 + 〈x〉L0 by Theorem 5.4, we can assume that p is monic and irreducible. By
Lemma 4.2, we know that Sp + 〈x〉Sp ⊂ Up + L0 + 〈p〉L0. By Theorem 5.4 we
know the composite vanishes on L0 + 〈p〉L0. Since Up =

∑
r Sp,r , therefore, it

suffices to verify the composite vanishes on each generator of Sp,r . If q is not one
of p, x, 1

x , we know by Lemma 2.3 that ∂p vanishes on Sp,r , so we only need to
worry about those three primes.
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We consider first the generators of Sp,r of the form φ = 〈t I
〉[1, h/pr

] ∈ Sp or
φ = 〈t I p〉[1, h/pr

] ∈ 〈p〉Sp where deg h < deg p and r ≥ 1. Since t I
∈ F we

can assume I = 0 by Frobenius reciprocity. If p 6= x then p is both an x-unit
and a 1

x -adic unit. This means vx(h/pr ) ≥ 0 and since deg h < deg p we must
have v1

x
(h/pr ) > 0. So by Lemma 2.3 we find that ∂x(φ) = ∂ 1

x
(φ) = 0 in these

cases. However by definition we know that s∗
p(∂p(φ)) = 0 for these particular

generators of Up so reciprocity is established in these cases. In case p = x then
v1

x
(h/x) > 0 so ∂x(φ) = ∂ 1

x
(φ) = 0 in this case as well. In case p is separable

we know that all generators for Up are of the form just considered so we are done
when p is separable. When p is not separable, the generators just considered are
the generators in U 0

p, so we are done in that case as well.
Finally, when p is not separable, we must consider generators of Up that don’t lie

in U 0
p. These have the form 〈t I x〉[1, h/pr

] ∈ S̃p or 〈t I px〉[1, h/pr
] ∈ 〈p〉S̃p where

deg h < deg p and r ≥ 1. Again, since t I
∈ F we can by Frobenius reciprocity as-

sume I =0. In these cases we have by Definition 4.3(ii) that s∗
x (∂x(〈x〉[1, h/pr

]))=

[1, hc/pr
c], and s∗

x (∂x(〈px〉[1, h/pr
])) = 〈pc〉[1, hc/pr

c]. Since v1
x
(h/pr ) > 0 we

have s∗
1
x
(∂ 1

x
(〈x〉[1, h/pr

])) = 0, and s∗
1
x
(∂ 1

x
(〈px〉[1, h/pr

])) = 0. By the definition
of s∗

p, we know that s∗
p(∂p(〈x〉[1, h/pr

])= [1, hc/pr
c] and s∗

p(∂p(〈px〉[1, h/pr
])=

〈p0〉[1, hc/pr
c], giving the reciprocity law in this case. �

Putting everything together gives the main result of the paper.

Theorem 6.2 (Analogue of the Milnor–Scharlau Sequence). Suppose that F is a
field of characteristic 2 and F = F(x) is a rational function field in one variable
over F. There exists a compatible collection of second residue and transfer maps
that fit into an exact sequence

0 - WqF - Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF - 0,

where the direct sum is taken over discrete valuations on F.

Proof. Everything completed previously applies when F has a finite 2-basis. In
that case Theorem 3.5 shows that

Wq F/L0 ∼=

⊕
d≥1

Ld/Ld−1 →

⊕
p

W1 Fp

is an isomorphism. Theorem 3.6 shows that

0 → WqF → L0 → W1 F1
x
→ WqF → 0

is an exact sequence. Theorem 6.1 shows we can patch the two sequences together
and obtain the result. When F does not have a finite 2-basis, the result follows
from the finite 2-basis case because any element in any group in the sequence lies
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in the same sequence defined for a finitely generated subfield of F. This proves
the theorem. �
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DISTORTION OF WREATH PRODUCTS
IN SOME FINITELY PRESENTED GROUPS

SEAN CLEARY

Wreath products such as Z o Z are not finitely presentable yet can occur as
subgroups of finitely presented groups. Here we compute the distortion of
ZoZ as a subgroup of Thompson’s group F and as a subgroup of Baumslag’s
metabelian group G. We find that Z o Z is undistorted in F but is at least
exponentially distorted in G.

1. Introduction

We consider aspects of the question of the distortion of infinitely related groups as
subgroups of finitely presented groups. Higman [1961] showed that every recur-
sively presentable group occurs as a subgroup of a finitely presented group, but it
is not clear in general what happens to the geometry of the group since this em-
bedding uses complicated algebraic methods and methods from recursive function
theory which may affect the geometry of the group severely. Ol’shanskiı̆ [1997]
constructed isometric embeddings of recursively presentable groups into finitely
presented groups using difficult methods that do not lead to easily constructed
examples. In the particular concrete cases here, we consider concrete embeddings
of one of the simplest finitely generated but not finitely presentable groups, Z o Z.
We consider two embeddings of Z oZ into finitely presented groups. The first is as
a subgroup of Thompson’s group F and the second is as subgroup of Baumslag’s
remarkable finitely presented metabelian group which contains ZoZ and thus a free
abelian subgroup of infinite rank. The distortion of the metric of Z o Z is linear in
Thompson’s group F but is at least exponential in Baumslag’s group.

2. Background

Metrics of wreath products. Two of the simplest infinite wreath products are the
lamplighter group Z2 o Z and Z o Z. Cleary and Taback [2005] analyzed aspects of
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the metric geometry of those groups and other wreath products. There are natu-
ral normal forms for elements in these groups which lead to geodesic words for
elements in these groups with respect to their standard generating sets.

For Z o Z, we consider the standard presentation

<<a, t | [at i
, at j

], for i, j ∈ Z>> ,

where ab denotes the conjugate b−1ab and [a, b] the commutator aba−1b−1.
Geometrically, we can think of this wreath product by imagining a string of

counters arranged from left to right and infinite in both directions, with one counter
distinguished as the origin. As in the lamplighter group, we imagine a cursor
that moves along the string of counters and will point to a particular one of these
counters as being of current interest. The generator a acts as a generator of Z in the
factor to which the cursor currently points and increases the counter in that factor,
and the generator t moves the cursor to the right to the next counter. A typical such
word is illustrated in Figure 1.

The starting configuration of these counters, corresponding to the identity ele-
ment in Z oZ, is with all of the counters at zero and the cursor resting at the counter
designated at the origin. We consider a word in these generators as a sequence of
instructions to move the cursor and change the counter in the current factor. After
application of a long string of the generators, we will be in a state where a finite
number of counters are nonzero and the cursor points at a particular counter, called
the final position of the cursor for that word.

We define an = atn
and note that an is a generator of the conjugate copy of Z

indexed by n. These an commute and, as described in [Cleary and Taback 2005],
we can put any word in the generators into one of two normal forms:

r f (w)= ae1
i1

ae2
i2
. . . aek

ik
a f1

− j1a f2
− j2 . . . a

fl
− jl t

m (right-first),

l f (w)= a f1
− j1a f2

− j2 . . . a
fl
− jl a

ei
i1

aei
i2
. . . aek

ik
tm (left-first),

2 3 −2 1

Figure 1. Diagram for w = a3
2a−2

3 a4a2
−3t−2. The origin in the

wreath product direction is indicated by a vertical line, empty cir-
cles denote counters which are zero, and the final cursor position
is indicated by the arrow.
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with ik > . . . i2 > i1 ≥ 0 and jl > . . . j2 > j1 > 0 and ei , f j 6= 0.
The final resting position of the cursor is easily seen to be m for either of these

normal forms, and we can see that the leftmost nonzero counter is in position − jl
and the rightmost nonzero counter is in position ik .

In the right-first form, r f (w), the cursor moves first to the right from the origin,
changing the counters in the appropriate factors as the cursor moves to the right.
Then the cursor moves back to the origin not affecting any of the counters until
passing the origin. Past the origin, the cursor continues to work leftwards, again
changing the counters in the appropriate factors. Finally, the cursor moves to its
ending location from the leftmost nonzero counter to the left of the origin.

The left-first form is similar, but instead of initially moving to the right, the
cursor begins by moving toward the left.

At least one of these normal forms will lead to minimal-length representation for
w, depending upon the final location of the cursor. If m is nonnegative, then the left-
first normal form will lead to a geodesic representative, and if m is nonpositive, the
right-first normal form will lead to a geodesic representative, giving the following
measurement of length:

Proposition 2.1 [Cleary and Taback 2005, Proposition 3.8]. If a word w ∈ Z o Z is
in either right-first or left-first normal form, the word length of w with respect to
{a, t} satisfies

|w| =

k∑
n=1

|ein | +

l∑
n=1

| f jn | + min
{
2 jl +ik +|m−ik |, 2ik + jl +|m+ jl |

}
.

The first two terms are the minimum number of applications of a±1 needed to
put all of the counters into their desired states and the last term is the minimum
amount of movement required to visit the leftmost and rightmost nonzero counters
and then the final position of the cursor, counting the required applications of t±1.

The word w= a3
2a−2

3 a4a2
−3t−2 pictured in Figure 1 has geodesic representatives

in right-first normal form since the final position of the cursor is to the left of the
origin. One such minimal length representative is t2a3ta−2tat−7a2t , of length 20.

3. Z o Z as a subgroup of Thompson’s group F

Thompson’s group F is a remarkable finitely generated, finitely presented group
that can be understood via a wide range of perspectives. For an excellent overview
of its properties, see [Cannon et al. 1996]. The standard infinite presentation of F is

<< x0, x1, . . . | x xi
n = xn+1 for i < n>> .

Since x2 = x x0
1 and so on, F is generated by the first two generators and we can

define xn+1 = x x0
n to express all generators and thus all group elements in terms of
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x0 and x1. Furthermore, all of these infinitely many relations are consequences of
the first two nontrivial relations, so we have the standard finite presentation

<< x0, x1 | x x1
2 = x3, x x1

3 = x4>> .

Thompson’s group F can be described in terms of rooted tree pair diagrams, and
there is a straightforward method of converting between words in a normal form
with respect to the infinite generating set and tree pair diagrams, via the method of
leaf exponents, as described in [Cannon et al. 1996]. There is also an easy method
of converting from tree pair diagrams to piecewise-linear homeomorphisms of the
unit interval where F can be regarded as the subgroup of elements with dyadic
breakpoints and slopes which are powers of 2. There is a natural notion of a reduced
tree pair diagram described there and there are efficient means to convert between
the unique normal form for an element of F and the unique reduced tree pair
diagram for that word.

We consider a rooted binary tree with n leaves as being constructed of n−1
carets, which are interior nodes of the tree together with the two downward directed
edges from that node. The left side of a tree consists of nodes and edges connected
to the root by a path consisting only of left edges, and similarly for the right side
A tree pair diagram (S, T ) is made up of a “positive” tree T and a “negative” tree
S with the same number of leaves.

To understand the metric properties of F , we consider expressing words with
respect to the finite generating set. Burillo, Cleary and Stein [2001] estimated the
word length in terms of the number of carets and showed that the number of carets
is quasiisometric to the word length. Fordham [2003] developed a remarkable
method using tree pair diagrams to efficiently compute exact word length and find
minimal length representatives of words.

We can understand word length of elements represented as tree pair diagrams
by understanding how the generators change the tree pair diagram for w to that for
wg for the generators, as described in [Fordham 2003; Cleary and Taback 2004].
The right actions of the generators can be described as ‘rotations’ which change
the negative tree in a possibly unreduced representative of the element.

The wreath product Z o Z is a subgroup of F and can be realized in many
different ways. Perhaps the simplest is as the subgroup H generated by x0 and
h = x1x2x−2

1 , pictured in Figure 2. The element h, regarded as a piecewise-linear
homeomorphism of the unit interval, has support

[1
2 ,

3
4

]
. The conjugates hxn

0 have
support [2n+1

− 1
2n+1 ,

2n+2
− 1

2n+2

]
for n ≥ 0,[ 1

21−n ,
1

2−n

]
for n < 0.
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4

0

1 2

3

4

0

1

2 3

Figure 2. Tree pair diagram for x1x2x−2
1 , the image of a under φ.

The isomorphism between this subgroup and Z o Z is given by the homomorphism
φ(w) : Z o Z → F where φ(a) = h = x1x2x−2

1 and φ(t) = x0. The conjugates of
φ(a) by x0 generate infinite cyclic groups, and these conjugates each have interiors
of their supports which are disjoint from the interiors of the supports of the other
conjugates. Thus they freely generate a free abelian group of countable rank. Since
x0 conjugates each of these abelian factors to the next, the isomorphism is readily
established with Z o Z.

To understand the distortion of the subgroup H in F , we compare the word
length of an element w = ae1

i1
ae2

i2
. . . aek

ik
a f1

− j1a f2
− j2 . . . a

fl
− jl t

m with its image in F .

Theorem 3.1. The subgroup H isomorphic to Z o Z in F generated by x0 = φ(t)
and h = x2

1 x−1
2 x−1

1 = φ(a) is undistorted.

Proof. We count the number of carets of the image of a word w. First, we consider
the case when m = 0 and then the cases where m is nonzero.

Case m = 0. Here, the image of the word as a tree pair diagram has a characteristic
form where the root of the positive tree is paired with the root of the negative tree,
such as that shown in Figure 3. In the general case, where both k and l are positive,
we have

• a single root caret,

• ik + 1 right carets,

•

k∑
n=1
(|en| + 1) interior carets below the right arm of the tree,

• jl left carets, and

•

l∑
n=1
(| fn| + 1) interior carets below the left arm of the tree.
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z+1 carets

a+
1 c

are
ts

z+
1 c

are
ts

Z+1 c
are

ts

A+1 c
are

ts A+1 carets

Z+1 carets

a+1 carets

Figure 3. The tree pair diagram for the image φ(w) of a wordw=

aa
0 ab

1 . . . a
z
na A

−1aB
−2 . . . a

Z
−m with t exponent sum 0 and all positive

exponents for ai .

This gives a total of

N (φ(w))= ik + jl + 2 +

k∑
n=1
(|en| + 1)+

l∑
n=1
(| fn| + 1)

carets in the image of w. By [Burillo et al. 2001], the number of carets is quasi-
isometric to the word length in F with respect to {x0, x1} and since the length of
w in Z o Z is

2 jl + 2ik +

k∑
n=1

|en| +
l∑

n=1
| fn|,

we see that these lengths are quasiisometric.
The image of a typical word with all en and fn positive is shown in Figure 3,

corresponding to a series of rightward rotations at nodes distance one from the
sides of the tree.

Case m > 0. Here we start with the same tree pair diagram for the m = 0 case and
apply x0 on the right m times. Each application of x0 will change the negative tree
by moving the root caret to a right caret and the topmost left caret to the root, if
there is a left caret. If there is no left caret, a new caret will need to be added for
each such application. For each application of x0 which requires a new caret, in
the negative tree, that new caret will become the root caret and in the positive tree,
the new caret will be added as the left child of the leftmost caret. Since there are
jl left carets, if m ≤ jl , we do not need to add any carets and the number of carets
is

ik + jl + 2 +

k∑
n=1
(|en| + 1)+

l∑
n=1
(| fn| + 1)

as before. If m > jl , we will need to add m − jl new carets and will have

ik + jl + 2 +

k∑
n=1
(|en| + 1)+

l∑
n=1
(| fn| + 1)+ m − jl
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carets. Again, these quantities give lengths which are comparable to word length
in Z o Z.

Case m < 0. This works in the same way as the case m > 0.

Thus in all cases φ does not distort distances more than linearly, so the subgroup
H isomorphic to Z o Z is undistorted in F . �

We can obtain more precise estimates of the quasiisometry constants using Ford-
ham’s method [2003] for computing exact lengths in F . We can keep track of the
particular caret pairings and their weights and we find that the caret pairings that
occur are easily computed. Caret pairing types are described in [Fordham 2003;
Cleary and Taback 2004]. For example, in the case where m = 0 and both l and k
are positive, we have the following caret pairs:

• One caret pair of type (L0, L0) from the leftmost carets, contributing no
weight.

• jl caret pairs of type (L L , L L) from the left side and root, contributing weight
2 jl .

• ik − 1 caret pairs of types (R∗, R∗) not of type (R0, R0), contributing weight
2(ik − 1).

• One caret pair of type (R0, R0) from the rightmost carets, contributing no
weight.

• For each en > 0, there will be a single pairing of type (I0, I0) contributing
weight 2 and en − 1 pairings of type (I0, IR), contributing weight 4(en − 1).

• For each en < 0, there will be a single pairing of type (I0, I0) contributing
weight 2 and |en|−1 pairings of type (IR, I0), contributing weight 4(|en|−1).

• Similarly, for the interior carets from the left side of the tree, we have for each
fn , there will be a single pairing of type (I0, I0) contributing weight 2 and
| fn| − 1 pairings of type (I0, IR) or (IR, I0), contributing weight 4(| fn| − 1).

These will give a total weight of

2 jl + 2(ik − 1)+ 2k + 4
∑

|en| + 2l + 4
∑

| fn|

= 2 jl + 2ik + 2k + 2l + 4
∑

|en| + 4
∑

| fn| − 2

in the case when m = 0, which compares to the corresponding length in Z o Z of
2 jl + 2ik +

∑
|en| +

∑
| fn|.

Again, these give lengths comparable to word length in Z o Z. After a similar
analysis for other cases, we see that for a word w in Z o Z, we have

|w|ZoZ − 2 ≤ |φ(w)|F ≤ 4|w|ZoZ.
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4. Z o Z as a subgroup of Baumslag’s metabelian group

Baumslag [1972] introduced the group G = <<a, s, t | [s, t], [at , a], as
= aat

>> to
show that a finitely presented metabelian group can contain free abelian subgroups
of infinite rank. This group in fact contains Z o Z: all relators of the form [at i

, at j
]

are consequences of these three, so the subgroup H generated by a and t is iso-
morphic to Z o Z.

Here we examine the distortion of this subgroup in G.

Theorem 4.1. The subgroup H has at least exponential distortion in G.

Proof. First, s conjugates elements in H to other elements in H in a manner
illustrated here:

a(s
2)

= (as)s = (aat)s = as(as)t = aat(aat)t = aat at at2
= a0a2

1a2.

In terms of the notation described above, we have as
n = anan+1. Further conju-

gation by s leads to increasingly long words, such as

a(s
3)

= (a0a2
1a2)

s
= a0a1a2

1a2
2a2a3 = a0a3

1a3
2a3,

and we notice the occurrence of the binomial coefficients with repeated iteration,
formalized below:

Lemma 4.2. Higher conjugates of a by s in G give elements of the following form:

asn
= a(

n
0)

0 a(
n
1)

1 . . . a(
n
n)

n .

Proof. We work by induction. The cases with n = 1, 2 and 3 are described above,
and by assuming it is true for n we derive

asn+1
= (a(

n
0)

0 a(
n
1)

1 . . . a(
n
n)

n )s = a(
n
0)

0 a(
n
0)

1 a(
n
1)

1 a(
n
1)

2 . . . a(
n
n)

n a(
n
n)

n+1 = a(
n+1

0 )
0 . . . a

(n+1
n+1)

n+1 ,

using the commutativity of the ai and the fact that as
i = ai ai+1. �

Returning to the proof of the theorem, we see that asn
has length 2n + 1 as an

element of G, and that it lies in the subgroup H , as there is a representative with
no occurrences of s.

To compute the length of this element in the subgroup H with respect to its
generators a and t , we use the method described in Section 2 on the expression
with the binomial coefficients and find that

|asn
|H = 2n +

n∑
i=0

(
n
i

)
= 2n + 2n.

Thus we have |asn
|H = 2n + 2n while |asn

|G = 2n + 1, so the wreath product
Z o Z is at least exponentially distorted in G. �
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COMMUTATION RELATIONS
FOR ARBITRARY QUANTUM MINORS

KENNETH R. GOODEARL

Complete sets of commutation relations for arbitrary pairs of quantum mi-
nors are computed, with explicit coefficients in closed form.

1. Introduction

The title of this paper begins with what may seem to be a misnomer; the term
commutation relation, in current usage, does not refer to a commutativity condition
xy = yx , but has evolved to encompass various “skew commutativity” conditions
that have proved to be useful replacements for commutativity. Older types of com-
mutation relations include conditions of the form xy − yx = z, used in defining
Weyl algebras and enveloping algebras. In quantized versions of classical algebras
appear relations such as xy = qyx (known as q-commutation), along with mixtures
of both types. Thus, it has become common to refer to any equation of the form
xy = λyx + z, where λ is a nonzero scalar, as a commutation relation for x and y.
One important use of such a relation, especially in enveloping algebras, is that, if
the algebra supports a filtration such that deg(z)<deg(x)+deg(y), then the images
of x and y in the associated graded algebra — call them x̃ and ỹ — commute up to a
scalar: x̃ ỹ = λỹ x̃ . Similarly, the cosets of x and y modulo the ideal generated by z
commute up to λ. Such coset relations are key ingredients in the work on quantized
coordinate rings of Soibelman [1990], Hodges and Levasseur [1993; 1994], Joseph
[1995], and others.

In many quantized algebras, the available commutation relations are homoge-
neous and quadratic, of the form xy = λyx +

∑
i µi xi yi (where λ and the µi are

nonzero scalars). Relations of this type are particularly important in establishing
a (noncommutative) standard basis of monomials in generators that include the
elements x , y, xi , yi . Namely, if the generators are ordered in such a way that
each xi ≤ yi but x > y, then the given relation allows one to rewrite monomials
involving xy as linear combinations of monomials closer to standard form. For
example, noncommutative standard bases have been constructed by Lakshmibai

MSC2000: 16W35, 20G42.
Keywords: quantum matrices, quantum minors, commutation, quasicommutation, q-commutation.
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and Reshetikhin [1991; 1992] (for quantized coordinate rings of flag varieties and
Schubert schemes), by Goodearl and Lenagan [2000] (for quantum matrix alge-
bras), and by Lenagan and Rigal [2006] (for quantum Grassmannians and quantum
determinantal rings).

In order to work effectively with quantized coordinate rings of matrices, Grass-
mannians, special or general linear groups, and related algebras, one needs explicit
commutation relations for quantum minors and related elements. Such relations
have often been derived for special cases as needed, either by induction on the size
of the minors, using quantum Laplace relations as in Parshall and Wang [1991] and
Taft and Towber [1991], or by applying the quasitriangular structure of Uq(sln(k))
(that is, its universal R-matrix) to coordinate functions in Oq(SLn(k)), as in the
work of Lakshmibai and Reshetikhin [1991; 1992], Soibelman [1990], and Hodges
and Levasseur [1993; 1994]. Along the former line, the most complete results
to date were obtained by Fioresi [1999; 2004], who developed an algorithm that
yields a commutation relation for any pair of quantum minors. This algorithm
is an iterative procedure, in which certain products of quantum minors may ap-
pear multiple times; explicit coefficients are produced, but are not expressed as
closed formulas. Via the quasitriangular approach, general commutation relations
for pairs of coordinate functions in quantized coordinate rings Oq(G), where G
is a semisimple Lie group, have been derived in special cases (for example, see
[Lakshmibai and Reshetikhin 1991; 1992; Soibelman 1990; Hodges and Levasseur
1993; 1994]), not all with explicit coefficients. (Quantum minors in Oq(SLn(k)) are
special coordinate functions.) Perhaps the largest group of explicit commutation
relations obtained in this way appeared in Hodges et al. [1997] (see also [Brown
and Goodearl 2002]). However, to make these fully explicit, canonical elements
for the Rosso–Tanisaki Killing form on Uq(sln(k)) had to be computed.

Here we introduce a new method — new only in the sense that it has apparently
not been used for this purpose before — with which we derive complete commu-
tation relations for arbitrary pairs of quantum minors, with explicit coefficients in
closed form. Our method is dual to the quasitriangular approach, as it relies on the
coquasitriangular (or braided) bialgebra structure on the quantized coordinate ring
of n × n matrices. Representation-theoretically, the two approaches are based on
equivalent information, in that a quasitriangular (respectively, coquasitriangular)
structure on a bialgebra encodes braiding isomorphisms

V ⊗ W
∼=

−−→ W ⊗ V

for finite dimensional modules (respectively, comodules) V and W . To record
such isomorphisms, one typically requires formulas for matrix entries. However,
in the case of a coquasitriangular bialgebra A, the above isomorphism information
is stored more compactly, in a bilinear form r on A. The braiding isomorphism for
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left A-comodules V and W is then given by the formula

v⊗w 7−→

∑
(v),(w)

r(v0, w0) w1 ⊗ v1,

where we have used Sweedler’s notation: v 7→
∑

(v) v0⊗v1 for the comodule struc-
ture map V → A ⊗ V , and similarly for W . The resulting commutation relations
are equations with values of r as coefficients, namely,

(1-1)
∑
(a),(b)

r(a1, b1) a2 b2 =

∑
(a),(b)

r(a2, b2) b1 a1

for a, b ∈ A, using now Sweedler’s notation for the comultiplication map A →

A ⊗ A.
When A is the bialgebra Oq(Mn(k)), and a =[I | J ] and b =[M | N ] are quantum

minors (see below for the notation), equation (1-1) becomes
(1-2)∑

|S|=|I |
|T |=|M |

r
(
[I |S], [M |T ]

)
[S | J ] [T | N ] =

∑
|S|=|J |

|T |=|N |

r
(
[S | J ], [T | N ]

)
[M |T ] [I |S].

Observe that [I | J ] [M | N ] occurs on the left hand side of (1-2) when S = I
and T = M , while [M | N ] [I | J ] occurs on the right when S = J and T = N .
As we shall see, the coefficients for these terms — namely, r

(
[I | I ], [M | M]

)
and

r
(
[J | J ], [N | N ]

)
— are nonzero (in fact, they are powers of q). Thus, to obtain

explicit commutation relations for [I | J ] and [M | N ], we only need to compute
the values r

(
[I |S], [M |T ]

)
and r

(
[S | J ], [T | N ]

)
. This is precisely what we do in

this paper, see especially Theorems 5.6 and 6.2. Additional relations follow from
these by various symmetries, or by using quantum Laplace relations. (Quantum
Plücker relations in quantum Grassmannians can also be used for this purpose.)
See Theorems 6.7 and 7.3, and Corollaries 6.3, 6.8 and 7.5.

Our notation and conventions are collected in Section 2. In particular, the rela-
tions we use for Oq(Mn(k)) are displayed in (2-6), so that the reader may compare
them with other papers in which q is replaced by q−1 or q2. Our computations
of the values of the form r on pairs of quantum minors occupy Sections 3 and 5;
the intermediate Section 4 provides a first set of commutation relations to illustrate
our methods. The general commutation relations are derived in Sections 6 and 7,
and we conclude, in Section 8, by using these relations to evaluate the standard
Poisson bracket on pairs of classical minors.

2. Notation and conventions

Fix a positive integer n, a base field k, and a nonzero scalar q ∈ k×. We work
within the standard single-parameter quantized coordinate ring of n × n matrices
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over k, which we denote Oq(Mn(k)), as defined in Section 2.2 below. We use the
abbreviation

(2-1) q̂ = q − q−1,

since this scalar appears in numerous formulas.

2.1. R-matrix. The standard R-matrix of type An−1 can be presented in the form

(2-2) R = q
n∑

i=1

ei i ⊗ ei i +

n∑
i, j=1
i 6= j

ei i ⊗ ej j + q̂
n∑

i, j=1
i> j

ei j ⊗ ej i ;

see [Reshetikhin et al. 1989, Equation 1.5, p. 200]. We view R as a linear auto-
morphism of kn

⊗ kn , which acts on the standard basis vectors xi ⊗ xj according
to the formula

(2-3) R(xl ⊗ xm)=

n∑
i, j=1

Ri j
lm xi ⊗ xj ,

using the conventions of [Klimyk and Schmüdgen 1997]. The entries of the n2
×n2

matrix Ri j
lm are

(2-4)
Ri i

i i = q for all i, Ri j
i j = 1 for i 6= j,

Ri j
j i = q̂ for i > j, Ri j

lm = 0 otherwise;

see [Klimyk and Schmüdgen 1997, Equation 9.13, p. 309].

2.2. Generators, relations, and grading. The algebra A = Oq(Mn(k)) is obtained
from (2-4) by the Faddeev–Reshetikhin–Takhtadzhyan construction, that is, as the
k-algebra A(R) presented by generators X i j (for i, j = 1, . . . , n) and relations

(2-5)
n∑

s,t=1

Ri j
st Xsl X tm =

n∑
s,t=1

X j t X is Rst
lm

for all i, j, l,m = 1, . . . , n (see [Reshetikhin et al. 1989, Definition 1, p. 197] and
[Klimyk and Schmüdgen 1997, Section 9.1.1]; we have written X i j for the gener-
ators labelled ti j in [Reshetikhin et al. 1989] and ui

j in [Klimyk and Schmüdgen
1997]). As is well known, the relations (2-5) are equivalent to

(2-6)

X i j Xl j = q Xl j X i j for i < l,

X i j X im = q X im X i j for j < m,

X i j Xlm = Xlm X i j for i < l and j > m,

X i j Xlm − Xlm X i j = q̂ X im Xl j for i < l and j < m
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(see [Klimyk and Schmüdgen 1997, Equations 9.17, p. 310]). Some authors define
quantum matrices using relations as in (2-6) but with q replaced by q−1; thus, the
algebras they define match what we would label Oq−1(Mn(k)). See, for example,
[Larson and Towber 1991, p. 3317] or [Parshall and Wang 1991, Equation 3.5a,
p. 37]. In comparing our work with those papers, we must be careful to interchange
q and q−1; however, q̂ is defined to be q−1

−q in [Parshall and Wang 1991, p. 38],
and so we do not change q̂ when carrying over results from that paper.

Because of the homogeneity of the relations (2-6), A carries a natural (Zn
×Zn)-

grading, such that each X i j is homogeneous of degree (εi , εj ), where ε1, . . . , εn are
the standard basis elements for Zn .

2.3. Coquasitriangular structure. We follow [Hayashi 1992, Section 1] in defin-
ing a coquasitriangular bialgebra (also called a bialgebra with braiding structure
[Larson and Towber 1991, Theorem 2.7] or a cobraided bialgebra [Kassel 1995,
Definition VIII.5.1]) to be a bialgebra B equipped with a convolution-invertible
bilinear form r : B ⊗ B → k such that∑

(a),(b)

r(a1, b1) a2 b2 =

∑
(a),(b)

r(a2, b2) b1 a1,(2-7)

r(ab, c)=

∑
(c)

r(a, c1) r(b, c2),(2-8)

r(a, bc)=

∑
(a)

r(a1, c) r(a2, b),(2-9)

r(a, 1)= r(1, a)= ε(a),(2-10)

for all a, b, c ∈ B, where r(x, y) stands for r(x ⊗ y) for convenience and we use
Sweedler’s notation for comultiplication, in the form 1(x) =

∑
(x) x1 ⊗ x2. Con-

dition (2-10) is redundant by [Klimyk and Schmüdgen 1997, Proposition 10.2(ii),
p. 333]. Thus, the above definition agrees with [Kassel 1995, Definition VIII.5.1],
[Klimyk and Schmüdgen 1997, Definition 10.1, pp. 331–2], and [Lambe and Rad-
ford 1997, Definition 7.3.1], but not with the conditions in [Larson and Towber
1991, Theorem 2.7]. However, the latter conditions match those of (2-10) if one
uses the form 〈 · | · 〉 given by 〈a | b〉 = r(b, a).

By [Klimyk and Schmüdgen 1997, Theorem 10.7, p. 337], whenever R is an
invertible R-matrix satisfying the original form of the quantum Yang–Baxter equa-
tion, the FRT-algebra A(R) is coquasitriangular with respect to the form r deter-
mined by

(2-11) r(X i j , Xlm)= Ril
jm
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for all i, j, l,m. (By “original quantum Yang–Baxter equation” we mean the equa-
tion R12 R13 R23 = R23 R13 R12 [Reshetikhin et al. 1989, Equation 0.7, p. 195], as op-
posed to the form exhibiting the braid relation, namely R12 R23 R12 = R23 R12 R23.)
Note that, in view of (2-11), if we put a = X il and b = X jm into (2-7), we recover
relations (2-5).

It is well known that the R-matrix given in (2-2) satisfies the original quantum
Yang–Baxter equation (see, for example, [Klimyk and Schmüdgen 1997, Section
8.1.2, pp. 246–7, and Equation 8.60, p. 270]). Consequently:

Theorem 2.4. The algebra A = Oq(Mn(k)) is a coquasitriangular bialgebra with
respect to the bilinear form r : A ⊗ A → k determined by the following conditions:

(2-12)
r(X i i , X i i )= q for all i, r(X i i , X j j )= 1 for i 6= j,

r(X i j , X j i )= q̂ for i > j, r(X i j , Xlm)= 0 otherwise.

2.5. Quantum minors. We write [I | J ] for the quantum minor in A with row-
index set I and column-index set J ; this minor is just the quantum determinant in
the subalgebra k〈X i j | i ∈ I, j ∈ J 〉, which is naturally isomorphic to Oq(M|I |(k)).
Specifically, if we write the elements of I and J in ascending order, say,

I = {i1 < · · ·< it } and J = { j1 < · · ·< jt },

then

(2-13) [I | J ] =

∑
σ∈St

(−q)`(σ )X iσ(1), j1 X iσ(2), j2 · · · X iσ(t), jt

=

∑
σ∈St

(−q)`(σ )X i1, jσ(1) X i2, jσ(2) · · · X it , jσ(t),

where `(σ ) denotes the length of the permutation σ ∈ St as a product of simple
transpositions (l, l+1) (see [Klimyk and Schmüdgen 1997, Equations 9.18 and
9.20, pp. 311–312], [Parshall and Wang 1991, p. 43]). Note that [I | J ] is homoge-
neous of degree

(εi1 + · · · + εit , εj1 + · · · + εjt )

with respect to the grading of Section 2.2.
Comultiplication of quantum minors is given by the rule

(2-14) 1
(
[I | J ]

)
=

∑
K⊆{1,...,n}

|K |=|I |

[I |K ] [K | J ]

(see, for example, [Klimyk and Schmüdgen 1997, Proposition 9.7(ii), p. 312]).
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2.6. Transpose and antitranspose. As observed in [Parshall and Wang 1991, Pro-
position 3.7.1(1)], there is a k-algebra automorphism τ on A such that τ(X i j )= X j i

for all i, j . We refer to τ as the transpose automorphism. There is also a k-algebra
anti-automorphism τ2 on A sending X i j 7→ Xn+1−i, n+1− j for all i, j [Parshall and
Wang 1991, Proposition 3.7.1(2)]. This proposition also shows that τ is a coalgebra
anti-automorphism, while τ2 is a coalgebra automorphism; that is,

1 ◦ τ = φ ◦ (τ ⊗ τ) ◦1 and 1 ◦ τ2 = (τ2 ⊗ τ2) ◦1,

where φ is the flip automorphism on A⊗ A, sending a⊗b 7→ b⊗a for all a, b ∈ A.
Hence,

1τ(a)=

∑
(a)

τ(a2)⊗ τ(a1) and 1τ2(a)=

∑
(a)

τ2(a1)⊗ τ2(a2)

for a ∈ A. Consequently, when writing out 1τ(a) and 1τ2(a) in Sweedler’s nota-
tion, we may take

(2-15)
τ(a)1 = τ(a2), τ (a)2 = τ(a1),

τ2(a)1 = τ2(a1), τ2(a)2 = τ2(a2).

We recall from [Parshall and Wang 1991, Lemma 4.3.1] that

(2-16) τ
(
[I | J ]

)
= [J | I ] and τ2

(
[I | J ]

)
= [ω0 I |ω0 J ]

for all quantum minors [I | J ] in A, where ω0 is the longest element of Sn , that is,
the permutation i 7→ n + 1 − i .

As discussed in [Parshall and Wang 1991, Remark 3.7.2], there is an isomor-
phism (of bialgebras) Oq(Mn(k))→ Oq−1(Mn(k)) that sends X i j 7→ X ′

n+1−i, n+1− j
for all i, j , where the X ′

·,· are the standard generators for Oq−1(Mn(k)). We call this
isomorphism β and use the notation [I | J ]

′ for quantum minors in Oq−1(Mn(k)). It
was shown in [Goodearl and Lenagan 2003, proof of Corollary 5.9] that

(2-17) β
(
[I | J ]

)
= [ω0 I |ω0 J ]

′

for all quantum minors [I | J ] in A.

Lemma 2.7. The form r satisfies r(a, b) = r(τ (b), τ (a)) = r(τ2(b), τ2(a)) for all
a, b ∈ A. In particular,

(2-18) r
(
[I | J ], [M | N ]

)
= r

(
[N | M], [J | I ]

)
= r

(
[ω0 M |ω0 N ], [ω0 I |ω0 J ]

)
for all quantum minors [I | J ] and [M | N ] in A.

Proof. Set r′(a, b)= r(τ (b), τ (a)) and r′′(a, b)= r(τ2(b), τ2(a)) for all a, b ∈ A.
From (2-12), note that r′(X i j , Xlm)= r′′(X i j , Xlm)= r(X i j , Xlm) for all i, j, l,m.
To prove that r′ and r′′ coincide with r, it suffices to show that these forms agree
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on all monomials in the X i j . This will be clear by induction on the lengths of the
monomials, once we show that r′ and r′′ satisfy (2-8) and (2-9). With the aid of
(2-15), these identities are routine; we give one sample:

r′(ab, c)= r
(
τ(c), τ (a)τ (b)

)
=

∑
(τ (c))

r
(
τ(c)1, τ (b)

)
r
(
τ(c)2, τ (a)

)
=

∑
(c)

r
(
τ(c2), τ (b)

)
r
(
τ(c1), τ (a)

)
=

∑
(c)

r′(b, c2) r′(a, c1)=

∑
(c)

r′(a, c1) r′(b, c2),

for all a, b, c ∈ A. �

2.8. Definition of the quantities `(S; T ). Many formulas concerning quantum
minors require powers of q or −q whose exponents are quantities that might be
called the number of inversions between two sets. We follow [Noumi et al. 1993]
in defining

(2-19) `(S; T )=
∣∣{(s, t) ∈ S × T | s > t}

∣∣
for any subsets S, T ⊆ {1, . . . , n}.

2.9. Quantum Laplace relations. We shall need the following q-Laplace rela-
tions from [Noumi et al. 1993, Proposition 1.1], for index sets I, J ⊆ {1, . . . , n}

of the same cardinality. If I1, I2 are nonempty subsets of I with |I1| + |I2| = |I |,
then

(2-20)
∑

J=J1tJ2
|Jl |=|Il |

(−q)`(J1;J2)[I1 | J1] [I2 | J2] =

{
(−q)`(I1;I2)[I | J ] if I1 ∩ I2 = ∅,
0 if I1 ∩ I2 6= ∅;

while if J1, J2 are nonempty subsets of J with |J1| + |J2| = |J |, then

(2-21)
∑

I=I1tI2
|Il |=|Jl |

(−q)`(I1;I2)[I1 | J1] [I2 | J2] =

{
(−q)`(J1;J2)[I | J ] if J1 ∩ J2 = ∅,
0 if J1 ∩ J2 6= ∅.

Observe that (2-20) holds trivially in case I1 or I2 is empty, and that (2-21) holds
trivially in case J1 or J2 is empty

Reduction formulas for the values of the form r can be obtained by combining
(2-8) and (2-9) with (2-20) and (2-21). For example, if J = J1 t J2, then (2-21)
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together with (2-8) yields

(2-22) (−q)`(J1;J2) r
(
[I | J ], [M | N ]

)
=

∑
I=I1tI2

∑
L

(−q)`(I1;I2) r
(
[I1 | J1], [M |L]

)
r
(
[I2 | J2], [L | N ]

)
for all [M | N ].

2.10. Some further notation. To simplify notation for operations on index sets,
we often omit braces from singletons; in particular, we write

(2-23) I \ i = I \ {i}, I t l = I t {l}, I \ i t l =
(
I \ {i}

)
t {l},

for i ∈ I and l /∈ I . The Kronecker delta symbol will be applied to index sets as
well as to individual indices; thus, δ(I, J )= 1 when I = J , while δ(I, J )= 0 when
I 6= J . In the case of an index versus an index set, the Kronecker symbol will be
used to indicate membership, that is, δ(i, I ) = 1 means i ∈ I , while δ(i, I ) = 0
means i /∈ I .

Finally, we shall need the following partial order on index sets of the same
cardinality. If I and J are t-element subsets of {1, . . . , n}, write their elements in
ascending order, say,

I = {i1 < i2 < · · ·< it } and J = { j1 < j2 < · · ·< jt },

and then define

(2-24) I ≤ J if and only if il ≤ jl for l = 1, . . . , t.

3. Initial computations

Throughout this section, let i and j denote indices in {1, . . . , n}, and let I , J , M ,
N denote index sets contained in {1, . . . , n}, with |I | = |J | and |M | = |N |.

Lemma 3.1. r
(
X i i , [I | J ]

)
= r

(
[I | J ], X i i

)
= qδ(i,I )δ(I, J ).

Proof. Write I = {i1 < · · · < it } and J = { j1 < · · · < jt }, and, using (2-13) and
(2-8), note that

(3-1) r
(
[I | J ], X i i

)
=

∑
σ∈St

(−q)`(σ )
n∑

l1,...,lt−1

r(X i1 jσ(1), X il1) r(X i2 jσ(2), Xl1l2) · · · r(X it jσ(t), Xlt−1i ).

In view of (2-12), a nonzero term can occur in the second summation of (3-1) only
when i ≤ l1 ≤ l2 ≤ · · · ≤ lt−1 ≤ i , that is, when l1 = · · · = lt−1 = i . Hence, (3-1)
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reduces to

(3-2) r
(
[I | J ], X i i

)
=

∑
σ∈St

(−q)`(σ )r(X i1 jσ(1), X i i ) r(X i2 jσ(2), X i i ) · · · r(X it jσ(t), X i i ).

In (3-2), a nonzero term can occur in the sum only when is = jσ(s) for s = 1, . . . , t .
Since the is and js are arranged in ascending order, this situation only happens
when I = J and σ = id. Thus, r

(
[I | J ], X i i

)
= 0 when I 6= J , and

r
(
[I | I ], X i i

)
= r(X i1i1, X i i ) r(X i2i2, X i i ) · · · r(X it it , X i i )= qδ(i,I ).

The formula for r
(
X i i , [I | J ]

)
follows via Lemma 2.7. �

Lemma 3.2. r(X i j , · )≡ 0 when i < j , and r( · , X i j )≡ 0 when i > j .

Proof. Consider any monomial a = X i(1), j (1) X i(2), j (2) · · · X i(t), j (t) ∈ A. By (2-8),

r(a, X i j )=

n∑
l1,...,lt−1

r(X i(1), j (1), X il1)r(X i(2), j (2), Xl1l2) · · · r(X i(t), j (t), Xlt−1 j ).

If some term r(X i(1), j (1), X il1) r(X i(2), j (2), Xl1l2) · · · r(X i(t), j (t), Xlt−1 j ) does not
vanish, we must have i ≤ l1 ≤ · · · ≤ lt−1 ≤ j . This shows that r( · , X i j ) can fail
to vanish only when i ≤ j . The first statement of the lemma follows via Lemma
2.7. �

Corollary 3.3. r
(
[I | J ], ·

)
≡ 0 when I 6≥ J , and r

(
· , [I | J ]

)
≡ 0 when I 6≤ J .

Proof. Write I = {i1 < · · · < it } and J = { j1 < · · · < jt }, and suppose that
r
(
[I | J ], c

)
6= 0 for some c ∈ A. Then, by (2-13) and (2-8),∑

(c)

r(X i1 jσ(1), c1) r(X i2 jσ(2), c2) · · · r(X it jσ(t), ct) 6= 0

for some σ ∈ St . Lemma 3.2 then implies that is ≥ jσ(s) for s = 1, . . . , t .
First, i1 ≥ jσ(1) ≥ j1. Now let 1 < s ≤ t . If σ(s) ≥ s, then is ≥ jσ(s) ≥ js .

