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A basic result of Milnor and Scharlau determines the Witt ring of rational
function fields Wk(x) whenever char k 6= 2. An analogous result is obtained
here for the Witt group of quadratic forms WqF(x), where F is a field of
characteristic 2. This generalizes earlier work by the authors where F was
assumed to be perfect.

Milnor’s determination [1970] of the Witt ring of a rational function field in
terms of the Witt rings of the finite extensions of the base field is a fundamen-
tal result in the algebraic theory of quadratic forms, and was complemented by
Scharlau’s reciprocity law (see [Lam 1973] or [Scharlau 1972]). Here we give an
analogue of these results for the Witt group of rational function fields in charac-
teristic 2, extending earlier work where the base field was assumed to be perfect
[Aravire and Jacob 2004].

All our fields will have characteristic 2. We use the notation F for the base field
of our rational function field F = F(x). Whenever p ∈ F[x] is monic and irre-
ducible, we denote by F(x)p the completion at the discrete valuation vp :F(x)→Z

determined by p. Similarly, we denote by F(x)1
x

the completion at the 1
x -adic (or

infinite) valuation v1
x
: F(x)→ Z. We use Wq F and WF to denote the Witt group

and Witt ring of F , and we follow the standard notation. In particular, [a, b] denotes
the Witt class of quadratic form ax2

+ xy + by2. These classes form an additive
set of generators for Wq F , and 〈a〉 denotes the 1-dimensional symmetric bilinear
form (x, y) 7→ axy. The symbol [ , ] is biadditive and Wq F is a WF-module
via the action 〈a〉[c, d] = [ac, a−1c]. This means that Wq F is also generated by
the forms 〈a〉[1, b] and when considering such an element we will refer to a as
being in the multiplicative slot and b as being in the additive slot. We use the
standard notation I n F for the n-th power of the fundamental ideal in WF , so that
I nWq F is generated by the forms <<<< a1, a2, . . . , an >>>> [1, b]. Arason [1979, Satz 8]
gave a generator-relation description of Wq F as a WF-module, and we use these
relations throughout. We frequently use what we call the fundamental relation,
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〈a+b〉[1, c] = 〈a〉[1, ac/(a+b)] + 〈b〉[1, bc/(a+b)], which shows how addition
in the multiplicative slot can be distributed across a sum of forms.

A key component of the classical Milnor–Scharlau sequence is the second residue
homomorphism ∂p : WF → WFp, where Fp is the residue class field of a discrete
valuation vp : F → Z. This map has proved to be of considerable importance in
quadratic form theory. For example, if X is a variety defined over F , the kernel
under all ∂p : WF(X)→ WFp is the unramified Witt group of X , which when X
is a nonsingular curve coincides with the Witt group of X . This paper gives the
appropriate version of ∂p in characteristic two, and in a subsequent paper this work
is applied to the study of Witt groups of curves in characteristic two.

Whenever vp : F → Z is a discrete valuation, we set

W1 Fp := coker(Wq Fp → Wq Fp),

where the map is induced by a Teichmüller lifting Fp ↪→ Fp. We show in Corollary
1.7 that the group W1 Fp is independent of the choice of a Teichmüller lifting. For
such a lifting we define the second residue map ∂p : Wq F → W1 Fp to be the
composite map induced by inclusion and projection:

Wq F → Wq Fp → W1 Fp.

We are also able to identify a quotient of W1 Fp with Wq Fp where, when p ∈ F[x]

is an irreducible polynomial, we have Fp ∼= F[x]/(p). Using this we obtain a
version of Scharlau’s transfer s∗

p : W1 Fp → WqF as a composite of maps W1 Fp →

WqF[x]/(p)→ WqF, where the latter map is the same transfer used by Scharlau.
Both maps ∂p and s∗

p are analogous to the classical maps, but as they depend upon
choices of Teichmüller liftings and of subgroups of W1 Fp, these selections must
be made to meet certain compatibility requirements for our main result to hold.

With this notation, the main result of this paper is the following.

Theorem 6.2 (Analogue of the Milnor–Scharlau Sequence). Suppose that F is a
field of characteristic 2 and F = F(x) is a rational function field in one variable
over F. There exists a compatible collection of second residue and transfer maps
that fit into an exact sequence

0 - WqF - Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF - 0,

where the direct sum is taken over discrete valuations on F.