If σ(s) < s, then σ(u) ≥ s for some u < s, whence is > iu ≥ jσ(u) ≥ js . Thus,
is ≥ js for all s, and therefore I ≥ J . Similarly, if r

(
· , [I | J ]

)
does not vanish,

then I ≤ J . �

Proposition 3.4. If i < j , then

r
(
[I | J ], X i j

)
= q̂(−q)|[1,i)∩J |−|[1, j)∩I | δ(i, J ) δ( j, I ) δ(I \ j, J \ i)(3-3)

= q̂(−q)−|(i, j)∩I∩J | δ(i, J ) δ( j, I ) δ(I \ j, J \ i).(3-4)
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Proof. Note first that (3-4) follows from (3-3). For, if the right-hand side of (3-3) is
nonzero, then I = (I ∩ J )t j and J = (I ∩ J )ti , whence [1, i)∩ J =[1, i)∩ I ∩ J =

[1, i] ∩ I ∩ J and [1, j)∩ I = [1, j)∩ I ∩ J .
We induct on |I |, the case |I | = 1 being clear from (2-12). Assume that |I |> 1,

and suppose that r
(
[I | J ], X i j

)
6= 0.

Choose s ∈ I , and write I = I1 t I2 with I1 = {s} and I2 = I \{s}. The q-Laplace
relation (2-20) yields

(3-5) (−q)|[1,s)∩I |
[I | J ] =

∑
t∈J

(−q)|[1,t)∩J |Xst [I \ s | J \ t].

For each t ∈ J , we have

(3-6) r
(
Xst [I \ s | J \ t], X i j

)
=

n∑
l=1

r(Xst , X il) r
(
[I \ s | J \ t], Xl j

)
.

Since r
(
[I | J ], X i j

)
6= 0, we must have r(Xst , X il) r

(
[I \ s | J \ t], Xl j

)
6= 0 for

some l ∈ {1, . . . , n} and t ∈ J .
Suppose that i /∈ J . Then t 6= i , and so, because r(Xst , X il) 6= 0, we must have

t = s and l = i . Then r
(
[I \ s | J \ s], X i j

)
6= 0, which contradicts the induction

hypothesis because i /∈ J \ s. Therefore i ∈ J .
Next, suppose that j /∈ I \ s. If l < j , we would have r

(
[I \ s | J \ t], Xl j

)
= 0

by the induction hypothesis. Since r( · , Xl j ) would vanish if l > j , we must have
l = j . Now r(Xst , X i j ) 6= 0, and so s = j and t = i . Thus, either j ∈ I \ s or j = s,
and so in any case we conclude that j ∈ I .

We may now assume that s = j . Since j /∈ I \ j , we have r
(
[I \ j | J \t], X i j

)
= 0

for all t ∈ J by the induction hypothesis. On the other hand, r(X j t , X il) = 0 for
l 6= i, j , and r(X j t , X i j )= 0 for t 6= i . Hence, the right-hand side of (3-6) vanishes
when t 6= i , and it equals q̂ r

(
[I \ j | J \ i], X j j

)
when t = i . Combining (3-5) and

(3-6) thus yields

(3-7) (−q)|[1, j)∩I | r
(
[I | J ], X i j

)
= (−q)|[1,i)∩J | q̂ r

(
[I \ j | J \ i], X j j

)
.

Since the left-hand side of (3-7) is nonzero by assumption, Lemma 3.1 implies
that I \ j = J \ i and r

(
[I \ j | J \ i], X j j

)
= 1. The formula (3-3) follows, and the

induction step is established. �

Corollary 3.5. If i > j , then

r
(
X i j , [I | J ]

)
= q̂(−q)|[1, j)∩I |−|[1,i)∩J | δ(i, J ) δ( j, I ) δ(I \ j, J \ i)(3-8)

= q̂(−q)−|( j,i)∩I∩J | δ(i, J ) δ( j, I ) δ(I \ j, J \ i).(3-9)

Proof. Apply Lemma 2.7 to Proposition 3.4. �

Proposition 3.6. r
(
[I | I ], [M | N ]

)
= r

(
[M | N ], [I | I ]

)
= q |I∩M | δ(M, N ).
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Proof. This is parallel to the proof of Lemma 3.1. Write M = {m1 < · · ·<mt } and
N = {n1 < · · ·< nt }, and note that

(3-10) r
(
[M | N ], [I | I ]

)
=

∑
σ∈St

(−q)`(σ )r
(
Xm1nσ(1) Xm2nσ(2) · · · Xmt nσ(t), [I | I ]

)
,

while for each σ ∈ St we have

(3-11) r
(
Xm1nσ(1) Xm2nσ(2) · · · Xmt nσ(t), [I | I ]

)
=

∑
L1,...,L t−1

r
(
Xm1nσ(1), [I |L1]

)
r
(
Xm2nσ(2), [L1 |L2]

)
· · · r

(
Xmt nσ(t), [L t−1 | I ]

)
.

Consider the right-hand side of (3-11). By Corollary 3.3, a nonzero term can occur
in that sum only when I ≤ L1 ≤ · · · ≤ L t−1 ≤ I , and so only when all Ls = I .
Thus,

(3-12) r
(
[M | N ], [I | I ]

)
=

∑
σ∈St

(−q)`(σ )r
(
Xm1nσ(1), [I | I ]

)
r
(
Xm2nσ(2), [I | I ]

)
· · · r

(
Xmt nσ(t), [I | I ]

)
.

In view of Lemma 3.2 and Corollary 3.5, r
(
X i j , [I | I ]

)
= 0 for all i 6= j . Hence,

a nonzero term can occur in the right-hand side of (3-12) only when ms = nσ(s)
for all s, that is, only when M = N and σ = id. Therefore, r

(
[M | N ], [I | I ]

)
= 0

when M 6= N , while, in view of Lemma 3.1,

r
(
[M | M], [I | I ]

)
=r

(
Xm1m1, [I | I ]

)
r
(
Xm2m2, [I | I ]

)
· · · r

(
Xmt mt , [I | I ]

)
=q |I∩M |.

The formula for r
(
[I | I ], [M | N ]

)
follows via Lemma 2.7. �

4. Initial commutation relations

We now use the computations of r( · , · ) obtained so far to derive some commuta-
tion relations, both to illustrate the method and to double-check the results against
known relations in the literature. As in the previous section, let i and j denote
indices in {1, . . . , n}, and let I , J , M , N denote index sets contained in {1, . . . , n},
with |I | = |J | and |M | = |N |.

4.1. Direct application of (2-7). If we set a = X i j and b = [I | J ] in (2-7), we
obtain

(4-1)
∑
l,L

r
(
X il, [I |L]

)
Xl j [L | J ] =

∑
l,L

r
(
Xl j , [L | J ]

)
[I |L] X il .
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We claim that (4-1) reduces to

(4-2) qδ(i,I )X i j [I | J ] +
(
1 − δ(i, I )

)
q̂

∑
l∈I
l<i

(−q)−|(l,i)∩I |Xl j [I \ l t i | J ]

= qδ( j,J )
[I | J ]X i j +

(
1 − δ( j, J )

)
q̂

∑
l∈J
l> j

(−q)−|( j,l)∩J |
[I | J \ l t j]X il .

According to Lemma 3.2 and Corollary 3.3, r
(
X il, [I |L]

)
= 0 unless i ≥ l and

I ≤ L . By Lemma 3.1, r
(
X i i , [I |L]

)
= 0 unless L = I , and r

(
X i i , [I | I ]

)
= qδ(i,I ).

When i > l, Corollary 3.5 shows that r
(
X il, [I |L]

)
is nonzero only when i ∈ L ,

l ∈ I , and I \ l = L \ i . In such cases, i /∈ I and L = I \ l t i , and the exponent
of −q that appears in (3-9) is −|(l, i)∩ I ∩ L| = −|(l, i)∩ I |. Thus, the left-hand
sides of (4-1) and (4-2) agree.

Similarly, r
(
Xl j , [L | J ]

)
= 0 unless l ≥ j and L ≤ J , while r

(
X j j , [L | J ]

)
= 0

unless L = J , and r
(
X j j , [J | J ]

)
= qδ( j,J ). When l > j , Corollary 3.5 shows that

r
(
Xl j , [L | J ]

)
is nonzero only when l ∈ J , j ∈ L \ J , and L = J \ l t j . In such

cases, the exponent of −q that appears in (3-9) is −|( j, l)∩ L ∩ J | = −|( j, l)∩ J |.
Therefore, the right-hand sides of (4-1) and (4-2) agree. This establishes (4-2).

4.2. Application of the transpose automorphism. There are several ways to ob-
tain a second commutation relation of a kind similar to (4-2). First, we could set
a = [I | J ] and b = X i j in (2-7) and proceed as above. Alternatively, we could
apply the automorphism τ , the anti-automorphism τ2, or the isomorphism β of
Section 2.6 to (4-2) itself. As we shall see in Remark 4.4, the first three ways are
equivalent, up to some relabelling. The use of β is discussed in Section 4.5.

Among the first three alternatives above, the most convenient choice is to apply
the transpose automorphism τ to (4-2). If we do this, and then relabel the terms
by interchanging i ↔ j and I ↔ J , we obtain

(4-3) qδ( j,J )X i j [I | J ] +
(
1 − δ( j, J )

)
q̂

∑
l∈J
l< j

(−q)−|(l, j)∩J |X il[I | J \ l t j]

= qδ(i,I )[I | J ]X i j +
(
1 − δ(i, I )

)
q̂

∑
l∈I
l>i

(−q)−|(i,l)∩I |
[I \ l t i | J ]Xl j .

4.3. Some known cases. We now compare some cases of (4-2) and (4-3) with the
literature.

When i ∈ I and j ∈ J , (4-2) and (4-3) both yield q X i j [I | J ] = q[I | J ]X i j — the
well-known fact that X i j and [I | J ] commute in that case (this is just the centrality
of the quantum determinant in the subalgebra k〈Xst | s ∈ I, t ∈ J 〉). If i ∈ I and
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j /∈ J , then (4-2) yields

(4-4) q X i j [I | J ] = [I | J ]X i j + q̂
∑
l∈J
l> j

(−q)−|( j,l)∩J |
[I | J \ l t j]X il .

Multiply (4-4) by q−1, and note that

q−1(−q)−|( j,l)∩J |
= −(−q)−|[ j,l]∩J |.

Thus modified, (4-4) recovers [Goodearl and Lenagan 2000, Lemma A.1(b)] (this
is the second equation of [Parshall and Wang 1991, Lemma 4.5.1(2)], rewritten
using the present notation). Similarly, consider the case that i /∈ I and j ∈ J . Then
(4-3) yields

(4-5) q X i j [I | J ] = [I | J ]X i j + q̂
∑
l∈I
l>i

(−q)−|(i,l)∩I |
[I \ l t i | J ]Xl j .

We again multiply by q−1, and note that

q−1(−q)−|(i,l)∩I |
= −(−q)−|[i,l]∩I |.

Thus, (4-5) recovers [Goodearl and Lenagan 2002, Lemma A.2(c), Equation (A.3)]
(this is the second equation of [Parshall and Wang 1991, Lemma 4.5.1(4)], in
present notation).

Finally, consider the case when i /∈ I and j /∈ J . We may assume that I t i =

J t j = {1, . . . , n}. If we write ŝ = {1, . . . , n} \ {s} for s = 1, . . . , n, then (4-2)
yields

(4-6) X i j [î | ĵ] + q̂
∑
l∈I
l<i

(−q)l+1−i Xl j [l̂ | ĵ] = [î | ĵ]X i j + q̂
∑
l∈J
l> j

(−q) j+1−l
[î | l̂]X il .

Multiplying (4-6) by q−1 and then interchanging q ↔ q−1 recovers the fourth
equation of [Parshall and Wang 1991, Lemma 5.1.2].

Remark 4.4. As mentioned above, (4-3) could also have been obtained by setting
a = [I | J ] and b = X i j in (2-7) and proceeding as with (4-2). In fact, interchanging
any choice of a and b in (2-7) has the same effect as applying τ , as we now explain.

First, apply τ to (2-7), and use (2-15) for both a and b. This yields

(4-7)
∑
(a),(b)

r(a1, b1) τ (a)1 τ(b)1 =

∑
(a),(b)

r(a2, b2) τ (b)2 τ(a)2.

Invoking Lemma 2.7 and setting a′
= τ(a) and b′

= τ(b), (4-7) becomes

(4-8)
∑

(a′),(b′)

r(b′

2, a′

2) a′

1 b′

1 =

∑
(a′),(b′)

r(b′

1, a′

1) b′

2 a′

2.
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Equation (4-8) is nothing but (2-7) with a and b replaced by b′ and a′, respectively.
Similarly, applying the anti-automorphism τ2 to (2-7) and relabelling again re-

covers (2-7) with a and b interchanged.

4.5. Two further commutation relations. Each case of commutation relations for
X i j and [I | J ] derived in [Parshall and Wang 1991] has four subcases — two pairs
in which one equation of each pair is obtained from the other by inserting a q-
Laplace relation. Two commutation relations from each group of four correspond
to our equations (4-2) and (4-3). It is more efficient to derive the remaining two
by applying the isomorphism β of Section 2.6, as follows. Set

A′
= Oq−1(Mn(k))

and recall the notation X ′

i j and [I | J ]
′ for generators and quantum minors in A′.

First, consider the relation (4-2) in A′, but replace i , j , I , J by ĩ , j̃ , Ĩ , J̃ ,
respectively. The result is

(4-9) q−δ(ĩ, Ĩ )X ′

ĩ j̃
[ Ĩ | J̃ ]

′
+

(
1 − δ(ĩ, Ĩ )

)
(−q̂)

∑
l̃∈ Ĩ
l̃<ĩ

(−q)|(l̃,ĩ)∩ Ĩ |X ′

l̃ j̃
[ Ĩ \ l̃ t ĩ | J̃ ]

′

= q−δ( j̃, J̃ )
[ Ĩ | J̃ ]

′X ′

ĩ j̃
+

(
1 − δ( j̃, J̃ )

)
(−q̂)

∑
l̃∈ J̃
l̃> j̃

(−q)|( j̃,l̃)∩ J̃ |
[ Ĩ | J̃ \ l̃ t j̃]′X ′

ĩ l̃
.

Now set

ĩ = ω0(i), j̃ = ω0( j), l̃ = ω0(l),

Ĩ = ω0(I ), J̃ = ω0(J ),

and apply β−1 to (4-9). This yields

(4-10) q−δ(i,I )X i j [I | J ] +
(
δ(i, I )− 1

)
q̂

∑
l∈I
l>i

(−q)|(i,l)∩I |Xl j [I \ l t i | J ]

= q−δ( j,J )
[I | J ]X i j +

(
δ( j, J )− 1

)
q̂

∑
l∈J
l< j

(−q)|(l, j)∩J |
[I | J \ l t j]X il .

Similarly, the relation (4-3) in A′ can be written

(4-11) q−δ( j̃, J̃ )X ′

ĩ j̃
[ Ĩ | J̃ ]

′
+

(
1 − δ( j̃, J̃ )

)
(−q̂)

∑
l̃∈ J̃
l̃< j̃

(−q)|(l̃, j̃)∩ J̃ |X ′

ĩ l̃
[ Ĩ | J̃ \ l̃ t j̃]′

= q−δ(ĩ, Ĩ )
[ Ĩ | J̃ ]

′X ′

ĩ j̃
+

(
1 − δ(ĩ, Ĩ )

)
(−q̂)

∑
l̃∈ Ĩ
l̃>ĩ

(−q)|(ĩ,l̃)∩ Ĩ |
[ Ĩ \ l̃ t ĩ | J̃ ]

′X ′

l̃ j̃
.
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Applying β−1 to (4-11) as above, we conclude that

(4-12) q−δ( j,J )X i j [I | J ] +
(
δ( j, J )− 1

)
q̂

∑
l∈J
l> j

(−q)|( j,l)∩J |X il[I | J \ l t j]

= q−δ(i,I )
[I | J ]X i j +

(
δ(i, I )− 1

)
q̂

∑
l∈I
l<i

(−q)|(l,i)∩I |
[I \ l t i | J ]Xl j .

4.6. Quasicommutation. Elements a, b ∈ A are said to quasicommute or q-com-
mute provided they commute up to a power of q, that is, ab=qmba for some integer
m. The relations (2-6) say that two of the standard generators for A which have the
same row (or column) indices must quasicommute, and it is natural to expect other
instances of this in A. From the results above, we can recover the quasicommuta-
tion relations for quantum minors given by Krob and Leclerc [1995]. These apply
to certain quantum minors whose row (or column) index sets are disjoint. Cases
allowing nondisjoint index sets were obtained by Leclerc and Zelevinsky [1998,
Lemmas 2.1–2.3] by applying quantum Plücker relations. Building on the results of
[Leclerc and Zelevinsky 1998], Scott [2005, Theorems 1 and 2] determined exactly
which pairs of quantum minors quasicommute, and calculated the corresponding
relations. We will recover some other cases of his results in Corollary 6.5.

First, consider X i j and [M | N ], with i ∈ M . If j < min(N ), then either (4-3)
or (4-10) implies that X i j [M | N ] = q[M | N ]X i j , while if j > max(N ), then, by
either (4-2) or (4-12), X i j [M | N ] = q−1

[M | N ]X i j . Of course, if j ∈ N , then
X i j [M | N ] = [M | N ] X i j .

Now suppose that I ⊆ M and that J and N are separated in the following sense:
there is a partition J = J ′

t J ′′ such that

max(J ′) <min(N )≤ max(N ) <min(J ′′).

Each of the generators X iσ(l), jl occurring in (2-13) quasicommutes with [M | N ] as
in the previous paragraph, whence

X iσ(1), j1 X iσ(2), j2 · · · X iσ(t), jt [M | N ] = q |J ′
|−|J ′′

|
[M | N ] X iσ(1), j1 X iσ(2), j2 · · · X iσ(t), jt

for all σ ∈ St . Consequently, under the present hypotheses,

(4-13) [I | J ] [M | N ] = q |J ′
|−|J ′′

|
[M | N ] [I | J ].

This recovers [Krob and Leclerc 1995, Lemma 3.7] (after interchanging q and q−1).
In fact, (4-13) holds when I ⊆ M , and J and N are weakly separated in the sense
of [Leclerc and Zelevinsky 1998], meaning that there is a partition J \ N = J ′

t J ′′

such that max(J ′)<min(N \ J )≤ max(N \ J )<min(J ′′) [Leclerc and Zelevinsky
1998, Lemma 2.1].



COMMUTATION RELATIONS FOR ARBITRARY QUANTUM MINORS 79

Applying τ to (4-13) and relabelling, we find that

(4-14) [I | J ] [M | N ] = q |I ′
|−|I ′′

|
[M | N ] [I | J ]

when J ⊆ N and I = I ′
t I ′′ with max(I ′) <min(M)≤ max(M) <min(I ′′).

5. Computation of r
(
[I | J], [M | N]

)
Throughout this section, let I , J , M , N denote index sets contained in the interval
{1, . . . , n}, with |I | = |J | and |M | = |N |. Our goal is to develop a formula for
r
(
[I | J ], [M | N ]

)
.

Lemma 5.1. If r
(
[I | J ], [M | N ]

)
6= 0, then I ∩ M = J ∩ N and I ∪ M = J ∪ N.

Proof. We induct on |I |, starting with the case [I | J ] = X i j . If i = j , Lemma 3.1
implies that M = N , and the conclusion is clear. If i 6= j , then i > j by Lemma 3.2,
whence Corollary 3.5 implies that i ∈ N , j ∈ M , and M \ j = N \ i . Consequently,
I ∩ M = J ∩ N = ∅ and I ∪ M = J ∪ N .

Now suppose that |I | ≥ 2. If I = J , then Proposition 3.6 implies that M = N ,
and we are done. Hence, we may assume that I 6= J . Since |I | = |J |, there must
exist an element j ∈ J \ I . Set J = J1 t J2 with J1 = { j} and J2 = J \ j , and write
(2-22) in the form

(5-1) ±q• r
(
[I | J ], [M | N ]

)
=

∑
i∈I

∑
L

±q• r
(
X i j , [M |L]

)
r
(
[I \i | J \ j], [L | N ]

)
.

Since r
(
[I | J ], [M | N ]

)
6= 0, (5-1) implies that

(5-2) r
(
X i j , [M |L]

)
r
(
[I \ i | J \ j], [L | N ]

)
6= 0

for some i ∈ I and some L .
Note that i 6= j , because j /∈ I . Equation (5-2) and Lemma 3.2 now show that

i > j , and then Corollary 3.5 implies that i ∈ L , j ∈ M , and L \ i = M \ j .
Consequently, i /∈ M and j /∈ L , while L = (L ∩ M) t i and M = (L ∩ M) t j .
Since the second factor of (5-2) is nonzero, our induction implies that (I \ i)∩ L =

(J \ j)∩ N and (I \ i)∪ L = (J \ j)∪ N . Now,

I ∪ (L ∩ M)= (I \ i)∪ i ∪ (L ∩ M)= (I \ i)∪ L = (J \ j)∪ N ,

and so I ∪ M = I ∪(L ∩ M)∪ j = J ∪ N . Since j /∈ I ∪L , we see from the equation
(I \ i)∪ L = (J \ j)∪ N that j /∈ N . Consequently,

I ∩ M = I ∩ (M \ j)= I ∩ (L \ i)= (I \ i)∩ L = (J \ j)∩ N = J ∩ N .

This establishes the induction step. �

Lemma 5.2. If I ∩ M = J ∩ N and I ∪ M = J ∪ N , then:
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(a) I \ J = N \ M and J \ I = M \ N ;

(b) r
(
[I | J ], [M | N ]

)
= q |I∩M |(−q)`(I ;J∩N )−`(J ;I∩M)r

(
[I \ M | J \ N ], [M | N ]

)
.

Proof. (a) This follows easily from the hypotheses.
(b) Write J = J1 t J2 with J1 = J \ N and J2 = J ∩ N = I ∩ M , and recall

equation (2-22). We focus first on the term on the right-hand side of (2-22) with
I2 = J2 and L = N , in which case I1 = I \ M . For this term, we have

(5-3) (−q)`(I1;I2)r
(
[I1 | J1], [M |L]

)
r
(
[I2 | J2], [L | N ]

)
= (−q)`(I\M;J∩N )q |I∩M | r

(
[I \ M | J \ N ], [M | N ]

)
,

in view of Proposition 3.6. We claim that all other terms on the right-hand side of
(2-22) vanish.

Suppose that r
(
[I1 | J1], [M |L]

)
r
(
[I2 | J2], [L | N ]

)
is nonzero for some I1, I2, L .

Lemma 5.1 implies that I2 ∩ L = J2 ∩ N = J2, and then, because |I2| = |J2|, we
must have I2 = J2. Consequently, Proposition 3.6 implies that L = N , verifying
the claim. Equations (2-22) and (5-3) thus yield

(5-4) (−q)`(J\N ;I∩M)r
(
[I | J ], [M | N ]

)
= (−q)`(I\M;J∩N )q |I∩M | r

(
[I \ M | J \ N ], [M | N ]

)
.

Finally, we have

`(I ; J ∩ N )= `(I \ M; J ∩ N )+ `(I ∩ M; J ∩ N ),

`(J ; I ∩ M)= `(J \ N ; I ∩ M)+ `(J ∩ N ; I ∩ M),

and, since I ∩ M = J ∩ N , we obtain

(5-5) `(I \ M; J ∩ N )− `(J \ N ; I ∩ M)= `(I ; J ∩ N )− `(J ; I ∩ M).

Part (b) follows from (5-4) and (5-5). �

Lemma 5.3. If I ∩ M = J ∩ N = ∅ and I ∪ M = J ∪ N , then

r
(
[I | J ], [M | N ]

)
= (−q)`(I∪N ;I\J )−`(J∪M;J\I )r

(
[I \ J | J \ I ], [M \ N | N \ M]

)
.

Proof. Write J = J1t J2 with J1 = I ∩ J and J2 = J \ I , and recall (2-22). Consider
the term with I1 = J1 and L = M , in which case I2 = I \ J . Since I1 ∩ M = ∅,
Proposition 3.6 implies that r

(
[I1 | J1], [M |L]

)
= 1. Thus, for this term of (2-22),

we have

(5-6) (−q)`(I1;I2)r
(
[I1 | J1], [M |L]

)
r
(
[I2 | J2], [L | N ]

)
= (−q)`(I∩J ;I\J )r

(
[I \ J | J \ I ], [M | N ]

)
.
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We next claim that all other terms on the right-hand side of (2-22) vanish. Hence,
suppose that r

(
[I1 | J1], [M |L]

)
r
(
[I2 | J2], [L | N ]

)
6= 0 for some I1, I2, L . Lemma

5.1 implies that I2 ∩ L = J2 ∩ N = ∅ and I2 ∪ L = J2 ∪ N = (J \ I )∪ N , from
which it follows that I2 = N \ L . Now, I2 ∩ J ⊆ N ∩ J = ∅, and so I2 ⊆ I \ J .
Since also

|I2| = |J2| = |J \ I | = |I \ J |,

we must have I2 = I \ J . Consequently, I1 = J1, and then Proposition 3.6 implies
that L = M . This verifies the claim. As a result, (2-22) and (5-6) combine to yield

(5-7) r
(
[I | J ], [M | N ]

)
= (−q)`(I∩J ;I\J )−`(I∩J ;J\I )r

(
[I \ J | J \ I ], [M | N ]

)
.

Note that (I \ J )∩ M = (J \ I )∩ N = ∅ and (I \ J )∪ M = M ∪ N = (J \ I )∪ N .
Hence, (5-7) also holds with I , J , M , N replaced by N , M , J \ I , I \ J , respec-
tively. That is,

(5-8) r
(
[N | M], [J \ I | I \ J ]

)
= (−q)`(N∩M;N\M)−`(N∩M;M\N )r

(
[N \ M | M \ N ], [J \ I | I \ J ]

)
.

In view of Lemma 2.7, (5-8) can be rewritten as

(5-9) r
(
[I \ J | J \ I ], [M | N ]

)
= (−q)`(N∩M;N\M)−`(N∩M;M\N )r

(
[I \ J | J \ I ], [M \ N | N \ M]

)
.

Combining (5-7) and (5-9), we obtain

(5-10) r
(
[I | J ], [M | N ]

)
= (−q)λr

(
[I \ J | J \ I ], [M \ N | N \ M]

)
,

where (recalling Lemma 5.2 (a) )

(5-11) λ = `(I ∩ J ; I \ J )− `(I ∩ J ; J \ I )

+ `(N ∩ M; N \ M)− `(N ∩ M; M \ N )

= `
(
(I ∩ J )t (M ∩ N ); I \ J

)
− `

(
(I ∩ J )t (M ∩ N ); J \ I

)
.

Next, observe that

I ∪ N = (I \ J )t (I ∩ J )t (M ∩ N ), J ∪ M = (J \ I )t (I ∩ J )t (M ∩ N ).

Because |I \ J | = |J \ I |, we have `(I \ J ; I \ J )= `(J \ I ; J \ I ), and therefore

(5-12) λ= `(I ∪ N ; I \ J )− `(J ∪ M; J \ I ).

Equations (5-10) and (5-12) establish the lemma. �
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In view of Lemmas 5.1–5.3, it remains only to calculate r
(
[I | J ], [M | N ]

)
in

the case when

(I ∪ N )∩ (J ∪ M)= ∅ and I ∪ M = J ∪ N ,

whence I = N and J = M . Further, because of Corollary 3.3, we may assume that
I > J . In these cases, certain sums of powers of −q appear in r

(
[I | J ], [M | N ]

)
,

and we introduce the following notation to deal with them:

5.4. Definition of ξq(I; J). Recall that, for d ∈N, the (−q)-integer [d]−q is given
by

[d]−q =
(−q)d − (−q)−d

(−q)− (−q)−1 = (−q)d−1
+ (−q)d−3

+ · · · + (−q)−(d−1)

= (−q)1−d(1 + q2
+ q4

+ · · · + q2d−2).

Hence, 1 + q2
+ q4

+ · · · + q2d−2
= (−q)d−1

[d]−q .
For index sets I ≥ J , we define a scalar ξq(I ; J ) as follows: First, set m = |I |

and write I = {r1 < · · ·< rm}. Then, set dl = |[1, rl]∩ J |− l +1 for l = 1, . . . ,m,
noting that dl ≥ 1 because J ≤ I . Finally, define

ξq(I ; J )= [d1]−q [d2]−q · · · [dm]−q ,

with the convention that ξq(∅; ∅) = 1. When I ∩ J = ∅, as in the next lemma,
each dl = `(rl; J ) − l + 1. Note that [d]−q−1 = [d]−q for all d ∈ N, whence
ξq−1(I ; J )= ξq(I ; J ).

Lemma 5.5. If I > J and I ∩ J = ∅, then

(5-13) r
(
[I | J ], [J | I ]

)
= q̂ |I |(−q)`(J ;I )−`(I ;I )ξq(I ; J ).

Proof. Set m = |I | = |J |, write I = {r1 < · · · < rm}, and set dl = `(rl; J )− l + 1
for l = 1, . . . ,m as in Section 5.4.

We proceed by induction on m. If m = 1, then J = { j} for some j < r1,
whence `(J ; I ) = `(I ; I ) = 0. Moreover, d1 = 1 and so ξq(I ; J ) = 1. By (2-12),
r
(
[I | J ], [J | I ]

)
= r(Xr1 j , X jr1)= q̂ , which verifies (5-13) in this case.

Now suppose that m > 1. Write I = I1 t I2 with I1 = {r1} and I2 = {r2, . . . , rm}.
Since `(I1; I2)= 0, equation (2-20) implies that

[I | J ] =

∑
j∈J

(−q)`( j;J\ j)Xr1 j [I2 | J \ j].

Applying (2-8), we obtain

(5-14) r
(
[I | J ], [J | I ]

)
=

∑
j∈J

∑
L

(−q)|[1, j)∩J | r
(
Xr1 j , [J |L]

)
r
(
[I2 | J \ j], [L | I ]

)
.
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According to Lemma 3.2 and Corollary 3.5, a nonzero term can occur on the right-
hand side of (5-14) only if r1> j and r1 ∈ L , as well as J \ j = L \r1, in which case

r
(
Xr1 j , [J |L]

)
= q̂ (−q)|[1, j)∩J |−|[1,r1)∩L|.

Now,
∣∣[1, r1)∩ L

∣∣ =
∣∣[1, r1)∩ (L \ r1)

∣∣ =
∣∣[1, r1)∩ (J \ j)

∣∣ = d1 − 1, and so

(5-15) r
(
Xr1 j , [J |L]

)
= q̂ (−q)1+|[1, j)∩J |−d1 .

Next, note that L = J \ j t r1, whence L ∩ I = {r1}. Consequently, I2 ∩ L =

(J \ j)∩ I = ∅ and I2 ∪ L = I ∪ L = (J \ j)∪ I . Lemma 5.3 now implies that

(5-16) r
(
[I2 | J \ j], [L | I ]

)
= (−q)λr

(
[I2 | J \ j], [J \ j | I2]

)
where

(5-17)
λ= `(I ; I2)− `(L; J \ j)

= `(I2; I2)− `(J \ j; J \ j)+ `(r1; I2)− `(r1; J \ j) = −d1 + 1.

Combining equations (5-14)–(5-17), we obtain

(5-18) r
(
[I | J ], [J | I ]

)
= q̂

∑
j∈J
j<r1

(−q)2+2|[1, j)∩J |−2d1 r
(
[I2 | J \ j], [J \ j | I2]

)
.

It remains to compute r
(
[I2 | J \ j], [J \ j | I2]

)
for j ∈ J with j < r1. Observe

that I2 > J \ j for any such j , so that our induction hypothesis will apply. Now,

`(J \ j; I2) = `(J ; I2) = `(J ; I )− `(J ; r1) = `(J ; I )− m + d1,

`(I2; I2) = `(I ; I2) = `(I ; I )− m + 1,

whence `(J \ j; I2)−`(I2; I2)= `(J ; I )−`(I ; I )+d1 −1. For l = 1, . . . ,m −1,
observe that

`(rl+1; J \ j)− l + 1 = `(rl+1; J )− l = dl+1,

and consequently ξq(I2; J \ j) = [d2]−q [d3]−q · · · [dm]−q . Thus, our induction
hypothesis implies that

(5-19) r
(
[I2 | J \ j], [J \ j | I2]

)
= q̂m−1(−q)`(J ;I )−`(I ;I )+d1−1

[d2]−q [d3]−q · · · [dm]−q .

Inserting (5-19) in (5-18), we obtain

(5-20) r
(
[I | J ], [J | I ]

)
= q̂m(−q)`(J ;I )−`(I ;I )+1−d1[d2]−q [d3]−q · · · [dm]−q

∑
j∈J
j<r1

q2|[1, j)∩J |.
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The summation appearing in (5-20) is just
∑d1

t=1 q2(t−1)
= (−q)d1−1

[d1]−q , whence

(5-21) [d2]−q [d3]−q · · · [dm]−q

∑
j∈J
j<r1

q2|[1, j)∩J |
= (−q)d1−1ξq(I ; J ).

Equations (5-20) and (5-21) establish (5-13), completing the induction step. �

Theorem 5.6. Let I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |.

(a) If r
(
[I | J ], [M | N ]

)
6= 0, then

(5-22) I ≥ J, I ∩ M = J ∩ N , I ∪ M = J ∪ N .

(b) If conditions (5-22) hold, then

(5-23) r
(
[I | J ], [M | N ]

)
= q |I∩M | q̂ |I\J |(−q)λ ξq(I \ J ; J \ I ),

where λ= `
(
(J \ N )∪ (M \ I ); I \ J

)
− `

(
(J \ N )∪ (M \ I ); J \ I

)
.

Proof. (a) Follows from Corollary 3.3 and Lemma 5.1.
(b) Recall from Lemma 5.2 that I \ J = N \ M and J \ I = M \ N . If I = J , then

we must have M = N . In this case, r
(
[I | J ], [M | N ]

)
= q |I∩M | by Proposition 3.6,

and we are done. Now assume that I 6= J , and note that I \ J > J \ I . We shall
need the observations that

(I \ M)∪ N = I ∪ N , (I \ M) \ (J \ N )= I \ J,

(J \ N )∪ M = J ∪ M, (J \ N ) \ (I \ M)= J \ I.

Applying successively Lemmas 5.2, 5.3 and 5.5, we obtain

(5-24) r
(
[I | J ], [M | N ]

)
= q |I∩M | q̂ |I\J |(−q)λ ξq(I \ J ; J \ I ),

where

λ= `(I ; J ∩ N )− `(J ; I ∩ M)+ `(I ∪ N ; I \ J )

− `(J ∪ M; J \ I )+ `(J \ I ; I \ J )− `(I \ J ; I \ J ).

Observe that (I ∪ N )t (J \ I )= J ∪ N = I ∪ M = (J ∪ M)t (I \ J ), whence

(5-25) `(I ∪ N ; I \ J )− `(J ∪ M; J \ I )+ `(J \ I ; I \ J )− `(I \ J ; I \ J )

= `(J ∪ M; I \ J )− `(J ∪ M; J \ I ).

Next, observe that I \ N = J \ M and N \ I = M \ J . Moreover,

I ∪ M = I ∪ M ∪ N = I t (N \ I )t (M \ N ),

J ∪ N = J ∪ M ∪ N = J t (M \ J )t (N \ M),
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and consequently

`(I ; J ∩ N )+ `(N \ I ; J ∩ N )+ `(M \ N ; J ∩ N )= `(I ∪ M; J ∩ N ),

`(J ; I ∩ M)+ `(M \ J ; I ∩ M)+ `(N \ M; I ∩ M)= `(J ∪ N ; I ∩ M).

It follows that

(5-26) `(I ; J ∩ N )− `(J ; I ∩ M)

= `(N \ M; I ∩ M)− `(M \ N ; J ∩ N )

= |N \ M | · |I ∩ M | − `(I ∩ M; N \ M)

− |M \ N | · |J ∩ N | + `(J ∩ N ; M \ N )

= `(I ∩ M; J \ I )− `(I ∩ M; I \ J ).
Finally, since

(J ∪ M) \ (I ∩ M)=
(
J \ (J ∩ N )

)
∪

(
M \ (I ∩ M)

)
= (J \ N )∪ (M \ I ),

we conclude from (5-25) and (5-26) that

(5-27) λ= `
(
(J \ N )∪ (M \ I ); I \ J

)
− `

(
(J \ N )∪ (M \ I ); J \ I

)
.

In view of (5-24) and (5-27), the theorem is proved. �

Example 5.7. Let [I | J ]= [45678|12345] and [M | N ]= [123459|456789], where
we have omitted commas between elements of the index sets. It is clear that I ≥ J ;
moreover, I∩M ={4, 5}= J∩N and I∪M ={1, . . . , 9}= J∪N . Hence, conditions
(5-22) hold. Now I \ J = {6, 7, 8} and J \ I = {1, 2, 3}, while (J \ N )∪ (M \ I )=
{1, 2, 3, 9}, whence

`
(
(J \ N )∪ (M \ I ); I \ J

)
− `

(
(J \ N )∪ (M \ I ); J \ I

)
= 3 − 6 = −3.

Since all the elements of I \ J are greater than all the elements of J \ I , we have

ξq(I \ J ; J \ I )= [3]−q [2]−q [1]−q = (q2
+ 1 + q−2)(−q − q−1).

Thus, we conclude from (5-23) that

r
(
[I | J ], [M | N ]

)
= q2 q̂3(−q)−3(q2

+ 1 + q−2)(−q − q−1).

6. General commutation relations

Now that we have formulas for the value of the braiding form r on pairs of quantum
minors, commutation relations follow readily from property (2-7). The following
notation for certain index sets and exponents will be helpful in displaying the re-
sults. Recall the quantities `( · , · ) and ξq( · , · ) from Section 2.8 and Section 5.4.
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6.1. Definitions of index sets {<X‖Y } and {>X‖Y} and numerical quantities
L(S, X, Y) and L\(T, X, Y). For any subsets X and Y of {1, . . . , n}, define

(6-1)
{<X‖Y } =

{
S ⊆ X ∪ Y

∣∣ X ∩ Y ⊆ S; |S| = |X |; S < X
}
,

{>X‖Y } =
{
T ⊆ X ∪ Y

∣∣ X ∩ Y ⊆ T ; |T | = |X |; T > X
}
.

In Section 7, we shall need index sets {≤X‖Y } and {≥X‖Y }, defined in a similar
manner. For any set S ⊆ X ∪ Y such that X ∩ Y ⊆ S, define

(6-2) S\ = S\X,Y = (X ∩ Y )t
(
(X ∪ Y ) \ S

)
.

Note that, if S ∈ {<X‖Y } or S ∈ {>X‖Y }, then |S\|= |Y |. Finally, for S ∈ {<X‖Y }

and T ∈ {>X‖Y }, define

(6-3) L(S, X, Y )= `
(
(S \ S\)∪ (Y \ X); X \ S

)
− `

(
(S \ S\)∪ (Y \ X); S \ X

)
,

L\(T, X, Y )

= `
(
(T \

\ T )∪ (X \ Y ); T \ X
)
− `

(
(T \

\ T )∪ (X \ Y ); X \ T
)
.

For example, suppose that X = {2, 3, 4, 6} and Y = {1, 3, 5}. Then {<X‖Y }

consists of those 4-element subsets S of {1, . . . , 6} such that 3 ∈ S and S < X .
There are six such sets:

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},

{1, 3, 4, 5}, {1, 3, 4, 6}, {2, 3, 4, 5}.

Similarly, {>X‖Y } consists of those 4-element subsets T of {1, . . . , 6} such that
3 ∈ T and T > X . There are two: {3, 4, 5, 6} and {2, 3, 5, 6}. Finally, consider the
set S = {1, 2, 3, 4} ∈ {<X‖Y }. Then S\ = {3, 5, 6}, and so

L(S, X, Y )= `
(
{1, 2, 4, 5}; {6}

)
− `

(
({1, 2, 4, 5}; {1}

)
= 0 − 3.

Theorem 6.2. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(6-4) q |I∩M |
[I | J ] [M | N ] + q |I∩M |

∑
S∈{<I‖M}

λS [S | J ] [S\ | N ]

= q |J∩N |
[M | N ] [I | J ] + q |J∩N |

∑
T ∈{>J‖N }

µT [M |T \
] [I |T ],

where

(6-5)
λS = q̂ |I\S|(−q)L(S,I,M) ξq(I \ S; S \ I )

µT = q̂ |T \J |(−q)L
\(T,J,N ) ξq(T \ J ; J \ T )

for S ∈ {<I‖M} and T ∈ {>J‖N }.
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Proof. Taking a = [I | J ] and b = [M | N ] in (2-7), we obtain

(6-6)
∑

|S|=|I |
|S′

|=|M |

r
(
[I |S], [M |S′

]
)
[S | J ] [S′

| N ]

=

∑
|T |=|J |

|T ′
|=|N |

r
(
[T | J ], [T ′

| N ]
)
[M |T ′

] [I |T ].

In view of Corollary 3.3 and Lemma 5.1, the left-hand summation in (6-6) can be
restricted to index sets S and S′ such that

(6-7)
|S| = |I |, I ≥ S,

I ∩ M = S ∩ S′, I ∪ M = S ∪ S′.

Proposition 3.6 shows that the coefficient of the term with S = I and S′
= M is

q |I∩M |, and that the terms with S = I and S′
6= M vanish.

The index sets S and S′ such that S 6= I and (6-7) hold are precisely those for
which S ∈ {<I‖M} and S′

= S\. For these index sets, Theorem 5.6 shows that

r
(
[I |S], [M |S′

]
)
= q |I∩M |λS.

Thus, the left-hand side of (6-6) reduces to the left-hand side of (6-4).
Similarly, the right-hand side of (6-6) reduces to the right-hand side of (6-4),

and the theorem is proved. �

Corollary 6.3. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(6-8) q |J∩N |
[I | J ] [M | N ] + q |J∩N |

∑
S∈{<J‖N }

λS [I |S] [M |S\]

= q |I∩M |
[M | N ] [I | J ] + q |I∩M |

∑
T ∈{>I‖M}

µT [T \
| N ] [T | J ],

where

(6-9)
λS = q̂ |J\S|(−q)L(S,J,N ) ξq(J \ S; S \ J )

µT = q̂ |T \I |(−q)L
\(T,I,M) ξq(T \ I ; I \ T )

for S ∈ {<J‖N } and T ∈ {>I‖M}.

Proof. Interchange the index sets in the statement of Theorem 6.2 as follows: I ↔ J
and M ↔ N . Then apply the automorphism τ to the resulting version of (6-4) to
obtain (6-8) (recall (2-16)).

This corollary can also be obtained from Theorem 6.2 by interchanging I ↔ M
and J ↔ N , in which case one should also interchange S ↔ T \ and T ↔ S\. �
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6.4. Further quasicommutation. In particular, Theorem 6.2 yields quasicommu-
tation relations of the form q |I∩M |

[I | J ] [M | N ] = q |J∩N |
[M | N ] [I | J ] in cases

where the index sets {<I‖M} and {>J‖N } are empty. This occurs, for instance,
if either

[I | J ] = [1, . . . , r |n+1−r, . . . , n] or [M | N ] = [n+1−r, . . . , n |1, . . . , r ],

recovering the well-known fact that the northeastern-most and southwestern-most
quantum minors are normal elements of A. Moreover,

(6-10) [1, . . . , r | J ] [M |1, . . . , s]

= q |J∩[1,s]|−|[1,r ]∩M |
[M |1, . . . , s] [1, . . . , r | J ],

which is part of [Hodges and Levasseur 1994, Proposition 1.1] (with q2 replaced by
q). Also, (6-10) immediately implies the type A case of [Berenstein and Zelevinsky
2005, Equation 10.3].

We record the general quasicommutation relations of the above type in the next
corollary. Part (a) recovers one case of [Scott 2005, Theorem 2]. It does not seem,
however, that the relations (4-13) and (4-14) follow directly from equations such
as (6-4) or (6-8).

Corollary 6.5. Let I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |.

(a) If max(M \ I ) <min(I \ M) and max(J \ N ) <min(N \ J ), then

(6-11) [I | J ] [M | N ] = q |I∩M |−|J∩N |
[M | N ] [I | J ].

(b) If max(I \ M) <min(M \ I ) and max(N \ J ) <min(J \ N ), then

(6-12) [I | J ] [M | N ] = q |J∩N |−|I∩M |
[M | N ] [I | J ].

Proof. (a) If S ∈ {<J‖N }, then S \ (J ∩ N ) < J \ N , whence

max
(
S \ (J ∩ N )

)
≤ max(J \ N ) <min(N \ J ).

But then S is disjoint from N \ J . Since J ∩ N ⊆ S ⊆ J ∪ N and |S| = |J |, this
forces S = J , which is ruled out by the assumption that S< J . Thus, {<J‖N }=∅.
Similarly, {>I‖M} = ∅, and thus (6-11) follows from (6-8).

(b) Interchange I ↔ M and J ↔ N , and apply part (a). �

Example 6.6 (n = 6). Let J = N = {1, 2, 3}, and take I = {1, 4, 5} and M =

{2, 3, 6}. We first apply Theorem 6.2. Note that {>J‖N } is empty because J = N .
For S ∈ {<I‖M}, we make the calculations in Table 1, where commas have been
deleted for the sake of abbreviation (for instance, {123} stands for the index set
{1, 2, 3}).
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S {123} {124} {125} {134} {135}

S\ {456} {356} {346} {256} {246}

I \ S {45} {5} {4} {5} {4}

S \ I {23} {2} {2} {3} {3}

(S \ S\)∪ (M \ I ) {1236} {12346} {12356} {12346} {12356}

`
(
(S \ S\)∪ (M \ I ); I \ S

)
2 1 2 1 2

`
(
(S \ S\)∪ (M \ I ); S \ I

)
3 3 3 2 2

L(S, I,M) −1 −2 −1 −1 0

ξq(I \ S; S \ I ) −q−q−1 1 1 1 1

Table 1

Consequently, Theorem 6.2 implies that

(6-13) q3
[236| J ] [145| J ]

= [145| J ] [236| J ] + q̂2(−q)−1(−q−q−1)[123| J ] [456| J ]

+ q̂(−q)−2
[124| J ] [356| J ] + q̂(−q)−1

[125| J ] [346| J ]

+ q̂(−q)−1
[134| J ] [256| J ] + q̂[135| J ] [246| J ].

The relation (6-13) matches the one calculated by Fioresi [1999, Example 2.22]
(see the first display on page 435, where one must replace q by q−1 to account for
the difference between (2-6) and the relations used in that paper).

For contrast, we record the relation obtained from Corollary 6.3 for the current
choices of I , J , M , N :

(6-14) q3
[145| J ] [236| J ]

= [236| J ] [145| J ] + q̂[235| J ] [146| J ]

+ q̂(−q)−1
[234| J ] [156| J ] + q̂[136| J ] [245| J ]

+ q̂2
[135| J ] [246| J ] + q̂2(−q)−1

[134| J ] [256| J ]

+ q̂(−q)−1
[126| J ] [345| J ] + q̂2(−q)−1

[125| J ] [346| J ]

+ q̂2(−q)−2
[124| J ] [356| J ] + q̂(−q)−4

[123| J ] [456| J ].

We derive two further relations from Theorem 6.2 and Corollary 6.3 with the
help of the isomorphism β of Section 2.6, as in Section 4.5. For use in the upcom-
ing proof, note that, since ω0 reverses inequalities of integers, it also reverses the
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ordering on index sets: if U and V are subsets of {1, . . . , n} with |U | = |V |, then
U ≤ V if and only if ω0 U ≥ ω0V .

Theorem 6.7. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(6-15) q |J∩N |
[I | J ] [M | N ] + q |J∩N |

∑
S∈{>I‖M}

µ̃S [S | J ] [S\ | N ]

= q |I∩M |
[M | N ] [I | J ] + q |I∩M |

∑
T ∈{<J‖N }

λ̃T [M |T \
] [I |T ],

where

(6-16)
µ̃S = (−q̂)|S\I |(−q)−L\(S,I,M) ξq(S \ I ; I \ S)

λ̃T = (−q̂)|J\T |(−q)−L(T,J,N ) ξq(J \ T ; T \ J )

for S ∈ {>I‖M} and T ∈ {<J‖N }.

Proof. Just for this proof, write Ũ = ω0 U for index sets U , and observe that

ω0
(
{>I‖M}

)
= {< Ĩ‖M̃} and ω0

(
{<J‖N }

)
= {> J̃‖Ñ }.

Note also that S̃\ = S̃\ for S ∈ {>I‖M}, and similarly T̃ \
= T̃ \ for T ∈ {<J‖N }.

Set A′
= Oq−1(Mn(k)), with generators X ′

i j and braiding form r′, and label the
quantum minors in A′ by [I | J ]

′. Recall the isomorphism β : A → A′ from Section
2.6, and equation (2-17). Note that, when specializing general results to A′, the
scalars q and q̂ change to q−1 and −q̂ , respectively.

Now apply Theorem 6.2 to the quantum minors [ Ĩ | J̃ ]
′ and [M̃ | Ñ ]

′ in A′:

(6-17) q−| Ĩ∩M̃ |
[ Ĩ | J̃ ]

′
[M̃ | Ñ ]

′
+ q−| Ĩ∩M̃ |

∑
S∈{>I‖M}

λ′

S̃
[S̃ | J̃ ]

′
[S̃\ | Ñ ]

′

= q−| J̃∩Ñ |
[M̃ | Ñ ]

′
[ Ĩ | J̃ ]

′
+ q−| J̃∩Ñ |

∑
T ∈{<J‖N }

µ′

T̃
[M̃ | T̃ \

]
′
[ Ĩ | T̃ ]

′,

where
λ′

S̃
= (−q̂)|I\S|(−q)−L(S̃, Ĩ ,M̃) ξq( Ĩ \ S̃; S̃ \ Ĩ ),

µ′

T̃
= (−q̂)|T \J |(−q)−L\(T̃ , J̃ ,Ñ ) ξq(T̃ \ J̃ ; J̃ \ T̃ ),

for S ∈ {>I‖M} and T ∈ {<J‖N }. (Here we have simplified the exponents of
the −q̂ terms and used the observation that ξq−1(U ; V )= ξq(U ; V ) for any U , V .)
Applying the isomorphism β−1 to (6-17) yields, in A,

(6-18) q−|I∩M |
[I | J ] [M | N ] + q−|I∩M |

∑
S∈{>I‖M}

λ′

S̃
[S | J ] [S\ | N ]

= q−|J∩N |
[M | N ] [I | J ] + q−|J∩N |

∑
T ∈{<J‖N }

µ′

T̃
[M |T \

] [I |T ].
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Equation (6-15) will follow from (6-18) once we see that λ′

S̃
= µ̃S and µ′

T̃
= λ̃T

for all S and T .
Take S ∈ {>I‖M} and observe that

(6-19)
S ∩ S\ = I ∩ M, S ∪ S\ = I ∪ M,

S\ \ M = I \ S, M \ S\ = S \ I.

It follows from Theorem 5.6 and Lemma 2.7 that

q−|I∩M |λ′

S̃
= q−| Ĩ∩M̃ |λ′

S̃
= r′

(
[ Ĩ | S̃]

′, [M̃ | S̃\]′
)
= r′

(
[M |S\]′, [I |S]

′
)
.

With the help of (6-19), a second application of Theorem 5.6 shows that

r′
(
[M |S\]′, [I |S]

′
)
= q−|I∩M | µ̃S,

and therefore λ′

S̃
= µ̃S . Similarly, µ′

T̃
= λ̃T for all T ∈ {<J‖N }, and the theorem

is proved. �

The next corollary is obtained from Theorem 6.7 in the same way as was Corol-
lary 6.3 from Theorem 6.2.

Corollary 6.8. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(6-20) q |I∩M |
[I | J ] [M | N ] + q |I∩M |

∑
S∈{>J‖N }

µ̃S [I |S] [M |S\]

= q |J∩N |
[M | N ] [I | J ] + q |J∩N |

∑
T ∈{<I‖M}

λ̃T [T \
| N ] [T | J ],

where

(6-21)
µ̃S = (−q̂)|S\J |(−q)−L\(S,J,N ) ξq(S \ J ; J \ S)

λ̃T = (−q̂)|I\T |(−q)−L(T,I,M) ξq(I \ T ; T \ I )

for S ∈ {>J‖N } and T ∈ {<I‖M}. �

7. Some variants

Consider the general form of a commutation relation for quantum minors [I | J ] and
[M | N ], namely, an equation that allows a product [I | J ] [M | N ] to be replaced by
a scalar multiple of the reverse product [M | N ] [I | J ], at the cost of some additional
terms. In an equation such as (6-4), the additional terms are of two types: scalar
multiples of [S | J ] [S\ | N ] and of [M |T \

] [I |T ]. In some applications, one type
may be more useful than the other. For instance, the prefered bases constructed
in [Goodearl and Lenagan 2000] consist of certain products of quantum minors
in which quantum minors with larger index sets must occur to the left of those
with smaller index sets. Thus, if |I | < |M |, then [M | N ] [I | J ] and the terms
[M |T \

] [I |T ] are in preferred order, but [I | J ] [M | N ] and the terms [S | J ] [S\ | N ]
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are not. A commutation relation in which all the extra terms are in preferred
order can be achieved by iteration: after a first application of (6-4), apply (6-4)
to any products [S | J ] [S\ | N ] that appear, and continue until all terms have the
desired form. This produces a relation in which q |I∩M |

[I | J ] [M | N ] is expressed
as q |J∩N |

[M | N ] [I | J ] plus a linear combination of products [S\ |T \
] [S |T ], where

S ∈ {≤I‖M} and T ∈ {≥J‖N }. We begin by illustrating the iteration process in
the next example.

The aim of this section is to derive closed formulas (that is, without iterations)
for commutation relations of the type just discussed.

Example 7.1 (n = 4). Consider [I | J ] = [23|12] and [M | N ] = [14|23]. First,
(6-4) leads to the relation

(7-1) [23|12] [14|23] − q [14|23] [23|12]

= q q̂ [14|12] [23|23] − q̂(−q)−1
[12|12] [34|23] − q̂ [13|12] [24|23].

The last two terms on the right-hand side of (7-1) must now be treated. Applying
(6-4) in each case, we obtain

[12|12] [34|23] = q[34|23] [12|12] + qq̂[34|12] [12|23](7-2)

[13|12] [24|23] = q[24|23] [13|12] + qq̂[24|12] [13|23](7-3)

−q̂[12|12] [34|23].

Note that (7-3) contains a term involving [12|12] [34|23]. Hence, we first sub-
stitute that equation into (7-1), and then combine the two [12|12] [34|23]-terms,
before substituting (7-2) into the result. The final relation is

(7-4) [23|12] [14|23] − q[14|23] [23|12]

= q q̂ [14|12] [23|23] − q̂ q [24|23] [13|12] − q̂2q [24|12] [13|23]

+ q̂ q2
[34|23] [12|12] + q̂2q2

[34|12] [12|23].

In each of the terms on the right-hand side of (7-4), the second factor is of the form
[S |T ], where S ∈ {23, 13, 12} = {≤I‖M} and T ∈ {23, 12} = {≥J‖N }.

Lemma 7.2. Let s ∈ {1, . . . , n − 1}, and let B and C be the subalgebras of A =

Oq(Mn(k)) given by

B = k〈X i j | 1 ≤ i ≤ n, 1 ≤ j ≤ s〉 and C = k〈X i j | 1 ≤ i ≤ n, s + 1 ≤ j ≤ n〉.

The multiplication map µ : B ⊗k C → A is a vector space isomorphism.
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Proof. Let X , Y , and Z be the standard PBW bases of the respective algebras B,
C , and A. Thus,

X =
{
(Xb11

11 · · · Xb1s
1s )(X

b21
21 · · · Xb2s

2s ) · · · (X
bn1
n1 · · · Xbns

ns )
∣∣ bi j ∈ Z+

}
,

Y =
{
(X c1,s+1

1,s+1 · · · X c1n
1n )(X

c2,s+1
2,s+1 · · · X c2n

2n ) · · · (X
cn,s+1
n,s+1 · · · X cnn

nn )
∣∣ ci j ∈ Z+

}
,

Z =
{
(Xa11

11 · · · Xa1n
1n )(X

a21
21 · · · Xa2n

2n ) · · · (X
an1
n1 · · · Xann

nn )
∣∣ ai j ∈ Z+

}
,

where the variables occur in each monomial in lexicographic order. Observe that
the monomials Xbi1

i1 · · · Xbis
is and X cl,s+1

l,s+1 · · · X cln
ln commute whenever i > l. Hence,

any product of a monomial from X with a monomial from Y can be rewritten as(
(Xb11

11 · · · Xb1s
1s )(X

b21
21 · · · Xb2s

2s ) · · · (X
bn1
n1 · · · Xbns

ns )
)

×
(
(X c1,s+1

1,s+1 · · · X c1n
1n ) · (X

c2,s+1
2,s+1 · · · X c2n

2n ) · · · (X
cn,s+1
n,s+1 · · · X cnn

nn )
)

= (Xb11
11 · · · Xb1s

1s )(X
c1,s+1
1,s+1 · · · X c1n

1n )(X
b21
21 · · · Xb2s

2s )

× (X c2,s+1
2,s+1 · · · X c2n

2n ) · · · (X
bn1
n1 · · · Xbns

ns )(X
cn,s+1
n,s+1 · · · X cnn

nn ).

Consequently, µ maps the set {x ⊗ y | x ∈ X, y ∈ Y } bijectively onto Z , and the
lemma follows. �

Theorem 7.3. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(7-5) q |I∩M |
[I | J ] [M | N ]

= q |J∩N |
[M | N ] [I | J ] + q |J∩N |

∑
S∈{≤I‖M}

T ∈{≥J‖N }

(S,T ) 6=(I,J )

λ̃SµT [S\ |T \
] [S |T ],

where

(7-6)
λ̃S = (−q̂)|I\S|(−q)−L(S,I,M) ξq(I \ S; S \ I )

µT = q̂ |T \J |(−q)L
\(T,J,N ) ξq(T \ J ; J \ T )

for S ∈ {≤I‖M} and T ∈ {≥J‖N }.

Remark 7.4. We have isolated the term q |J∩N |
[M | N ] [I | J ] on the right-hand

side of (7-5) to emphasize that this equation is a commutation relation. It may, of
course, be incorporated in the given summation as a term where (S, T ) = (I, J ),
since λ̃IµJ = 1.

Proof of Theorem 7.3. Note that the coefficients λS and µT defined in (6-5) also de-
pend on I , J , M , N . For purposes of the present proof, we record that dependence
by writing

λ
X,Y
S = q̂ |X\S|(−q)L(S,X,Y ) ξq(X \ S; S \ X),

µ
J,N
T = q̂ |T \J |(−q)L

\(T,J,N ) ξq(T \ J ; J \ T ),
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for S ∈ {≤X‖Y } and T ∈ {≥J‖N }. Note that λX,Y
X = 1 and µJ,N

J = 1. For
S ∈ {<I‖M}, set

α
I,M
S =

∑
S1∈{<I‖M}

S2∈{<S1‖S\1}
...

S∈{<Si−1‖S\i−1}

(−1)i λ
I,M
S1
λ

S1,S
\
1

S2
· · · λ

Si−1,S
\
i−1

S ,

where, in terms with i = 1, we interpret S0 = I and S\0 = M . Finally, set α I,M
I = 1.

We claim that

(7-7) q |I∩M |
[I | J ] [M | N ] = q |J∩N |

∑
S∈{≤I‖M}

T ∈{≥J‖N }

α
I,M
S µ

J,N
T [S\ |T \

] [S |T ].

Let t = |I |, and let Nt denote the collection of t-element subsets of {1, . . . , n},
partially ordered as in Section 2.10. For proving (7-7), we proceed by induction on
I relative to the ordering in Nt . To start, suppose that I is minimal in Nt (that is,
I = {1, . . . , t}). In this case, {<I‖M} is empty, and so Theorem 6.2 implies that

q |I∩M |
[I | J ] [M | N ] = q |J∩N |

[M | N ] [I | J ] + q |J∩N |
∑

T ∈{>J‖N }

µ
J,N
T [M |T \

] [I |T ],

which verifies (7-7).
Now suppose that I is not minimal in Nt , but that (7-7) holds whenever I is

replaced by an index set I ′ < I . Theorem 6.2 implies that

(7-8) q |I∩M |
[I | J ] [M | N ]

= q |J∩N |
∑

T ∈{≥J‖N }

µ
J,N
T [M |T \

] [I |T ] − q |I∩M |
∑

S1∈{<I‖M}

λ
I,M
S1

[S1 | J ] [S\1 | N ].

Recall that S1 ∩ S\1 = I ∩ M for S1 ∈ {<I‖M}, by definition of S\1. Hence, our
induction hypothesis yields

(7-9) q |I∩M |
[S1 | J ] [S\1 | N ] = q |J∩N |

∑
S∈{≤S1‖S\1}
T ∈{≥J‖N }

α
S1,S

\

1
S µ

J,N
T [S\ |T \

] [S |T ]

for all S1 ∈ {<I‖M}. Substitute (7-9) in (7-8), which yields

(7-10) q |I∩M |
[I | J ] [M | N ] = q |J∩N |

∑
T ∈{≥J‖N }

µ
J,N
T [M |T \

] [I |T ]

−q |J∩N |
∑

S1∈{<I‖M}

S∈{≤S1‖S\1}
T ∈{≥J‖N }

λ
I,M
S1
α

S1,S
\
1

S µ
J,N
T [S\ |T \

] [S |T ].
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Since α I,M
I = 1, the coefficients in the first summation of (7-10) match the corre-

sponding coefficients in (7-7). The second summation of (7-10) may be rewritten
in the form

q |J∩N |
∑

S∈{<I‖M}

T ∈{≥J‖N }

βSµ
J,N
T [S\ |T \

] [S |T ],

where each

βS = −

∑
S1∈{<I‖M}

S∈{≤S1‖S\1}

λ
I,M
S1
α

S1,S
\
1

S = α
I,M
S .

Thus, (7-10) yields (7-7), establishing the induction step. This proves (7-7).
It remains to show that α I,M

S = λ̃S for S ∈ {≤I‖M}.
Observe that all quantities appearing in (7-7) involve index sets contained in the

union I ∪ J ∪ M ∪ N , and so they remain the same if we work in Oq(Mν(k)) for
some ν > n. Hence, there is no loss of generality in assuming that n ≥ |I | + |M |.
If we set

J ∗
= {n−|I |+1, . . . , n} and N ∗

= {1, . . . , |M |},

we have max(N ∗) < min(J ∗). Note also that J ∗ is maximal among |I |-element
subsets of {1, . . . , n}. The quantum minors [U | N ∗

], for U ⊆{1, . . . , n} with |U |=

|M |, are homogeneous elements of distinct degrees with respect to the grading on
A discussed in Section 2.2. Hence, the [U | N ∗

] are linearly independent over k.
Similarly, the [V | J ∗

], for V ⊆ {1, . . . , n} with |V | = |I |, are linearly independent,
and thus it follows from Lemma 7.2 that the products [U | N ∗

] [V | J ∗
] are linearly

independent over k.
Now apply (7-7) to the quantum minors [I | J ∗

] and [M | N ∗
]. Since {>J ∗

‖N ∗
}

is empty, we obtain

(7-11) q |I∩M |
[I | J ∗

] [M | N ∗
] =

∑
S∈{≤I‖M}

α
I,M
S [S\ | N ∗

] [S | J ∗
].

However, we also have a relation of this type from Corollary 6.8, which may be
written in the form

(7-12) q |I∩M |
[I | J ∗

] [M | N ∗
] =

∑
T ∈{≤I‖M}

λ̃T [T \
| N ∗

] [T | J ∗
].

Since the products [S\ | N ∗
] [S | J ∗

] are linearly independent, it follows from (7-11)
and (7-12) that α I,M

S = λ̃S for all S ∈ {≤I‖M}. Therefore (7-7) implies (7-5), as
desired. �

As is easily checked, Theorem 7.3 directly yields equation (7-4).
We next consider the derivation of new relations from Theorem 7.3. Unlike the

situation in Section 5, however, the methods used there to prove Corollary 6.3 and
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Theorem 6.7 yield the same result when applied to Theorem 7.3. Hence, we use
the method of Corollary 6.3.

Corollary 7.5. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(7-13) q |J∩N |
[I | J ] [M | N ]

= q |I∩M |
[M | N ] [I | J ] + q |I∩M |

∑
S∈{≥I‖M}

T ∈{≤J‖N }

(S,T ) 6=(I,J )

µS λ̃T [S\ |T \
] [S |T ],

where

(7-14)
µS = q̂ |S\I |(−q)L

\(S,I,M) ξq(S \ I ; I \ S)

λ̃T = (−q̂)|J\T |(−q)−L(T,J,N ) ξq(J \ T ; T \ J )

for S ∈ {≥I‖M} and T ∈ {≤J‖N }.

Proof. Interchange I ↔ J and M ↔ N in the statement of Theorem 7.3, and also
interchange the roles of S and T in the summation. This yields

(7-15) q |J∩N |
[J | I ] [N | M]

= q |I∩M |
[N | M] [J | I ] + q |I∩M |

∑
T ∈{≤J‖N }

S∈{≥I‖M}

(T,S)6=(J,I )

λ̃
J,N
T µ

I,M
S [T \

|S\] [T |S],

where we have placed the superscripts on λ̃J,N
T and µI,M

S as reminders of the
changes required when carrying over (7-6) to the present situation. Thus, ob-
serve that λ̃J,N

T and µI,M
S are equal to the scalars denoted λ̃T and µS in (7-14).

Consequently, an application of the automorphism τ to (7-15) yields (7-13) (recall
(2-16)). �

Remark 7.6. In addition to (7-5) and (7-13), one can derive two commutation rela-
tions for quantum minors [I | J ] and [M | N ] in which the additional terms involve
products in the same order as [I | J ] [M | N ], rather than in reverse order. To obtain
such results, simply interchange the roles of [I | J ] and [M | N ] in Theorem 7.3 and
Corollary 7.5. One may wish to simplify the coefficients; for instance, with the
help of observations such as (6-19), one sees that

L(S\,M, I )= L\(S, I,M).

We leave this to the interested reader.

Example 7.7 (n = 4). We close the section by applying Corollary 7.5 to the quan-
tum minors [I | J ] = [23|13] and [M | N ] = [14|24]. In this case, equation (7-13)
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becomes

(7-16) [23|13] [14|24]

= [14|24] [23|13] + q̂[13|24] [24|13] + q̂(−q)−1
[12|24] [34|13]

+ (−q̂)[14|34] [23|12] + q̂(−q̂)[13|34] [24|12]

+ q̂(−q)−1(−q̂)[12|34] [34|12].

Equation (7-16) matches the relation calculated by Fioresi [2004, Example 6.2]
(after replacing q by q−1).

8. Poisson brackets

In this final section, we use the commutation relations for quantum minors obtained
above to derive expressions for the standard Poisson bracket on pairs of classical
minors in O(Mn(k)). In particular, we recover, for the case of the standard bracket, a
formula calculated by Kupershmidt [1994]. Although the study of Poisson brackets
is often restricted to characteristic zero, that restriction is not needed for the results
below.

8.1. Standard Poisson bracket on O(Mn(k)). Recall that a Poisson bracket on a
commutative k-algebra B is a k-bilinear map { · , · } : B × B → B such that

• B is a Lie algebra with respect to { · , · }; and

• {b, · } is a derivation for each b ∈ B.

Note that a Poisson bracket is uniquely determined by its values on pairs of ele-
ments from a k-algebra generating set for B.

Write O(Mn(k)) as a commutative polynomial ring over k in indeterminates xi j

for i, j = 1, . . . , n. The standard Poisson bracket on this algebra is the unique
Poisson bracket such that

(8-1)

{xi j , xl j } = xi j xl j if i < l,

{xi j , xim} = xi j xim if j < m,

{xi j , xlm} = 0 if i < l, j > m,

{xi j , xlm} = 2xim xl j if i < l, j < m.

8.2. Oq(Mn) as a quantization of O(Mn). It is well known that Oq(Mn(K )), for a
rational function field K = k(q), is a quantization of the Poisson algebra O(Mn(k)),
in the sense that the Poisson bracket on O(Mn(k)) is the “semiclassical limit” (as
q → 1) of the scaled commutator bracket 1

q−1 [ · , · ] on Oq(Mn(K )); we indicate
the details below.
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For the remainder of this section, replace the scalar q by an indeterminate, and
consider the quantum matrix algebra

Oq
(
Mn(k(q))

)
,

defined over the rational function field k(q).
The k[q±1

]-subalgebra A0 of Oq
(
Mn(k(q))

)
generated by the X i j can be pre-

sented, as a k[q±1
]-algebra, by the generators X i j and relations (2-6), from which

it follows that there is an isomorphism

(8-2) A0/(q − 1)A0
∼=

−→ O(Mn(k))

sending the cosets

X i j + (q − 1)A0 7−→ xi j for all i, j.

We identify A0/(q − 1)A0 with O(Mn(k)) via (8-2). Since O(Mn(k)) is commu-
tative, the additive commutator [ · , · ] on A0 takes all its values in (q − 1)A0, and
so 1

q−1 [ · , · ] is well-defined on A0. It follows that the latter bracket induces a
well-defined Poisson bracket on O(Mn(k)), such that

(8-3) {a, b} = (ab − ba)/(q − 1)

for a, b ∈ A0, where overbars denote cosets modulo (q − 1)A0. This induced
bracket is nothing but the standard Poisson bracket on O(Mn(k)), as one easily
sees by computing its values on pairs of generators xi j , xlm .

We shall apply (8-3) when a and b are minors. In order to reserve the notation
[I | J ] for classical minors, we denote the quantum minors in Oq

(
Mn(k(q))

)
by

[I | J ]q .

Note that [I | J ]q is an element of A0, and that the isomorphism (8-2) maps the
coset of [I | J ]q to [I | J ]. Hence, for pairs of minors, (8-3) can be written as

(8-4)
{
[I | J ], [M | N ]

}
=

(
[I | J ]q [M | N ]q − [M | N ]q [I | J ]q

)
/(q − 1).

Combining (8-4) with formulas for additive commutators of quantum minors thus
yields formulas for Poisson brackets of classical minors. For instance, from (6-10)
we obtain

(8-5)
{
[1, . . . , r | J ], [M |1, . . . , s]

}
=(

|[1, r ] ∩ J | − |M ∩ [1, s]|
)
[1, . . . , r | J ] [M |1, . . . , s],

which recovers some cases of [Kogan and Zelevinsky 2002, Theorem 2.6].
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Theorem 8.3. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(8-6)
{
[I | J ], [M | N ]

}
=

(
|J ∩ N | − |I ∩ M |

)
[I | J ] [M | N ]

+ 2
∑

j∈J\N
n∈N\J

j<n

(−1)|(J1N )∩( j,n)|
[I | J t n \ j] [M | N t j \ n]

− 2
∑

i∈I\M
m∈M\I

i>m

(−1)|(I1M)∩(m,i)|
[I t m \ i | J ] [M t i \ m | N ].

Proof. Write (6-4) in the form

(8-7) [I | J ]q [M | N ]q − [M | N ]q [I | J ]q

=
(
q |J∩N |−|I∩M |

− 1
)
[M | N ]q [I | J ]q

+ q |J∩N |−|I∩M |
∑

T ∈{>J‖N }

µT [M |T \
]q [I |T ]q −

∑
S∈{<I‖M}

λS [S | J ]q [S\ | N ]q .

Since q̂2/(q −1) vanishes modulo q −1, we only need to consider the terms in the
sums for T ∈ {>J‖N } with |T \ J | = 1, and S ∈ {<I‖M} with |I \ S| = 1. Any
such T has the form

T = J t n \ j

with j ∈ J \ N and n ∈ N \ J such that j < n, whence

T \
= N t j \ n and (T \

\ T )∪ (J \ N )= (J1N ) \ n,

and so

L\(T, J, N )= `
(
(J1N ) \ n; n

)
− `

(
(J1N ) \ n; j

)
= `(J1N ; n)− `(J1N ; j)+ 1 = −|(J1N )∩ ( j, n)|.

Similarly, the indices S that appear have the form

S = I t m \ i

with i ∈ I \ M and m ∈ M \ I such that i > m, whence

S\ = M t i \ m and L(S, I,M)= −|(I1M)∩ (m, i)|.

Consequently, dividing (8-7) by q − 1, and then reducing the resulting equation
modulo q − 1 yields (8-6). �

Similarly, Corollary 6.3 yields:
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Theorem 8.4. If I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |, then

(8-8)
{
[I | J ], [M | N ]

}
=

(
|I ∩ M | − |J ∩ N |

)
[I | J ] [M | N ]

+ 2
∑

i∈I\M
m∈M\I

i<m

(−1)|(I1M)∩(i,m)|
[I t m \ i | J ] [M t i \ m | N ]

− 2
∑

j∈J\N
n∈N\J

j>n

(−1)|(J1N )∩(n, j)|
[I | J t n \ j] [M | N t j \ n].

Finally, provided k does not have characteristic 2, we can average equations
(8-6) and (8-8) to obtain:

Corollary 8.5. Let I, J,M, N ⊆ {1, . . . , n} with |I | = |J | and |M | = |N |. If
char k 6= 2, then

(8-9)
{
[I | J ], [M | N ]

}
=

∑
i∈I\M
m∈M\I

i<m

(−1)|(I1M)∩(i,m)|
[I t m \ i | J ] [M t i \ m | N ]

−

∑
i∈I\M
m∈M\I

i>m

(−1)|(I1M)∩(m,i)|
[I t m \ i | J ] [M t i \ m | N ]

+

∑
j∈J\N
n∈N\J

j<n

(−1)|(J1N )∩( j,n)|
[I | J t n \ j] [M | N t j \ n]

−

∑
j∈J\N
n∈N\J

j>n

(−1)|(J1N )∩(n, j)|
[I | J t n \ j] [M | N t j \ n].

Equation (8-9) is the standard case of the formula of Kupershmidt [1994, Equa-
tion (9)]. To obtain the standard Poisson bracket in his setting, make the following
choices for the structure constants:

r i j
lm =


1 if i > j, l = j, m = i,

−1 if i < j, l = j, m = i,

0 otherwise.
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APPROXIMATING THE MODULUS OF AN INNER FUNCTION

GEIR ARNE HJELLE AND ARTUR NICOLAU

We show that the modulus of an inner function can be uniformly approxi-
mated in the unit disk by the modulus of an interpolating Blaschke product.

1. Introduction

Let H∞ be the algebra of bounded analytic functions in the unit disk D. A function
in H∞ is called inner if it has radial limit of modulus one at almost every point of
the unit circle. A Blaschke product is an inner function of the form

B(z)= zm
∞∏

n=1

zn

|zn|

zn − z
1 − znz

,

where m is a nonnegative integer and {zn} is a sequence of points in D \ {0} satis-
fying the Blaschke condition

∑
n(1−|zn|) <∞. A classical result of O. Frostman

tells that for any inner function f , there exists an exceptional set E = E( f ) ⊂ D

of logarithmic capacity zero such that the Möbius shift

f −α

1 −α f

is a Blaschke product for any α ∈ D \ E . See [Frostman 1935] or [Garnett 1981,
p. 79]. Hence any inner function can be uniformly approximated by a Blaschke
product.

A Blaschke product B is called an interpolating Blaschke product if its zero
set {zn} forms an interpolating sequence, that is, if for any bounded sequence of
complex numbers {wn}, there exists a function f ∈ H∞ such that f (zn) = wn ,
n = 1, 2, . . . . A celebrated result by L. Carleson [1958] (or see [Garnett 1981,
p. 287]) tells us that this holds precisely when two conditions are satisfied:

(1) inf
n 6=m

∣∣∣∣ zn − zm

1 − z̄mzn

∣∣∣∣> 0,

MSC2000: 30D50, 30E10.
Keywords: interpolating Blaschke product, Carleson contour, discretization, inner function,
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and there exists a constant C such that
∑

zn∈Q(1−|zn|) <C`(Q) for any Carleson
square Q of the form

(2) Q =
{
reiθ

: 0< 1 − r < `(Q), |θ − θ0|< π`(Q)
}

where θ0 ∈ [0, 2π) and 0 < `(Q) < 1. Although interpolating Blaschke products
comprise a small subset of all Blaschke products, they play a central role in the
theory of the algebra H∞. See the last three chapters of [Garnett 1981].

D. Marshall [1976] proved that any function f ∈ H∞ can be uniformly approx-
imated by finite linear combinations of Blaschke products. That is, for any ε > 0
there are constants c1, . . . , cN and Blaschke products B1, . . . , BN such that∥∥∥∥ f −

N∑
i=1

ci Bi

∥∥∥∥
∞

< ε.

Here the ∞-norm is given by ‖g‖∞ = sup{|g(z)| : z ∈ D}. This result was improved
in [Garnett and Nicolau 1996] by showing that one can take each of B1, . . . , BN

to be an interpolating Blaschke product. However the following problem remains
open.

For any inner function B and ε > 0, is there an interpolating Blaschke product I
such that ‖B − I‖∞ < ε?

This question was posed in [Garnett 1981, p. 430; Havin and Nikol’skiı̆ 1994,
pp. 268–269; Jones 1981; Nikol’skiı̆ 1986, p. 202]. Here we provide a positive
answer if one restricts attention to the modulus.

Theorem 1. Let B be an inner function and ε > 0. There exists an interpolating
Blaschke product I such that∣∣|B(z)| − |I (z)|

∣∣< ε for all z ∈ D.

The proof may be described as follows. The first step consists of constructing a
system 0 =

⋃
i 0i of disjoint closed curves 0i ⊂ D such that arclength of 0 is a

Carleson measure, and verifying that

(a) |B(z)| is uniformly small on hyperbolic disks of fixed radius centered at points
of 0, and

(b) in any hyperbolic disk of fixed radius centered at a point outside the union of
the interiors of 0i ,

⋃
i int0i , there is a point z where |B(z)| is not small.

Write B = B1 · B2, where B1 is the Blaschke product formed with the zeros of B
which are in

⋃
i int0i . Statement (b) implies that B2 is a finite product of interpo-

lating Blaschke products. Since D. Marshall and A. Stray [1996] proved that any
finite product of interpolating Blaschke products may be approximated by a single
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interpolating Blaschke product, the relevant zeros of B lie in
⋃

i int0i : they are
those of B1. The construction of 0 is a variation of the original corona construction
introduced by L. Carleson [1962] (or see [Garnett 1981, pp. 342–347]).

Next, for each i = 1, 2, . . . , let µi be the sum of harmonic measures in int0i

from the zeros of B1 contained in int0i . Then the mass µi (0i ) is the total number
of zeros of B1 contained in int0i . The second step consists of splitting 0i as⋃

k 0i,k , where the pieces 0i,k satisfy µi (0i,k) = 1, k = 1, 2, . . . , and choosing
points ξi,k ∈ 0i,k matching a certain moment of the measure µi on 0i,k . This
choice may be compared with that of [Lyubarskii and Malinnikova 2001], where
a related discretization argument is performed in a different context. Let I1 be the
Blaschke product with zeros ξi,k , i, k = 1, 2, . . . . The last step of the proof is to
use (b) above to show that I1 is an interpolating Blaschke product and to use the
location of {ξi,k}, as well as (a) above, to show that |I1(z) · B2(z)| approximates
|B(z)|.

Besides the individual problem mentioned above, some questions concerning
approximation by arguments of interpolating Blaschke products remain open. Let
B be an inner function.

A. Given ε > 0, is there an interpolating Blaschke product I such that

‖Arg B − Arg I‖BMO(∂D) < ε?

B. Is there an interpolating Blaschke product I such that Arg B − Arg I = ṽ,
where v ∈ L∞(∂D)?

C. Is there an interpolating Blaschke product I such that Arg B −Arg I = u + ṽ,
where u, v ∈ L∞(∂D) and ‖u‖∞ < π/2?

A positive answer to Problem A would imply the main result of this note. Prob-
lem C was posed by in [Havin and Nikol’skiı̆ 1994; Nikol’skiı̆ 1986] in connection
with Toeplitz operators and complete interpolating sequences in model spaces.
Problems B and C are discussed in the nice monograph by K. Seip [2004, p. 92].

2. Construction of the contour

The hyperbolic distance between two points z, w ∈ D is

β(z, w)=
1
2

log
1 + ρ(z, w)
1 − ρ(z, w)

,

where ρ(z, w) is the pseudohyperbolic distance,

ρ(z, w)=

∣∣∣∣ z −w

1 −wz

∣∣∣∣.
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Recall that a positive measure µ in the unit disk is called a Carleson measure if
there exists a constant M = M(µ) > 0 such that µ(Q)≤ M`(Q) for any Carleson
square of the form (2). The infimum of the constants M satisfying the inequality
above is called the Carleson norm of the measure µ and it is denoted by ‖µ‖C .

The main result of this section is a variant of the classical construction of the
Carleson contour introduced by L. Carleson in his original proof of the corona
theorem [1962] (or see [Garnett 1981, pp. 342–347]).

Lemma 2. Let B ∈ H∞ with ‖B‖∞ = 1. Let 0 < ε < 1 and K > 0 be fixed
constants. Then, there exist a constant δ = δ(ε, K ) > 0 and a system 0 =

⋃
0i of

disjoint closed curves 0i contained in D such that

(a) |B(z)| ≤ ε if infi β(z, int0i )≤ K ;

(b) sup{|B(w)| : β(w, z)≤ K + 14}> δ if z /∈
⋃

int0i ; and

(c) arclength ds|0 on 0 is a Carleson measure with ‖ds|0‖C ≤ 68.

Proof. The proof is essentially contained in [Nicolau and Suárez ≥ 2006], but we
sketch it for the convenience of the reader. Given a set E ⊂ D, let �K (E) denote
the set of points that are at most at hyperbolic distance K from the set E , that is,

�K (E)=
{
z : inf

w∈E
β(z, w)≤ K

}
.

Consider dyadic Carleson squares of the form

Qn, j =
{
reiθ

: 1 − 2−n < r < 1, 2π j2−n < θ < 2π( j + 1)2−n},
for j = 0, 1, . . . , 2n

− 1 and n = 1, 2, . . . , and their top halves

T (Qn, j )= {reiθ
∈ Qn, j : r < 1 − 2−n−1

}.

Let 0< δ < ε be a constant to be fixed later. A dyadic Carleson square Q will be
called good if

sup
{
|B(z)| : z ∈�K

(
T (Q)

)}
> ε.

The collection of good dyadic Carleson squares will be denoted by

{QG
j : j = 1, 2, . . .}.

A dyadic Carleson square Q will be called bad if

sup
{
|B(z)| : z ∈�K

(
T (Q)

)}
< δ.

We denote the collection of bad dyadic Carleson squares by {Q B
j : j = 1, 2, . . .}.

The construction goes as follows.
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∂D

Q ∈ {QG
j }

QB
k

Q ∈ {QB
j }

QG
k

∂D

Figure 1. Choosing good and bad squares for constructing the contour.

Step 1. For each good dyadic Carleson square Q = QG
j , we choose the maximal

bad dyadic Carleson squares Q B
k contained in Q. The main estimate needed is

(3)
∑

Q B
k ⊂Q

`(Q B
k )≤

1
2`(Q).

Since |B(z)| < δ if z ∈ T (Q B
k ), while |B(z)| > ε for some z ∈ �K (T (Q)), taking

δ = δ(ε, K ) sufficiently small, standard arguments lead to (3). See [Nicolau and
Suárez ≥ 2006, Lemma 2.1] for details.

Step 2. For each bad dyadic Carleson square Q = Q B
j , we choose the maximal

good dyadic Carleson squares QG
k contained in Q. This family is denoted by

G(Q)= {QG
k : k = 1, 2, . . .}.

So, from each good dyadic Carleson square we move to bad ones fulfilling the
estimate (3) and from each bad one we again move to good ones. See Figure 1.
Now for each bad square Q = Q B

j , let

R(Q)= Q \

⋃
G(Q)

QG
k and R =

⋃
j

R(Q B
j ).

Finally, decompose R into its connected components Ri and denote 0i = ∂Ri ,
i = 1, 2, . . . . Observe that each 0i consists of pieces of boundaries of dyadic
Carleson squares. See Figure 2. By construction if z ∈ R we have

sup
{
|B(w)| : β(w, z)≤ K

}
≤ ε

and hence part (a) in the statement follows. Similarly, if z /∈ R, the point z is not in
the top part of a bad dyadic Carleson square. As the hyperbolic diameter of a top
part of a Carleson square is uniformly bounded, say by 14, we deduce that there
exists w ∈ D with β(z, w) ≤ K + 14 such that |B(w)| > δ. Hence statement (b)
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Figure 2. The unit disk, some dyadic Carleson contours and an
example of a contour.

follows. Since the length of ∂R(Q) is bounded by 17`(Q), the scaling (3) shows
that for any bad dyadic square Q, one has∑

Q B
j (Q

|∂R(Q B
j )| ≤ 17`(Q).

Then easy geometric considerations show that arclength on
⋃
0i is a Carleson

measure and its Carleson norm is smaller than 68. �

3. Construction of the interpolating Blaschke product

We now use Lemma 2 to construct a contour 0. Note that by Frostman’s Theorem
we can assume that B is a Blaschke product. Given ε > 0, let N be a big constant
dependent on ε to be fixed later. Apply Lemma 2 with ε/2 and 2N instead of ε
and K to obtain 0 and δ > 0 such that

(a) |B(z)|< ε/2 if β(z, int0)≤ 2N ,

(b) sup{|B(w)| : β(w, z)≤ 2N + 14}> δ if z 6∈ int0, and

(c) arclength on 0 is a Carleson measure with Carleson norm ‖ds|0‖C ≤ 68.
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With the contour 0 in place, we want to construct the interpolating Blaschke prod-
uct I . Split B into two Blaschke products B1 and B2. That is B = B1 ·B2, where B1

is formed with the zeros {zn} of B that lie inside int0 and at hyperbolic distance
more than 1 from the contour 0. For each zero z of B2, part (b) provides a point
w ∈ D, β(w, z) ≤ 2N + 15 such that |B2(w)| ≥ |B(w)| > δ. This implies that B2

is a finite product of interpolating Blaschke products; [Mortini and Nicolau 2004,
Theorem 2.2].

Hence the dangerous part of B will be B1, which has all its zeros contained
deeply inside the contour 0. We want to mimic the behavior of |B1| by constructing
a Blaschke product I1 with zeros on 0. To this end, for each component 0i of the
contour we consider the measure

dµi (ξ)=

∑
zn∈int0i
β(zn,0i )>1

ω(zn, ξ ; int0i )

defined for ξ ∈ 0i . Here ω(z, ξ ;�) denotes the harmonic measure from the point
z ∈ � in the domain � ⊆ D. Clearly µi (0i ) will be equal to the number of zeros
zn of B1 inside 0i . Next we split 0i into disjoint arcs 0i,k such that µi (0i,k) = 1
for each k. This is illustrated in Figure 3. On each such arc we locate one zero ξi,k

of I1 such that

(4) 1 − |ξi,k |
2
=

∫
0i,k

(
1 − |ξ |2

)
dµi (ξ).

This will in general not determine the points ξi,k uniquely. However, there seems
to be a lot of freedom for placing the zeros of I1 in this construction, and the
condition (4) will be sufficient for our purposes.

Let I1 be the Blaschke product with the zeros ξi,k , and factor I1 = I o
1 · I e

1 where
I o
1 is the Blaschke product with zeros ξi,k with k odd, while I e

1 is the Blaschke
product with zeros ξi,k with k even. In Figure 3, I o

1 has its zeros placed in the
dark arcs, while the zeros of I e

1 are placed in the light arcs. We claim that both
I o
1 and I e

1 are interpolating Blaschke products, and hence I1 can be approximated
by an interpolating Blaschke product [Marshall and Stray 1996]. To show this
claim we will observe that their zero sets satisfy the two conditions of Carleson’s
theorem [1958] stated in the introduction.

In this case, the existence of a constant C as in Carleson’s criterion (see top of
page 104) follows from the fact that arclength is a Carleson measure on 0, while
inequality (1) follows from the following lemma and the geometry of the contour.

Lemma 3. The hyperbolic length, `β(0i,k), of 0i,k is bounded from below:

`β(0i,k)≥ δ2 exp(2(2N+14)).
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Γi,11

Γi,10

Γi,12

Γi,1 Γi,2

Γi,3

Γi,4

∂D
Γi,5

Γi,9
Γi,6

Γi,7

Γi,8

Figure 3. Each component 0i of the contour is split into arcs 0i,k

such that the µ-measure of each arc is 1.