We now provide an overview of the proof. As we do this we will recall the
main features of the proof in the classical case in order to illustrate the similarities
and differences. When char F 6= 2 and F is complete with respect to a discrete
valuation v : F → Z, a well-known result of Springer shows that WF ∼= WF ⊕
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〈π〉WF , where π is a uniformizing parameter for v. This decomposition enables
one to construct the second residue map and the transfer in the Milnor–Scharlau
sequence. When char F =2 and F is complete it is first necessary for us to compute
the Witt group Wq F . This is the main objective of Section 1. The main result
proved there, Theorem 1.3, shows that Wq F ∼= Wq F ⊕R⊕〈π〉Wq F , where again
π is a uniformizing parameter. The subgroup R is quite large and although its
description depends upon choosing a 2-basis for F and a Teichmüller lifting F ↪→
F it has adequate uniqueness properties. (When F is perfect, then there is a unique
Teichmüller lifting, however in general, such lifts depend upon the choice of a 2-
basis for F. See [Schilling 1950, p. 236] for details.) This decomposition shows
that W1 F ∼= R ⊕ 〈π〉Wq F and enables us to define both the second residue and
Scharlau transfer maps needed for the main theorem.

After defining the second residue maps, Milnor’s proof requires a filtration L0 ⊂

L1 ⊂ L2 ⊂ · · · ⊂ WF , where by Ld ⊂ WF he considered the subgroup generated
by all 〈 f 〉, where f is a polynomial of degree at most d . He then proves a key
result, namely that the successive quotients Ld/Ld−1 for d ≥ 1 are isomorphic to
the direct sum of groups

⊕
deg p=d WFp. To do this he shows there is a well defined

splitting of the sum of induced maps
⊕

deg p=d ∂p : Ld/Ld−1 →
⊕

deg p=d WFp. In
Section 2 we use the same idea and notation, except that our Ld are generated by
the forms 〈 f 〉[1, h/ue

], where now both f and u have degree at most d in F[x]

and h ∈ F[x] is arbitrary. These forms are needed for two reasons. First Wq F has
as generators 2-dimensional forms, and second, the quotients h/ue are needed to
take into account all the extra stuff in R. In the following section, Theorem 3.5
gives the exact analogue of Milnor’s key result, namely that the map⊕

deg p=d
∂p : Ld/Ld−1 →

⊕
deg p=d

W1 Fp

is a split isomorphism.
To prove the latter result we must take several detours. First there is the com-

plexity introduced by the existence of different ways to extend a 2-basis for F to
a 2-basis for F and Fp. If p is separable, one can either add x or p, with x the
natural choice for the rational function field F and with p the natural choice for
Fp. When p is not separable, we have to specify which element we choose to omit
from the 2-basis of F and then we must add both x and p to form a 2-basis for Fp.
Since the ∂p relate Wq F to W1 Fp, we need to be able to relate these choices. The
bulk of Section 2 accomplishes this, by establishing the equivalence of different
generating sets for the Ld in Lemma 2.5 and Proposition 2.8.

A second detour provides a generator-relation description of Wq F (Theorem 3.3)
needed to prove that the splitting maps are well defined (Lemma and Definition
3.4). The proof of the splitting is similar to that of the classical case, but is
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complicated again by the fact that 2-bases and Teichmüller liftings have to be
selected carefully and in a compatible fashion. The details of these choices are
set up in the discussion that follows Lemma 3.1. Finally one has to deal with the
structure of L0, which is just W F in the classical case. In our case it is gener-
ated by forms with polynomials f, g ∈ F[x] in the additive slots of binary forms,
[ f, g]. The result in Theorem 3.6 is that L0 is described by an exact sequence
0 → WqF → L0 → W1 F1

x
→ WqF → 0.

When Theorems 3.5 and 3.6 are combined with the definitions, we obtain a
version of what Milnor did, namely that the sequence in Theorem 6.2 is exact if
truncated to

0 - WqF - Wq F
⊕
∂p-

⊕
p,finite

W1 Fp ⊕ (W1 F1
x
/〈x〉W F) - 0,

where the reciprocity law provided by the transfer is omitted. However, because
the reciprocity law has important applications, we continue with its development
in subsequent sections. Section 4 is devoted to defining the transfer maps. The
subgroups of W1 Fp needed to define the maps are given in Definition 4.1 and are
selected in a compatible way to ensure that the resulting s∗

p vanish on the subgroup
R ⊂ W1 Fp. The definition of s∗

p when p fails to be separable, Definition 4.3(ii),
is adjusted to take into account the change in the 2-basis resulting from the failure
of the 2-basis of F to extend to Fp. In this case the exact terms necessary to make
the reciprocity law work are added to the transfer of the residue form.