Proof. We first show that for any point w ∈ 0, |B1(w)| is bounded from below by
some constant depending only on δ and N . To see this, recall that there is a point
ζ such that β(ζ,w)≤ 2N + 14 and |B1(ζ )| ≥ |B(ζ )|> δ. Consider

log
∣∣B1(w)

∣∣−1
=

∑
log ρ(w, zn)

−1,

where the sum is taken over all zeros zn of B1. As w is separated from the zeros
of B1,

log ρ(w, zn)
−1

≤ 1 − ρ(w, zn)
2.

Furthermore,

ρ(w, zn)≥
ρ(zn, ζ )− ρ(ζ,w)

1 − ρ(zn, ζ )ρ(ζ,w)
≥
ρ(zn, ζ )− C
1 − Cρ(zn, ζ )

,

where C =
e2(2N+14)−1
e2(2N+14)+1

< 1. Hence

log ρ(w, zn)
−1

≤

(
1 − ρ(zn, ζ )

2
)(

1 − C2
)(

1 − Cρ(zn, ζ )
)2 ≤

1 + C
1 − C

(
1 − ρ(zn, ζ )

2)
≤ 2

1 + C
1 − C

log ρ(zn, ζ )
−1

= 2e2(2N+14) log ρ(zn, ζ )
−1,

and we see that |B1(w)| ≥ δ2 exp(2(2N+14)).
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Intuitively, this lower bound for the values of |B1| should imply that the arcs 0i,k

cannot be too short hyperbolically. To make this observation rigorous we argue as
follows. Using that the harmonic measure ω is positive and harmonic, we have
that for any z ∈ int0i ,

ω(z, 0i,k; int0i )≤ ω(z, 0i,k; D \0i,k)≤

∫
0i,k

log
∣∣∣ z−w

1−wz

∣∣∣−1 |dw|

1−|w|2

minz∈0i,k

∫
0i,k

log
∣∣∣ z−w

1−wz

∣∣∣−1 |dw|

1−|w|2

and
1 = µi (0i,k)=

∑
zn∈int0i

ω(zn, 0i,k; int0i )

≤
1

Ci,k

∫
0i,k

log
( ∏

zn∈int0i

∣∣ zn −w

1 −wzn

∣∣−1
)

|dw|

1 − |w|2
,

where
Ci,k = min

z∈0i,k

∫
0i,k

log
∣∣ z −w

1 −wz

∣∣−1 |dw|

1 − |w|2

is a constant dependent on 0i,k . Let B1,i denote the Blaschke product with the
zeros of B1 that fall inside the component 0i . Then, for w ∈ 0i ,

log
( ∏

zn∈int0i

∣∣ zn −w

1 −wzn

∣∣−1
)

= log |B1,i (w)|
−1

≤ log |B1(w)|
−1

≤2e2(2N+14) log δ−1.

Thus

1 ≤
1

Ci,k
2e2(2N+14) log δ−1

∫
0i,k

|dw|

1 − |w|2
=

1
Ci,k

2e2(2N+14) log δ−1`β(0i,k)

such that
`β(0i,k)≥

Ci,k

2e2(2N+14) log δ−1 .

To estimate Ci,k we use the substitution ξ = ϕz(w)= (z −w)/(1 −wz) and the
conformal invariance of the hyperbolic metric. A calculation then gives that

Ci,k ≥ log
(
tanh `β(0i,k)

)
`β(0i,k),

which implies the desired bound, `β(0i,k)≥ δ2 exp(2(2N+14)). �

4. Proof of the approximation

In this section we will show that the constructed function, I = I1 ·B2, approximates
the given Blaschke product uniformly in modulus. We first claim that it suffices to
prove Theorem 1 for points z ∈ D far away from the contour. Indeed, assume that
we can prove that

(5)
∣∣|B1(z)| − |I1(z)|

∣∣< ε/2
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for all z such that β(z, int0)≥2N , where N is as in the construction of the contour.
Then, for points z with β(z, int0)= 2N ,

|I (z)| =
(
|I1(z)| − |B1(z)| + |B1(z)|

)
|B2(z)|

≤
∣∣|B1(z)| − |I1(z)|

∣∣ + |B(z)|< ε/2 + ε/2 = ε.

By the maximum principle |I (z)|< ε for all z ∈�2N (int0) as well. Hence

∣∣|B(z)| − |I (z)|
∣∣ =

∣∣|B1(z)| − |I1(z)|
∣∣|B2(z)|<

{
ε/2 if β(z, int0)≥ 2N ,

ε if β(z, int0) < 2N .

So Theorem 1 follows from (5).

The rest of the paper will be dedicated to prove that (5) holds. Fix a point z such
that β(z, int0) ≥ 2N . We will consider the logarithm of |B1|. Since all the zeros
of B1 lie inside the contour 0, log

∣∣(z − zn)/(1 − znz)
∣∣ is harmonic inside 0 as a

function of zn . Hence

log |B1(z)| =

∑
j

log
∣∣∣ z − zn

1 − znz

∣∣∣ =

∫
0

log
∣∣∣ z − ξ

1 − ξ̄ z

∣∣∣ dµ(ξ),

where dµ=
∑

i dµi . As the µ-measure of each arc 0i,k is 1, we have

(6) log |B1(z)| − log |I1(z)| =

∫
0

log
∣∣∣ z−ξ

1−ξ̄ z

∣∣∣ dµ(ξ)−
∑
i,k

log
∣∣∣ z−ξi,k

1−ξ̄i,kz

∣∣∣
=

∑
i,k

∫
0i,k

(
log

∣∣∣ z−ξ

1−ξ̄ z

∣∣∣ − log
∣∣∣ z − ξi,k

1 − ξ̄i,kz

∣∣∣) dµ(ξ)

=

∑
i,k

∫
0i,k

log ρ(z, ξ)
ρ(z, ξi,k)

dµ(ξ) def
=

∑
i,k

Hi,k(z).

To estimate this sum we consider different types of arcs. By Qz we denote the
Carleson square with z as the midpoint on the top-side. We say that an arc 0i,k is
in the class B if 0i,k ⊂ 2N Qz . Note that since β(z, int0) ≥ 2N , this implies that
such an arc lies very close to the boundary. The rest of the arcs we split into short
and long arcs. For n ≥ N + 1 define

Sn =
{
0i,k : `β(0i,k) < 1, 0i,k ⊂ 2n Qz

}
\
(
B ∪

⋃
i<n

Si
)
,

Ln =
{
0i,k : `β(0i,k)≥ 1, 0i,k ⊂ 2n Qz

}
\
(
B ∪

⋃
i<n

Li
)
.

Consult Figure 4 for some examples of this classification. This partition is such
that each arc 0i,k belongs to one and only one of the classes B, Sn and Ln , with
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∂D

2NQz

2N+1Qz

QzΓi,k ∈ SN+1

Γi,k ∈ LN+2

Γi,k ∈ LN+1
Γi,k ∈ B

Γi,k ∈ SN+2

2N+2Qz

z

Figure 4. We divide the arcs 0i,k into classes denoted B, Sn and Ln .

n ≥ N + 1. Hence we may decompose the sum (6) as∑
i,k

Hi,k(z)=

∑
0i,k∈B

Hi,k(z)+
∞∑

n=N+1

( ∑
0i,k∈Sn

Hi,k(z)+
∑

0i,k∈Ln

Hi,k(z)
)
.

Our goal is to show that the absolute value of the left hand side is small. To
accomplish this we will show that each of the terms∣∣∣∣ ∑

0i,k∈B

Hi,k(z)
∣∣∣∣, ∣∣∣∣ ∞∑

n=N+1

∑
0i,k∈Sn

Hi,k(z)
∣∣∣∣ and

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Ln

Hi,k(z)
∣∣∣∣

are small.
We begin with the boundary arcs 0i,k ∈ B. Using that log(1 − t) = −t + O(t2)

we get∑
0i,k∈B

∫
0i,k

log
ρ(z, ξ)
ρ(z, ξi,k)

dµ(ξ)

= −
1
2

∑
0i,k∈B

∫
0i,k

(
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2
+ O

((
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2

)2
))

dµ(ξ).

Taking absolute values,

(7)

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

log
ρ(z, ξ)
ρ(z, ξi,k)

dµ(ξ)

∣∣∣∣∣ ≤
1
2

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

1 −
ρ(z, ξ)2

ρ(z, ξi,k)2
dµ(ξ)

∣∣∣∣∣
+

1
2

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

O

((
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2

)2
)

dµ(ξ)

∣∣∣∣∣ def
= EB,1 + EB,2,
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where we define EB,1 and EB,2 for convenience. At first we focus on the term
EB,1. Note that since z is far away from ξi,k ∈ 0i , the expression ρ(z, ξi,k)

−2 is
bounded above, say by 2. By expanding 1 − ρ(z, ξ)2 and 1 − ρ(z, ξi,k)

2, we can
write

(8) EB,1 ≤

∑
0i,k∈B

∣∣∣∣∫
0i,k

(
1 − |z|2

)( 1 − |ξ |2

|1 − ξ̄ z|2
−

1 − |ξi,k |
2

|1 − ξ̄i,kz|2

)
dµ(ξ)

∣∣∣∣
=

∑
0i,k∈B

∣∣∣∣∫
0i,k

(
1 − |z|2

)( 1 − |ξ |2

|1−ξ̄ z|2
−

1 − |ξ |2

|1−ξ̄i,kz|2
+

|ξi,k |
2
−|ξ |2

|1 − ξ̄i,kz|2

)
dµ(ξ)

∣∣∣∣.
By the placement, (4), of the zeros ξi,k , the integral of the last term is zero. We
now move the modulus under the integral to get

(9) EB,1 ≤
(
1 − |z|2

) ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |2

)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ dµ(ξ).

Because ξ and ξi,k should be close to each other in some sense, compared to z, we
suspect some cancellation. Therefore we use the estimate

(10)
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ ≤
2|ξ − ξi,k |

(1 − |z|)3

and the more trivial inequalities |ξ − ξi,k | ≤ `(0i,k) and 1 − |z|2 ≤ 2(1 − |z|) to
obtain

EB,1 ≤ 23 (
1 − |z|

)−2 ∑
0i,k∈B

`(0i,k)

∫
0i,k

(
1 − |ξ |

)
dµ(ξ).

All the arcs 0i,k ∈ B are contained in a rectangle at the boundary with height
2−2N (1 − |z|) and width 2N (1 − |z|). Using that 1 − |ξ | ≤ 2−2N (1 − |z|) and that
the arclength ds|0 is a Carleson measure, we then get

EB,1 ≤ 23
‖ds|0‖C · 2−N

where ‖ds|0‖C is the Carleson norm of arclength on 0.
Next we focus our attention on the higher-order terms, and give the estimate for

EB,2. From (7) and (8) and the inequality (a + b)2 ≤ 2(a2
+ b2) we see that EB,2

is bounded by a fixed multiple of

(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |2

)2
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣2

dµ(ξ)

+
(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(|ξi,k |
2
− |ξ |2)2

|1 − ξ̄i,kz|4
dµ(ξ).
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For the first term, we use as above the estimate (10) as well as 1−|ξ |≤2−2N (1−|z|)
and |ξ − ξi,k | ≤ 2 · 2N (1 − |z|). Then we find

(
1−|z|2

)2 ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |2

)2
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣2

dµ(ξ)

≤ 24
· 2−N

·
(
1 − |z|2

) ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |2

)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ dµ(ξ).

The last sum is just (9), and by the earlier argument the last expression is bounded
by 27

‖ds|0‖C · 2−2N .
For the second term we use that |1− ξ̄i,kz| ≥ 1−|z|,

∣∣|ξi,k |−|ξ |
∣∣≤ 2−2N (1−|z|)

and
∣∣|ξi,k | − |ξ |

∣∣ ≤ `(0i,k) to arrive at

(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(|ξi,k |
2
− |ξ |2)2

|1 − ξ̄i,kz|4
dµ(ξ)

≤ 24 (
1 − |z|

)−2 ∑
0i,k∈B

∫
0i,k

∣∣|ξi,k | − |ξ |
∣∣2 dµ(ξ)

≤ 24
· 2−2N (

1 − |z|
)−1 ∑

0i,k∈B

`(0i,k)≤ 24
‖ds|0‖C · 2−N .

Thus we get EB,2 ≤ C (24
+ 1) ‖ds|0‖C · 2−N for big N .

For the short arcs 0i,k ∈ Sn , n ≥ N + 1, we will use similar estimates as above,
but we do not need to be as delicate. For these arcs we can use the inequality
|log x | ≤ |1 − x2

|, which holds for x far away from zero, to obtain

ES
def
=

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Sn

∫
0i,k

log
ρ(z, ξ)
ρ(z, ξi,k)

dµ(ξ)
∣∣∣∣

≤

∞∑
n=N+1

∑
0i,k∈Sn

∫
0i,k

∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣ dµ(ξ).

The same calculations that gave (8) show that

∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣ ≤ 2
(
1 − |z|2

)(∣∣∣∣ 1 − |ξ |2

|1 − ξ̄ z|2
−

1 − |ξ |2

|1 − ξ̄i,kz|2

∣∣∣∣ +
∣∣|ξi,k |

2
− |ξ |2

∣∣
|1 − ξ̄i,kz|2

)
.

For ξ ∈ 0i,k ∈ Sn , using |1 − ξ̄ z| ≥ 2n−3(1 − |z|) we get

(
1 − |ξ |2

)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ ≤ 211

(
1 − |ξ |

)∣∣ξ − ξi,k
∣∣

23n
(
1 − |z|

)3 ≤ 211 |ξ − ξi,k |

22n
(
1 − |z|

)2 .
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Similarly, ∣∣|ξi,k |
2
− |ξ |2

∣∣
|1 − ξ̄i,kz|2

≤ 27 |ξ − ξi,k |

22n
(
1 − |z|

)2 .

Adding up, we obtain ∣∣∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣∣∣ ≤ 214 |ξ − ξi,k |

22n
(
1 − |z|

) .
Hence

ES ≤ 214
∞∑

n=N+1

1
22n

(
1 − |z|

) ∑
0i,k∈Sn

`(0i,k)≤ 214
‖ds|0‖C · 2−N .

Finally, we estimate the long arcs 0i,k ∈ Ln , for n ≥ N +1. As the zeros on these
arcs are well separated, one can expect only a small contribution from these arcs.
We will use an auxiliary interpolating Blaschke product to find a bound for the
Ln-terms of (6). By the same reasoning that led to (8) and the triangle inequality,

EL
def
=

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Ln

∫
0i,k

log
ρ(z, ξ)
ρ(z, ξi,k)

dµ(ξ)
∣∣∣∣

≤ 2
∞∑

n=N+1

∑
0i,k∈Ln

∫
0i,k

(
1 − |z|2

)( 1 − |ξ |2

|1 − ξ̄ z|2
+

1 − |ξi,k |
2

|1 − ξ̄i,kz|2

)
dµ(ξ)

≤ 22
∞∑

n=N+1

∑
0i,k∈Ln

max
ξ∈0i,k

(
1 − |z|2

)(
1 − |ξ |2

)
|1 − ξ̄ z|2

.

For each 0i,k ∈ Ln , let ζi,k ∈ 0i,k be such that

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
= max
ξ∈0i,k

1 − |ξ |2

|1 − ξ̄ z|2
,

and define Bζ to be the Blaschke product with {ζi,k} as zeros. Now we reorder the
summation, and sum with respect to the placement of the ζi,k instead. Then

EL ≤ 23 (
1 − |z|

) ∞∑
n=0

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2

where U0 = Qz and Un = 2n Qz \ 2n−1 Qz for n ≥ 1. The scaling property (3)
implies that at most four of the points ζi,k are contained in 2N−1 Qz . These must
be close to the boundary, so

23 (
1 − |z|

) N−1∑
n=0

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
≤ 4 · 24

· 2−2N .
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For the rest of the terms, we then get

23 (
1 − |z|

) ∞∑
n=N

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
≤ 28

∞∑
n=N

1
2n

∑
ζi,k∈Un

1 − |ζi,k |

2n
(
1 − |z|

) ≤ 29 Cζ · 2−N ,

where Cζ is the Carleson norm of the measure
∑
(1−|ζi,k |)δζi,k , which is bounded

by a fixed multiple of ‖ds|0‖C . Thus EL ≤ 29 (Cζ + 1) · 2−N .
We have now estimated the contribution from all the arcs 0i,k , and we have

found that for some constant C ,∣∣log |B1(z)| − log |I1(z)|
∣∣ ≤ C · 2−N .

This means that given ε > 0, taking N so that C · 2−N < ε/2, we obtain∣∣|B1(z)| − |I1(z)|
∣∣< ε/2,

which is what we needed.
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Autònoma de Barcelona and while Nicolau was visiting IMUB at the Universitat
de Barcelona. It is a pleasure to thank both institutions for their support.

References

[Carleson 1958] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J.
Math. 80 (1958), 921–930. MR 22 #8129 Zbl 0085.06504

[Carleson 1962] L. Carleson, “Interpolations by bounded analytic functions and the corona prob-
lem”, Ann. of Math. (2) 76 (1962), 547–559. MR 25 #5186 Zbl 0112.29702

[Frostman 1935] O. Frostman, “Potentiel d’équilibre et capacité des ensembles avec quelques appli-
cations á la théorie des fonctions”, Medd. Lund. Univ. Math. Sem. 3 (1935). JFM 61.1262.02

[Garnett 1981] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics 96, Aca-
demic Press, New York, 1981. MR 83g:30037 Zbl 0469.30024

[Garnett and Nicolau 1996] J. Garnett and A. Nicolau, “Interpolating Blaschke products generate
H∞”, Pacific J. Math. 173:2 (1996), 501–510. MR 97f:30050 Zbl 0871.30031

[Havin and Nikol’skiı̆ 1994] V. P. Havin and N. K. Nikol’skiı̆ (editors), Linear and complex analysis,
problem book 3, part I, edited by V. P. Havin and N. K. Nikol’skiı̆, Lecture Notes in Mathematics
1573, Springer, Berlin, 1994. MR 96c:00001a Zbl 0893.30037

[Jones 1981] P. W. Jones, “Ratios of interpolating Blaschke products”, Pacific J. Math. 95:2 (1981),
311–321. MR 82m:30032 Zbl 0479.30021

[Lyubarskii and Malinnikova 2001] Y. Lyubarskii and E. Malinnikova, “On approximation of sub-
harmonic functions”, J. Anal. Math. 83 (2001), 121–149. MR 2002b:30043 Zbl 0981.31002

[Marshall 1976] D. E. Marshall, “Blaschke products generate H∞”, Bull. Amer. Math. Soc. 82:3
(1976), 494–496. MR 53 #5877 Zbl 0327.30029



118 GEIR ARNE HJELLE AND ARTUR NICOLAU

[Marshall and Stray 1996] D. E. Marshall and A. Stray, “Interpolating Blaschke products”, Pacific
J. Math. 173:2 (1996), 491–499. MR 97c:30042 Zbl 0855.30028

[Mortini and Nicolau 2004] R. Mortini and A. Nicolau, “Frostman shifts of inner functions”, J. Anal.
Math. 92 (2004), 285–326. MR 2005e:30088 Zbl 1064.30029

[Nicolau and Suárez ≥ 2006] A. Nicolau and D. Suárez, “Approximation by invertible functions of
H∞”, Math. Scandinavica. To appear.

[Nikol’skiı̆ 1986] N. K. Nikol’skiı̆, Treatise on the shift operator, Grundlehren der Mathematischen
Wissenschaften 273, Springer, Berlin, 1986. MR 87i:47042 Zbl 0587.47036

[Seip 2004] K. Seip, Interpolation and sampling in spaces of analytic functions, University Lecture
Series 33, American Math. Society, Providence, RI, 2004. MR 2005c:30038 Zbl 1057.30036

Received October 4, 2005.

GEIR ARNE HJELLE

DEPARTMENT OF MATHEMATICAL SCIENCES

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

7491 TRONDHEIM

NORWAY

Current address:
Department of Mathematics
Washington University
St. Louis, MO 63130
United States
http://www.math.wustl.edu/~hjelle/

hjelle@math.wustl.edu

ARTUR NICOLAU

DEPARTAMENT DE MATEMÀTIQUES
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FOLIATIONS ON SUPERMANIFOLDS
AND CHARACTERISTIC CLASSES

CAMILLE LAURENT-GENGOUX

We construct secondary characteristic classes of regular superfoliations on
smooth supermanifolds. We interpret these secondary characteristic classes
as characteristic classes of flat foliated connections.

1. Introduction

Smooth supermanifolds are becoming an increasingly important subject in math-
ematical physics [Leites 1980]; superfoliations should then be a central object. In
this paper, we construct secondary characteristic classes of regular superfoliations
with trivialized normal bundle, in the spirit of [Bernstein and Rosenfeld 1973; Bott
and Haefliger 1972; Fuchs 1986]. We show that the role of Vect(n) (the Lie algebra
of formal vector fields with n variables) from the classical theory is played by the
even part Vect(n,m)0 of the super-Lie algebra Vect(n,m) of formal supervector
fields with n even variables and m odd variables. More precisely, when on a super-
manifold M we are given a superfoliation F of codimension n+εm with trivialized
normal bundle, we will associate to any element H in the Chevalley–Eilenberg co-
homology H∗

(
Vect(n,m)0

)
a secondary characteristic class ϕM,F(H) ∈ H∗(M),

where M is the base manifold of the supermanifold M.

Theorem A. For any supermanifold M foliated by a superfoliation F of codimen-
sion n + εm with trivialized normal bundle, there exists a natural homomorphism
ϕM,F from H∗

(
Vect(n,m)0

)
to H∗(M) such that:

(1) If Φ : N → M is a submersion of supermanifolds and ϕ : N → M is the map
induced by Φ on their base manifolds M and N , then

ϕN,Φ∗F = ϕ∗
◦ϕM,F,

where Φ∗F is the pull-back of the superfoliation F via Φ and ϕ∗
: H∗(M)→

H∗(N ) is the pull-back through ϕ.

MSC2000: primary 14M30; secondary 53C10.
Keywords: superfoliation, supergeometry, secondary characteristic classes.
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(2) If M is an ordinary smooth manifold endowed with a foliation F of codi-
mension n with trivialized normal bundle, then ϕF reduces to the well-known
homomorphism of Bernstein, Bott, Fuchs, Haefliger and Rosenfeld [Bernstein
and Rosenfeld 1973; Bott and Haefliger 1972; Fuchs 1973].

The reader should not be surprised that the de Rham cohomology of M is not
used: by a result of Batchelor [Leites 1980], this cohomology is indeed isomor-
phic to the cohomology of the base manifold. Note that the even part Vect(n,m)0
appears instead of Vect(n,m) itself. The theory is indeed more interesting like
this, since, for example, H∗

(
Vect(n,m)

)
has only two nontrivial generators for

n <m (see [Fuchs 1973]). In [Koszul 1988], Godbillon–Vey classes for superfoli-
ations of codimension 0+εm are constructed on supermanifolds of superdimension
n + εm as maps from H∗

(
Vect(0,m)

)
to H∗(M). We will see that these classes

vanish for any class H ∈ H∗
(
Vect(0,m)

)
whose restriction to the cohomology

H∗
(
Vect(0,m)0

)
of the even part is 0. Furthermore, we will show in Section 4D

that the classes constructed in [Koszul 1988] are among those built in this article.
Given a vector bundle E → M and a foliation F , a foliated connection means a

connection on E defined (smoothly) over each leaf of the foliation F . A foliated
connection is said to be flat if it is flat on each leaf, and trivial if E is a trivial
vector bundle and F a foliation with trivialized normal bundle. For simplicity, we
say flat trivial foliated connection to name the entire collection of a foliation with
trivialized normal bundle, a vector bundle, and a flat foliated connection. There
is a canonical way to construct, from a flat foliated connection, a superfoliation
with trivialized normal bundle on a supermanifold. Therefore, our theory of sec-
ondary characteristic classes of superfoliations also gives a theory of secondary
characteristic classes of flat foliated connections.

Furthermore, to a superfoliation F of codimension n + εm with trivialized nor-
mal bundle on a supermanifold M we shall associate a flat trivial foliated connec-
tion, that is, a foliation FF of codimension n with trivialized normal bundle on the
base manifold M , a trivial vector bundle EF of dimension m over M , and a flat
foliated connection ∇

F of this bundle. It should be noted that this construction
is not the inverse of the previous one. However, we shall see that our theory of
secondary characteristic classes, because of our preceding construction, gives in
fact a theory of secondary characteristic classes of flat foliated connections. More
precisely, we show:

Theorem B. The homomorphism ϕF,M : H∗
(
Vect(n,m)0

)
→ H∗(M) is completely

determined by the flat trivial foliated connection
(
M, FF, EF,∇

F
)
.

The paper is organized as follows. Section 2 is devoted to constructions and
properties of superfoliations on supermanifolds. More precisely, in Section 2A
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we introduce several useful maps; in Section 2B we recall the definition of a su-
perfoliation; in Section 2C we exhibit relations between superfoliations and flat
foliated connections; in Section 2D we show how to replace a superfoliation with
a superfoliation with trivialized normal bundle.

Section 3 is devoted to the study of the Chevalley–Eilenberg cohomology of
the Lie algebra Vect(n,m)0. We introduce this cohomology in Section 3A, then
present in Section 3B technical results that will play a fundamental role in the
construction of secondary characteristic classes. We show in Section 3C how to
compute the cohomology of Vect(n,m)0 with the help of the Weil algebra.

We construct secondary characteristic classes of superfoliations with trivialized
normal bundle in Section 4. Secondary characteristic classes of a superfoliation
are defined in Section 4A by constructing a homomorphism of differential graded
algebras from the complex

∧
Vect(n,m)0 of the Lie algebra Vect(n,m)0 to the de

Rham complex �(M) of the manifold M . We give examples in Section 4B, and
prove Theorem A (in fact, a more precise statement) in Section 4D.

We relate in Section 5A the previously constructed secondary characteristic
classes to the secondary characteristic classes of the (ordinary) foliation FF on
the base manifold. We prove Theorem B in Section 5B.

Most result of this paper have been announced, but not proved, in [Laurent-
Gengoux 2004].

2. Superfoliations

2A. The algebra of superdifferential forms. For any supervector space V, denote
by V0 its even part. For convenience, write DGA for “differential graded algebra”.
For a DGA (A, dA), denote by [a] ∈ H∗(A) the cohomology class of an element
a ∈ Ker dA. Throughout this article, M is a smooth supermanifold of superdimen-
sion p+εq (p and q being nonnegative integers), and M is its p-dimensional base
manifold. In the sequel, we say “dimension” for “superdimension”, and “codimen-
sion” for “supercodimension”

We now recall some basic results about supermanifolds, and introduce some
maps that we will need in the sequel.

Denote by O(M) the superalgebra of superfunctions on M, and by I(M) the
superalgebra of nilpotent superfunctions; denote by Re( f ) the smooth function on
M defined by the canonical projection O(M)→ O(M)/I(M)' C∞(M,R).

Let
(
�(M),∧

)
be the superalgebra of differential forms on M. The notion of

parity of a superdifferential form can be ambiguous; in this paper the parity is the
one that endows the superalgebra �(M) with a structure of a supercommutative
superalgebra. More precisely, in a local chart (x1, . . . , x p, θ1, . . . , θq), the 1-form
dxi is odd, the 1-form dθj is even, the 0-form xi is even, and the 0-form θj is odd.
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The parity is then extended by multiplication: for any ω1, ω2 ∈ �(M), the parity
of ω1 ∧ ω2 is the sum of the parity of ω1 with the parity of ω2 (modulo 2). For
example, θj dxi is even, x2

i dθj is even, and dxi ∧ dθj is odd. Note that, with this
definition, a 1-form on an ordinary differential manifold is an odd element. Let
dM :�∗(M)→�∗+1(M) be the de Rham differential.

Let EM be a q-dimensional vector bundle over M whose sheaf of sections is
I(M)/I(M)2. The supermanifold M(M, E) whose superfunctions are the sections
of

∧
∗EM is isomorphic to M (as a supermanifold, see [Leites 1980]). A local

chart (x1, . . . , x p, θ1, . . . , θq) is said to be attached to EM if the odd superfunctions
θ1, . . . , θq are identified with sections s1, . . . , sq of EM. Note that in this case the
supervector fields ∂/∂θ1, . . . , ∂/∂θq can be identified with sections of the dual
vector bundle E∗

M, and the 1-forms dθ1, . . . , dθq can be identified with sections
of EM again. More precisely, there is a natural bijection S from the vector bundle
whose sections are 1-forms in �1(M) of the form

∑q
j=1 fj (x1, . . . , x p) dθj to the

vector bundle EM given, in a local chart attached to EM, by

S
( q∑

j=1
fj (x1, . . . , x p) dθj

)
=

q∑
j=1

fj (x1, . . . , x p) sj ,

with f1(x1, . . . , x p), . . . , fq(x1, . . . , x p) smooth functions on M . It is straightfor-
ward to check that S does not depend on the local chart attached to EM.

We recall the definition of three maps:

• The first map is a well-known (see [Leites 1980; Tuynman 2004]) canonical
DGA homomorphism p from

(
�∗(M),∧, dM

)
onto

(
�∗(M),∧, dM

)
, constructed

in [Leites 1980]. In a local chart (x1, . . . , x p, θ1, . . . , θq), it is defined on the
generators dxi , dθj , f ( f being a superfunction) of �(M) by

p(dxi )= dxi , p(dθi )= 0, p( f )= Re( f ).

A proof of the next lemma can be found in [Leites 1980; Tuynman 2004].

Lemma 2.1. The map p from
(
�∗(M),∧, dM

)
onto

(
�∗(M),∧, dM

)
is well defined

(that is, independent of the chart) and a DGA homomorphism. The kernel of p
contains odd 2k-forms and even (2k+1)-forms.

Since p is a DGA homomorphism, it induces a homomorphism p̂ from H∗(M)

to H∗(M). According to a theorem of Batchelor (see [Tuynman 2004, Theorem
8.2]), p̂ : H∗(M)→ H∗(M) is indeed an isomorphism.

• The second map, ρ, is a map from �1(M) to 0(EM), the space of sections of EM.
It is defined in a local chart by

(2-1) ρ
( p∑

i=1
fi dxi +

q∑
j=1

gi dθi

)
= S

( q∑
j=1

Re(gj ) dθj

)
=

q∑
j=1

Re(gj ) sj .



FOLIATIONS ON SUPERMANIFOLDS 123

Lemma 2.2. The map ρ is well defined (that is, it does not depend on the chart
attached to EM). For any odd 1-form ω, we have ρ(ω) = 0. For any nilpotent
function f ∈ I(M) and any ω ∈�1(M), we have ρ( f ω)= 0.

• The third map that we need, Π , is a map from the super-Lie algebra Vect(M)
of supervector fields on M to the Lie algebra Vect(M) of vector fields on M . For
any odd supervector field X ∈ Vect(M), we simply set Π(X) = 0. For any even
supervector field X ∈ Vect(M)0, we set Π(X) = X , where X is the derivation of
C∞(M,R)' O(M)/I(M) induced by the even derivation X of O(M).

In a local chart attached to EM, Π is given by

Π
( p∑

i=1
fi
∂

∂xi
+

q∑
j=1

gj
∂

∂xj

)
=

p∑
i=1

Re( fi )
∂

∂xi
.

Lemma 2.3. The restriction of Π to the subalgebra Vect(M)0 of even supervector
fields is a Lie algebra homomorphism.

The next properties can be checked locally in a chart; we leave the computations
to the reader. Denote by ιYη the contraction of a supervector field by a 1-form in
�(M). For any 2-form η∈�2(M) and even supervector field Y such thatΠ(Y)=0,

(2-2) ρ(ιYη)= 0.

For any even 1-form α ∈�1(M) with ρ(α)= 0 and any even supervector field Y,

(2-3) ρ(ιY dα)= 0.

For any even supervector field X ∈ Vect(M)0 and odd 1-form ω ∈�1(M),

(2-4) Re(ιXω)= ιΠ(X) p(ω).

2B. Definition of a superfoliation. We recall the definition of a superfoliation of
codimension n + εm [Leites 1980; Monterde et al. 1997; Tuynman 2004]. First, a
distribution of codimension n+εm is a sub-supervector bundle of T M of dimension
(p − n)+ ε(q − m).

Definition 2.4. A superfoliation F of codimension n + εm is a distribution DF

of dimension (p − n)+ ε(q − m) whose sections are closed under the bracket of
supervector fields.

Remark 2.5. Note that in the literature the terminology is not fixed: in [Leites
1980] the name “foliation” is used, while in [Tuynman 2004] it is called “inte-
grable distribution”. We choose “superfoliation” to avoid confusions when dealing
simultaneously with superfoliations on a supermanifold and (ordinary) foliations
on its base manifold.
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A supermanifold is said to be foliated when it is endowed with a superfoliation
of codimension n + εm, for some n,m ∈ N. A supervector field X is said to be
tangent to the leaves if and only if it is a section of the distribution that defines F.
We denote by XF the superalgebra of supervector fields tangent to the leaves of F.

For a superfoliation F, denote by�∗

F the subalgebra of�(M) of k-forms ω such
that ιY1

. . . ιYk
ω = 0 for any supervector fields Y1, . . . ,Yk tangent to the leaves of

F. Of course,

(2-5) dM�
∗

F ⊂�∗

F.

In particular, �1
F is the space of 1-forms ω ∈ �1(M) such that ω(X) = 0 for any

supervector field X tangent to the leaves.
A superfunction is said to be constant on the leaves if ιX dM f = 0 for any

supervector field X tangent to the leaves. We denote by OF the superalgebra of
superfunctions constant on the leaves of F.

Here is a basic example: On the supermanifold Rp,q , denote by x1, . . . , x p

(respectively, θ1, . . . , θq ) the even (respectively, odd) variables. The elementary
superfoliation R

p,q
n,m is the superfoliation given by the distribution generated by the

supervector fields ∂/∂xn+1, . . . , ∂/∂x p, ∂/∂θm+1, . . . , ∂/∂θq .
An important particular case is when the superfoliation is defined by a distribu-

tion that admits a trivialized normal bundle.

Definition 2.6. A superfoliation F of codimension n + εm is said to have a triv-
ialized normal bundle if the distribution DF that defines F is generated by a free
family of n odd and m even 1-forms b1, . . . , bn+m ; that is,

DF =
{
X ∈ Vect(M)

∣∣ ιX b1 = · · · = ιX bn+m = 0
}
.

We say that the 1-forms b1, . . . , bn+m define the superfoliation F.

Example 2.7. The elementary superfoliation R
p,q
n,m is defined by the odd 1-forms

dx1, . . . , dxn together with the even 1-forms dθ1, . . . , dθm .

If the superfoliation F with trivialized normal bundle is defined by a free family
b1, . . . , bn+m , then (see [Monterde et al. 1997]) there must exist 1-forms b j

i , i, j ∈

{1, . . . , n + m}, satisfying

(2-6) dMbi =

n+m∑
i=1

bj ∧ b j
i .

Moreover, we can assume that the parity of b j
i is the sum of the parity of bi with

the parity of bj .
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Remark 2.8. For any superfoliation F with trivialized normal bundle, defined by
1-forms b1, . . . , bn+m (with b1, . . . , bn odd, and bn+1, . . . , bn+m even), there ex-
ist supervector fields X1, . . . , Xn+m (with X1, . . . , Xn even, and Xn+1, . . . , Xn+m

odd) such that bi (X j ) = δ
j
i (where δ j

i is the Kronecker symbol). The family
X1, . . . , Xn+m is free (with respect to the O(M)-module structure). The supertan-
gent bundle T M is the direct sum of the distribution generated by X1, . . . , Xn+m

with the distribution DF that defines F. This justifies calling it “with trivialized
normal bundle”.

We now define morphisms between foliated supermanifolds, and pull-backs of
superfoliations.

Definition 2.9. Let M1 and M2 be supermanifolds, and let F1 and F2 be su-
perfoliations of codimension n + εm on M1 and M2 respectively. A submersion
Φ : M1 → M2 is said to be a morphism of superfoliations if and only if

(2-7) O(M1)Φ
∗�1

F2
=�1

F1
,

where O(M1)Φ
∗�1

F2
denotes the O(M1)-module generated by Φ∗�1

F2

In other words, (2-7) means that any 1-form in �F1
is a linear combination, with

coefficients in O(M1), of pull-backs by Φ of forms from �F2
.

Note that, if F1 has a trivialized normal bundle, so has F2. If b1, . . . , bn+m

are the 1-forms defining F1, then the superfoliation F2 is defined by the 1-forms
Φ∗b1, . . . , Φ

∗bn+m .
The category of foliated supermanifolds is the category whose objects are super-

foliations and whose arrows are morphism of foliated manifolds. For any n,m ∈ N,
the superfoliations of codimension n + εm make up a subcategory, while the su-
perfoliations of codimension n + εm with trivialized normal bundle form again a
subcategory of the latter category.

An isomorphism of foliated manifolds is an invertible morphism of foliated man-
ifolds.

The local structure of a superfoliation is always the same, as proved in [Hill and
Simanca 1991] (see also [Tuynman 2004, Chapter V.4]):

Theorem 2.10 [Hill and Simanca 1991; Monterde et al. 1997]. Any superfolia-
tion of codimension n + εm on a supermanifold of dimension p + εq is locally
isomorphic to the elementary superfoliation R

p,q
n,m .

Let N and M be supermanifolds, and let F be a superfoliation of codimension
n +εm on M. Given any submersion Φ : N → M, the pull-back Φ∗F is the unique
superfoliation satisfying

O(N)Φ∗�1
F =�1

Φ∗F.
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This definition needs some justification. For any open set U ⊂ M , we denote by
U the supermanifold defined by O(M)|U and we say that U is an open subset of
M. Let r + εs, with r ≥ p and s ≥ q , be the dimension of N. By Theorem 2.10,
in local coordinates (x1, . . . , x p, θ1, . . . , θq) the superfoliation F restricted to U is
defined by dx1, . . . , dxn, dθ1, . . . , dθm . Since Φ is a submersion, there are local
coordinates (x1, . . . , xr , θ1, . . . , θs) on some open subset V ⊂ N such that Φ is
given by

Φ(x1, . . . , xr , θ1, . . . , θs)= (x1, . . . , x p, θ1, . . . , θq).

The pull-back Φ∗F of F via Φ is the superfoliation whose restriction to V is
defined by the 1-forms dx1, . . . , dxn, dθ1, . . . , dθm ∈ �1(V). This justifies the
existence and uniqueness of the pull-back of a superfoliation via a submersion.

2C. Geometric constructions associated to a superfoliation. Let N be an (ordi-
nary) smooth manifold and F a foliation of codimension n on N , defined by a
distribution DF . Let E → N be a vector bundle over N , and let XF = 0(DF ) be
the algebra of vector fields tangent to F . A foliated connection is a bilinear map
from XF ⊗0(E) to 0(E), denoted by (X, s) 7→∇X s, that satisfies the usual axioms
of a connection; that is, for all X ∈ XF , f ∈ C∞(M), s ∈ 0(E), we have

∇f X s = f ∇X s and ∇X f s = f ∇X s + (X · f )s.

A foliated connection is said to be flat if ∇ is flat on each leaf of F ; that is, if for
all X, Y ∈ XF , s ∈ 0(E) the identity

∇X∇Y s − ∇Y ∇X s − ∇
[X,Y ]

s = 0

holds. A foliated connection is said to be trivial if E is a trivial vector bundle on
M and F is a foliation with trivialized normal bundle on M .

In the following, we will say simply “foliated connection” (respectively, “trivial
flat foliated connection”) for the collection of a foliation F , a vector bundle E ,
and a foliated connection ∇. We denote by (M, F, E,∇) a foliated connection
(respectively, a trivial flat foliated connection).

2C(a). From superfoliations to flat foliated connections. To a superfoliation on M

we associate a foliation FF on the base manifold M , a vector bundle EF on M , and
a flat foliated connection ∇

F on the latter. In the particular case of a superfoliation
of codimension 0+εm on a supermanifold of dimension n +εm, this construction
is identical to the construction given in [Koszul 1988, Lemme 2.1].

Definition 2.11. Given a superfoliation F of codimension n + εm, we denote by
(M, FF, EF,∇

F) the flat foliated connection defined in what follows.

It is easy to check that p(�∗

R
p,q
n,m
)=�∗

R
p
n
, where by R

p
n we mean the foliation R

p,0
n,0

of codimension n on Rp. In other words, R
p
n is the foliation of codimension n on

Rp defined by the 1-forms dxn+1, . . . , dx p. Theorem 2.10 immediately implies:
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Lemma 2.12. The distribution whose sections are XFF
=Π(XF)⊂0(T M) defines

a foliation FF of codimension n on M. Moreover, �∗

FF
= p(�∗

F).

Remark 2.13. If F is a superfoliation with trivialized normal bundle, defined by 1-
forms ω1, . . . , ωn, a1, . . . , am , then FF is a foliation with trivialized normal bundle
defined by the 1-forms p(ω1), . . . , p(ωn) ∈�1(M).

Now, we define EF to be the vector subbundle of EM whose sections 0(EF)

are the sections of EM of the form ρ(ω) with ω ∈ �1
F, where �1

F is the space
of 1-forms such that ιXω = 0 for any supervector field X ∈ XF tangent to the
leaves of F, and ρ was defined in (2-1). In the case of R

p,q
n,m , EF is generated by

S(dRp,q θ1), . . . ,S(dRp,q θm). Then, Theorem 2.10 implies that EF is an m-dimen-
sional vector bundle on M .

Remark 2.14. If F is a superfoliation with trivialized normal bundle, defined by 1-
forms ω1, . . . , ωn, a1, . . . , am , then EF is a trivial vector space, and a trivialization
is given by the sections ρ(a1), . . . , ρ(am) ∈ 0(EF).

For any section s of EF, let ω ∈ �1
F be an even element satisfying ρ(ω) = s.

For any vector field Y ∈ XFF
tangent to the foliation FF, let Y ∈ (XF)0 be an even

supervector field satisfying Π(Y)= Y . We define a foliated connection by

(2-8) ∇
F
Y s = ρ(LYω).

Lemma 2.15. The foliated connection ∇
F
Y s is well defined and flat.

Proof. Since LY = dM ιY + ιY dM, the identity

ρ(LYω)= ρ(ιY dMω)

holds. In order to check that ∇
F
Y s =ρ(LYω) is a well-defined section of EF, notice

these facts:

• Let Z ∈ XF be a supervector field tangent to the leaves of F such thatΠ(Z)=
0. Equation (2-2) implies that ρ(LZω)= ρ(ιZ dMω) is equal to 0.

• Let α ∈�1
F be an even 1-form such that ρ(α)= 0. Equation (2-3) implies that

ρ(LYα)= 0.

We now verify that indeed ∇
F is a section of EF. If ω ∈ �1

F, then LYω is an
element of �1

F as well, since

ιX LYω = ι
[X,Y]

ω− ιY LXω = 0

for all X ∈ XF. The section ∇
F
Y s of EM given by ∇

F
Y s = ρ(LYω) is thus a section

of EF again.
Now, we check that the curvature is zero. For this, we show that there exists a

local trivialization of EF by sections s1, . . . , sm that are horizontal (that is, ∇F
Y si =0
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for all Y ∈ XFF
). For any x ∈ M , let U be a neighborhood of x and ϕU : U →

R
p,q
n,m an isomorphism of foliated manifolds, where U is the supermanifold over U

defined by restricting M to U . Since the superfunctions θ1, . . . , θm are constant on
the leaves of Rn,m

p,q , the odd superfunctions f1=ϕ
∗

Uθ1, . . . , fm=ϕ∗

Uθm ∈ �(M) are
constant on the leaves of F. Moreover, the sections s1=ρ(dM f1), . . . , sn=ρ(dM fm)

define a local trivialization of EF. For any vector field Y ∈ XFF
and any even

supervector field Y ∈ (XF)0 with Π(Y)= Y , we have

∇
F
Y si = ρ(LY dM fi )= ρ(dMιY dM fi )= ρ(0)= 0.

The existence of a local horizontal trivialization of EF implies that the connection
∇

F is flat. �

We summarize:

Proposition 2.16. Let F be a superfoliation of codimension n + εm.

(1) (M, FF, EF,∇
F) is a flat foliated connection.

(2) If the superfoliation F has a trivialized normal bundle, then the flat foliated
connection (M, FF, EF,∇

F) is trivial.

Proof. Statement (1) is a consequence of Lemma 2.12, while (2) is a consequence
of Remarks 2.13 and 2.14 �

2C(b). From flat foliated connections to superfoliations. Let (N , F, E,∇) be a
flat foliated connection. Consider the supermanifold M(N , E) whose superfunc-
tions are the sections of

∧
E . For any vector field X ∈ Vect(N ), ∇X is an even

derivation of the superalgebra of superfunctions 0
(∧

E
)
. These even derivations

can be considered as even vector fields of the supermanifold M(N , E). Moreover,
since [∇X ,∇Y ] = ∇

[X,Y ]
, these even derivations form a Lie algebra. The 0

(∧
E

)
-

module generated by the supervector fields {∇X | X ∈ XF } is a distribution that
defines a superfoliation of codimension n + εm on the supermanifold M(N , E).

This provides a canonical way to associate a superfoliation of codimension
n + εm to a manifold N , a foliation F of codimension n, a vector-bundle E of
dimension m, and a flat foliated connection ∇.

Definition 2.17. We denote by F(N , F, E,∇) the superfoliation of codimension
n + εm on the supermanifold M(N , E), defined above.

A foliated connection (N , F, E,∇) is said to be trivial if F has a trivialized
normal bundle and the vector bundle E is trivial. The next proposition is straight-
forward and we leave it to the reader.

Proposition 2.18. (1) If (N , F, E,∇) is a trivial flat foliated connection, then the
superfoliation F(N , F, E,∇) has a trivialized normal bundle.
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(2) For any foliated connection (M, F, E,∇), we have

(2-9)
(
M, F, E,∇

)
=

(
M, FF(M,F,E,∇), EF(M,F,E,∇),∇

F(M,F,E,∇) ).
Remark 2.19. By (2-9), the construction of Section 2C(a) is the left inverse of the
construction of Section 2C(b). However, it is not a right inverse. More precisely,
we show now that the construction of Section 2C(a) is not injective.

Consider the supercircle S1,3 defined by a trivial vector bundle E3 = S1
×R3

→

S1 of dimension 3 over S1. Denote by x ∈ S1 the even parameter and by θ1, θ2, θ3

the odd parameters associated to three canonical sections s1, s2, s3 of E3 = S1
×

R3
→ S1.
Take the superfoliations F1 and F2 defined by the distributions of codimension

0 + ε3 generated by the distributions O(M)∂/∂x and O(M)
(
∂/∂x + θ1θ2θ3 ∂/∂θ1

)
.

These two superfoliations define the same foliation on M , the foliation with only
one leaf: S1 itself. They define the same vector bundle: E3 itself. They both also
define the same connection, namely, the connection given by

∇
a(x) ∂

∂x
s = a(x) ds

dx

for all a(x) ∈ C∞(S1) and s ∈ 0(E3). However, these superfoliations are not
isomorphic, because their superalgebras of superfunctions constant on leaves are
not isomorphic.

For the superfoliation F1, the superfunctions θ1, θ2, θ3 are constant on leaves,
and the algebra of superfunctions that are constant on the leaves of F1 is therefore
isomorphic to

∧
R3. In particular, the vector space of odd superfunctions that are

constant on the leaves of F1 has dimension 4.
For the superfoliation F2, any odd superfunction f can be written

f =

3∑
i=1

fi (x)θi + g(x)θ1θ2θ3

with f1, f2, f3, g ∈ C∞(S1,R). If f is an odd superfunction constant on the leaves
of F2, then(
∂

∂x
+ θ1θ2θ3

∂

∂θ1

)
· f = 0 and

3∑
i=1

d fi (x)
dx

θi +

(dg(x)
dx

+ f1(x)
)
θ1θ2θ3 = 0.

This implies that d f1/dx = d f2/dx = d f3/dx = 0 and dg/dx + f1(x)= 0. Hence,
for any i ∈{1, 2, 3}, we obtain fi (x)=ai for some constant ai ∈R. But the equation
dg/dx + a1 = 0 has no periodic solution unless a1 = 0. As a consequence, the
vector space of odd superfunctions that are constant on the leaves of F2 has only
dimension 3. The superfoliations F1 and F2 are therefore not isomorphic.
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2D. Superfoliations with trivialized normal bundle. We describe a canonical pro-
cess to replace a superfoliation on M by a superfoliation with trivialized normal
bundle on a GL(n,m)-bundle PF over M. For a definition of the super-Lie group
GL(n,m), see [Leites 1980; Tuynman 2004].

The tangent bundle of the superfoliation F is a supervector subbundle of T M,
of dimension (p − n) + ε(q − m). The normal bundle G of F is a supervector
subbundle of T ∗M of dimension n + εm. Let PF be the frame bundle of G; this is
a GL(n,m)-bundle over M. Denote by π : PF → M the canonical projection on M.

By the construction of a frame bundle, there is a canonical inclusion of PF into
G + G[1] ⊂ (T ∗M)⊕n

⊕ T ∗M[1]
⊕m , where G[1] and T ∗M[1] are the supervector

bundles obtained by reversing parities on the fibers. Let α be the canonical odd
1-form of T ∗M and β the canonical even 1-form of T ∗M[1]. Since we have not
been able to locate these 1-forms in the existing literature, we introduce them now.
Consider local coordinates on T ∗M

(x1, . . . , x p, θ1, . . . , θq , y1, . . . , yp, η1, . . . , ηq),

where x1, . . . , x p, θ1, . . . , θq are local coordinates on M and y1, . . . , yp, η1, . . . , ηq

are the even and odd coordinates on the cotangent bundle of M corresponding to
the basis dual to ∂/∂x1, . . . , ∂/∂x p, ∂/∂θ1, . . . , ∂/∂θq of T M. We define α as

α =

p∑
i=1

yi dxi −

p∑
j=1
ηj dθj .

It is routine to check that α does not depend on the local coordinates x1, . . . , x p,
θ1, . . . , θq on M. The 1-form β is defined by the same formula, where y1, . . . , yp

are now considered to be odd variables and η1, . . . , ηq are considered to be even
variables.

For i = 1, . . . , n, denote by fi : PF → T ∗M the i-th projection on T ∗M and, for
j = 1, . . . ,m, denote by gj : PF → T ∗M the j-th projection on T ∗M[1]. Define a
family of 1-forms on PF as

ωi = f ∗

i α, i = 1, . . . , n, and aj = g∗

j β, j = 1, . . . ,m.

Proposition 2.20. The pull-back π∗F of the superfoliation F by π is a superfoli-
ation on PF of codimension n + εm with trivialized normal bundle, defined by the
1-forms ω1, . . . , ωn, a1, . . . , am .

Proof. According to Theorem 2.10, we just have to check that Proposition 2.20
holds in the case of the superfoliation R

p,q
n,m . Let (x1, . . . , x p, θ1, . . . , θq) be the

(global) coordinates of R
p,q
n,m and y j

i , η j
k , ζ l

i , zl
k , for i, j ∈ {1, . . . , n} and k, l ∈

{1, . . . ,m}, and with det(yk
i ) 6= 0 and det(zl

k) 6= 0, be the (global) coordinates of
GL(n,m). These coordinates define a system of coordinates on the supermanifold
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PR
p,q
n,m

' R
p,q
n,m × GL(n,m). In the latter system, we have

ωi =

n∑
k=1

yi
k dxk −

m∑
l=1
θ i

l dθl and aj =

n∑
k=1

ζ
j

k dxk −

m∑
l=1

z j
l dθl .

Since det(yk
i ) 6=0 and det(zl

k) 6=0, the 1-forms ω1, . . . , ωn, a1, . . . , am ∈�1(PR
p,q
n,m
)

and the 1-forms dx1, . . . , dxn, dθ1, . . . , dθm ∈�1(PR
p,q
n,m
) define the same superfo-

liation on PR
p,q
n,m

. This superfoliation is clearly π∗F. This completes the proof. �

Remark 2.21. Proposition 2.20 provides a canonical way to replace a superfo-
liation F, which has no trivialized normal bundle, by a superfoliation π∗F that
has a trivialized normal bundle. This construction is functorial, in the sense that,
if F1 is a superfoliation on M1, then F2 is a superfoliation on M2, and, if Φ :

M1 → M2 is a morphism of foliated supermanifolds, then Φ induces a submersion
ΦP : PF1 → PF2 that is a morphism of foliated supermanifolds with respect to the
superfoliations π∗F1 and π∗F2. In other words, the application F 7→ PF defines a
functor from the category of foliated supermanifolds of codimension n+εm to the
category of foliated supermanifolds of codimension n+εm with trivialized normal
bundle.

3. The cohomology of Vect(n, m)0

For any super-Lie algebra g, let X1, . . . , Xg be a basis of g and a1, . . . , ag the dual
basis, with ai (X i ) = (−1)|X i |, where |X i | is the parity of X i , and ai (X j ) = 0 for
i 6= j . If for any i, j, k ∈ {1, . . . , g} there exists some Ck

i, j ∈ R with

[X i , X j ] =

g∑
k=1

Ck
i, j Xk,

then the Chevalley–Eilenberg differential is given by (see [Fuchs 1986])

(3-1) δak =
1
2

g∑
i, j=1

(−1)|X i | Ck
i, j ai ∧ aj .

Since we work with infinite-dimensional Lie algebras, we have to replace the
Chevalley–Eilenberg cohomology by an infinite-dimensional generalization, but
the signs in Equation (3-1) will remain valid.

3A. The Chevalley–Eilenberg complex of Vect(n, m) and Vect(n, m)0. To con-
struct the theory of secondary characteristic classes of superfoliations, we need
some prerequisites about the cohomology of a certain infinite-dimensional Lie al-
gebra of supervector fields; this construction can be found, for instance, in [Fuchs
1986].
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Take the superalgebra of superpolynomials

R[x1, . . . , xn, θ1, . . . , θm] = R[x1, . . . , xn] ⊗
∧

Rm .

The degree of a superpolynomial x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m , with i1, . . . , in ∈ N and

j1, . . . , jm ∈ {0, 1}, is defined to be i1 + · · · + in + j1 + · · · + jm . This turns
R[x1, . . . , xn, θ1, . . . , θm] into an N-graded superalgebra.

The graded super-Lie algebra

Vect(n,m)=

+∞⊕
i=−1

Vect(n,m)i

of formal supervector fields is defined to be the super-Lie algebra of superderiva-
tions of R[x1, . . . , xn, θ1, . . . , θm]. Elements of Vect(n,m)i are said to be of weight
i . We denote Vect(n, 0) simply by Vect(n). We denote the even part of Vect(n,m)
by Vect(n,m)0 =

⊕
+∞

i=−1 Vect(n,m)i0.
Let

∧
Vect(n,m)∗ be the DGA of multilinear superalternating forms for the

projective topology of Vect(n,m); let
∧

Vect(n,m)∗0 be the DGA of multilinear
superalternating forms for the projective topology of Vect(n,m)∗0; see, for instance,
[Fuchs 1986]. “Projective” means, in short, that an element of Vect(n,m)∗ (respec-
tively, Vect(n,m)∗0 ) is a linear form on Vect(n,m) that vanishes on all the spaces
Vect(n,m)i (respectively, Vect(n,m)i0 ) but for finitely many i ∈ N ∩ {−1}. The
spaces

∧
Vect(n,m)∗ and

∧
Vect(n,m)∗0 are the exterior products of Vect(n,m)∗

and Vect(n,m)∗0, respectively.
Denote by ∂ be the Chevalley–Eilenberg differential on

∧
Vect(n,m)∗, and by

∂0 the Chevalley–Eilenberg differential on
∧

Vect(n,m)∗0. The cohomology of
the DGA

(∧
Vect(n,m)∗0, ∂0

)
is called the (Chevalley–Eilenberg) cohomology of

Vect(n,m)0, and is denoted by H∗
(
Vect(n,m)0

)
. Maybe the name “Chevalley–

Eilenberg” is not absolutely correct, since we do not consider the complex of all
skew-symmetric forms, but there is no risk of confusion here.

Let E be the ideal (with respect to the product ∧) generated by the even elements
of Vect(n,m)∗, that is, by the continuous linear forms on Vect(n,m) that identically
vanish on Vect(n,m)0. The next lemma will be useful.

Lemma 3.1. The DGA
∧

Vect(n,m)∗/E and
∧

Vect(n,m)∗0 are isomorphic.

Remark 3.2. Note that Vect(n,m) is sometimes denoted by W (n,m). We prefer
the notation Vect(n,m) in order to avoid confusion with the Weil algebra.

3B. Two technical lemmas about the complex
(∧

Vect(n, m)∗, δ
)
. To prove

Proposition 4.2, we need to fix some notation and give the two technical Lemmata
3.5 and 3.6 about the DGA

(∧
Vect(n,m), ∂

)
.
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The family

(3-2)


1

i1! . . . in!
x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m

∂

∂xi
,

1
i1! . . . in!

x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m

∂

∂θj

(with i1, . . . , in ∈ N, j1, . . . , jm ∈ {0, 1}, i = 1, . . . , n, and j = 1, . . . ,m) is a basis
of Vect(n,m). Denote elements of its dual basis by

(
1/(i1! . . . in!) x i1

1 . . . x
in
n θ

j1
1 . . .

θ
jm

m ∂/∂xi
)∗ and

(
1/(i1! . . . in!) x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m ∂/∂θj

)∗.
Remark that, if we denote by (x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m ∂/∂xi

)∗ and (x i1
1 . . . x

in
n θ

j1
1 . . .

θ
jm

m ∂/∂θj
)∗ the elements of the basis dual to the basis given by x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m

∂/∂xi and x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m ∂/∂θj , then we have

(3-3)


( 1

i1! . . . in!
x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m

∂

∂xi

)∗

= i1! . . . in!

(
x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m

∂

∂xi

)∗

( 1
i1! . . . in!

x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m

∂

∂θj

)∗

= i1! . . . in!

(
x i1

1 . . . x
in
n θ

j1
1 . . . θ

jm
m

∂

∂θj

)∗

For convenience, we introduce two notations.

Definition 3.3. For all i ∈ {1, . . . , n + m}, we define |i | to be 0 for i ∈ {1, . . . , n}

and be 1 for i ∈ {n + 1, . . . n + m}.

Definition 3.4. We define hi , i = 1, . . . , n + m, to be xi if |i | = 0 and be θi−n if
|i | = 1.

For example, we denote by hi1 . . . his hn+ j1 . . . hn+ jt ∂/∂h1 ∈ Vect(n,m) the ele-
ment that we used to denote by xi1 . . . xis θj1 . . . θjt ∂/∂x1, where i1, . . . , is ∈{1, . . . ,
n} and j1, . . . , jt ∈ {1, . . . ,m}.

Define the weight of (hi1 . . . hik ∂/∂hi )
∗ to be k − 1 for any i1, . . . , ik ∈ {1,

. . . , n + m}. Define 3k to be the subalgebra of
∧

Vect(n,m)∗0 generated (with
respect to ∧) by elements of weights −1, 0, 1, . . . , k. One has ∂3k−1 ⊂3k .

We now compute the Chevalley–Eilenberg differential in the basis dual to the
basis in (3-2). For this purpose, we define ci1,...,ik

j for any i1, . . . , ik, j ∈ {1, . . . ,
n + m} by

ci1,...,ik
j =

n∏
i=1

K
(
i, [i1, . . . , ik]

)
!

(
hi1 . . . hik

∂

∂hj

)∗

,

where K
(
i, [i1, . . . , ik]

)
is the number of integers equal to i in the list [i1, . . . , ik].

If | j | = 1 and j appears more than twice in the list [i1, . . . , ik], then, of course,

(3-4) ci1,...,ik
j = 0.
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Otherwise, we have

ci1,...,ik
j = ε

( 1
k1! . . . kn!

xk1
1 . . . x

kn
n θ

j1
1 . . . θ

jm
m

∂

∂hj

)∗

for some ε ∈ {−1, 1}, where k1 =K
(
1, [i1, . . . , ik]

)
, . . . , kn =K

(
n, [i1, . . . , ik]

)
and where, for any i ∈ {1, . . . ,m}, ji = 1 if and only if n + i appears in the
list [i1, . . . , ik].

For any i1, . . . , ik, j ∈ {1, . . . , n+m}, we define P i1,...,ik
j ∈3k−1 by:

(3-5) ∂ci1,...,ik
j = P i1,...,ik

j +

n+m∑
l=1
(−1)|l|

(
∂

∂hl

)∗

∧ cl,i1,...,ik
j .

Lemma 3.5. For any i1, . . . , ik, j ∈ {1, . . . , n+m} , P i1,...,ik
j is an element of3k−1.

Proof. Denote by Σl,k the set of shuffles of the sets {1, . . . , l} and {l+1, . . . , k}.
We have

(3-6) ∂ci1,...,ik
j =

n+m∑
l=1

∑
σ∈Σl,k

D(i1, . . . , ik, l, j, σ ) ciσ(l+1),...,iσ(k)
l ∧ cl,iσ(1),...,iσ(l)

j ,

for some D(i1, . . . , ik, l, j, σ ) ∈ R.
From the relations

(3-7)
[
∂

∂xi
,

1
k1! . . . (ki +1)! . . . kn!

xk1
1 . . . xki +1

i . . . xkn
n θ

j1
1 . . . θ jm

m
∂

∂hj

]
=

1
k1! . . . ki ! . . . kn!

xk1
1 . . . xki

i . . . x
kn
n θ

j1
1 . . . θ jm

m
∂

∂hj
,

(3-8)
[
∂

∂θl
,

θl
k1! . . . kn!

xk1
1 . . . xkn

n θ
j1

1 . . . θ
jl−1

l−1 θ
jl+1

l+1 . . . θ
jm

m
∂

∂hj

]
=

1
k1! . . . kn!

xk1
1 . . . xkn

n θ
j1

1 . . . θ
jl−1

l−1 θ
jl+1

l+1 . . . θ
jm

m
∂

∂hj
,

we obtain, using (3-1), (3-4), and the definition of ∂ , that

∂ci1,...,ik
j −

n+m∑
l=1
(−1)|l|

(
∂

∂hl

)∗

∧ cl,i1,...,ik
j

is a linear combinations of products of elements of weight 0, . . . , k−1 that do not
involve any terms of weight −1 or k. In other words, it is an element of 3k−1. �

Lemma 3.6. For any i1, . . . , ik, l ∈ {1, . . . , n+m}, define 2-forms Ql,i1,...,ik
j ∈ 3k

by

(3-9) Ql,i1,...,ik
j = P l,i1,...,ik

j −

n+m∑
l ′=1

(−1)|l|+|l ′|
(

hl
∂

∂hl ′

)∗

∧ cl ′,i1,...,ik
j .
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The following identity holds:

(3-10) ∂P i1,...,ik
j =

n+m∑
l=1

(
∂

∂hl

)∗

∧ Ql,i1,...,ik
j .

Proof. The identity

(3-11) ∂ci =

n+m∑
j=1
(−1)| j | cj ∧ c j

i

holds for any i ∈ {1, . . . , n+m}. Applying ∂ to (3-5) and using (3-11), we obtain

∂P i1,...,ik
j + ∂

n+m∑
l=1
(−1)|l|

(
∂

∂hl

)∗

∧ cl,i1,...,ik
j = 0,

∂P i1,...,ik
j +

n+m∑
l=1

n+m∑
l ′=1

(−1)|l
′
|+|l|

(
∂

∂hl ′

)∗

∧

(
hl ′

∂

∂hl

)∗

∧ cl,i1,...,ik
j ,

−

n+m∑
l=1

(
∂

∂hl

)∗

∧ ∂cl,i1,...,ik
j = 0,

∂P i1,...,ik
j +

n+m∑
l=1

n+m∑
l ′=1

(−1)|l
′
|+|l|

(
∂

∂hl

)∗

∧

(
hl

∂

∂hl ′

)∗

∧cl ′,i1,...,ik
j −

n+m∑
l=1

(
∂

∂hl

)∗

∧P l,i1,...,ik
j

−

n+m∑
l ′=1

n+m∑
l=1
(−1)|l

′
|
( ∂
∂hl

)∗

∧

(
∂

∂hl ′

)∗

∧ cl ′,l,i1,...,ik
j = 0.

Now, for any l ′, l ∈ {1, . . . , n+m}, we have
(
∂

∂hl

)∗

∧

(
∂

∂hl ′

)∗

= (−1)(|l|+1)(|l ′|+1)
(
∂

∂hl ′

)∗

∧

(
∂

∂hl

)∗

cl ′,l,i1,...,ik
j = (−1)|l

′
||l| cl,l ′,i1,...,ik

j

Therefore, we have

(−1)|l
′
|

(
∂

∂hl

)∗

∧

(
∂

∂hl ′

)∗

∧ cl ′,l,i1,...,ik
j = −(−1)|l|

(
∂

∂hl ′

)∗

∧

(
∂

∂hl

)∗

∧ cl,l ′,i1,...,ik
j

and n+m∑
l ′=1

n+m∑
l=1
(−1)|l

′
|

(
∂

∂hl

)∗

∧

(
∂

∂hl ′

)∗

∧ cl ′,l,i1,...,ik
j = 0.

The lemma follows immediately. �

3C. Generators of the cohomology of Vect(n, m)0. We introduce a DGA whose
cohomology is H∗

(
Vect(n,m)0

)
but that is easier to work with than Vect(n,m)0

itself.
Let gln (respectively, glm) be the Lie algebra of linear endomorphism of Rn (re-

spectively, Rm). Let (ai, j )i, j∈{1,...,n} (respectively, (dk,l)k,l∈{1,...,m}) be the canonical
basis of gln (respectively, glm).
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The elements Vect(n,m)00 of weight 0 in Vect(n,m)0 form a Lie subalgebra of
Vect(n,m)0, isomorphic to gln ⊕ glm through the isomorphism ϕ with

(3-12) ϕ
(

xi
∂

∂xj

)
= ai, j and ϕ

(
θk
∂

∂θl

)
= dk,l .

Let p0 be the projection from Vect(n,m)0 to Vect(n,m)00, with kernel

Ker p0 = Vect(n,m)−1
0 ⊕

∞⊕
i=1

Vect(n,m)i0.

Let α : (gln ⊕ glm)
∗
→ Vect(n,m)∗0 be the linear map α = p∗

0 ◦ ϕ∗, where p∗

0 and
ϕ∗ are the dual maps of p0 and ϕ.

The map α defines a gln ⊕ glm-connection (see [Guillemin and Sternberg 1999,
Chapter 3]) of the DGA

∧
Vect(n,m)∗0 that induces a DGA homomorphism (denoted

again by α) from the Weil algebra W (gln ⊕glm)= S
(
(gln ⊕glm)

∗
)
⊗

∧
(gln ⊕glm)

∗

to
∧

Vect(n,m)∗0.
Let K be the kernel of α. The cohomology of the DGA W (gln ⊕ glm)/K is

denoted by H∗
(
W (gln ⊕ glm)/K

)
. Write α̃ for the DGA homomorphism from

W (gln ⊕glm)/K to
∧

Vect(n,m)∗0 induced by α. Let α̂ : H∗
(
W (gln ⊕glm)/K

)
→

H∗
(
Vect(n,m)0

)
be the map induced by α̃ in cohomology.

Theorem 3.7. The map α̂ is an isomorphism between H∗
(
W (gln ⊕ glm)/K

)
and

H∗
(
Vect(n,m)0

)
.

The proof is provided in Appendix A.

4. Secondary characteristic classes of superfoliations

We construct, for any superfoliation F on M of codimension n+εm with trivialized
normal bundle, a map from H∗

(
Vect(n,m)0

)
to the de Rham cohomology of the

base manifold H∗(M).
We use the conventions introduced in Defintions 3.3 and 3.4. Throughout this

section, we often say “homomorphism” for “DGA homomorphism”.

4A. DGA homomorphism defining a superfoliation.

Definition 4.1. We say that a DGA homomorphism

ω :
(∧

Vect(n,m)∗, ∂
)
→

(
�∗(M), dM

)
defines the superfoliation F of codimension n +εm with trivialized normal bundle
if the 1-forms ω

(
(∂/∂hi )

∗
)
, i = 1, . . . , n+m, define the superfoliation F.

Consider a superfoliation F with trivialized normal bundle on M, defined by
1-forms b1, . . . , bn+m , where b1, . . . , bn are odd 1-forms and bn+1, . . . , bn+m are
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even 1-forms. Take 1-forms (b j
i )i, j∈{1,...,n+m} such that

(4-1) dMbi =

n∑
j=1

bj ∧ b j
i −

n+m∑
j=n+1

bj ∧ b j
i .

According to (2-6), such 1-forms b j
i always exist. The choice of signs in (4-1) is

explained by:

Proposition 4.2. For any superfoliation F with trivialized normal bundle on M,
there exists a DGA homomorphism ω from

(∧
Vect(n,m)∗, ∂

)
to

(
�(M), dM

)
that

defines the superfoliation F. Moreover, we can assume that

ω
(
(∂/∂hi )

∗
)
= bi , i = 1, . . . , n+m(4-2)

ω
(
(hi ∂/∂hj )

∗
)
= bi

j , i, j = 1, . . . , n+m.(4-3)

First, we need the following lemma, proved in Appendix B.

Lemma 4.3. Let d1, . . . , dn be odd 1-forms and dn+1, . . . , dn+m even 1-forms,
forming a free family. Let d i , i = 1, . . . , n+m, be 2-forms on M such that

n+m∑
i=1

di ∧ d i
= 0

There exist homogeneous 1-forms d i,l of parity |i | + |l| + 1 (modulo 2) such that

d i,l
= −(−1)(|i |+1)(|l|+1)dl,i and

n+m∑
i=1

di ∧ d i,l
= dl .

Proof of Proposition 4.2. Define ε(i1, . . . , ik, σ ) ∈ {−1, 1}, for any permutation σ
of {1, . . . , k}, by

hiσ(1) . . . hiσ(k) = ε(i1, . . . , ik, σ ) hi1 . . . hik .

We will construct by induction a homomorphism ω : 3k → �(M) such that, for
any α ∈3k−1,

(4-4) dMω(α)= ω
(
∂(α)

)
.

Equations (4-2) and (4-3) define such a map ω for k = 0. Equations (3-11) and
(4-1) imply that the condition (4-4) holds for k = 0. We have therefore constructed
ω for k = 0.

We now assume that ω can be constructed for some k ∈ N and construct it for
k + 1. Applying ω to (3-5), we obtain

dMω(c
i1,...,ik
j )= ω(P i1,...,ik

j )+
n+m∑
l=1
(−1)|l|ω

(
(∂/∂hl)

∗
)
∧ω(cl,i1,...,ik

j ).
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Denote ω(ci1,...,in
j ) by bi1,...,in

j . In particular, bl = ω
(
(∂/∂xl)

∗
)
. By applying dM to

both sides of the previous expression and using Equation (4-2), we obtain

dMω(P
i1,...,ik
j )+ dM

( n+m∑
l=1
(−1)|l| bl ∧ bl,i1,...,ik

j

)
= 0.

By (4-1), we have

dMω(P
i1,...,ik
j ) +

n+m∑
i=1

bi ∧

( n+m∑
l=1
(−1)|i |+|l|bi

l ∧ bl,i1,...,ik
j − dMbi,i1,...,ik

j

)
= 0.

Since P i1,...,ik
j ∈ 3k−1, we have ω(∂P i1,...,ik

j ) = dMω(P
i1,...,ik
j ). Equation (3-10)

implies that

n+m∑
i=1

bi ∧

(
ω(Qi,i1,...,ik

j )+
n+m∑
l=1
(−1)|l|+|i | bi

l ∧ bl,i1,...,ik
j − dM bi,i1,...,ik

j

)
= 0.

From (3-9) it follows that

n+m∑
i=1

bi ∧
(
ω(P i,i1,...,ik

j )− dM ci,i1,...,ik
j

)
= 0.

By Lemma 4.3, there exist 1-forms bi,l,i1,...,ik
l satisfying

(4-5)

dM bi,i1,...,ik
j −ω

(
P i,i1,...,ik

j

)
=

n+m∑
l=1
(−1)|l| bl ∧ bl,i,i1,...,ik

j

(−1)|i | bi,l,i1,...,ik
j = −(−1)(|l|+1)(|i |+1)(−1)|l| bl,i,i1,...,ik

j .

This last equation can be rewritten

(4-6) bi,l,i1,...,ik
j = (−1)|i ||l| bl,i,i1,...,ik

j .

Equation (4-5) and the relationsbiσ(1),...,iσ(k),iσ(k+1)
j = ε(i1, . . . , ik+1, σ ) bi1,...,ik ,ik+1

j

P iσ(1),...,iσ(k),iσ(k+1)
j = ε(i1, . . . , ik+1, σ )P i1,...,ik ,ik+1

j .

imply that, for any permutation σ of {1, . . . , k+1},

(4-7) bi,iσ(1),...,iσ(k+1)
j = ε(i1, . . . , ik+1, σ ) bi,i1,...,ik+1

j .

Equations (4-6) and (4-7) imply that, for any permutation σ of {1, . . . , k+2} and
any i1, . . . , ik+1, ik+2 ∈ {1, . . . , n+m}, we have

(4-8) biσ(1),...,iσ(k+1),iσ(k+2)
j = ε(i1, . . . , ik, ik+2, σ ) bi1,...,ik+1,ik+2

j .
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We can then define ω on elements of weight k + 1 by ω(ci1,...,ik+2
j ) = bi1,...,ik+2

j .
Equation (4-8) implies that

ω(ciσ(1),...,iσ(k+2)
j )= ε(i1, . . . , ik+2, σ ) ω(c

i1,...,ik+2
j ),

and hence ω is well defined. The map ω can be uniquely extended to a DGA homo-
morphism from 3k+1 to �(M). According to (3-5) and (4-5), this homomorphism
satisfies dMω(α)= ω

(
∂(α)

)
for any α ∈3k . This completes the proof. �

4B. Construction of secondary characteristic classes. Assume that

ω :
∧

Vect(n,m)∗0 →�(M)

is a DGA homomorphism defining a superfoliation F of codimension n + εm with
trivialized normal bundle. Set βω = p◦ω, where p is the canonical projection from
�∗(M) to �∗(M). By Lemma 2.1, the kernel of p contains all odd 2k-forms and
even (2k+1)-forms. As a consequence, ω(E) is contained in the kernel of βω. The
homomorphism βω induces a homomorphism from

∧
Vect(n,m)∗/E to �∗(M).

By Lemma 3.1,
∧

Vect(n,m)∗/E '
∧

Vect(n,m)∗0, and therefore βω induces a
homomorphism β ′

ω from
∧

Vect(n,m)∗0 to �∗(M).

Definition 4.4. Let ϕM,F be the homomorphism from H∗
(
Vect(n,m)0

)
to H∗(M)

induced in cohomology by the DGA homomorphism

β ′

ω :
∧

Vect(n,m)∗0 →�∗(M).

This definition is justified by:

Proposition 4.5. The homomorphism ϕM,F : H∗
(
Vect(n,m)0

)
→ H∗(M) is inde-

pendent of the choice of homomorphism ω :
∧

Vect(n,m)∗ → �(M) defining the
superfoliation F.

First, we need a lemma. Let ω1 and ω2 be two homomorphisms defining the
superfoliation F, and let ϕ1

M,F, ϕ
2
M,F be the homomorphisms

∧
Vect(n,m)∗ →

�(M) constructed from ω1 and ω2 as in Definition 4.4.

Lemma 4.6. If p◦ω1
(
(xi ∂/∂xj )

∗
)
= p◦ω2

(
(xi ∂/∂xj )

∗
)

and p◦ω1
(
(θk ∂/∂θl)

∗
)
=

p ◦ω2
(
(θk ∂/∂θl)

∗
)
∈�(M) for all i, j ∈ {1, . . . , n} and k, l ∈ {1, . . . ,m}, then

ϕ1
M,F = ϕ2

M,F.

Proof. A DGA homomorphism β from the Weil algebra W (g) = S(g∗) ⊗
∧

g∗

of a Lie algebra g to a given DGA (A, dA) depends only on the restriction of
β to 1 ⊗

∧
1 g∗, see [Guillemin and Sternberg 1999]. In particular, the homo-

morphisms βωa ◦ α : W (gln ⊕ glm) → �(M) for a = 1, 2 depend only on the
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1-forms p ◦ω
(
(xi ∂/∂xj )

∗
)

and p ◦ ω
(
(θk ∂/∂θl)

∗
)
, where i, j ∈ {1, . . . , n} and

k, l ∈ {1, . . . ,m}. Therefore,

βω1 ◦α = βω2 ◦α and β ′

ω1 ◦ α̃ = β ′

ω2 ◦ α̃.

For a = 1, 2, the diagram

W (gln + glm)

K

α̃ -
∧

Vect(n,m)∗0

�(M)

β ′

ωa

?β ′

ωa ◦ α̃ -

is commutative. Moreover, according to Theorem 3.7, α̃ induces an isomorphism
in cohomology. This completes the proof. �

Proof of Proposition 4.5. Set ai = ω1
(
(∂/∂hi )

∗
)

and bi = ω2
(
(∂/∂hi )

∗
)
. Set also

a j
i = ω1

(
(hj∂/∂hi )

∗
)

and b j
i = ω2

(
(hj∂/∂hi )

∗
)
.

For any superfunction f on the supermanifold M×R, denote by f |t its restriction
to M × {t}. Denote by it the maps from M to M × R induced by f → f |t . Let

pr : M × R → M

be the natural projection.
On the supermanifold M × R, consider the superfoliation F′ that is the pull-

back of F by the projection pr. There exist 1-forms c1, . . . , cn+m defining the
superfoliation F′ and 1-forms (ck

i )i,k∈{1,...,n+m} satisfying the identity

dM ci =

n+m∑
k=1

(−1)|k| ck ∧ ck
i

and the following two properties:

• The 1-forms ci , i ∈ {1, . . . , n+m} (respectively, ck
i , i, k ∈ {1, . . . , n+m})

restricted to M×(−∞, 1/4 ] are equal to pr∗ ai , i = 1, . . . , n+m (respectively,
pr∗ ai

k , i, k ∈ {1, . . . , n+m}).

• The 1-forms ci , i ∈ {1, . . . , n+m} (respectively, ck
i , i, k ∈ {1, . . . , n+m})

restricted to M × (3/4 ,∞) are equal to pr∗ bi , i = 1, . . . , n+m (respectively,
pr∗ bi

k , i, k ∈ {1, . . . , n+m}).

By Proposition 4.2, there exists a homomorphism ω3 :
∧

Vect(n,m)∗ →�(M×R)

defining F′, such that ω3
(
(hi∂/∂hj )

∗
)

= ci
j and ω3

(
(∂/∂hi )

∗
)

= ci . Then, the

The editors acknowledge the use of the diagrams package by Paul Taylor.
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following diagram is commutative:

�(M)

∧(
Vect(n,m)0

) α̃- W (gln ⊕ glm)

K

p ◦ ω3 ◦ α̃-

p ◦ ω1
◦ α̃ -

�(M × R).

i∗

1

�

�(M)
i∗

2�p ◦ ω2
◦ α̃

-

Therefore, we also have the commutative diagram

H∗(M)

H∗
(
Vect(n,m)0

) α̂- H∗

(W (gln ⊕ glm)

K

) ϕM×R,F′ ◦ α̂
-

ϕ1
M,F ◦ α̂ -

H∗(M × R),

i∗

1

�

H∗(M)
i∗

2�ϕ2
M,F ◦ α̂ -

where ϕM×R,F′ : H∗
(
Vect(n,m)

)
is constructed as in Definition 4.4, with the help

of the DGA homomorphism ω3 defining F′.
Since by Theorem 3.7 α̂ is a bijection, and i∗

1 : H∗(M × R) → H∗(M) and
i∗

2 : H∗(M × R)→ H∗(M) are isomorphisms with i∗

1 ◦ (i∗

2 )
−1

= Id, we have

ϕ1
M,F = ϕ2

M,F. �

We now study how ϕM,F behaves with respect to morphisms of superfoliations.

Proposition 4.7. Let F (respectively, G) be a superfoliation with trivialized normal
bundle on M (respectively, N). Let Φ : N → M be a morphism of foliated super-
manifolds, and ϕ : N → M the map induced by Φ, from the base manifold N of
N to the base manifold M of N. Let ϕ∗

: H∗(M)→ H∗(N ) be the pull-pack by ϕ.
Under these hypotheses, we have

(4-9) ϕN,G = ϕ∗
◦ϕM,F.

In other words, for any supermanifold N and any submersion Φ : N → M, we have
ϕN,Φ∗F = ϕ∗

◦ϕM,F, where Φ∗F is the pull-back via Φ of the superfoliation F.

Proof. If ω :
∧

Vect(n,m)∗ → �(M) is a DGA homomorphism defining F, then
Φ∗

◦ ω :
∧

Vect(n,m)∗ → �(N) is a homomorphism of DGAs defining G. Let
pN :�(N)→�(N ) and pM :�(N)→�(N ) be the canonical projections of the
supermanifolds N and M to their base manifolds, as defined in Lemma 2.1. We
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have pN ◦Φ∗
= ϕ∗

◦ pM , which implies that

pN ◦Φ∗
◦ω = ϕ∗

◦ pM ◦ω.

Hence, βΦ∗◦ω = ϕ∗
◦βω, and Equation (4-9) follows. �

4C. Examples.

4C(a). Superfoliations of codimension 0+ε1. If F is a superfoliation of codimen-
sion 0+ ε1 defined by an even 1-form a ∈�1(M), then there exists an odd 1-form
b ∈�1(M) with dM a = −a ∧ b.

By Proposition A.11, H k
(
Vect(0, 1)0

)
=0 if k /∈{0, 1}, and H 1

(
Vect(0, 1)0

)
'R.

Moreover, H 1
(
Vect(0, 1)0

)
is generated by H =

[
(θ ∂/∂θ)∗

]
. By Proposition 4.2,

there exists a homomorphism ω :
∧

Vect(0, 1)∗ →�(M) such that ω
(
(θ ∂/∂θ)∗

)
=

b. By construction, we have ϕMF(H) = [p(b)]. See [Laurent-Gengoux 2004] for
additional details.

Example 4.8. Let E → S1 be a trivial 1-dimensional vector bundle. The superman-
ifold S1,1

= M(S1, E), with base manifold S1 and superalgebra of superfunctions
�(M)= 0

(∧∗ E
)
, is called a supercircle. Let x ∈ S1 be the even parameter and θ

the odd parameter.
Let t ∈ R∗ be a real number different from zero, and Ft the superfoliation of

codimension 0 + 1ε defined by the 1-form bt = dθ + t θ dx . Note that

dS1,1bt = t dx ∧ dθ = (dθ + t θ dx)∧ t dx .

By the preceding discussion, we have

ϕS1,1,Ft
(H)= −[p(t dx)] = −t [dx].

For t 6= 0, we obtain a nonzero element of H 1(S1). We have thus constructed a
supermanifold M and a superfoliation F with ϕM,F not zero.

4C(b). Superfoliations of codimension 1 + ε1. Let F be a superfoliation of codi-
mension 1+ε1 given by an odd 1-form ω∈�1(M) and an even 1-form a ∈�1(M).

There exist b, c ∈ �1(M) with dM a = ω∧ c − a ∧ b. By Proposition 4.2, there
is a DGA homomorphism ωF :

∧
Vect(1, 1)∗ →�(M), defining the superfoliation

F, with ωF

(
(∂/∂x)∗

)
= ω and ωF

(
(θ ∂/∂θ)∗

)
= b.

By Proposition A.12, H k
(
Vect(n,m)0

)
vanishes if k 6= 3, and H 3

(
Vect(n,m)0

)
is generated the classes H1, H2, H3 described by Equations (A-13), (A-14), and
(A-15).

Proposition 4.9. Let F be a superfoliation of codimension 1 + ε1 defined by the
odd 1-form ω and the even 1-form a. Suppose b is an odd 1-form and c an even
1-form on M satisfying dM a = ω∧ c − a ∧ b.
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(1) There exist α, β, ξ ∈�1(M) on the base manifold M such that

(4-10)


dM p(ω)= p(ω)∧α,

dMα = p(ω)∧β,

dM p(b)= p(ω)∧ ξ.

(2) We have

(4-11)


ϕM,F(H1)=

[
β ∧α∧ p(ω)

]
,

ϕM,F(H2)=
[
ξ ∧α∧ p(ω)

]
,

ϕM,F(H3)=
[
ξ ∧ p(b)∧ p(ω)

]
.

Proof. (1) Define α, β, ξ by

(4-12)


α = p ◦ωF

(
(x ∂/∂x)∗

)
β = p ◦ωF

(
( 1

2 x2 ∂/∂x)∗
)

ξ = p ◦ωF

(
(xθ ∂/∂θ)∗

)
Applying p ◦ωF to the identity

∂
(
∂

∂x

)∗

=

(
∂

∂x

)∗

∧

(
x ∂
∂x

)∗

−

(
∂

∂θ

)∗

∧

(
θ
∂

∂x

)∗

,

and using Lemma 2.1, we obtain

dM
(

p(ω)
)
= p(ω)∧α.

Applying p ◦ωF to the identity

∂
(

x ∂
∂x

)∗

=

(
∂

∂x

)∗

∧

( x2

2
∂

∂x

)∗

−

(
∂

∂θ

)∗

∧

(
θx ∂
∂x

)∗

−

(
x ∂
∂θ

)∗

∧

(
θ
∂

∂x

)∗

,

and using Lemma 2.1, we get

dM(α)= p(ω)∧β.

Applying p ◦ωF to the identity

∂
(
θ
∂

∂θ

)∗

=

(
∂

∂x

)∗

∧

(
xθ ∂
∂θ

)∗

and using Lemma 2.1, we obtain

dM
(

p(b)
)
= p(ω)∧ ξ.

Thus, there exist 1-forms α, β, ξ satisfying (4-10).
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(2) We must now check that the cohomology classes[
β ∧α∧ p(ω)

]
,

[
ξ ∧α∧ p(ω)

]
,

[
ξ ∧ p(b)∧ p(ω)

]
∈ H 3(M)

do not depend on the chosen 1-forms α, β, ξ that satisfy (4-10).
The 1-form [β ∧ α ∧ p(ω)] is the Godbillon–Vey class of the codimension-1

foliation FF constructed from F on the base manifold in Section 2C(a). This FF is
defined by p(ω). The fact that [β ∧α∧ p(ω)] does not depend on the choice of α
and β was proved in [Godbillon and Vey 1971].

From the identity ξ ∧ α ∧ p(ω) = −(dM p(b))∧ α = ξ ∧ dM p(ω) follows that
[ξ ∧ α ∧ p(ω)] does not depend on the 1-forms α, β, ξ ; while from the identity
ξ ∧ p(b)∧ p(ω)= −(dM p(b))∧ p(b) follows that [ξ ∧α∧ p(ω)] does not depend
on the 1-forms α, β, ξ . This completes the proof. �

Example 4.10. Let M be a manifold and F a foliation of codimension 1 on M ,
defined by ω ∈�1(M) with dMω = ω∧α. Assume moreover that the Godbillon–
Vey class −[α∧ dMα] ∈ H 3(M) is not zero.

Let E → M be the trivial 1-dimensional bundle E = R × M . Consider the
supermanifold M with O(M)=0

(∧
E

)
, and denote by θ the unique odd parameter

corresponding to some constant section of E . There is a canonical embedding
I : �1(M)→ �1(M) given by the pull-back of the canonical projection M → M .
Of course, p ◦ I = Id�1(M).

Define a superfoliation of codimension 1 + ε1 by the odd 1-form I (ω) and the
even 1-form a = dθ+θ I (α). We check that these 2-forms define a superfoliation.
We have dM I (ω)= I (ω)∧ I (α) and

(4-13) dMa = dθ ∧ I (α)+ θ dM I (α)=
(
dθ + θ I (α)

)
∧ I (α)+ θ I (dM α).

Since dM α = ω∧ ξ for some ξ ∈�1(M) [Godbillon and Vey 1971], we have

dMa = a ∧ I (α)+ I (ω)∧ θ I (ξ).