Having defined the s∗
p, we check the reciprocity law for elements of L0 +〈p〉L0

(Theorem 5.4). This requires computing the ordinary transfer t∗
p : WqF[x]/(p)→

WqF on generators [λ1x i , λ2x j
] of WqF[x]/(p). There are quite a few cases to

consider, but it is a straightforward computation. With this result, the main the-
orem, with the reciprocity law in general, is proved in Section 6, where the final
stages of the proof consist of checking that the definitions involved in setting up
W1 Fp and the s∗

p are arranged properly to ensure cancellation of the appropriate
terms. Although the definition of s∗

p is based on the same linear functional as
in the classical case, this portion of the paper differs from the approach in that
case. Because of the additive nature of generators for Wq F we are able to reduce
to forms that vanish on all but two ∂p’s, and therefore we don’t have to consider
more complex transfers from algebras such as F[x]/(p1 p2 · · · pn), as did Scharlau.

1. Local information

If F has characteristic 2, a collection of elements t1, t2, . . . , tn ∈ F is said to form
a 2-basis of F if we have a strictly increasing sequence of subfields

F2 $ F2(t1)$ F2(t1, t2)$ · · · $ F2(t1, t2, . . . , tn)= F.
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A field F can have many different 2-bases; if [F : F2
] = 2n , every 2-basis has

exactly n elements. We will assume that fields in this paper have finite 2-bases,
since our main results are readily reduced to this case.

For fixed n we denote by T the set of n-tuples I = (i1, i2, . . . , in), where
i j ∈ {0, 1} for all j . We order T lexicographically, with minimal element O :=

(0, 0, . . . , 0), then (1, 0, . . . , 0), then (0, 1, 0, . . . , 0), and so forth. It will be con-
venient to add elements of T as in the Z/2Z-vector space (Z/2Z)n and let T0 denote
the nonzero elements of T . Whenever t1, t2, . . . , tn ∈ F and I ∈ T , we abbreviate
t i1
1 t i2

2 · · · t in
n by t I . In this notation, whenever t1, t2, . . . , tn form a 2-basis for F and

f ∈ F , there exist unique elements x I ∈ F indexed by I ∈ T such that

f =

∑
I∈T

t I x2
I .

For the remainder of this section we assume that v : F → Z is a complete
discrete-valued field of characteristic 2 with residue class field F and uniformizing
parameter π . We assume that t1, t2, . . . , tn−1 are units in F whose residues form
a 2-basis for F . Since v is complete and discrete, we know that t1, t2, . . . , tn−1, π

form a 2-basis for F . We will use the notation t I , where I = (I1, I2, . . . , In) ∈ T ,
to represent elements in this 2-basis:

t I
= t I1

1 t I2
2 · · · t In−1

n−1π
In .

From [Schilling 1950, pp. 230–238] we also know that there is a unique monomor-
phism of fields ρ : F ↪→ F with ρ(t i ) = ti for i = 1, 2, . . . , n − 1. Since we will
regard this map as an inclusion, we will drop the residue bars from the ti and view
t1, t2, . . . , tn−1 as lying in F ⊂ F . With these conventions, v(t J )= Jn ∈ {0, 1} for
all J ∈ T .

Since F is complete, we can view F = F((π)) as formal Laurent series in its
fixed uniformizing parameter π . We let R := F[π−1

] ⊂ F be the “backwards”
polynomial ring, and with this, if f ∈ F then there exists a unique r ∈ π−1 R with
v( f − r) ≥ 0. Moreover, every element r ∈ π−1 R can be uniquely expressed as
r =

∑
I∈T t I r2

I , where rI ∈ R.

Definition 1.1. We set R to be the subgroup of Wq F of all forms∑
I∈T

〈t I
〉

[
1,

∑
J, J+I>I

t J r2
I,J

]
∈ R with rI,J ∈ π−1 R.