Therefore, the pair (a, I (ω)) defines a superfoliation of codimension 1 + ε1.
Now, from (4-13) we see that b = α and p(b)= α. By (4-11), we obtain

ϕM,F(H1)= ϕM,F(H2)= ϕM,F(H3)= −[α∧ dM α] 6= 0.

Example 4.11. We describe a superfoliation of codimension 1+ε1 with trivialized
normal bundle such that ϕM,H(H1)= 0 and ϕM,H(H3) 6= 0.

Consider the supermanifold given by the trivial 1-vector bundle E over the 3-
dimensional torus T 3

' (S1)3. Let x, y, z ∈ S1 be the coordinates of T 3, and let θ
be the odd parameter corresponding to the constant section of E . Take f (x), g(x)
two smooth functions on S1 with

∫
S1 W ( f, g) 6= 0, where W is the Wronskian.
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We leave the reader to check that the odd 1-form ω = dx and the even 1-form

a = dθ + θ( f (x)dy + g(x)dz)

define a superfoliation of codimension 1 + ε1. In this case, we can choose b =

f (x) dy + g(x) dz, and it is routine to check that

ϕM,H(H3)=
[
W ( f, g) dx ∧ dy ∧ dz

]
Since [W ( f, g) dx ∧ dy ∧ dz] =

(∫
S1 W ( f, g)

)
[dx ∧ dy ∧ dz], it follows that

ϕM,H(H3) is a nonzero class in de Rham cohomology. Since p(ω)= dx is a closed
1-form, ϕM,H(H1)= 0.

4C(c). Superfoliations of codimension 0 + εm. According to Proposition A.10,
we have H∗

(
Vect(0,m)0

)
' H∗(glm), where H∗(glm) is the Chevalley–Eilenberg

cohomology of the Lie algebra glm . In such a case, therefore, ϕM,F is a map
from H∗(glm) to H∗(M). Moreover, if ω is a DGA homomorphism defining the
superfoliation F, then ϕM,F is given by

(4-14) dl
k → p

(
ω

(
(θk ∂/∂θl)

∗
))

for any k, l = 1, . . . ,m.

Example 4.12. We compute this homomorphism in a particular case. The semidi-
rect product glm n Rm of the Lie algebra glm with Rm can be considered as a
super-Lie algebra with even part glm and odd part Rm . Let G be the super-Lie group
associated to this Lie algebra by Lie’s third theorem (which is true for super-Lie
algebras [Tuynman 2004]). Since glm ⊂ glm n Rm , the Lie group GLn acts on the
left on G, and a superfoliation of codimension 0 + εm is given on G by this left
action.

This superfoliation is defined by the left-invariant forms ā1, . . . , ām associated
to the canonical basis a1, . . . , am ∈ (Rm)∗. Moreover, for any k ∈ {1, . . . ,m}, we
have

dG āk =

m∑
l=1

āl ∧ d̄l
k

where d̄l
k ∈ T ∗(G) are the left invariant 1-forms on G associated to the canonical

basis dl
k of gl(m)∗.

By construction, therefore, there exists a homomorphism ω defining the super-
foliation, such that

ω
(
(θk ∂/∂θl)

∗
)
= d̄l

k for any k, l ∈ {1, . . . ,m}.

By Equation (4-14), we obtain that, for any H ∈ H∗(glm),

ϕM,F(H)= H̄ ,



146 CAMILLE LAURENT-GENGOUX

where H̄ is the class of the left-invariant form on GLm that corresponds to H . In
other words, ϕM,F is equal to the natural homomorphism H∗(glm)→ H∗(GLm).

It is well known that H∗(GLm) ' H∗(O(m)), where O(m) is the orthogonal
group, and that H 3(O(m))' R and H 3(glm)' R for m ≥ 3. We leave the reader
to check that the homomorphism H 3(glm) → H 3(GLm) is not trivial. Therefore,
we have proved the existence of nontrivial secondary characteristic classes for su-
perfoliations of codimension 0 + εm with m ≥ 3.

4D. Conclusion. We summarize the results of the preceding sections.

Theorem 4.13. For any supermanifold M foliated by a superfoliation F of codi-
mension n + εm with trivialized normal bundle, there exists a map ϕM,F from
H∗

(
Vect(n,m)0

)
to H∗(M) such that:

(1) ϕM,F is a functor from the category of supermanifolds endowed with a super-
foliation with trivialized normal bundle to the category of algebra homomor-
phisms from H∗

(
Vect(n,m)0

)
to an algebra A;

(2) for (n,m) = (0, 1), or (n,m) = (1, 1), or n = 0 and m ≥ 3, there exists a
supermanifold M and a superfoliation F of codimension n + εm such that
ϕM,F is not the zero map;

(3) if M is an ordinary smooth manifold endowed with a foliation F of codimen-
sion n with trivialized normal bundle, then ϕF reduces to the usual homo-
morphism of Bernstein, Bott, Fuchs, Haefliger and Rosenfeld [Bernstein and
Rosenfeld 1973; Bott and Haefliger 1972; Fuchs 1986].

Proof. By “category of algebra homomorphisms from H∗
(
Vect(n,m)0

)
to an al-

gebra A” we mean the category whose objects are algebra homomorphism from
H∗

(
Vect(n,m)0

)
to an algebra A, and whose arrows between objects

ϕA : H∗
(
Vect(n,m)0

)
→ A and ϕB : H∗

(
Vect(n,m)0

)
→ B

are homomorphisms ϕ : A → B such that ϕB = ϕ ◦ ϕA. Conclusion (1) is now a
paraphrase of Proposition 4.7.

Statement (2) follows from Examples 4.8, 4.10, and 4.12. Note that a more
precise statement will be given in Remark 5.3.

It is proved in [Fuchs 1986, Section 3.2.B (page 231)] that, when we are given
a foliation F of codimension n with trivialized normal bundle, the “classical” map
of Bernstein, Bott, Fuchs, Haefliger and Rosenfeld is constructed by the passing
to cohomology of a DGA homomorphism ω from

(∧
Vect(n)∗, ∂

)
to

(
�(M), dM

)
,

with the foliation F being defined by the 1-forms ω
(
(∂/∂xi )

∗
)
. This proves (3). �

The functoriality of this construction allows us to say that the assignment F 7→

ϕF(H), for any H ∈ H∗
(
Vect(n,m)0

)
, defines a secondary characteristic class of

superfoliations with trivialized normal bundle.
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We have defined in Proposition 2.18 a way to construct from any flat trivial
foliated connection (M, F, E,∇) a supermanifold M(M, E) whose base manifold
is M , and a superfoliation F(M, F, E,∇) on M with trivialized normal bundle.
We call secondary characteristic classes of flat trivial foliated connections the
secondary characteristic classes of this superfoliation. More precisely, we have
associated a homomorphism from H∗

(
Vect(n,m)0

)
to H∗(M) to any flat trivial

foliated connection on M .

Remark 4.14. One may ask whether, for any H ∈ H∗
(
Vect(n,m)0

)
, there is a

superfoliation F and a supermanifold M with ϕM,F(H) 6= 0. This question remains
open even in the case of foliations on smooth manifolds, and therefore we cannot
hope to find a simple answer.

Remark 4.15. According to Section 2D, if the superfoliation F of codimension
n + εm does not have a trivialized normal bundle, then we can replace it by a su-
perfoliation pr∗(F) with trivialized normal bundle, over some GL(n,m)-principal
bundle PF → M. The map ϕPF,pr∗ F takes values in the cohomology of the base
manifold of PF, which is a GL(n)× GL(m)-principal bundle over M . Therefore,
for any H ∈ H∗

(
Vect(n,m)

)
, we can construct secondary characteristic classes

of superfoliation of codimension n + εm (not necessarily with trivialized normal
bundle), but these characteristic classes have values in the cohomology of some
GL(n) × GL(m)-principal bundle over the base manifold M of M. By Remark
2.21, this construction is functorial, that is, it behaves well with respect to pull-
backs of superfoliations.

We now link this construction to the cohomology of H
(
Vect(n,m)

)
and the

Godbillon–Vey classes constructed in [Koszul 1988].
The homomorphism ω constructed in Proposition 4.2 induces a homomorphism

ϕω : H∗
(
Vect(n,m)

)
→ H∗(M), where H∗

(
Vect(n,m)

)
is the cohomology of the

superalgebra Vect(n,m). The following diagram is commutative:

H∗
(
Vect(n,m)

)
ϕω

- H∗(M)

H∗
(
Vect(n,m)0

)J
? ϕM,F - H∗(M),

p̂
?

with J : H∗
(
Vect(n,m)0

)
→ H∗

(
Vect(n,m)

)
given by the inclusion Vect(n,m)0 →

Vect(n,m), and p̂ : H∗(M)→ H∗(M) induced by p.
According to Batchelor’s theorem, p̂ is indeed an isomorphism, and thus ϕω =

p̂−1
◦ϕM,F◦ J is independent of ω. To emphasize that this homomorphism does not

depend on ω, we denote it by ψM,F. We cannot say that ψM,F gives new secondary
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characteristic classes, since

(4-15) ψM,F = p̂ ◦ ϕM,F ◦ J.

In [Koszul 1988], a homomorphism from H∗
(
Vect(0,m)

)
to H∗(M) is associ-

ated to any superfoliation of codimension n + εm with trivialized normal bundle,
on a supermanifold of dimension n + εm. It is easy to check that, by construction,
this homomorphism coincides with ψM,F. It defines classes of superfoliations of
dimension 0 + εm, called “Godbillon–Vey classes” by the author. By Equation
(4-15), these Godbillon–Vey classes are among the classes we built in this article.

From Proposition A.11 and [Koszul 1988, Corollaire 1.2], it follows that J :

H 1
(
Vect(0, 1)

)
→ H 1

(
Vect(0, 1)0

)
is an isomorphism. This implies that the class

constructed in Section 4C(a) is equal to the class constructed in [Koszul 1988,
Exemple 1].

We summarize:

Proposition 4.16. (1) For any superfoliation F of codimension n + εm with triv-
ialized normal bundle, the following diagram is commutative:

H∗
(
Vect(n,m)

)
ψM,F

- H∗(M)

H∗
(
Vect(n,m)0

)J
? ϕM,F - H∗(M).

p̂
?

(2) The Godbillon–Vey classes constructed in [Koszul 1988] are among the sec-
ondary characteristic classes of superfoliation constructed above.

(3) In particular, for foliations of codimension 0 + ε1, the secondary class con-
structed in Section 4C(a) coincides with the class constructed in [Koszul
1988, Exemple 1].

5. Foliated flat vector bundles

5A. Secondary characteristic classes on the base manifold. Let FF be the codi-
mension-n foliation induced by F on M , as in Lemma 2.12. Since F has a triv-
ialized normal bundle, according to Theorem 4.13 to any H ∈ H∗

(
Vect(n)

)
is

associated an element K ∈ H∗(M) by the “classical” construction of Bernstein,
Bott, Fuchs, Haefliger and Rosenfeld [Bernstein and Rosenfeld 1973; Bott and
Haefliger 1972; Fuchs 1986]. We would like to investigate the relation between
this construction and our construction.

There is a natural inclusion i from Vect(n)∗ into Vect(n,m)∗0, obtained by con-
sidering an element (x i1

1 . . . x
in
n ∂/∂xa)

∗
∈ Vect(n)∗ as an element of Vect(n,m)∗0.

Lemma 5.1. The inclusion i is a DGA homomorphism, and induces a map from
H∗

(
Vect(n)

)
to H∗

(
Vect(n,m)0

)
.
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Proof. The family

(5-1)



i1, . . . , in ∈ N,

x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m

∂

∂xi
, j1, . . . , jm ∈ {0, 1} with

n∑
k=1

jk even,
and i ∈ {1, . . . , n};

and

i1, . . . , in ∈ N,

x i1
1 . . . x

in
n θ

j1
1 . . . θ

jm
m

∂

∂θj
, j1, . . . , jm ∈ {0, 1} with

m∑
k=1

jk odd,
and j ∈ {1, . . . ,m},

forms a basis of Vect(n,m)0.
The θ -degree (hi1 . . . hik ∂/∂hi ) ∈ Vect(n,m)0 is the number of integers greater

or equal to n + 1 in the list i1, . . . , ik, i . For example, the θ -degree of x1θ1∂/∂θ2

or x3θ2θ1 ∂/∂x2 is 2, and the θ -degree of x3
1 ∂/∂x1 is 0.

If we enumerate the basis as described in (5-1), then the structure constant Γ k
i, j is

equal to zero if the index k corresponds to an element of θ -degree 0 and one of the
indices i or j corresponds to an element of nonzero θ -degree. Moreover, if i, j, k
correspond to elements of the basis (5-1) with a vanishing θ -degree, then the struc-
ture constant Γ k

i, j is equal to the corresponding structure constant in Vect(n). By the
definition of the Chevalley–Eilenberg differential, this implies that i

(∧
Vect(n)∗

)
is stable under ∂0, and that i is a DGA homomorphism. �

Proposition 5.2. Take H ∈ H∗
(
Vect(n)∗

)
and H ′

= i(H)∈ H∗
(
Vect(n,m)0

)
. One

has
ϕM,F (H)= ϕM,F(H

′).

Proof. If ω :
∧

Vect(n,m)→�(M) is a DGA homomorphism that defines F, then
p◦ω◦i :

∧
Vect(n)→�(M) is a DGA homomorphism that defines F . The diagram∧(

Vect(n)
)∗ i -

∧(
Vect(n,m)0

)∗

�(M)

p ◦ω
?p ◦ω ◦ i -

is commutative. As a consequence, we have the commutative diagram

H∗
(
Vect(n)

)
- H∗

(
Vect(n,m)0

)

H∗(M).

ϕM,F
?ϕM,F

-

�

Remark 5.3. The nontrivial secondary classes in Section 4C are not secondary
classes of the induced foliation on the base manifold. We could therefore replace
(2) in Theorem 4.13 by a more precise statement:
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Let S be a supplement of H∗
(
Vect(n)

)
in H∗

(
Vect(n,m)0

)
. For (n,m)= (0, 1),

or (n,m) = (1, 1), or n = 0 and m ≥ 3, there exists a supermanifold M and a
superfoliation F of codimension n + εm such that the restriction of ϕM,F to S is
not the zero map.

5B. Secondary characteristic classes of foliated connections. Let F be a super-
foliation of codimension n + εm with trivialized normal bundle, defined by odd
1-forms ω1, . . . , ωn and even 1-forms a1, . . . , am . It is convenient to rename these
forms b1, . . . , bn+m , where bi = ωi for all i ∈ {1, . . . , n} and bn+ j = aj for all
j ∈ {1, . . . ,m}. In fact, we will in general use both notations at the same time. Let(
M, FF, EF,∇

F
)

be the trivial flat foliated connection associated to the superfoli-
ation F, as constructed in Section 2C.

Theorem 5.4. The homomorphism ϕM,F : H∗
(
Vect(n,m)0

)
→ H∗(M) is com-

pletely determined by the flat trivial foliated connection
(
M, FF, EF,∇

F
)
.

In other words, the theory of secondary characteristic classes of superfoliations can
indeed be considered as a theory of secondary characteristic classes of flat foliated
connections.

Proof. Let
(
b j

i

)
i, j∈{1,...,n+m}

be homogeneous 1-forms satisfying the relation

(5-2) dM bi = (−1)| j |
n+m∑
j=1

bj ∧ b j
i

We divide the proof into four steps.

Step 1: ϕM,F depends only on (p(b j
i ))i, j=1,...,n and (p(bl

k))k,l∈{n+1,...,n+m}.
By Lemma 4.6, the secondary characteristic classes depend only on the 1-forms
(p(b j

i ))i, j∈{1,...,n} and (p(bl
k))i, j∈{n+1,...,n+m}. Moreover, any family of 1-forms

(b̃ j
i )i, j∈{1,...,n+m} such that (5-2) holds for some 1-forms b̃1, . . . , b̃n+m that define

the same superfoliation F will define the same homomorphism ϕM,F by Proposition
4.5.

Step 2: ϕM,F depends only on FF and (p(bl
k))k,l∈{n+1,...,n+m}.

After applying p to (5-2) and taking i ∈ {1, . . . , n}, we see that the 1-forms
(p(b j

i ))i, j∈{1,...,n} satisfy

dM
(

p(ωi )
)
=

n∑
j=1

p(ωj )∧ p(b j
i ).

By Remark 2.13, the 1-forms p(ωi ), i = 1, . . . , n, define the foliation FF. For any
other choice of 1-forms ω̃1, . . . , ω̃n ∈�1(M) and any 1-forms c̃ j

i ∈�1(M), i, j ∈

{1, . . . , n}, with dM ω̃i =
∑n

j=1 ω̃j ∧c j
i , there exist 1-forms b̃1, . . . , b̃n+m ∈�1(M)
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defining F, and 1-forms b̃ j
i ∈�1(M), i, j ∈ {1, . . . , n + m}, satisfying (5-2) such

that, for all i, j ∈ {1, . . . , n}, the identity p(b j
i ) = c j

i holds. As a consequence,
ϕM,F is entirely determined by FF and (p(bl

k))k,l∈{n+1,...,n+m}

Step 3: ϕM,F depends only on FF and on the restriction of (p(bl
k))k,l∈{n+1,...,n+m}

to the tangent space of the leaves of FF.
For k ∈ {n+1, . . . , n+m}, Equation (5-2) can be rewritten

dM ak−n =

n∑
i=1
ωi ∧ bi

k −

n+m∑
l=n+1

al ∧ bl
k .

As consequence, for any even superfunctions f l
k, j with k, j ∈ {1, . . . ,m} and l ∈

{1, . . . , n},

dM ak−n =

n∑
i=1
ωi ∧

(
bi

k −

m∑
c=1

f k,c
i ac

)
−

n+m∑
l=n+1

al ∧

(
bl

k −

n∑
c=1

f k,l
c ωc

)
.

We have therefore

dM ak−n =

n∑
i=1
ωi ∧ b̃i

k −

n+m∑
l=n+1

al ∧ b̃l
k,

where

(5-3) b̃i
k = bi

k −

n+m∑
c=n+1

f k,c
i ac and b̃l

k = bl
k −

n∑
c=1

f k,l
c ωc.

Consequently, we can add to the 1-forms (bl
k)k,l∈{n+1,...,n+m} any linear combina-

tion of the 1-forms ω1, . . . , ωn without modifying ϕM,F.
Applying p to (5-3), we obtain

(5-4) p(b̃k
l )= p(bk

l )−
n∑

c=1
Re( f k,l

c ) p(ωc)

Therefore, we can add to the 1-forms (p(bl
k))k,l=n+1,...,n+m any linear combination

of the 1-forms p(ω1), . . . , p(ωn) without modifying ϕM,F. This implies that ϕM,F

depends only on the restriction of (p(bl
k))k,l∈{n+1,...,n+m} to the tangent spaces of

the leaves of FF.

Step 4: The restriction of (p(bl
k))k,l∈{n+1,...,n+m} to the tangent space of the leaves

of FF depends only on EF and ∇
F.

Let X be a vector field tangent to the leaves of FF, and X ∈ (XF)0 an even supervec-
tor field tangent to F such that Π(X)= X . One has, for any k ∈ {n+1, . . . , n+m},

∇
F
X
(
ρ(ak−n)

)
= ρ

(
LX ak−n

)
= ρ

(
ιX dM ak−n

)
= ρ

(
ιX

n+m∑
j=1
(−1)| j | bj ∧ b j

k

)
= ρ

(
ιX

n∑
j=1
ωj ∧ b j

k −

n+m∑
l=n+1

aj ∧ bl
k

)
.
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By the definition of the map ρ, one has ρ
(
(ιXωj )b

j
n+i

)
=0 for any j ∈{1, . . . , n+m}

and ρ
(
ιX(ωj ∧ b j

n+i )
)
= 0 for any j ∈ {1, . . . , n}. Therefore,

∇
F
X
(
ρ(ak−n)

)
= −ρ

( m∑
j=1
(ιX aj ∧ bn+ j

n+i )
)
.

By Equation (2-1), we obtain

∇
F
X
(
ρ(ak−n)

)
= −

n+m∑
l=n+1

(
Re(ιX bl

k)
)
ρ(aj ).

By (2-4), the identity Re(ιX bl
k)= ιX p(bl

k) holds, and thus

∇
F
X
(
ρ(ak−n)

)
= −

n+m∑
l=n+1

(
ιX p(bl

k)
)
ρ(al).

The restrictions of the 1-forms
(

p(bn+ j
n+i )

)
i, j∈{1,...,m}

to the tangent space of each leaf
of FF are therefore completely determined by the connection ∇

F. This completes
the proof. �

Remark 5.5. We have associated secondary characteristic classes to a flat trivial
foliated vector bundle. In particular, we have associated characteristic classes to
any SO(n)-bundle over a manifold M , endowed with a flat foliated connection in
the sense of [Kamber and Tondeur 1975]. In [Kamber and Tondeur 1974] or [Kam-
ber and Tondeur 1975], characteristic classes are also associated to such objects. It
should be interesting to investigate the relation with this construction, in particular
with the map (4.4) from [Kamber and Tondeur 1974].

Remark 5.6. Before ending this section, we have to point out the relation be-
tween this approach and the theory of 0-structures [Bott and Haefliger 1972]. A
foliation on a supermanifold M with base manifold M can be defined by a family
{ fi }i∈I of local submersions onto Rn,m , defined on an open covering {Ui }i∈I of
M . For any two submersions fi and fj , there exists ϕ j

i in Diff(Rn,m) such that
fi = ϕ

j
i ◦ fj , where Diff(Rn,m) is the pseudogroup of local diffeomorphisms of the

supermanifold Rn,m . This is (almost) the definition of a Vect(n,m)-structure from
[Bott and Haefliger 1972]; the only difference is that 0 is not a subspace of local
diffeomorphisms of some vector space. As a consequence, it should be possible to
obtain again most constructions of the present paper by generalizing the results of
[Bott and Haefliger 1972] to this case; note that the Lie algebra of Diff(Rn,m) is
precisely Vect(n,m)0.

Appendix A. The cohomology of Vect(n, m)0

We prove Theorem 3.7 and, as an application, compute H∗
(
Vect(n,m)0

)
in some

particular cases. First, we will need some technical results about representations
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of the Lie algebra gln ⊕ glm . The methods of this section are mainly inspired by
[Astashkevich and Fuchs 1993; Fuchs 1986].

For any vector space V and any k ∈ N, we denote by V ⊗k the tensor-product of
k copies of V . For any family of vector spaces V1, . . . , Vk , we denote by

⊗k
i=1 Vi

the tensor product V1 ⊗ V2 ⊗ . . .⊗ Vk . We denote by Sk(V ) the space of elements
of degree k in the symmetric algebra of V .

A1. Some results about representations of gln ⊕ glm. Let V and W be vector
spaces of dimension n and m, respectively. Let gln and glm be the Lie algebras of
linear endomorphism of V and W , respectively. The Lie algebras gln and glm act
on V and W , respectively, by g ·v= g(v) and h ·w= h(w), where v ∈ V , g ∈ gln ,
w ∈ W , h ∈ glm . Moreover, the dual spaces V ∗ and W ∗ are gln- and glm-modules,
respectively, with actions

g · v′
= (−g)∗(v′) and h ·w′

= (−h)∗(w),

where g∗ and h∗ are the dual endomorphisms and v′
∈ V ∗, w′

∈ W ∗. These actions
extend naturally to an action of the Lie algebra gln ⊕ glm on

Ek,l
p,q = V ⊗k

⊗ (V ∗)⊗l
⊗ W ⊗p

⊗ (W ∗)⊗q .

We give some lemmas about the representations of gln ⊕glm . It is well known (see
[Fuchs 1986, Theorem 2.1.4] or [Howe 1989]) that, for any vector space V ,

(
V ⊗k

⊗ (V ∗)⊗l
)gln

= 0 if k 6= l,(
V ⊗k

⊗ (V ∗)⊗k
)gln

=
⊕
σ∈Σk

aσ
n∑

i1=1
. . .

n∑
ik=1

xi1 ⊗ · · · ⊗ xin ⊗ yiσ(1) ⊗ · · · ⊗ yiσ(n),

where aσ ∈ R, x1, . . . , xn ∈ V is a basis of V , and y1, . . . , yn ∈ V ∗ is the dual
basis. The following is an obvious generalization of this result:

Lemma A.1. Let {xi | i = 1, . . . , n} be a basis of V and {yi ∈ V ∗
| i = 1, . . . , n}

the dual basis. Let {ζi | i = 1, . . .m} be a basis of W and {ηi ∈ W ∗
| i = 1, . . . ,m}

the dual basis.

(1) If k 6= l or p 6= q , then
(
Ek,l

p,q
)gln⊕glm

= 0

(2) If k = l and p = q , the space
(
Ek,k

p,p
)gln⊕glm is generated by the elements

gσ,τ =

n∑
s1=1

. . .
n∑

sk=1

m∑
s′

1=1
. . .

m∑
s′

p=1

xs1 ⊗ . . .⊗ xsk ⊗ ysσ(1) ⊗ . . .⊗ ysσ(k) ⊗ ζs′

1
⊗ . . .⊗ ζs′

p
⊗ ηs′

τ(1)
⊗ . . .⊗ ηs′

τ(p)
,

where σ is a permutation of {1, . . . , k} and τ a permutation of {1, . . . , p}.
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Let H be a gln ⊕glm-submodule of V ⊗k
⊗ (V ∗)⊗m

⊗W ⊗p
⊗ (W ∗)⊗l . Let G be

the gln ⊕ glm-module
G := Ek,l

p,q/H.

Such a gln ⊕ glm-module is said to be of type I.

Lemma A.2. Let π be the projection of Ek,l
p,q onto G. One has:

(A-1) Ggln⊕glm = π
(
Ek,l

p,q
)gln⊕glm

.

Proof. Both spaces reduce to 0 if k 6= l or if p 6= q. If k = l and p = q, the center of
gln ⊕glm acts trivially, and then both G and Ek,l

p,q are sln ⊕ slm-modules satisfying

(A-2) Gsln⊕slm = Ggln⊕glm ,
(
Ek,k

p,p
)sln⊕slm

=
(
Ek,k

p,p
)gln⊕glm

.

Since sln⊕slm is a semisimple Lie algebra, any finite-dimensional sln⊕slm-module
is the direct sum of the sln ⊕ slm-submodule of invariants with the sln ⊕ slm-
submodule of coinvariants. In particular, we have the decompositionsG = (sln ⊕ slm).G ⊕ Gsln⊕slm

Ek,k
p,p = (sln ⊕ slm).Ek,k

p,p ⊕
(
Ek,k

p,p
)sln⊕slm

Since π is a Lie algebra morphism,π
((

Ek,k
p,p

)sln×slm
)
⊂ Gsln⊕slm

π
(
(sln ⊕ slm).Ek,k

p,p
)
⊂ (sln ⊕ slm).G

Since π is onto, we must haveπ
((

Ek,k
p,p

)sln⊕slm
)
= Gsln⊕slm(

sln ⊕ slm
)
. π

(
Ek,k

p,p
)
= (sln ⊕ slm).G

The conclusion thus follows from (A-2). �

We now introduce the gln ⊕ glm-modules that we will study. (In the sequel, we
will often simply say “module” for a gln ⊕ glm-module.)

Definition A.3. Consider a family L1 = {(µa, νa) | a = 1, . . . , K } of pairs of
nonnegative integers such that µa + νa ≥ 2 and νa is even. Consider a family
L2 ={(pb, qb) |b =1 . . . , K ′

} of pairs of nonnegative integers such that pb+qb ≥2
and qb is odd. Let L ∈ N and let L = L1tL2t{L}. We associate to L the gln ⊕glm-
module

GL =
∧K

a=1
(
Sµa (V )⊗

∧νa W ⊗ V ∗
)
∧

∧K ′

b=1
(
S pb(V )⊗

∧qb W ⊗ W ∗
)
∧

∧L V ∗.

Such a module is called a module of type II.
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Our goal for now is to describe (GL)
gln⊕glm ; see Section A2 for motivation.

We describe a natural projection

πL : Q → G F

where Q = Em, K+L
n, K ′ , with m =

∑K
a=1 µa +

∑K ′

b=1 pb and n =
∑K

a=1 νa +
∑K ′

b=1 qb.
First, we can construct an isomorphism ψ of gln ⊕ glm-module from Q to the

module

QL =

K⊗
a=1

(
V ⊗µa ⊗ W ⊗µa ⊗ V ∗

)
⊗

K ′⊗
b=1

(
V ⊗pb ⊗ W ⊗qb ⊗ W ∗

)
⊗ (V ∗)⊗L

obtained by permuting terms in the tensor product defining Q, according to the
rule: allow permutation of the tensor product of two elements if and only if they
do not belong to the same vector space. With this restriction, there is only one
natural isomorphism ψ from Q to QL.

Second, there is a natural projection

π ′
:

K⊗
a=1

(
V ⊗µa ⊗ W ⊗νa ⊗ V ∗

)
⊗

( K ′⊗
b=1

V ⊗pb ⊗ W ⊗qb ⊗ W ∗

)
⊗ (V ∗)⊗L

−→ GL

constructed by taking the appropriate symmerizations and skew-symmetrizations.
Define πL as πL = π ′

◦ψ .

Proposition A.4. (1) If
∑K

a=1 µa +
∑K ′

b=1 pb 6= K +L or if
∑K

a=1 νa +
∑K ′

b=1 qb 6=

K ′, then Ggln⊕glm
L = 0.

(2) If there exists a ∈ {1, . . . , K } with νa 6= 0, or if there exists b ∈ {1, . . . , K ′
}

with qb 6= 1, then Ggln⊕glm
L = 0.

Proof. Since GL is a module of type I, Lemma A.1(1) and Lemma A.2 immediately
imply statement (1). The identity

∑K
a=1 νa +

∑K ′

b=1 qb = K ′ implies statement (2),
since qb is odd for b = 1, . . . , K , and νa is even for a = 1, . . . , K , and since all
these numbers are nonnegative. �

From now on we assume that q1 = · · · = qK ′ = 1, ν1 = · · · = νK = 0, and

(A-3)
K∑

a=1
µa +

K ′∑
b=1

pb = K + L .

Write H =
∑K

a=1 µa .
The map πM can now be easily described: for all s1, . . . , sK+L ∈ {1, . . . , n},

t1, . . . , tK ′ ∈ {1, . . . ,m}, s ′

1, . . . , s ′

K ′ ∈ {1, . . . ,m}, and t ′

1, . . . , t ′

K ′ ∈ {1, . . . ,m},
we have
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(A-4) πL

(
xs1 ⊗ · · · · xsK+L · ts1 ⊗ · · · · yt ′K ′

ζs′

1
· · · · · ζs′

K ′
· ηt ′1 · · · · · ηt ′K ′

)
=

∧K
i=0 R

(
sµ1+···+µi−1+1, . . . , sµ1+···+µi

)(
xsµ1+···+µi +1 . . . xsµ1+···+µi+1

· yti
)

∧
∧K ′

j=0 R
(
sH+p1+···+pj−1+1, . . . , sH+p1+···+pj

)(
xsH+p1+···+pj−1+1 . . . xsH+p1+···+pj

· ζs′

j
· ηt ′j

)
∧

∧K+L
k=K+1 yt ′k ,

where, for all h, a1, . . . , ah ∈ N, R(a1, . . . , ah) is an integer that appears in the
symmetrization map

⊗h V → S∗(V ). We leave the reader to check that indeed

(A-5) R(a1, . . . , ah)=

n∏
i=1

K (i, [a1, . . . , ah])! .

Two indices i, j ∈ {1, . . . , K+L} are said symmetric with respect to L if there
exists k ∈{0, . . . , K−1} such that i, j ∈

{∑k
a=1 νa, . . . ,

∑k+1
a=1 νa

}
, or if there exists

k ∈ {0, . . . , K ′
−1} such that i, j ∈

{∑k
a=1 pb, . . . ,

∑k+1
a=1 pb

}
. Intuitively, i and j

are symmetric with respect to L if the projection πL maps the i-th and the j-th
terms of the tensor product V ⊗(K+L) involved in the definition of Q to the same
symmetric algebra Sµa (V ) or to the same symmetric algebra S pb(V ).

Two indices i, j ∈ {1, . . . , K+L} are said antisymmetric with respect to L if
i ≥ K + 1 and j ≥ K + 1. Intuitively, i and j are antisymmetric with respect
to L if the projection πL maps the i-th and the j-th terms of the tensor product
(V ∗)⊗(K+L) involved in the definition of Q to the exterior algebra

∧L V ∗.

Lemma A.5. Let σ be a permutation of {1, . . . , K+L}. If there are two indices
i, j ∈ {1, . . . , K+L} symmetric with respect to L such that σ(i), σ ( j) are antisym-
metric with respect to L, then gσ,τ = 0.

Proof. Consider two indices i, j ∈{1, . . . , K+L} symmetric with respect to L such
that σ(i), σ ( j) are antisymmetric with respect to L. For any k, l ∈ {1, . . . , n}, the
terms in (A-4) corresponding to si = k and sj = l and the terms corresponding to
si = l and sj = k appear with opposite signs. By Equation (A-4), πL(gσ,τ ) must
therefore vanish. �

Lemma A.6. If µa 6= 2 for some a ∈ {1, . . . , K }, or if pb 6= 1 for some b ∈

{1, . . . , K }, then Gglm⊕glm
L = 0.

Proof. If µa ≥ 3 for some a in {1, . . . , K } or if pb ≥ 2 for some b in {1, . . . , K ′
},

then by (A-3) we must have L > K + K ′. By a simple argument of cardinal-
ity, this implies that, for any permutation σ of {1, . . . , K+L}, there exist i ′, j ′

∈

{K+1, . . . , K+L} such that σ−1(i ′), σ−1( j ′) are symmetric with respect to L.
Therefore, by Lemma A.5, πL(gσ,τ )= 0. �
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Assume now that µ1 = · · · = µK = 2 and p1 = · · · = pK ′ = 1. In this case,

GL =
∧K (

S2(V )⊗ V ∗
)
∧

∧K ′(
V ⊗ W ⊗ W ∗

)
∧

∧K+K ′

V ∗.

Let A be the exterior algebra over the space S2(V )⊗V ∗
⊕ V ⊗W ⊗W ∗

⊕ V ∗.

Lemma A.7. If σ and τ are permutations of {1, . . . , K+L} and {1, . . . , K ′
}, re-

spectively, then πL(gσ,τ ) is an element of the algebra generated (with respect to
the product ∧) by elements of the form

n∑
c=1

γ i
c yc ∧ xcxi . yj ∈

(
S2(V )⊗ V ∗

)
⊗ V ∗, i, j ∈ {1, . . . , n},

n∑
c=1

yc ∧ xc .ζk .ηl ∈
(
V ⊗ W ⊗ W ∗

)
∧ V ∗, k, l ∈ {1, . . . ,m},

where, for any i, c = 1, . . . , n, γ i
c is defined by γ i

c = 1 for i 6= c and by γ i
i = 2.

Proof. Let σ be a permutation of {1, . . . , 2K+K ′
}. If there is an i ∈ {1, . . . , K }

such that σ(2i−1)≥ K and σ(2i+1)≥ K , then Lemma A.5 implies that πL(gσ,τ )=
0. Assume now that such an i ∈ {1, . . . , K } does not exist for σ ; then, for all
i ∈ {1, . . . , K }, one of the two integers σ(2i−1), σ (2i) is greater than K , and one
is smaller or equal to K . We define a permutation σ ′ of {1, . . . , K } by σ ′(i) =

min{σ(2i−1), σ (2i)}.
By Lemma A.1(2), we have

πL(gσ,τ )=

n∑
s1,..., s2K+K ′=1

m∑
s′

1,...,s
′

K ′=1

∧K
i=1 R(s2i−1, s2i )(xs2i−1 xs2i . ysσ(i))

∧
∧K ′

j=1 xs2K+ j ζs′

j
.ηs′

τ( j)
∧

∧2K+K ′

k=K+1 ysσ(k) .

From Equation (A-5), it follows that R(s2i−1, s2i )= γ
s2i
s2i−1 . Therefore,

πL(gσ,τ )= ε
n∑

s1,...,sK =1

m∑
s′

1,...,s
′

K ′=1

∧K
i=1

( n∑
c=1

yc ∧ γ si
c xcxsi . ysσ ′(i)

)
)

∧
∧K ′

j=1

(
yc ∧

n∑
c=1

xc .ζti .ηtτ(i)

)
for some ε ∈ {−1,+1}. �

We recapitulate:

Theorem A.8. Let GL be a gln ⊕ glm-module of type II (as in Definition A.3).

• If
∑K

a=1 µa +
∑K

b=1 pb 6= K + L , then Ggln⊕glm
L = 0.

• If one of the even integers {νa}a=1,...,K is not 0, then Ggln⊕glm
L = 0.

• If one of the odd integers {qb}b=1,...,K ′ is not 1, then Ggln⊕glm
L = 0.

• If one of the integers {µa}a=1,...,K is not 2, then Ggln⊕glm
L = 0.
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• If one of the integers {pb}b=1,...,K ′ is not 1, then Ggln⊕glm
L = 0.

• If µa = 2 and νa = 0 for a = 1, . . . , n, and if pb = qb = 1 for b = 1, . . . ,m,
then the space Ggln⊕glm

L is contained in the subalgebra of A generated by the
elements 

n∑
c=1

yc ∧ (γ i
c xc .xi .yj ), i, j ∈ {1, . . . , n},

n∑
c=1

yc ∧ xc .ζk .ηl, k, l ∈ {1, . . . ,m}.

Later, we will also need the following:

Lemma A.9 [Fuchs 1986]. For any gln ⊕ glm-module E of finite dimension,

H∗
(
gln ⊕ glm, E

)
= H∗

(
gln ⊕ glm, Egln⊕glm

)
.

Actually, H∗
(
gln ⊕ glm, E

)
= H∗

(
gln ⊕ glm, Egln⊕glm

)
= H∗

(
gln ⊕ glm,R

)
⊗

Egln⊕glm .

A2. The cohomology of Vect(n, m)0 and the Weil algebra. Now we are able to
prove Theorem 3.7. Let K be the kernel of the DGA homomorphism α̃ : W (gln ⊕

glm) →
∧

Vect(n,m)∗0, and denote again by α̃ the induced DGA homomorphism
from W (gln ⊕ glm)/K to

∧
Vect(n,m)∗0. We restate the theorem:

Theorem 3.7. Let α̂ be the map from H∗
(
W (gln ⊕ glm)/K

)
to H∗

(
Vect(n,m)0

)
induced by α̃. The map α̂ is an isomorphism.

Proof. We first describe α̃ : W (gln ⊕ glm)→
∧

Vect(n,m)∗0 precisely. By (3-12),
the DGA homomorphism α̃ from W (gln ⊕ glm) to

∧
Vect(n,m)∗0 is given by:

(A-6) 1 ⊗ ai, j 7→ (xi ∂/∂xj )
∗, 1 ⊗ di, j 7→ (θi ∂/∂θj )

∗,

where ai, j , for i, j ∈ {1, . . . , n}, and di, j , for i, j ∈ {1, . . . ,m}, are bases that are
dual to the canonical bases of gln and glm , respectively.

One can easily check that

(A-7)


∂
(

xi
∂

∂xj

)∗

−

n∑
k=1

(
xi
∂

∂xk

)∗

∧

(
xk
∂

∂xj

)∗

=

n∑
c=1

(
∂

∂xc

)∗

∧

( xcxi

γ i
c

∂

∂xj

)∗

,

∂
(
θi
∂

∂θj

)∗

−

m∑
k=1

(
θi
∂

∂θk

)∗

∧

(
θk
∂

∂θj

)∗

=

n∑
c=1

(
∂

∂xc

)∗

∧

(
xcθi

∂

∂θj

)∗

.

Since α̃ is a DGA homomorphism, by the definition of the differential of a Weil
algebra [Guillemin and Sternberg 1999], we have

(A-8)
α̃(ai, j ⊗ 1)=

n∑
c=1

( ∂

∂xc

)∗

∧

( xcxi

γ i
c

∂

∂xj

)∗

,

α̃(di, j ⊗ 1)=

n∑
c=1

(
∂

∂xc

)∗

∧

(
xcθi

∂

∂θj

)∗

.
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We compute the cohomology of Vect(n,m)0 with the help of the Hochschild–
Serre spectral sequence [Fuchs 1986] associated to the sub-Lie algebra of elements
of weight zero. Its second term E2

i, j is

E2
i, j = H i(gln ⊕ glm,

∧j ⊕
k 6=0

Fk
)
,

where Fk is the space of elements of weight k in
(
Vect(n,m)0

)∗. By Lemma A.9,
E2

i, j reduces to

E2
i, j = H i

(
gln ⊕ glm,

(∧j ⊕
k 6=0

Fk

)gl(n)⊕glm
)
.

The gln ⊕ glm-module
∧j ⊕

k 6=0 Fk is a direct sum of modules of type II. For
example,

F−1 ' W ∗ and F1 =
(
S2(V )⊗ V ∗

)
⊕

(
V ⊗ W ⊗ W ∗

)
.

More generally, denoting by bxc the integer part of x ∈ R,

Fk '

b(k+1)/2c⊕
i=0

(
V ⊗k+1−2i

⊗ W ⊗2i
⊗ V ∗

)
⊕

bk/2c⊕
j=0

(
V ⊗k+1−(2 j+1)

⊗ W ⊗(2 j+1)
⊗ W ∗

)
.

Therefore, the modules
∧j1 Fi1 ∧· · ·∧

∧jk Fik , where i1, . . . , ik ∈ {−1, 1, 2, 3, . . . }
and j1, . . . , jk ∈ N, are direct sums of modules of type II.

The gln ⊕ glm-module ∧j F−1 ⊗
∧j F1

is a module of type II with µa = 2 and νa = 0 for a = 1, . . . , j , with pb = 1
and qb = 1 for b = 1, . . . , j , and with L = j . By Theorem A.8, the modules∧j1 Fi1 ∧ · · · ∧

∧jk Fik have no nontrivial space of invariants except those of the
form

∧j F−1 ∧
∧j F1. Therefore,
(∧2 j ⊕

k 6=0
Fk

)gln⊕glm
=

(∧j F−1 ⊗
∧j F1

)gln⊕glm
,(∧2 j+1 ⊕

k 6=0
Fk

)gln⊕glm
= 0.

By Theorem A.8(6), we obtain that the gln⊕glm-invariant elements of
∧j ⊕

k 6=0 Fk

are elements of the subalgebra of
∧

Vect(n,m)∗0 generated by
n∑

c=1
γ i

c

(
∂

∂xc

)∗

∧

(
xcxi

∂

∂xj

)∗

, i, j ∈ {1, . . . , n},

m∑
c=1

(
∂

∂xc

)∗

∧

(
xcθk

∂

∂θl

)∗

, k, l ∈ {1, . . . ,m}.
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From (3-3), the identity γ i
c (xc xi ∂/∂xj )

∗
= ((xc xi/γ

i
c ) ∂/∂xj )

∗ holds. Hence, the
generators can be written

(A-9)


n∑

c=1

(
∂

∂xc

)∗

∧

( xcxi
γ i

c

∂

∂xj

)∗

, i, j ∈ {1, . . . , n},

m∑
c=1

(
∂

∂xc

)∗

∧

(
xcθk

∂

∂θl

)∗

, k, l ∈ {1, . . . ,m}.

Let I = α̃
(
W (gln ⊕ glm)

)
be the sub-DGA of

∧
∗(Vect(n,m)0

)
that is the image

of the complex W (gln ⊕ glm) through α̃. By (A-8) and (A-9), we have

(A-10)
(∧j ⊕

k 6=0
Fk

)gln⊕glm
⊂ I.

Moreover, by Equation (A-6) we have the identity

(A-11) I ∩ F0 = F0 ' gln ⊕ glm .

The cohomology of I can be computed with the help of a spectral sequence
whose second term is

Ẽ2
i, j = H i

(
I ∩ F0, I ∩

(∧j ⊕
k 6=0

Fk
))
.

By (A-11), Ẽ2
i, j = H i

(
gln ⊕ glm, I ∩

(∧j ⊕
k 6=0 Fk

))
. From Lemma A.9 we

obtain Ẽ2
i, j = H i

(
gln ⊕ glm,

(
I∩

(∧j ⊕
k 6=0 Fk

))
gln⊕glm

)
. By (A-10), the identity

Ẽ2
i, j = E2

i, j holds.
Therefore, the cohomology of

∧
Vect(n,m)∗0 is equal to the cohomology of the

subcomplex I = α̃
(
W (gln ⊕ glm)

)
' W (gln ⊕ glm)/K. This completes the proof

of Theorem 3.7. �

As an application, we compute the cohomology of H∗
(
Vect(n,m)0

)
in some

particular cases:

Proposition A.10. The cohomology of Vect(0,m)0 is isomorphic to the Chevalley–
Eilenberg cohomology of the Lie algebra glm .

Proof. The DGA homomorphism from W (glm) to
∧

Vect(0,m)∗0 is:

1 ⊗ di, j 7→ (θi ∂/∂θj )
∗ and di, j ⊗ 1 7→ 0.

The kernel of this homomorphism is S
(
gl(m)

)
⊗ 1. The cohomology of

W (glm)/S
(
gl(m)

)
⊗ 1 =

∧
glm

is the Chevalley–Eilenberg cohomology of the Lie algebra glm . �

In particular:
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Proposition A.11. We have isomorphisms H 1
(
Vect(0, 1)0

)
' H 0

(
Vect(0, 1)0

)
'

R, and H 1
(
Vect(0, 1)0

)
=0. Moreover, H 1(Vect(0, 1)0) is generated by (θ ∂/∂θ)∗.

We also determine the cohomology of Vect(1, 1)0:

Proposition A.12. The cohomology of Vect(1, 1)0 is given by H n
(
Vect(1, 1)0

)
= 0

if n 6= 0, 3, and by H 0
(
Vect(1, 1)0

)
= R and H 3

(
Vect(1, 1)0

)
= R3. Moreover, the

latter is generated by the classes described in (A-13), (A-14), and (A-15).

Proof. We denote by a and d the generators a1,1 and d1,1 of gl1 ⊕ gl1. The DGA

homomorphism from W (gl1 ⊕ gl1) to
∧

Vect(1, 1)∗0 is given by

(A-12)



1 ⊗ a 7→

(
x ∂
∂x

)∗

,

1 ⊗ d 7→

(
θ
∂

∂θ

)∗

,

a ⊗ 1 7→ 2
(
∂

∂x

)∗

∧

(
x2 ∂

∂x

)∗

=

(
∂

∂x

)∗

∧

( x2

2
∂

∂x

)∗

,

d ⊗ 1 7→

(
∂

∂x

)∗

∧

(
xθ ∂
∂θ

)∗

.

The kernel K of this application is generated by S2(gl1⊕gl1)⊗1. This implies that
the cohomology vanishes in all degrees different from 3. We can now compute the
cohomology of W (gl1 ⊕ gl1)/K. It is easy to check that H 3

(
Vect(1, 1)0

)
= R3.

Generators of H 3
(
Vect(1, 1)0

)
are given by

H1 =

[( x2

2
∂

∂x

)∗

∧

(
x ∂
∂x

)∗

∧

(
∂

∂x

)∗]
,(A-13)

H2 =

[(
xθ ∂
∂θ

)∗

∧

(
x ∂
∂x

)∗

∧

(
∂

∂x

)∗]
,(A-14)

H3 =

[(
xθ ∂
∂θ

)∗

∧

(
θ
∂

∂θ

)∗

∧

(
∂

∂x

)∗]
. �(A-15)

Appendix B. Proof of Lemma 4.3

Lemma 4.3. Let d1, . . . , dn be odd 1-forms and dn+1, . . . , dn+m even 1-forms,
forming a free family. If d i , i ∈ {1, . . . , n+m}, are 2-forms on M such that, for
any j ∈ {1, . . . , n+m},

(B-1)
n+m∑
i=1

di ∧ d i
= 0,

then there exist homogeneous 1-forms d i, j , of parity |i | + |l| + 1, with

(B-2) d i,l
= −(−1)(|i |+1)(|l|+1)dl,i and

n+m∑
i=1

di ∧ d i,l
= dl .
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Proof. There are partitions of unity on M, that is, for any open covering {Us}s∈S of
the base manifold, there exist even superfunctions {ϕs ∈�(M)}s∈S with support in
Us and such that

∑
s∈S ϕs = 1M, where 1M is the unit of O(M). As consequence, if

there is an open covering {Us}s∈S , of the base manifold such that (B-2) has local
solutions on Us for any s ∈ S, then (B-2) has a global solution. We therefore only
have to prove that (B-2) has solutions locally.

For this, consider 1-forms dn+m+1, . . . , dp+q such that d1, . . . , dp+q is a trivial-
ization of �1(M)' T M∗. For any i ∈ {1, . . . , p+q}, define |i | to be 1 if di is even,
and 0 otherwise. (This definition generalizes the previous definition of |i | given in
Definition 3.3.)

For any l ∈ {1, . . . , n+m}, there exist superfunctions Fr,s;i , G t,u;i , and H v,w;i ,
with r, s, t ∈ {1, . . . , n+m}, u, v, w ∈ {n+m+1, . . . , p+q}, i ∈ {1, . . . , n+m},
such that

(B-3)



dl
=

n+m∑
r,s=1

dr ∧ ds ∧ Fr,s;l
+

n+m∑
t=1

p+q∑
u=n+m+1

dt ∧ du ∧ G t,u;l

+

p+q∑
v,w=n+m+1

dv ∧ dw ∧ H v,w;l,

Fr,s;l
= (−1)(|r |+1)(|s|+1) F s,r;l,

H v,w;l
= (−1)(|v|+1)(|w|+1) Hw,v;l .

For convenience, we have chosen to multiply a 1-form with a superfunction on the
right, which is unusual but will simplify the signs. Equation (B-1) gives

n+m∑
l=1

n+m∑
r,s=1

dl ∧ dr ∧ ds ∧ Fr,s;l
+

n+m∑
l=1

n+m∑
t=1

p+q∑
u=n+m+1

dl ∧ dt ∧ du ∧ G t,u;l

+

n+m∑
l=1

p+q∑
v,w=n+m+1

dl ∧ dv ∧ dw ∧ H v,w;l
= 0.

This is equivalent to the three conditions

(B-4)


Fr,s;l

+ (−1)(|l|+1)(|s|+|r |) F s,l;r
+ (−1)(|s|+1)(|r |+|l|) F l,r;s

= 0

G t,u;l
= −(−1)(|l|+1)(|t |+1)Gl,u;t

H v,w;l
= 0

Define (d i;l)i,l=1,...,n+m by

(B-5) d i;l
=

4
3

n+m∑
s=1

ds ∧
(
F i,s;l

+
1
2(−1)|s|(|i |+1)+|i |(|l|+1)ds ∧ F i,l;s)

+

p+q∑
u=n+m+1

du ∧ Gi,u;l .

We check that (B-4) implies that (B-2) can be satisfied:
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Step 1: Checking that d i;l
= (−1)(|i |+1)(|l|+1)dl;i .

From G t,u;i
= (−1)(|i |+1)(|l|+1)Gi,u;l , we obtain

(B-6)
p+q∑

u=n+m+1
du ∧ Gi,u;l

= (−1)(|i |+1)(|l|+1)
p+q∑

u=n+m+1
dt ∧ Gl,u;i .

Moreover, from (B-3) and (B-4), we obtain

(B-7) F l,s;i
+ (−1)(|s|+1)(|l|+|i |) F i,l;s

+ (−1)(|l|+1)(|i |+1) F i,s;l
= 0.

It is then straightforward to check that

F l,s;i
+

1
2(−1)(|s|+1)(|l|+|i |) F l,i;s

= −(−1)(|l|+1)(|i |+1)(F i,s;l
+

1
2(−1)(|s|+1)(|l|+|i |) F i,l;s).

This and (B-6) imply that

(B-8) d i;l
= −(−1)(|i |+1)(|l|+1)dl;i .

Step 2: Checking that
∑n+m

i=1 di ∧ d i;l
= dl .

We compute
∑n+m

i,s=1(−1)(|s|+1)(|l|+|i |)di ∧ ds F i,l;s . It is equal to

1
2

n+m∑
i,s=1

(−1)(|s|+1)(|l|+|i |)di ∧ ds F i,l;s
+

1
2

n+m∑
i,s=1

(−1)(|s|+1)(|l|+|i |)ds ∧ di ∧ F s,l;i .

From the identity (−1)(|s|+1)(|l|+|i |) (−1)(|s|+1)(|i |+1)
= (−1)(|l|+1)(|s|+1), we deduce

n+m∑
i,s=1

(−1)|s|(|i |+1)+|i |(|l|+1)di ∧ ds ∧ F i,l;s

=
1
2 di ∧ ds ∧

(
(−1)(|s|+1)(|l|+|i |)F i,l;s

+
1
2(−1)(|l|+1)(|s|+1)F s,l;i)

=
1
2 di ∧ ds ∧

(
(−1)(|s|+1)(|l|+|i |)F i,l;s

+ (−1)(|l|+1)(|i |+1)F l,s;i).
From (B-7), we obtain

(B-9)
n+m∑
i,s=1

(−1)(|s|+1)(|l|+|i |)di ∧ ds F i,l;s
= −

1
4

n+m∑
i,s=1

di ∧ ds ∧ F i,s;l .

The result now follows immediately from (B-5) and (B-9). �
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DÉPARTEMENT DE MATHÉMATIQUES
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CURVATURE OF SPECIAL ALMOST HERMITIAN MANIFOLDS

FRANCISCO MARTÍN CABRERA AND ANDREW SWANN

We study the curvature of almost Hermitian manifolds and their special
analogues via intrinsic torsion and representation theory. By deriving dif-
ferent formulae for the skew-symmetric part of the ∗-Ricci curvature, we
find that some of these contributions are dependent on the approach used
and, for the almost Hermitian case, we obtain tables that differ from those
of Falcitelli, Farinola, and Salamon. We show how the exterior algebra may
be used to explain some of these variations.

1. Introduction

Tricerri and Vanhecke [1981] gave a complete decomposition of the Riemannian
curvature tensor R of an almost Hermitian manifold(

M, I, 〈 · , · 〉
)

into irreducible U(n)-components. These divide naturally into two groups, one
forming the space K = K(u(n)) of algebraic curvature tensors for a Kähler mani-
fold, and the other being its orthogonal complement K⊥.

Falcitelli et al. [1994] showed that the components of R in K⊥ are linearly
determined by the covariant derivative ∇ξ , where ∇ is the Levi-Civita connection
and ξ is the intrinsic torsion of the U(n)-structure on M . Gray and Hervella [1980]
showed that, in general dimensions, ξ may be split into four components ξ1, . . . , ξ4

under the action of U(n). By using the minimal U(n)-connection ∇̃ = ∇ +ξ of M ,
Falcitelli et al. display some tables showing whether the tensors ∇̃ξi and ξi � ξj

contribute to the components of R in K⊥. This provides a unified approach to many
of the curvature results obtained in [Gray 1976a].

The present paper is motivated by the interest in extending the above-mentioned
results to special almost Hermitian manifolds. These are defined as almost Her-
mitian manifolds

(
M, I, 〈 · , · 〉

)
equipped with a complex volume form

9 = ψ+ + iψ−.

MSC2000: primary 53C55; secondary 53C10, 53C15.
Keywords: almost Hermitian, special almost Hermitian, intrinsic torsion, curvature tensor,

G-connection.
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Equivalently, they are manifolds with structure group SU(n). A detailed study of
the intrinsic torsion η+ξ of such manifolds was made in [Martı́n Cabrera 2005], ex-
tending results of Chiossi and Salamon [2002]; here, ξ is the intrinsic U(n)-torsion,
as above, and η is essentially a 1-form. There is much current interest in SU(n)-
structures, partly as generalisations of Calabi–Yau manifolds [Grantcharov et al.
2003; Banos 2002] and partly because of the role played by torsion connections
with SU(n) holonomy in string theory [Papadopoulos 1999; Gutowski et al. 2003].

For SU(n) structures, the algebraic curvature tensors lie in K(su(n)) and are
automatically Ricci-flat. Therefore, one may compute the Ricci curvature Ric, and
indeed the ∗-Ricci curvature Ric∗, in terms of the intrinsic SU(n)-torsion η+ ξ .
This enables us to find information about those SU(n)-components of the Riemann-
ian curvature R that are determined by the tensors Ric and Ric∗. Some of these
components are contained in K⊥, and others are contained in K. This will allow us,
on the one hand, to get more concrete information about some components of R
contained in K⊥ and, on the other hand, to enlarge the tables of Falcitelli et al. with
columns related to some components contained in K.

In working out these contributions, we arrived at various alternative formulae for
certain curvature components purely in terms of the intrinsic U(n)-torsion ξ . This
leads to some table entries that are different from those obtained by Falcitelli et al.
To try to account for this, we consider the identity d2

= 0 in the exterior algebra.
Applying this to the Kähler 2-form ω and considering a particular component leads
indeed to a nontrivial relation between the tensors contributing to the curvature.
One may view the relation d2ω= 0 as one way of taking into account some of the
information that the Levi-Civita connection connection ∇ = ∇̃ − ξ is torsion-free.

The paper is organized as follows. In Section 2 we present some preliminary
material: definitions, results, notation, etc. Then, in Section 3 we derive some
formulae relating the curvature and the intrinsic torsion. As an immediate appli-
cation, we give an alternative proof of the result of Gray [1976b] that any nearly
Kähler manifold of dimension 6 that is not Kähler is an Einstein manifold. We then
proceed to computing the contributions of different components of the intrinsic tor-
sion and its covariant derivative to the Ricci, ∗-Ricci and Riemannian curvatures.
Because of representation theory, this behaves differently in dimensions 4 and 6
than in higher dimensions: in dimension 6, ξ splits into more SU(3)-components;
in dimension 4, the space of curvature tensors is decomposed more finely under
the action of SU(2). This motivates us to display results and tables in two separate
sections: Section 4 for high dimensions, 2n > 8, and Section 5 for dimensions 6
and 4. Finally, in Section 6 we discuss identities derived from the exterior algebra.

Note. We will often use decompositions of tensor products without providing
details, since such information can be readily obtained from available software.
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2. Preliminaries

An almost Hermitian manifold is a 2n-dimensional manifold M , n > 0, with a
U(n)-structure. This means that M is equipped with a Riemannian metric 〈 · , · 〉

and an orthogonal almost complex structure I . Each fibre Tm M of the tangent
bundle can be considered as a complex vector space by defining i x = I x . We will
write Tm M

C
when we are regarding Tm M as such a space.

We define a Hermitian scalar product 〈 · , · 〉
C

= 〈 · , · 〉 + iω( · , · ), where ω is
the Kähler form given by ω(x, y)= 〈x, I y〉. The real tangent bundle TM is iden-
tified with the cotangent bundle T ∗M by the map x 7→ 〈 · , x〉 = x . Similarly, the
conjugate complex vector space Tm MC is identified with the dual complex space
T ∗

m M
C

by the map x 7→ 〈 · , x〉
C

= x
C

. It follows immediately that x
C

= x + i I x .
If we consider the spaces

∧pT ∗
m M

C
of skew-symmetric complex forms, one can

check that x
C
∧y

C
= (x+i I x)∧(y+i I y). There are natural extensions of the scalar

products 〈 · , · 〉 and 〈 · , · 〉
C

to
∧pT ∗

m M and
∧pT ∗

m M
C

, defined respectively by

〈a, b〉 =
1
p!

2n∑
i1,...,i p=1

a(ei1, . . . , ei p) b(ei1, . . . , ei p),

〈aC, bC〉C =
1
p!

n∑
i1,...,i p=1

aC(ui1, . . . , ui p) b
C
(ui1, . . . , ui p),

where e1, . . . , e2n is an orthonormal basis for real vectors, and u1, . . . , un is a
unitary basis for complex vectors.

The following conventions will be used in this paper. If b is a (0, s)-tensor, we
write

I(i)b(X1, . . . , X i , . . . , Xs)= −b(X1, . . . , I X i , . . . , Xs),

I b(X1, . . . , Xs)= (−1)sb(I X1, . . . , I Xs).

Tricerri and Vanhecke [1981] gave a complete decomposition of the Riemannian
curvature tensor R of an almost Hermitian manifold

(
M, I, 〈 · , · 〉

)
into irreducible

U(n)-components. As indicated above, some of these components, constituting a
U(n)-space denoted by K = K(u(n)), are the only components that can occur when
M is a Kähler manifold. In this text we will follow the notation used in [Falcitelli
et al. 1994] for such components. Likewise, we will adopt the formalism used in
[Salamon 1989] and [Falcitelli et al. 1994] for irreducible U(n)-modules. Thus,
for n > 2,

K = C3 + K1 + K2,

where C3 ∼= [σ
2,2
0 ], K1 ∼= R, K2 ∼= [λ

1,1
0 ], and + denotes direct sum. We recall

that λp,q
0 is a complex irreducible U(n)-module coming from the (p, q)-part of the

complex exterior algebra, and that its corresponding dominant weight in standard
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coordinates is given by (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1), where 1 and −1 are re-
peated p and q times, respectively. By analogy with the exterior algebra, there
are also irreducible U(n)-modules σ p,q

0 , with dominant weights (p, 0, . . . , 0,−q)
coming from the symmetric algebra. The notation [[V ]] stands for the real vector
space underlying a complex vector space V , and [W ] denotes a real vector space
that admits W as its complexification.

Moreover, let Ric and Ric∗ be the Ricci and ∗-Ricci curvatures, defined by

Ric(X, Y )= 〈RX,ei
Y, ei 〉, Ric∗(X, Y )= 〈RX,ei

I Y, I ei 〉,

where RX,Y = ∇
[X,Y ]

− [∇X ,∇Y ], and the summation convention is used.
The components of the curvature R in K1 and K2 are determined by, respec-

tively, the trace and the trace-free components of RicH +3 Ric∗

H (see [Tricerri and
Vanhecke 1981]), where bH indicates the Hermitian part of a bilinear form b, that
is, the part satisfying bH (I X, I Y )= bH (X, Y ). Note that Ric∗

H coincides with the
symmetric part of Ric∗.

The remaining components of R, not included in K, are contained in a U(n)-
space denoted by K⊥. For n > 4, one has [Falcitelli et al. 1994]:

K⊥
= K−1 + K−2 + C4 + C5 + C6 + C7 + C8,

where K−1 ∼= R, K−2 ∼= [λ
1,1
0 ], C4 ∼= [λ

2,2
0 ], C5 ∼= [[U ]], C6 ∼= [[λ2,0

]], C7 ∼= [[V ]],
and C8 ∼= [[σ 2,0

]]. The irreducible U(n)-modules U and V have dominant weights
(2, 2, 0, . . . , 0) and (2, 1, 0, . . . , 0,−1). For n = 3, the decomposition of K⊥ is
formed by the same summands but omitting C4. Finally, when n = 2 we have to
omit K−2, C4, and C7.

We are dealing with G-structures where G is a subgroup of the linear group
GL(m,R). If M possesses a G-structure, then there always exists a G-connection
defined on M . Moreover, if

(
Mm, 〈 · , · 〉

)
is an orientable m-dimensional Riemann-

ian manifold and G a closed and connected subgroup of SO(m), then there exists
a unique metric G-connection ∇̃ such that ξx = ∇̃x − ∇x takes its values in g⊥,
where g⊥ denotes the orthogonal complement in so(m) of the Lie algebra g of G,
and ∇ is the Levi-Civita connection [Salamon 1989; Cleyton and Swann 2004].
The tensor ξ is the intrinsic torsion of the G-structure, and ∇̃ is called the minimal
G-connection.

For U(n)-structures, the minimal U(n)-connection is given by ∇̃ = ∇ +ξ , with

(2–1) ξX Y = −
1
2 I (∇X I )Y,

see [Falcitelli et al. 1994]. Since U(n) stabilizes the Kähler form ω, it follows that
∇̃ω = 0. Moreover, ξX (I Y )+ I (ξX Y ) = 0 implies ∇ω = −ξω ∈ T ∗M ⊗ u(n)⊥.
Thus, one can identify the U(n)-components of ξ with those of ∇ω:
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(1) if n = 1, ξ ∈ T ∗M ⊗ u(1)⊥ = {0};

(2) if n = 2, ξ ∈ T ∗M ⊗ u(2)⊥ = W2 + W4;

(3) if n > 3, ξ ∈ T ∗M ⊗ u(n)⊥ = W1 + W2 + W3 + W4.

The summands Wi are the irreducible U(n)-modules given by Gray and Hervella
[1980], so W1 ∼= [[λ3,0

]], W2 ∼= [[A]], W3 ∼= [[λ
2,1
0 ]], and W4 ∼= [[λ1,0

]], where A ⊂

λ1,0
⊗ λ2,0 is the irreducible U(n)-module with dominant weight (2, 1, 0, . . . , 0).

In the following, ξi will denote the component in Wi of the torsion tensor ξ .
Falcitelli et al. [1994] proved that the components of R in K⊥ are linearly deter-

mined by the covariant derivative ∇ξ with respect to the Levi-Civita connection ∇.
To prove this result, they consider the space R = K + K⊥ of curvature tensors
(we recall that R is the kernel of the mapping �

2
(∧2T ∗

m M
)

→
∧4T ∗

m M defined
by wedging 2-forms together). Then, they deduce that the orthogonal projection
π⊥

= (π2 ◦π1) |R : R → K⊥ can be expressed as the restriction to R of the com-
position map π2 ◦ π1, where π1 :

∧2T ∗
m M ⊗

∧2T ∗
m M →

∧2T ∗
m M ⊗ u(n)⊥ is the

orthogonal projection, and π2 :
∧2T ∗

m M⊗u(n)⊥ →K⊥ is a certain U(n)-equivariant
homomorphism. Since we have the identity [Falcitelli et al. 1994]

π1(R)(X, Y, Z ,W )

= 〈(∇X I ξ)Y I Z , W 〉 − 〈(∇Y I ξ)X I Z , W 〉

= 〈(∇Xξ)Y Z , W 〉 − 〈(∇Y ξ)X Z , W 〉 + 2〈ξXξY Z , W 〉 − 2〈ξY ξX Z , W 〉,

with the third and fourth summands in
∧2T ∗

m M ⊗ u(n), and since π2 is U(n)-
equivariant, it follows that the components of π⊥(R) in K⊥ are linear functions of
the components of ∇ξ . Now, taking the U(n)-connection ∇̃ = ∇ + ξ into account,
one obtains

(2–2) π1(R)(X, Y, Z ,W )

= 〈(∇̃Xξ)Y Z ,W 〉 − 〈(∇̃Y ξ)X Z ,W 〉 + 〈ξξX Y Z ,W 〉 − 〈ξξY X Z ,W 〉.

From this equation and by considering the image π2 ◦ π1(R), Falcitelli et al. give
some tables that show whether the tensors ∇̃ξi and ξi � ξ j contribute to the com-
ponents of R in K⊥.

Here, we also consider manifolds equipped with an SU(n)-structure. Such man-
ifolds are called special almost Hermitian manifolds. These are almost Hermitian
manifolds

(
M, I, 〈 · , · 〉

)
equipped with a complex volume form 9 = ψ+ + iψ−

such that 〈9,9〉
C

= 1. Note that I(i)ψ+ =ψ−. See [Martı́n Cabrera 2005] for de-
tails and more exhaustive information, or [Bryant 1999; Joyce 2000; Hitchin 1997].
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For a special almost Hermitian 2n-manifold M , we have the intrinsic torsion
η + ξ ∈ T ∗M ⊗Rω + T ∗M ⊗ u(n)⊥ = T ∗M ⊗ su(n)⊥ and the minimal SU(n)-
connection ∇ = ∇ + η + ξ . Since ∇ is metric and η ∈ T ∗M ⊗ Rω, we have
〈Y, ηX Z〉 = η̂(X)ω(Y, Z), where η̂ is a 1-form. Hence,

ηX Y = η̂(X)I Y.

In [Martı́n Cabrera 2005] it is shown that the 1-form η̂ is given by

−I η̂ =
1

2n−1n
∗(∗ dψ+ ∧ψ+ + ∗ dψ− ∧ψ−)−

1
2n

I d∗ω,

where ∗ is the Hodge star operator and d∗ the coderivative. This formula simplifies
for n > 3, since then ∗ dψ+ ∧ψ+ = ∗ dψ− ∧ψ−, and one sees that nI η̂−

1
2 I d∗ω

is essentially the coefficient of 9 in the (n, 1)-part of d9. The other part of the
intrinsic torsion ξ ∈ T ∗M ⊗ u(n)⊥ is still given by equation (2–1).

The tensors ω, ψ+, and ψ− are stabilised by the SU(n)-action, and we have
∇ω = 0, ∇ψ+ = 0, and ∇ψ− = 0. Moreover, one can check that ηω = 0 and
obtain ∇ω= −ξω ∈ T ∗M ⊗u(n)⊥. In general, the above-mentioned U(n)-spaces
Wi are also irreducible as SU(n)-spaces. The only exceptions are W1 and W2 when
n = 3. In fact, for that case, we have the following decompositions into irreducible
SU(3)-components:

Wi = W+

i + W−

i , i = 1, 2,

where the spaces W+

i and W−

i consist of those tensors a ∈ Wi ⊆ T ∗M ⊗
∧2T ∗M

such that the bilinear form r(a), defined by 2r(a)(x, y) = 〈xyψ+, yya〉, is, re-
spectively, symmetric or skew-symmetric, see [Martı́n Cabrera 2005; Chiossi and
Salamon 2002]. The components of the tensor ξ in W+

i and W−

i , i = 1, 2, will be
denoted by ξ+

i and ξ−

i . Writing η ∈ W5 ∼= T ∗M , the intrinsic SU(n)-torsion ξ +η

is contained in
(
T ∗M ⊗u(n)⊥

)
+W5. The space W5 is always SU(n)-irreducible.

From the equations ∇ψ+ = 0 and ∇ψ− = 0, we have ∇ψ+ = −ξψ+ −ηψ+ and
∇ψ− = −ξψ− − ηψ−. Moreover, for n > 2, it is shown in [Martı́n Cabrera 2005]
that

(2–3)
ξXψ+, ξXψ− ∈ [[λn−2,0

]] ∧ω,

ηXψ+ = n η̂(X)ψ− and ηXψ− = −n η̂(X)ψ+.

When considering curvature, note that the module C3 = K(su(n)) in K consists
of the algebraic curvature tensors for a metric with holonomy algebra su(n).

3. Some curvature formulae

For special almost Hermitian 2n-manifolds, results and tables given in [Falcitelli
et al. 1994] are still valid with respect to the tensors ∇̃ξi and ξi �ξj . Here, ∇̃ =∇−η

is the minimal U(n)-connection, with ∇ denoting the minimal SU(n)-connection.
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For SU(n)-structures, the additional information coming from η will allow us
to compute the components of R in K1 and K2 in terms of the intrinsic torsion
η + ξ . To achieve this, we compute the difference between the Ricci and the ∗-
Ricci curvatures. In the first instance, we only need the almost Hermitian structure.

Lemma 3.1. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

Ric∗(X, Y )− Ric(X, Y )

= 2〈(∇ei I ξ)X I Y, ei 〉 − 2〈(∇X I ξ)ei I Y, ei 〉,

= 2〈(∇̃ei ξ)X Y, ei 〉 − 2〈(∇̃Xξ)ei Y, ei 〉 + 2〈ξξei X Y, ei 〉 − 2〈ξξX ei
Y, ei 〉.

Proof. It is straightforward to check that

(3–1) Ric∗(X, Y )− Ric(X, Y )= −(RX,ei
ω)(I Y, ei ).

However, the so-called Ricci formula [Besse 1987, p. 26] implies that

(3–2) −(RX,ei
ω)(I Y, ei )= ã(∇2ω)X,ei (I Y, ei ),

where ã : T ∗M ⊗ T ∗M ⊗
∧2T ∗M →

∧2T ∗M ⊗
∧2T ∗M is the alternation map.

The required identities follow from equations (3–1) and (3–2), by taking into
account that ∇̃ω = 0. �

The components of R in K−1 and K−2 are determined by the trace and trace-
free parts of Ric∗

H − RicH . Similarly, the C6-component of R is determined by
the skew-symmetric (or anti-Hermitian) part Ric∗

AH of Ric∗. Moreover, the anti-
Hermitian part RicAH of the Ricci curvature, which satisfies RicAH (I X, I Y ) =

− RicAH (X, Y ), determines the component of R in C8. These assertions motivate
the expressions contained in the next lemma.

Lemma 3.2. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

(3–3) (Ric∗

H− RicH )(X, Y )= 〈(∇̃ei ξ)X Y, ei 〉 − 〈(∇̃Xξ)ei Y, ei 〉

+ 〈(∇̃ei ξ)I X I Y, ei 〉 − 〈(∇̃I Xξ)ei I Y, ei 〉 + 〈ξξei X Y, ei 〉

− 〈ξξX ei
Y, ei 〉 + 〈ξξei I X I Y, ei 〉 − 〈ξξI X ei

I Y, ei 〉,

(3–4) 2 Ric∗

AH (X, Y )= 〈(∇̃ei ξ)X Y, ei 〉 − 〈(∇̃ei ξ)Y X, ei 〉 − 〈(∇̃ei ξ)I X I Y, ei 〉

+ 〈(∇̃ei ξ)I Y I X, ei 〉 − 〈(∇̃Xξ)ei Y, ei 〉 + 〈(∇̃Y ξ)ei X, ei 〉

+ 〈(∇̃I Xξ)ei I Y, ei 〉 − 〈(∇̃I Y ξ)ei I X, ei 〉 + 〈ξξX ei
Y, ei 〉

− 〈ξξY ei
X, ei 〉 − 〈ξξI X ei

I Y, ei 〉 + 〈ξξI Y ei
I X, ei 〉,



172 FRANCISCO MARTÍN CABRERA AND ANDREW SWANN

(3–5) 2 RicAH (X, Y )= −〈(∇̃ei ξ)X Y, ei 〉 + 〈(∇̃Xξ)ei Y, ei 〉 − 〈(∇̃ei ξ)Y X, ei 〉

+ 〈(∇̃Y ξ)ei X, ei 〉 + 〈(∇̃ei ξ)I X I Y, ei 〉 − 〈(∇̃I Xξ)ei I Y, ei 〉

+ 〈(∇̃ei ξ)I Y I X, ei 〉 − 〈(∇̃I Y ξ)ei I X, ei 〉 − 〈ξξei X Y, ei 〉

+ 〈ξξX ei
Y, ei 〉 − 〈ξξei Y X, ei 〉 + 〈ξξY ei

X, ei 〉 + 〈ξξei I X I Y, ei 〉

− 〈ξξI X ei
I Y, ei 〉 + 〈ξξei I Y I X, ei 〉 − 〈ξξI Y ei

I X, ei 〉.

Proof. This follows from Lemma 3.1 together with 〈ξξei X Y, ei 〉 = 〈ξξei Y X, ei 〉. �

Up to this point, we have not said anything particular to SU(n)-structures. We
now give a first result that uses the complex volume form 9.

Lemma 3.3. If M is a special almost Hermitian 2n-manifold, n > 2, with complex
volume form9=ψ++iψ− and minimal SU(n)-connection ∇ =∇+η+ξ =∇̃+η,
then

Ric∗(X, Y )= −n dη̂(X, I Y )− 〈ξX ei , ξI Y I ei 〉,(3–6)

Ric(X, Y )= −n dη̂(X, I Y )− 〈ξX ei , ξI Y I ei 〉 − 2〈(∇̃ei ξ)X Y, ei 〉(3–7)

+ 2〈(∇̃Xξ)ei Y, ei 〉 − 2〈ξξei X Y, ei 〉 + 2〈ξξX ei
Y, ei 〉.

Proof. Start by noticing that 〈RX,Yψ+, ψ−〉 = −2n−2
〈RX,Y I ei , ei 〉. By the first

Bianchi identity, we have

(3–8) 〈RX,Yψ+, ψ−〉 = −2n−1 Ric∗(X, I Y ).

On the other hand, using the Ricci formula −RX,Yψ+ = ã(∇2ψ+)(X,Y ) and taking
∇ = ∇ + η+ ξ into account, we obtain

− RX,Yψ+ = n dη̂(X, Y )ψ− + n η̂(X)(ξYψ−)− n η̂(Y )(ξXψ−)

+ Yy
(
∇X (ξψ+)

)
− Xy

(
∇Y (ξψ+)

)
.

Using the inclusions of (2–3), we have 〈ξXψ+, ψ−〉 = 0, 〈ξXψ−, ψ−〉 = 0, and
〈Yy

(
∇X (ξψ+)

)
, ψ−〉 = −〈ξX (ξYψ+), ψ−〉. This gives

(3–9) 〈RX,Yψ+, ψ−〉 = −n 2n−1dη̂(X, Y )− 2n−1
〈ξX ei , ξY I ei 〉.

Using equations (3–8), (3–9), and Lemma 3.1, we obtain the required identities for
Ric∗ and Ric. �

Theorem 3.4. If M is a special almost Hermitian 2n-manifold, n > 2, that is
Kähler, then Ric∗

= Ric, and

(1) if dη̂ = λω, for some λ ∈ R \ {0}, then the manifold is Einstein; or

(2) if the 1-form η̂ is closed, then the manifold is Ricci-flat.
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Proof. This is an immediate consequence of the previous lemma. �

Gray proved that any nearly Kähler (type W1) connected 6-manifold that is not
Kähler is Einstein. Here we give an alternative proof.

Theorem 3.5 [Gray 1976b]. If M is a special almost Hermitian connected 6-
manifold of type W+

1 + W−

1 + W5 that is not of type W5, then M is an Einstein
manifold such that Ric = 5 Ric∗

= 5α 〈 · , · 〉, where α = (w+

1 )
2

+ (w−

1 )
2 with

∇ω = w+

1 ψ+ +w−

1 ψ−.

Proof. We already know that α = (w+

1 )
2
+ (w−

1 )
2 is a positive constant and the

1-form η̂ is closed (see [Martı́n Cabrera 2005, Theorem 3.7]). Since ∇ω = −ξω

and ∇ω = w+

1 ψ+ +w−

1 ψ−, we have

2〈Y, ξX Z〉 = w−

1 ψ+(X, Y, Z)−w+

1 ψ−(X, Y, Z).

Therefore, using

〈Xyψ+, Yyψ+〉 = 〈Xyψ−, Yyψ−〉 = 2〈X, Y 〉,

〈Xyψ+, Yyψ−〉 = −2ω(X, Y ),
we get

(3–10) 〈ξX ei , ξY ei 〉 = 〈e j , ξX ei 〉〈e j , ξY ei 〉 = α 〈X, Y 〉.

Moreover, since ξ ∈ W+

1 + W−

1 and ∇̃ is a U(3)-connection, the (0, 3)-tensors
〈 · , ξ· · 〉 and 〈 · , (∇̃Xξ)· · 〉 are skew symmetric [Gray and Hervella 1980]. Thus,
from (3–7), we get

Ric(X, Y )= 5〈ξX ei , ξY ei 〉 = 5α 〈X, Y 〉.

We recall that 〈Y, ξI X I Z〉 = −〈Y, ξX Z〉 for ξ ∈ W1, and note that the contractions
〈(∇̃Xξ)ei Y, ei 〉 and 〈(∇̃ei ξ)X Y, ei 〉 both vanish. In fact, the last term is a skew-
symmetric 2-form, and the remaining summands in the expression for Ric are
symmetric. �

Remark 3.6. Theorem 3.5 can be extended to connected almost Hermitian 6-mani-
folds which are nearly Kähler but not Kähler. In fact, one can define a complex
volume form on an open neighbourhood U of a point where ∇ω 6= 0, by using the
(3, 0)-component of this tensor. Then, U is a special almost Hermitian 6-manifold
of type W+

1 + W−

1 + W5. Therefore, Ric = 5 Ric∗
= 5α 〈 · , · 〉 on U . Since the

manifold is connected, it follows that Ric = 5α 〈 · , · 〉 everywhere.

The expressions (3–6) and (3–7) for Ric∗ and Ric allow us to compute 3 Ric∗

H +

RicH and study the contributions of the intrinsic torsion of the SU(n)-structure to
the components of R in K1 and K2.
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Lemma 3.7. If M is a special almost Hermitian 2n-manifold, n > 2, with minimal
SU(n)-connection ∇ = ∇ + η+ ξ = ∇̃ + η, then

(3–11) (3 Ric∗

H + RicH )(X, Y )

= −2n dη̂(X, I Y )+ 2n dη̂(I X, Y )− 〈(∇̃ei ξ)X Y, ei 〉

+ 〈(∇̃Xξ)ei Y, ei 〉 − 〈(∇̃ei ξ)I X I Y, ei 〉 + 〈(∇̃I Xξ)ei I Y, ei 〉

− 〈ξξei X Y, ei 〉 + 〈ξξX ei Y, ei 〉 − 〈ξξei I X I Y, ei 〉

+ 〈ξξI X ei I Y, ei 〉 − 2〈ξX ei , ξI Y I ei 〉 − 2〈ξY ei , ξI X I ei 〉.

Finally, we record an alternative to equation (3–4):

Lemma 3.8. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

Ric∗

AH (X, Y )= 〈(∇̃ei ξ)I ei
I X, Y 〉 − 〈ξI ξei ei

I X, Y 〉(3–12)

= −〈(∇ei I ξ)I ei
X, Y 〉.

Proof. We have

−2 Ric∗(X, I Y )− 2 Ric∗(I X, Y )
= 〈Rei ,I ei

X, Y 〉 − 〈Rei ,I ei
I X, I Y 〉

= 4〈∇̃ei ξI ei
X, Y 〉 − 4〈ξI ei

∇̃ei X, Y 〉 − 4〈ξ
∇̃ei I ei

X, Y 〉 + 4〈ξξei I ei
X, Y 〉,

from which the lemma follows. �

4. High dimensions

In this section, we consider special almost Hermitian manifolds of dimension
higher than or equal to 8. For such manifolds, the decomposition into SU(n)-
irreducible modules of the space of curvature tensors R is the same as that coming
from the action of U(n). Thus,

R = K + K⊥
= C3 + K1 + K2 + K−1 + K−2 + C4 + C5 + C6 + C7 + C8,

where all Ki and Cj are also SU(n)-irreducible spaces. Our aim here is to see
whether different components of the intrinsic torsion of the SU(n)-structure con-
tribute to the components of the curvature.

We start by studying such contributions to the SU(n)-components of the Ricci
and ∗-Ricci curvatures. For n > 3, the spaces Ric and Ric∗ of such tensors admit
the following decompositions into SU(n)-irreducible modules

Ric = R〈 · , · 〉 + [λ
1,1
0 ] + [[σ 2,0

]], Ric∗
= R〈 · , · 〉 + [λ

1,1
0 ] + [[λ2,0

]].
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Ric∗ (3–6) Ric (3–7)

2n > 8 R [λ
1,1
0 ] [[λ2,0

]] R [λ
1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X

∇ξ1, ηξ1

∇ξ2, ηξ2 X

∇ξ3, ηξ3 X

∇ξ4, ηξ4 X X X

ξ1 ⊗ ξ1 X X X X

ξ2 ⊗ ξ2 X X X X

ξ3 ⊗ ξ3 X X X X X

ξ4 ⊗ ξ4 X X X X X

ξ1 � ξ2 X X

ξ1 � ξ3 X X

ξ1 � ξ4 X

ξ2 � ξ3 X X

ξ2 � ξ4 X X

ξ3 � ξ4 X X

Table 1. Ricci curvatures, 2n > 8.

Taking into account the symmetry properties and types of the Gray–Hervella
components ξi of ξ , we obtain:

Theorem 4.1. Let M be a special almost Hermitian 2n-manifold, 2n > 8, with
minimal SU(n)-connection ∇ =∇+η+ξ =∇̃+η. The tensors dη̂, ∇ξ , and ξi �ξ j

contribute to the components of the ∗-Ricci curvature Ric∗ via equation (3–6) and
to the Ricci curvature Ric via equation (3–7) if and only if there is a tick in the
corresponding place in Table 1.

Using in addition that 〈ξξX ei
Y, ei 〉 = −〈ξX ei , ξei Y 〉, we get part (1) of the next

theorem. Part (2) is proved in [Falcitelli et al. 1994].

Theorem 4.2. If M is a special almost Hermitian 2n-manifold, 2n > 8, with mini-
mal SU(n)-connection ∇ = ∇ + η+ ξ = ∇̃ + η, then

(1) Using equations (3–3), (3–4), (3–5), and (3–11), each of the tensors ∇ξi , ηξi ,
and ξi �ξj contributes to the components of R in K1, K2, K−1, K−2, C6, and
C8 if and only if there is a tick in the corresponding place in Table 2.
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(3–11) (3–3) (3–4) (3–12) (3–5) [Falcitelli et al.]

2n > 8 K1 K2 K−1 K−2 C6 C6 C8 C4 C5 C7

dη̂ X X

∇ξ1, ηξ1 X X

∇ξ2, ηξ2 X X X X X

∇ξ3, ηξ3 X X X X X

∇ξ4, ηξ4 X X X X X X X

ξ1 ⊗ ξ1 X X X X X∗

ξ2 ⊗ ξ2 X X X X X

ξ3 ⊗ ξ3 X X X X

ξ4 ⊗ ξ4 X X X

ξ1 � ξ2 X X X

ξ1 � ξ3 X X X X

ξ1 � ξ4 X X

ξ2 � ξ3 X X X X

ξ2 � ξ4 X X X X X

ξ3 � ξ4 X X X

∗absent when 2n = 8

Table 2. Curvature complementary to C3 = K(su(n)), 2n > 8.

(2) Taking the image π2◦π1(R) into account, where π1(R) is given by (2–2), each
of the tensors ∇ξi , ηξi , and ξi � ξj contributes to the components of R in C4,
C5, and C7 if and only if there is a tick in the corresponding place in Table 2.

For part (1), we emphasize that the columns for K−1, K−2, C6, and C8 are
obtained by a different method than that in [Falcitelli et al. 1994], and that for C6

this even leads to a different result. In particular, we claim that the tensors ∇̃ξ3 and
ξ3�ξ4 do not contribute to the C6-component of R, but that ∇̃ξ1 and ηξ1 do. Thus,
the contributions of the different tensors to the distinct components of R depend on
the choice of the current expression that we use; different expressions may lead to
different behaviour in the contributions. For the C6-component of R, we get a third
formula from equation (3–12), which we also list in Table 2. A partial explanation
for these different results will be given in Section 6. Note that the entries for C6

in Table 2 only involve the intrinsic U(n)-torsion. The [[λ2,0
]]-column of Table 1

provides yet another description of the C6-component using the SU(n)-structure.
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5. Low dimensions

We consider in turn special almost Hermitian manifolds of dimension 6 and 4.

Six dimensions. The decomposition of the space of curvature tensors R into irre-
ducible SU(3)-modules has the same subspaces as for U(3). Thus,

R = K + K⊥
= C3 + K1 + K2 + K−1 + K−2 + C5 + C6 + C7 + C8,

with Ki and Cj all SU(3)-irreducible. As we noted above, the summand C4 is
absent in this dimension. On the other hand, the U(3)-intrinsic torsion splits under
SU(3) as ξ = ξ+

1 + ξ−

1 + ξ+

2 + ξ−

2 + ξ3 + ξ4, where ξi = ξ+

i + ξ−

i , i = 1, 2. This
was briefly described in Section 2, and more detailed information is contained in
[Chiossi and Salamon 2002] and [Martı́n Cabrera 2005].

The next result concerns the contributions of the components of ξ to the compo-
nents of the Ricci and the ∗-Ricci curvatures, and then to the curvature components
complementary to C3.

Theorem 5.1. Let M be a special almost Hermitian 6-manifold with SU(3)-
connection ∇ = ∇ + η + ξ = ∇̃ + η. The tensors dη̂, ∇ζ , ηζ , and ζ � ϑ , for
ζ, ϑ = ξ+

1 , ξ
−

1 , ξ
+

2 , ξ
−

2 , ξ3, ξ4, contribute to the components of Ric∗ and Ric if
and only if there is a tick in the corresponding place in Table 3.

The corresponding contributions to the curvature components K1, K2, K−1,
K−2, C6, and C8, via equations (3–3), (3–4), (3–5), and (3–11), and to the com-
ponents C5 and C7 via π2 ◦π1(R) are given in Table 4 (cf. [Falcitelli et al. 1994]).

Four dimensions. The U(2)-decomposition of the space of curvature tensors R is
given by

R = K + K⊥
= C3 + K1 + K2 + K−1 + C5 + C6 + C8.

When we consider the SU(2)-action, only the modules C3, K1, K2, and K−1

remain irreducible. To describe the decompositions of C5 and C6 into SU(2)-
irreducible modules, we will make use of tensors defined by

χ(a, b)= 6 a � b − a ∧ b,

for all a, b ∈
∧2T ∗M , where � denotes the symmetric product given by 2 a �b =

a ⊗ b + b ⊗ a. The relevant decompositions are now given by

(1) C5 = C++

5 + C−−

5 + C+−

5 , where C++

5 = Rχ(ψ+, ψ+), C−−

5 = Rχ(ψ−, ψ−),
and C+−

5 = Rχ(ψ+, ψ−),

(2) C6 = C+

6 + C−

6 , where C+

6 = Rχ(ψ+, ω) and C−

6 = Rχ(ψ−, ω).

For the intrinsic torsion, the U(2)-decomposition of ξ is given by

ξ = ξ2 + ξ4 ∈ W = W2 + W4.
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Ric∗ (3–6) Ric (3–7)

2n = 6 R [λ
1,1
0 ] [[λ2,0

]] R [λ
1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X

∇ξ±

1 , ηξ±

1

∇ξ±

2 , ηξ±

2 X

∇ξ3, ηξ3 X

∇ξ4, ηξ4 X X X

ξ±

1 ⊗ ξ±

1 X X

ξ±

2 ⊗ ξ±

2 X X X X

ξ3 ⊗ ξ3 X X X X X

ξ4 ⊗ ξ4 X X X X X

ξ+

1 � ξ−

1

ξ±

1 � ξ±

2 X X

ξ±

1 � ξ∓

2

ξ±

1 � ξ3 X

ξ±

1 � ξ4 X

ξ+

2 � ξ−

2 X X

ξ±

2 � ξ3 X X

ξ±

2 � ξ4 X X

ξ3 � ξ4 X X

Table 3. Ricci curvatures, 2n = 6.

Under SU(2), we have W2 ∼= W4 ∼= T ∗M , which, as we will see, gives rise to
different choices of decompositions of ξ .

For an SU(2)-structure, we have ∇ω ∈ W = T ∗M ⊗ψ+ + T ∗M ⊗ψ−. Conse-
quently, ∇ω = ξ+ ⊗ψ+ + ξ− ⊗ψ−, where ξ+ and ξ− are 1-forms. Moreover,

2〈Y, ξX Z〉 = −ξ+(X)ψ−(Y, Z)+ ξ−(X)ψ+(Y, Z),

so ξ = ξ+ + ξ−, where

2〈Y, (ξ+)X Z〉 = −ξ+(X)ψ−(Y, Z), 2〈Y, (ξ−)X Z〉 = ξ−(X)ψ+(Y, Z).

The two decompositions of ξ are related as follows:

ξ ∈ W2 if and only if ξ+ = I ξ−; ξ ∈ W4 if and only if ξ+ = −I ξ−.
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(3–11) (3–3) (3–4) (3–5) [Falcitelli et al.]

2n = 6 K1 K2 K−1 K−2 C6 C8 C5 C7

dη̂ X X

∇ξ±

1 , ηξ±

1 X

∇ξ±

2 , ηξ±

2 X X X X

∇ξ3, ηξ3 X X X

∇ξ4, ηξ4 X X X X X X

ξ±

1 ⊗ ξ±

1 X X

ξ±

2 ⊗ ξ±

2 X X X X

ξ3 ⊗ ξ3 X X X X

ξ4 ⊗ ξ4 X X X

ξ+

1 � ξ−

1

ξ±

1 � ξ±

2 X X

ξ±

1 � ξ∓

2

ξ±

1 � ξ3 X X

ξ±

1 � ξ4 X

ξ+

2 � ξ−

2 X X

ξ±

2 � ξ3 X X X X

ξ±

2 � ξ4 X X X X

ξ3 � ξ4 X X

Table 4. Curvature complementary to C3 = K(su(n)), 2n = 6.

The next theorem deals with the contributions of the components of the intrinsic
torsion to the tensors Ric∗ and Ric. First, in dimension four, Ric∗ decomposes
under SU(2) as

Ric∗
= R〈 · , · 〉 + [λ

1,1
0 ] + Rψ+ + Rψ−.

Theorem 5.2. Let M be a special almost Hermitian 4-manifold with minimal
SU(2)-connection ∇ =∇+η+ξ =∇̃+η. The curvature contributions correspond-
ing to Theorems 4.1 and 4.2 via the decompositions ξ = ξ2 + ξ4 and ξ = ξ+ + ξ−

are given in Tables 5 and 6.

Proof. The absence of K−2 in the decomposition of R comes from the fact that

(5–1)
(
Ric∗

H − RicH
)
(X, Y )= β 〈X, Y 〉,
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Ric∗ (3–6) Ric (3–7)

2n = 4 R [λ
1,1
0 ] Rψ+ Rψ− R [λ

1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X X

∇ξ2, ηξ2 X

∇ξ4, ηξ4 X X

ξ2 ⊗ ξ2 X X X X

ξ4 ⊗ ξ4 X X X X X

ξ2 � ξ4 X X

∇ξ+, ηξ+ X X

∇ξ−, ηξ− X X

ξ+ ⊗ ξ+ X X

ξ− ⊗ ξ− X X

ξ+ � ξ− X X X X X

Table 5. Ricci curvatures, 2n = 4.

where β = 〈(∇̃ei ξ)e j e j , ei 〉 + 〈ξξei e j
e j , ei 〉. Therefore, by (3–4), we have

(5–2)
(
3 Ric∗

H + Ric H
)
(X, Y )= −β〈X, Y 〉 − 4dη̂(X, I Y )+ 4dη̂(I X, Y )

−2〈ξX ei , ξI Y I ei 〉 − 2〈ξY ei , ξI X I ei 〉.

Using equations (5–1) and (5–2), the tables follow. �

Remark 5.3. We list some direct consequences of the results and tables presented
here and in Section 4:

(1) if ξ ∈ W3, the components of R in K−1, C5, and C6 vanish;

(2) if ξ∈W3+W4 and dη̂ is Hermitian, the components of R in C5 and C6 vanish;

(3) if ξ ∈ W1 + W2 and dη̂ is Hermitian, the component of R in C6 vanishes;

(4) if n = 2 and dη̂ is Hermitian, then the component of R in C6 vanishes.

There are more consequences of this sort, but they have already been pointed out
in [Falcitelli et al. 1994].

Remark 5.4. For special almost Hermitian 2-manifolds, we have the following
identity, obtained in [Martı́n Cabrera 2005]:

K (ψ+, ψ−)= dη̂(ψ+, ψ−)= dη+(ψ+)+ dη−(ψ−)− η
2
+

− η2
−
,

where K denotes the sectional curvature and η̂ = η+ψ− − η−ψ+.
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2n = 4 K1 K2 K−1 C+

6 C−

6 C8 C++

5 C−−

5 C+−

5

dη̂ X X

∇ξ2, ηξ2 X X X X X X

∇ξ4, ηξ4 X X X X X

ξ2 ⊗ ξ2 X X X

ξ4 ⊗ ξ4 X X X

ξ2 � ξ4 X X X X X X

∇ξ+, ηξ+ X X X X X X X

∇ξ−, ηξ− X X X X X X X

ξ+ ⊗ ξ+ X X X X X

ξ− ⊗ ξ− X X X X X

ξ+ � ξ− X X X X X X X X X

Table 6. Curvature complementary to C3 = K(su(n)), 2n = 4.

6. Identities from exterior algebra

As remarked in Section 4, one may see different contributions to the module
C6 ∼= [[λ2,0

]] by using different computations of the curvature. This is because
of nontrivial identities that relate the components of ∇̃ξi and ξj � ξk . Such an
identity for the [[λ2,0

]]-components may be obtained by comparing equations (3–4)
and (3–12). However, we claim that this information may also be obtained from
the exterior algebra of a U(n)-manifold.

Consider the Kähler 2-form ω. Being a differential form, it satisfies d2ω = 0.
However, since the Levi-Civita connection ∇ is torsion-free, we may compute d2ω

using ∇. Writing ∇ = ∇̃ − ξ and using that ∇̃ω = 0, we first have

1
2 dω(Y, Z ,W )= 〈ξY Z , I W 〉 + 〈ξW Y, I Z〉 + 〈ξZ W, I Y 〉.

Now, d2ω = a(∇̃dω) − a(ξ dω), where a : T ∗M ⊗
∧3T ∗M →

∧4T ∗M is the
alternation map. One computes that these two terms are the expressions obtained by
summing, respectively, ε〈(∇̃Xξ)Y Z , I W 〉 and ε〈ξξX Y Z , I W 〉 over all permutations
of (X, Y, Z ,W ), where ε is the sign of the permutation.

We have∧4T ∗M = [[λ4,0
]] + [[λ3,1

]] + [[λ2,0
]]ω+ [λ

2,2
0 ] + [λ

1,1
0 ]ω+ Rω2,
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so, in order to compute the [[λ2,0
]]-component of d2ω, we contract with ω on the

first two arguments and then take the projection to [[λ2,0
]], which is the (−1)-

eigenspace of I acting on 2-forms. Using the symmetries of the components of ξ ,
one obtains that the [[λ2,0

]]-component of d2ω is

(6–1) 0 = 3〈(∇̃ei ξ1)ei X, Y 〉 − 〈(∇̃ei ξ3)ei X, Y 〉 + (n − 2)〈(∇̃ei ξ4)ei X, Y 〉

+ 〈(ξ3)X ei , (ξ1)ei Y 〉 − 〈(ξ3)Y ei , (ξ1)ei X〉

+ 〈(ξ3)X ei , (ξ2)ei Y 〉 − 〈(ξ3)Y ei , (ξ2)ei X〉

−
n−5
n−1〈(ξ1)ξ4ei

ei
X, Y 〉 −

n−2
n−1〈(ξ2)ξ4ei

ei
X, Y 〉 + 〈(ξ3)ξ4ei

ei
X, Y 〉.

We conclude that, in general dimensions, there is a nontrivial linear relation be-
tween the [[λ2,0

]]-components of ∇̃ξ1, ∇̃ξ3, ∇̃ξ4, ξ1 �ξ3, ξ1 �ξ4, ξ2 �ξ3, ξ2 �ξ4,
and ξ3�ξ4. By ‘nontrivial’ we mean that no coefficient is zero, so this relation may
be used to write any of the terms as a linear combination of the others. Interestingly,
when 2n = 10 this relation does not involve ξ1 � ξ4.

This is sufficient to explain the difference between the ticks in the C6 column in
[Falcitelli et al. 1994] and those we obtained from equation (3–4). An extra coin-
cidence in the coefficients explains the differences between our results from (3–4)
and (3–12).

One may try to apply the above approach to the other modules that
∧4T ∗M has

in common with the space of curvature tensors, namely [λ
2,2
0 ], [λ

1,1
0 ]ω, and Rω2.

However, this is not so rewarding, because of the higher multiplicities that these
modules have in the relevant decompositions. Indeed, C6 ∼= [[λ2,0

]] is distinguished
by occurring only with multiplicity one or zero in the modules for ∇̃ξi and ξi ⊗ξj .

In [Falcitelli et al. 1994] it is pointed out that, if ξ ∈ W4, the components of R
in C4, C5, C6, and C7 vanish. We indicate how equation (6–1) gives an alternative
proof of this result, for n > 2. By using Tables 2 and 4, the vanishing of the
components in C4, C5, and C7 is in fact immediate. On the other hand, equations
(3–4) and (6–1) give the vanishing of the component in C6.

Finally, a comparison of Tables 1 and 2 reveals another relation on special almost
Hermitian manifolds: the [[λ2,0

]]-part of dη̂ carries all the information from the
corresponding components of ∇̃ξi modulo the [[λ2,0

]]-parts of ξ1 � ξ3, ξ1 � ξ4,
ξ2 � ξ3, and ξ2 � ξ4. This relation is obtainable by considering the (n, 2)-part of
the equation d29= 0, where9 is the complex volume, see [Martı́n Cabrera 2005].
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A GENERALIZATION OF GAUCHMAN’S RIGIDITY THEOREM

HONG-WEI XU, WANG FANG AND FEI XIANG

Dedicated to Professor Chaohao Gu on the occasion of his 80th birthday.

We generalize the well-known Gauchman theorem for closed minimal sub-
manifolds in a unit sphere, and prove that if M is an n-dimensional closed
submanifold of parallel mean curvature in Sn+ p and if σ(u)≤

1
3 for any unit

vector u ∈ TM, where σ(u) = ‖h(u, u)‖2, and h is the second fundamental
form of M, then either σ(u) ≡ H2 and M is a totally umbilical sphere, or
σ(u) ≡

1
3 . Moreover, we give a geometrical classification of closed submani-

folds with parallel mean curvature satisfying σ(u) ≡
1
3 .

1. Introduction and statement of results

Let Sm(r) be the m-dimensional sphere of radius r , with Sm
= Sm(1). By M we

will always denote an n-dimensional connected and closed Riemannian manifold
isometrically immersed in some Sn+p. We will be interested in the case when M
has parallel mean curvature, meaning that the mean curvature vector ξ on M forms
a parallel vector field in the normal bundle over M . (When ξ vanishes identically,
M is a minimal submanifold; M is a hypersurface of constant mean curvature if
p = 1 and the norm of ξ is constant.)

Our investigation contributes to the theory of geometrical invariants and struc-
tures of Riemannian manifolds and submanifolds, an important problem in global
differential geometry. After the pioneering rigidity theorem for closed minimal
submanifolds in a sphere due to Simons [1968], Lawson [1969], and Chern, do
Carmo and Kobayashi [Chern et al. 1970], A. M. Li and J. M. Li [1992] improved
Simons’ pinching constant to max{n/(2 − 1/p), 2n/3}.

Extending this rigidity result to submanifolds of parallel mean curvature in a
sphere, we have the theorem below, first proved by Okumura [1965] and Yau
[1974; 1975], then by Xu [1991], and finally by Alenca and do Carmo [1994]
in codimension 1 and independently by Xu [1993; 1995] in codimension p.

MSC2000: 53C40, 53C42.
Keywords: closed submanifolds, rigidity theorem, parallel mean curvature.
Research supported by the Chinese NSF, Grant No. 10231010; the Trans-Century Training Pro-
gramme Foundation for Talents by the Ministry of Education of China; and the Natural Science
Foundation of Zhejiang Province, Grant No. 101037.
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Theorem 1.1. For given H ≥ 0 and positive integers n ≥ 2 and p, set

C(n, p, H)=

{
α(n, H) if p = 1 or p = 2 and H 6= 0,

min
(
α(n, H), 1

3(2n + 5nH 2)
)

if p ≥ 3 or p = 2 and H = 0,

where

α(n, H)= n +
n3 H 2

2(n − 1)
−

n(n − 2)H
2(n − 1)

√
n2 H 2 + 4(n − 1).

If Mn is a closed submanifold in the standard unit sphere Sn+p of parallel mean
curvature vector of norm H , and if the squared norm S of the second fundamental
form satisfies

S ≤ C(n, p, H),

then M is congruent to one of the following:

(1) Sn
H := Sn

( 1
√

1+H 2

)
;

(2) the isoparametric hypersurface Sn−1
( 1
√

1+λ2

)
× S1

(
λ

√
1+λ2

)
in Sn+1(1),

where

λ=
nH +

√
n2 H 2 + 4(n − 1)
2(n − 1)

;

(3) one of the Clifford minimal hypersurfaces Sk
(√

k
n

)
×Sn−k

(√
n−k

n

)
in Sn+1,

for k = 1, . . . , n − 1;

(4) the Clifford torus S1(r1)× S1(r2) in S3(r) with constant mean curvature H0,
where 0 ≤ H0 ≤ H ,

r1, r2 =
1√

2(1 + H 2)± 2H0(1 + H 2)1/2
and r =

1√
1 + H 2

− H 2
0

;

(5) the Veronese surface in S4
H = S4

( 1
√

1+H 2

)
.

Taking H = 0, we have:

Corollary 1.2 [Chern et al. 1970; An-Min and Jimin 1992]. If Mn is a closed
minimal submanifold in the standard unit sphere Sn+p, and if

S ≤ max
( n

2−1/p
,

2
3

n
)
,

then M is congruent to one of the following:

(1) Sn;

(2) one of the Clifford minimal hypersurfaces Sk
(√

k
n

)
×Sn−k

(√
n−k

n

)
in Sn+1,

for k = 1, . . . , n − 1;

(3) the Veronese surface in S4.
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Since minH≥0 α(n, H)= 2
√

n − 1, we get from Theorem 1.1:

Corollary 1.3. Let Mn be a closed submanifold with parallel mean curvature in
Sn+p. Suppose that H 6= 0 and that

S ≤

{
2
√

n − 1 if p ≤ 2 or p ≥ 3 and n ≥ 8,
2
3 n if p ≥ 3 and n ≤ 7.

Then M is either a totally umbilical sphere in Sn+p, a Clifford isoparametric hy-
persurface in an (n+1)-dimensional sphere, or the Veronese surface in S4

H .

Gauchman [1986] proved that if M is an n-dimensional closed minimal subman-
ifold in Sn+p and if σ(u)≤ 1

3 for any unit vector u ∈ TM , where σ(u)=‖h(u, u)‖2

for h the second fundamental form of M , then either σ(u) ≡ 0 and M is a totally
geodesic sphere, or σ(u) ≡

1
3 . Moreover, he gave a geometrical classification of

closed minimal submanifolds satisfying σ(u)≡
1
3 .

A natural question is how to generalize this striking rigidity result to the case
where M is an n-dimensional closed submanifold of parallel mean curvature in
Sn+p. In this paper we provide such a generalization. To state our main result
precisely, we start with some explicit examples of submanifolds with parallel mean
curvature in a sphere, which extend Gauchman’s examples for the minimal cases
[Gauchman 1986; Sakamoto 1977].

Example 1.4. Let Sq(r) be a q-dimensional sphere of radius r in Rq+1, and let
1 ≤ k ≤ n − 1. We embed Sk(1/

√
2) × Sn−k(1/

√
2) in Sn+1(1) as follows. Let

u ∈ Sk(1/
√

2) and v ∈ Sn−k(1/
√

2) be vectors of length 1/
√

2 in Rk+1 and Rn−k+1,
respectively. We can consider (u, v) as a unit vector in Rn+2

= Rk+1
× Rn−k+1. It

is easy to see that Sk(1/
√

2)× Sn−k(1/
√

2) is a submanifold in Sn+1(1) of parallel
mean curvature

H =

∣∣∣∣2k − n
n

∣∣∣∣.
In particular, M is minimal if n = 2k. The exact same construction yields an
embedding of Sk(1/

√
2) × Sn−k(1/

√
2) in Sn+2(1).

Example 1.5. Denote by RP2, CP2, QP2, and CayP2 the projective plane over the
real numbers, complex numbers, quaternions and octonions, and by ψ1 : RP2

→

S4(1), ψ2 : CP2
→ S7(1), ψ3 : QP2

→ S13(1) and ψ4 : CayP2
→ S25(1) the

corresponding isometric embeddings. Let ψ ′

1 : S2(
√

3) → S4(1) be the isometric
immersion defined by ψ ′

1 = ψ1 ◦ π , where π : S2(
√

3) → RP2 is the canonical
projection.

For n ≥ 2, m ≥ 0, let Sn(1) be the great sphere in Sn+m(1) given by

Sn(1)=
{
(x1, . . . , xn+m+1) ∈ Sn+m(1) | xn+2 = · · · = xn+m+1 = 0

}
,
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and τn,m : Sn(1)→ Sn+m(1) the inclusion. We set

φ1,p = τ4,p−2 ◦ ψ1 : RP2
→ S2+p, p ≥ 2,

φ2,p = τ7,p−3 ◦ ψ2 : CP2
→ S4+p, p ≥ 3,

φ3,p = τ13,p−5 ◦ψ3 : QP2
→ S8+p, p ≥ 5,

φ4,p = τ25,p−9 ◦ψ4 : CayP2
→ S16+p, p ≥ 9,

φ′

1,p = τ4,p−2 ◦ ψ ′

1 : S2(
√

3)→ S2+p p ≥ 2.

Then φi,p is an isometric minimal embedding and φ′

1,p is an isometric minimal
immersion.

Denote by UM the unit tangent bundle of M . Define

C(p, H)=

{
1 for p = 1 or p = 2 and H 6= 0;

1
3 for p ≥ 3 or p = 2 and H = 0.

Main Theorem 1.6. Let M be an n-dimensional compact submanifold of the unit
sphere Sn+p, with parallel mean curvature vector field of norm H. If

σ(u)≤ C(p, H) for any u ∈ UM,

we are in one of the following cases:

(1) M is the totally umbilical sphere Sn
H = Sn

( 1
√

1+H 2

)
;

(2) M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2), with k = 1, 2, . . . , n
and k 6=

1
2 n;

(3) the isometric immersion of M in Sn+p is either the totally umbilical sphere
Sn(

√
3/2) → Sn+p, or one of the embeddings φi,p, i = 1, 2, 3, 4, or the

immersion φ′

1,p.

The case H = 0 goes back to Gauchman [1986, p. 781].

2. Preliminaries

We make the following conventions on the range of indices:

1 ≤ A, B,C ≤ n + p, 1 ≤ i, j, k, l,m ≤ n < α, β, γ, δ ≤ n + p.

Choose a local orthonormal frame field {eA} on Sn+p such that, restricted to M ,
the e′

i s are tangent to M . Let {ωA } be the dual frame fields of {eA} and {ωAB } the
connection 1-forms of Sn+p respectively. Restricting these forms to M , we have

ωαi =
∑

j
hαi j ω j , hαi j = hαj i , h =

∑
α,i, j

hαi j ωi ⊗ω j ⊗ eα, ξ =
1
n

∑
α,i

hαi i eα,
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(1) Ri jkl = δik δ jl − δil δ jk +
∑
α

(
hαik hαjl − hαil hαjk

)
,

Rαβkl =
∑

i

(
hαik hβil − hαil hβik

)
,

where h, ξ , Ri jkl and Rαβkl are the second fundamental form, the mean curvature
vector, the curvature tensor and the normal curvature tensor of M . We set

S = ‖h‖
2, H = ‖ξ‖, Hα = (hαi j )n×n.

Denoting the first and second covariant derivatives of hαi j by hαi jk and hαi jkl re-
spectively, we have∑

k
hαi jk ωk = dhαi j +

∑
k

hαk j ωik +
∑
k

hαik ω jk +
∑
β

hβi j ωαβ,(2) ∑
l

hαi jkl ωl = dhαi jk +
∑

l
hαl jk ωil +

∑
l

hαilk ω jl +
∑

l
hαi jl ωkl +

∑
β

hβi jk ωαβ .(3)

The Laplacian of h is defined by1hαi j =
∑

k hαi jkk . Following [Yau 1974; 1975],
we have

1hαi j =
∑
k

hαkki j +
∑
k,m

hαkm Rmi jk +
∑
k,m

hαmi Rmkjk +
∑
k,β

hβki Rαβk j .

From now on we assume that M is a submanifold of parallel mean curvature in
Sn+p. Choose en+1 such that en+1 is parallel to ξ , tr Hn+1 = nH and tr Hβ = 0,
where n + 2 ≤ β ≤ n + p. Again by the same work of Yau, we have

1hn+1
i j =

∑
k,m

hn+1
km Rmi jk +

∑
k,m

hn+1
im Rmkjk,

1hβi j =
∑
k,m

hβmk Rmi jk +
∑
k,m

hβim Rmkjk +
∑

k,α 6=n+1
hαki Rαβ jk, β 6= n + 1.

Since the Laplacian formulas for the special orthonormal frame field as above
are not apply to our case, we will give the following Laplacian formula which holds
for any orthonormal frame fields.

Proposition 2.1. Let M be an n-dimensional submanifold of parallel mean curva-
ture in Sn+p. Then

1hαi j =
∑
k,m

hαkm Rmi jk +
∑
k,m

hαmi Rmkjk +
∑
k,β

hβki Rβα jk,(4)

∑
α

Rαβkl (tr Hα)= 0.(5)
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Proof. Putting cα = (1/n) tr Hα, we have ξ =
∑

cα eα. Since ξ is parallel in the
normal bundle over M , we have

0 = ∇
⊥

X ξ =
∑
α

X (cα) eα +
∑
α

cα ∇
⊥

X eα

=
∑
α

X (cα) eα +
∑
α

cα
(∑
β

ωβα(X) eβ
)

=
∑
α

(
X (cα)+

∑
β

cβ ωαβ(X)
)

eα

for any tangent vector field X on M . It follows that

(6) dcα +
∑
β

cβ ωαβ = 0 for any α.

To prove (4), it is sufficient to show that
∑

k hαkki j = 0 for any α, i, j . By (2),
we get∑

i,k
hαi ik ωk = d

(∑
i

hαi i
)

+ 2
∑
i,k

hαik ωik +
∑
β,i

hβi i ωαβ = n
(

dcα +
∑
β

cβ ωαβ
)

= 0.

Therefore,
∑

i hαi ik = 0 for all k, α. Together with (3), this implies∑
i,l

hαi ikl ωl = d
(∑

i
hαi ik

)
+ 2

∑
i,l

hαilk ωil +
∑
i,l

hαi il ωkl +
∑
i,β

hβi ik ωαβ = 0.

Hence
∑

i hαi ikl = 0 for all k, l, α.
Taking the exterior derivative of (6) we get

0 = d2cα + d
(∑
β

cβ ωαβ
)

=
∑
β

dcβ ∧ωαβ +
∑
β

cβ
(
−

∑
γ

ωαγ ∧ωγβ +
1
2

∑
k,l

Rαβkl ωk ∧ωl

)
=

∑
β

(
dcβ +

∑
γ

cγ ωβγ
)

∧ωαβ +
1
2

∑
β,k,l

cβ Rαβkl ωk ∧ωl

=
1
2

∑
β,k,l

cβ Rαβkl ωk ∧ωl .

Thus
∑

β Rαβkl (tr Hβ)= 0 for all α, k, l, as desired. �

3. Maximal directions

Let x ∈ M . A vector u ∈ UMx is called a maximal direction at x if σ(u) =

maxv∈UMx σ(v).
Choose an orthonormal frame {e1, . . . , en+p} at x such that restricted to M , the

vectors e1, . . . , en are tangent to M . Assume that e1 is a maximal direction at x ,
σ(e1) 6= 0, and en+1 = h(e1, e1)/‖h(e1, e1)‖. Choose en+2 such that

en+2 =
ξ − 〈ξ, en+1〉en+1

‖ξ − 〈ξ, en+1〉en+1‖
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if ξ is not parallel to en+1. By our choices of en+1 and en+2, we have

(7) hα11 = 0 if α 6= n + 1 and cα = 0 if α 6= n + 1, n + 2.

Since e1 is a maximal direction, we have at the point x for any t ∈ R

(8) ‖h(e1 + tei , e1 + tei )‖
2
≤ (1 + t2)2 (hn+1

11 )2.

Expanding in terms of t , we obtain

4 t hn+1
11 hn+1

1i + O(t2)≤ 0.

It follows that

(9) hn+1
1i = 0, i = 2, . . . , n.

It is easy to see that e1 is also an eigenvector of the Weingarten transformation
An+1. Therefore, we can choose an adapted frame at x ∈ M such that in addition
to (7) and (9),

(10) hn+1
i j = 0, i 6= j.

Once more expanding (8) in terms of t , we obtain

−2t2
(

hn+1
11 (hn+1

11 − hn+1
i i )− 2

∑
α 6=n+1

(hα1i )
2
)

+ O(t3)≤ 0.

It follows that

(11) 2
∑

α 6=n+1
(hα1i )

2
≤ hn+1

11 (hn+1
11 − hn+1

i i ) for i = 2, . . . , n.

Define a tensor field T = (Ti jkl) on M by

Ti jkl =

∑
α

hαi j hαkl .

It is obvious that σ(u)= T (u, u, u, u).

Lemma 3.1. Let u be a maximal direction at x ∈ M. Assume that σ(u) 6= 0. Let
e1, . . . , en+p be an adapted frame at x such that

e1 = u, en+1 =
h(e1, e1)

‖h(e1, e1)‖
,

hn+1
i j = 0 for i 6= j , and en+2 = (ξ − 〈ξ, en+1〉en+1)/‖ξ − 〈ξ, en+1〉en+1‖ if ξ is

not parallel to en+1. At the point x ,

(i) if p = 1, or p = 2 and H 6= 0, then

(12) 1
2(1T )1111 ≥ hn+1

11

(
n
(
hn+1

11 + cn+1(hn+1
11 )2 − cn+1

)
− hn+1

11
∑
k
(hn+1

kk )2
)
;
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(ii) if p ≥ 3, or p = 2 and H = 0, then

(13) 1
2(1T )1111

≥ hn+1
11

(
n(hn+1

11 + 3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3)− 2hn+1
11

∑
k
(hn+1

kk )2
)
,

and equality holds if and only if

(14) (hn+1
11 − hn+1

kk )
(

hn+1
11 (hn+1

11 − hn+1
kk )− 2

∑
α 6=n+1

(hα1k)
2
)

= 0

and hα11k = 0, for all k and α.

Proof. We have

(15) 1
2(1T )1111 = hn+1

11 1hn+1
11 +

∑
i,α
(hα11i )

2.

From Proposition 2.1 and equations (7) and (10), we have

1hn+1
11 =

∑
k,m

hn+1
km Rm11k +

∑
k,m

hn+1
m1 Rmk1k +

∑
k,α

hα1k Rαn+11k

=
∑
k
(hn+1

11 − hn+1
kk )R1k1k +

∑
k,α

hα1k

(∑
l
(hαl1hn+1

lk − hαlkhn+1
l1 )

)
=

∑
k
(hn+1

11 − hn+1
kk )

(
1 − (δ1k)

2
+

∑
α

(hα11hαkk − (hα1k)
2)

)
+

∑
k,α
(hα1k)

2(hn+1
kk − hn+1

11 )

=
∑
k
(hn+1

11 −hn+1
kk )+

∑
k
(hn+1

11 −hn+1
kk )hn+1

11 hn+1
kk − 2

∑
k,α
(hα1k)

2(hn+1
11 −hn+1

kk )

= n
(
hn+1

11 + cn+1(hn+1
11 )2 − cn+1

)
− hn+1

11
∑
k
(hn+1

kk )2

− 2
∑

k,α 6=n+1
(hα1k)

2(hn+1
11 − hn+1

kk ).

If p =1, the last term above vanishes. If p =2 and H 6=0, we have R(n+1)(n+2)kl =0
for any k, l, by (5) and (7); hence the last term above vanishes again. If p ≥ 3, or
if or p = 2 and H = 0, we obtain by (11)

1hn+1
11 ≥ n

(
hn+1

11 +cn+1(hn+1
11 )2−cn+1

)
−hn+1

11
∑
k
(hn+1

kk )2−
∑
k

hn+1
11 (hn+1

11 −hn+1
kk )2

= n
(
hn+1

11 + 3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3
)
− 2hn+1

11
∑
k
(hn+1

kk )2.

Substituting this into (15), we obtain

1
2(1T )1111 ≥ hn+1

11

(
n(hn+1

11 + cn+1(hn+1
11 )2 − cn+1)− hn+1

11
∑
k
(hn+1

kk )2
)
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if p = 1 or p = 2 and H 6= 0, and

1
2(1T )1111 ≥ hn+1

11

(
n(hn+1

11 +3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3)−2hn+1
11

∑
k
(hn+1

kk )2
)

if p ≥ 3 or p = 2 and H = 0. �

Lemma 3.2. Let {e1, . . . , en+p} be an adapted frame at x ∈ M as in Lemma 3.1.
Suppose that

σ(u)≤

{
1 if p = 1 or p = 2 and H 6= 0,
1
3 if p ≥ 3 or p = 2 and H = 0,

for all u ∈ UM. Then (1T )1111 ≥ 0. If equality holds, i.e., if (1T )1111 = 0, then

(16) hn+1
11 =

∣∣hn+1
22

∣∣ = · · · =
∣∣hn+1

nn

∣∣.
Proof. Since e1 is a maximal direction at x ∈ M ,

(17) −hn+1
11 ≤ hn+1

kk ≤ hn+1
11 , k = 2, . . . , n.

It is clear that the convex function f (hn+1
22 , . . . , hn+1

nn ) =
∑n

k=2 (h
n+1
kk )2 subject to

the constraint (17) attains its maximal value when∣∣hn+1
22

∣∣ = · · · =
∣∣hn+1

nn

∣∣ = hn+1
11 .

Therefore, by inequalities (12) and (13),

1
2(1T )1111 ≥

{
nhn+1

11 (hn+1
11 − cn+1)(1 − σ(e1)) if p = 1 or p = 2 and H 6= 0,

nhn+1
11 (hn+1

11 − cn+1)(1 − 3σ(e1)) if p ≥ 3 or p = 2 and H = 0,

where cn+1 = (1/n)
∑n

i=1 hn+1
i i ≤ hn+1

11 . �

Let L(x) be a function on M defined by L(x) = maxu∈UMx σ(u). By a similar
argument as in [Gauchman 1986], we get:

Lemma 3.3. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere Sn+p(1). If

σ(u)≤

{
1, for p = 1, or p = 2 and H 6= 0
1
3 , for p ≥ 3, or p = 2 and H=0,

for all u ∈ UM , then L(x) is a constant function on M.

4. Rigidity of submanifolds of parallel mean curvature

This section is devoted to the proof of the Main Theorem 1.6, through a series of
intermediate results.
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Lemma 4.1. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere Sn+p(1). Suppose that

σ(u) <

{
1 if p = 1 or p = 2 and H 6= 0,
1
3 if p ≥ 3 or p = 2 and H = 0,

for all u ∈ UM. Then M is the totally umbilical sphere Sn
H .

Proof. Let e1 be a maximal direction at x ∈ M . Assume σ(e1) 6= 0. By Lemmas 3.2
and 3.3, we have (1T )1111 = 0 on M . From the proof of Lemma 3.2, we see that

hn+1
11 = cn+1.

Thus the average value of the {hn+1
i i }

n
i=1 equals their maximum. This possibility

occurs if and only if
hn+1

11 = · · · = hn+1
nn .

This and (11) yield hα1i = 0, for α 6= n + 1 and i = 2, . . . , n. Since each of the
vectors ei , for i = 1, . . . , n, is a maximal direction, we have

hαi j = 0 for i, j = 1, 2, . . . , n and i 6= j.

From ‖h(ei , ei )‖
2
≤ (hn+1

11 )2, we obtain

hαi i = 0 for α 6= n + 1 and i = 1, 2, . . . , n.

The last three displayed equations say that M is a totally umbilical sphere. �

For convenience, we establish a convention on indices a, b, . . . , r, s, . . . :

1 ≤ a, b, c, d ≤ k < r, s, t, w ≤ n,

where k is a fixed integer in the range 1, . . . , n.
Here is the rigidity theorem for hypersurfaces with constant mean curvature in

a sphere:

Theorem 4.2. Let M be an n-dimensional compact hypersurface with constant
mean curvature in a unit sphere Sn+1(1).

(i) If σ(u) < 1 for any u ∈ UM , then M is the totally umbilical sphere Sn
H .

(ii) If maxu∈UM σ(u)= 1, M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2),
with k = 1, 2, . . . , n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (1T )1111 = 0. By (16), we may assume after a suitable renumbering
of e1, . . . , en that

hn+1
aa = −hn+1

rr = 1 for a = 1, . . . , k and r = k + 1, . . . , n.
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By Lemma 3.1, hn+1
11k vanishes for k = 1, . . . , n. It follows that hn+1

i ik = 0. By
polarization, hn+1

i jk vanishes for all i, j, k. By (2) and (10), we have

0 =

∑
l

hn+1
il ωl j +

∑
l

hn+1
l j ωli = (hn+1

i i − hn+1
j j )ωi j .

Hence, ωar = 0. It follows that the two distributions defined by ω1 = · · · = ωk = 0
and ωk+1 = · · ·=ωn = 0 are integrable and give a local decomposition of M . Then
every point of M has a neighborhood U which is a Riemannian product V1 × V2

with dim V1 = k and dim V2 = n − k. The curvatures of V1 and V2 are

Rabcd = 2(δacδbd − δadδbc) for 1 ≤ a, b, c, d ≤ k,

Rrstw = 2(δr tδsw − δrwδst) for k + 1 ≤ r, s, t, w ≤ n.

Thus V1 and V2 are spaces of constant curvature 2. The compactness of M allows
us to complete the proof. �

For the case of codimension two:

Theorem 4.3. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere Sn+2(1), H 6= 0.

(i) If σ(u) < 1 for any u ∈ UM , then M is the totally umbilical sphere Sn
H .

(ii) If maxu∈UM σ(u)= 1, M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2),
with k = 1, . . . , n, k 6=

1
2 n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (1T )1111 = 0. By (16), we have

hn+1
aa = −hn+1

rr = 1 for a = 1, . . . , k and r = k + 1, . . . , n.

From (7) and (11) we obtain hn+2
1a = 0 for a = 1, . . . , k. Since each of vectors ei ,

for i = 1, . . . , n, is a maximal direction, we get

hn+2
ab = 0 for a, b = 1, . . . , k.

Similarly,
hn+2

rs = 0 for r, s = k + 1, . . . , n.

As in the proof of Lemma 3.1, we have R(n+1)(n+2)kl = 0. Hence

hn+2
kl (hn+1

kk − hn+1
ll )= 0,

which implies hn+2
ar = 0 for a = 1, . . . , k and r = k + 1, . . . , n. Thus

(18) hn+2
i j = 0 for i, j = 1, . . . , n.
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By a similar argument as in the proof of Theorem 4.2, we have hn+1
i jk = 0 for all

i, j, k. By (2), (10) and (18), we have

0 =

∑
l

hn+1
il ωl j +

∑
l

hn+1
jl ωli = (hn+1

i i − hn+1
j j )ωi j .

Therefore, ωar =0. Then M is a locally Riemannian product V1×V2, with dim V1 =

k and dim V2 = n − k. The curvature of V1 is

Rabcd = δacδbd − δadδbc +

n+2∑
α=n+1

(hαachαbd − hαadhαbc)

= δacδbd − δadδbc + hn+1
ac hn+1

bd − hn+1
ad hn+1

bc = 2(δacδbd − δadδbc)

(see (1)), where the second equality follows from (18). A similar argument applies
to V2. In conclusion, V1 and V2 are spaces of constant curvature 2. The compact-
ness of M allows us to complete the proof. �

Remark 4.4. In assertion (ii) of Theorem 4.3, we exclude the case of n = 2m even
and k = m, in that it results in H = 0, contradicting the theorem’s assumption.

Let F be the real numbers, the complex numbers, or the quaternions, and let
d be the dimension of F as a real vector space (1, 2, or 4). Let FPm denote
the projective space over F , Mn(c) the n-dimensional Riemannian manifold with
constant curvature c.

Lemma 4.5 [Sakamoto 1977]. Let f : Mn
→ Sn+p(c̄) be an isotropic immersion

of parallel second fundamental tensor. Except for the totally umbilical case, f
is a composition of a minimal isotropic immersion η : Mn

→ Sn+q(c̃) (q ≤ p)
of parallel second fundamental tensor, and a totally umbilical τ : Sn+q(c̃) →

Sn+p(c̄), where n = md and M must be one of Sn(c), FPm and CayP2. Assume
that the isotropic constants of f and η are λ and µ respectively. Then

c =
m

2(m + 1)
c̃, q =

(m − 1)(md + 2)
2

, µ2
=

m − 1
m + 1

c̃,

where m = n if M = Sn(c) and m = 2 if M = CayP2.

Lemma 4.6. Let f : Mn
→ Sn+p(1) be a λ-isotropic immersion of parallel second

fundamental tensor. If λ2
≤ (m−1)/(m+1), then f is totally umbilical, or minimal

with λ2
= (m − 1)/(m + 1).

Proof. Assume that f is not totally umbilical. Following Lemma 4.5, f can be
considered as composition of a minimal µ-isotropic immersion η : Mn

→ Sn+q(c̃)
and a totally umbilical sphere τ : Sn+q(c̃)→ Sn+p(1), where µ and c̃ satisfy

µ2
=

m − 1
m + 1

c̃.
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On the other hand, if H is the mean curvature of immersion f , it is easy to see

µ2
+ H 2

= λ2, c̃ =
−
→ c + H 2.

Substituting into the preceding equation, we get

(19) λ2
−

m − 1
m + 1

=
2m

m + 1
H 2

≥ 0.

The assumption λ2
≤ (m − 1)/(m + 1) and (19) together give

λ2
=

m − 1
m + 1

and H = 0. �

Theorem 4.7. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere Sn+p(1). Assume that p ≥ 3, or p = 2 and H = 0.

(i) If σ(u) < 1
3 for any u ∈ UM , then M is the totally umbilical sphere Sn

H .

(ii) If maxu∈UM σ(u)= 1
3 , then σ(u)≡ 1

3 on UM , and the isometric immersion of
M into Sn+p is either the totally umbilical sphere Sn(

√
3/2)→ Sn+p(1), one

of the embeddings φi,p, i = 1, 2, 3, 4, or one of the immersions φ′

1,p described
above.

Proof. We need only consider the case maxv∈UMx σ(v)= σ(u). As in the proof of
Lemma 4.1, we obtain (1T )1111 = 0. By (16), we have, after a suitable renumber-
ing of e1, . . . , en ,

(20) hn+1
aa = −hn+1

rr =

√
3

3
for a = 1, . . . , k and r = k + 1, . . . , n.

Since ‖h(ea, ea)‖
2
≤

1
3 and ‖h(er , er )‖

2
≤

1
3 , we obtain

(21) hαaa = hαrr = 0 for α 6= n + 1, a = 1, . . . , k and r = k + 1, . . . , n.

Still from (11),

(22) hαab = hαrs = 0 for α 6= n + 1, a, b = 1, . . . , k and r, s = k + 1, . . . , n.

By (14),
∑

α 6=n+1 (h
α
1r )

2
=

1
3 . Since each vector ei , for i = 1, . . . , n, is a maximal

direction,

(23)
∑
α 6=n+1

(hαar )
2
=

1
3 for a = 1, . . . , k and r = k + 1, . . . , n.

For x2, . . . , xn and t ∈ R, using (20)–(23) and (7)–(10), expanding the inequality

(24)
∥∥∥∥h

(
e1 + t

n∑
i=2

x i ei , e1 + t
n∑

i=2

x i ei

)∥∥∥∥2

≤

(
1 + t2

n∑
i=2

(x i )2
)2

(hn+1
11 )2



198 HONG-WEI XU, WANG FANG AND FEI XIANG

in terms of t , we obtain

4t2
∑
α

∑
r,s

hα1r hα1s xr x s
+ O(t3)≤ 0.

It follows that
∑

α hα1r hα1s = 0 if r 6= s. Since each vector ei is a maximal direction,
we have ∑

α

hαar hαas = 0 if r 6= s,
∑
α

hαar hαbr = 0 if a 6= b.

Once more expand (24) to obtain

2t3
∑

(hα1r hαbs + hα1shαbr )x
axr x s

+ O(t4)≤ 0.

It follows that

(25)
∑
α

(hαar hαbs + hαashαbr )= 0 if a 6= b or r 6= s.

Using (10) and (20)–(25), we obtain by direct computation that σ(u)≡ 1
3 for any

u ∈ UM . It is easy to see that hαi jk = 0 for all α, i, j, k. Therefore, M is a (
√

3/3) -
isotropic submanifold in a unit sphere of parallel second fundamental tensor. By
Lemmas 4.5 and 4.6 we know that M is either totally umbilical or minimal. This,
together with a [Gauchman 1986, Theorem 3], completes the proof. �

Theorems 4.2, 4.3 and 4.7 together imply the Main Theorem 1.6.
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