Whenever v(a) > 0 (that is, a ∈ F((π))), we must have a ∈ ℘(F) since F is
complete with respect to v; consequently, [1, a] = 0 ∈ Wq F . We will use this fact
repeatedly. When r ∈ π−1 R, however, we are in the opposite situation, since then
v(r) < 0; in this case, if v(r) is odd or the lead coefficient is not a square in F,
then r cannot lie in ℘(F). This is why the module R is of interest.



24 ROBERTO ARAVIRE AND BILL JACOB

Lemma 1.2. Every element φ ∈ Wq F can be expressed as φ =
∑

I∈T 〈t I
〉[1, AI ],

where AI =
∑

J,J+I>I t J r2
I,J and rI,J ∈ F.

Proof. Applying the Wq -relations we know that every element of Wq F is a sum of
elements 〈t I

〉[1, t J b2
] for b ∈ F . Applying the Wq -relation 〈t〉[1, a] = 〈ta〉[1, a]

we find for I , J with I + J < I that 〈t I
〉[1, t J b2

] = 〈t I+J
〉[1, t J b2

], and when
I = J we find that 〈t I

〉[1, t I b2
] = 〈1〉[1, t I b2

]. Hence every element of φ ∈ Wq F
can be expressed as φ =

∑
I∈T 〈t I

〉
[
1,

∑
J,J+I>I t J b2

I,J

]
, with bI,J ∈ F . (In fact

this much is true for any 2-basis of any field F of characteristic 2.) The statement
for R follows applying this same argument to that case. �

Theorem 1.3. Suppose that v : F → Z is a complete discrete valued field of
characteristic 2 with residue field F ⊂ F and uniformizing parameter π . Then
every class φ ∈ Wq F can be expressed uniquely as

φ = φ1 ⊥ ψ ⊥ 〈π〉φ2,

where φ1, φ2 ∈ Wq F and ψ =
∑

I∈T 〈t I
〉[1,

∑
J,J+I>I t J r2

I,J ] ∈ R with rI,J ∈

π−1 R. The classes of φ1, φ2 and the rI,J are uniquely determined by φ. In partic-
ular, there is a split exact sequence

0 → Wq F → Wq F →
(
R ⊕ 〈π〉Wq F

)
→ 0.

Proof. Consider
∑

I∈T 〈t I
〉[1,

∑
J,J+I>I t J b2

I,J ] ∈ Wq F . Since F is complete and
discretely valued, we can express each bI,J as rI,J + f I,J +b′

I,J , where rI,J ∈π−1 R,
f I,J ∈ F ⊂ F and v(b′

I,J )> 0. Since v(t J )≥ 0 we have t J b′

I,J
2
∈℘(F) and hence

[1, t J b′

I,J
2
] = 0. We observe:

• If Jn = 0 then t J
∈ F and we have t J r2

I,J ∈ π−1 R while t J f 2
I,J ∈ F ⊂ F . When

In = 0 we have 〈t I
〉[1, t J f 2

I,J ] ∈ Wq F , and when In = 1 we have 〈t I
〉[1, t J f 2

I,J ] ∈

〈π〉Wq F . So

〈t I
〉[1, t J b2

I,J ] = 〈t I
〉[1, t J r2

I,J ] + 〈t I
〉[1, t J f 2

I,J ] ∈ Wq F + R + 〈π〉Wq F

in this case.

• If Jn = 1, then we know v(t J ) = 1 and consequently t J r2
I,J ∈ π−1 R while

v(t J f 2
I,J ) > 0, so [1, t J f 2

I,J ] = 0. Therefore, 〈t I
〉[1, t J b2

I,J ] = 〈t I
〉[1, t J r2

I,J ] ∈ R

in this case.

Altogether this shows that every element of φ ∈ Wq F can be expressed as φ =

φ1 +ψ + 〈π〉φ2, with φ1, φ2 ∈ Wq F and ψ ∈ R.
To prove the uniqueness assertions and the exactness of the sequence we need a

bit more notation. We denote by ns the set of all subsets of {1, 2, . . . , n} containing
s elements. For any I = (I1, I2, . . . , In) ∈ T we use Ĩ to denote { j | I j 6= 0}. Note
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that Ĩ ∈ ns for some s = 0, 1, . . . , n, and that any subset Ĩ ∈ ns is determined by a
unique I ∈ T . For any subset S ⊆ {1, 2, . . . , n} we write

<<<< tS >>>> =
⊗
i∈S

<<<< ti >>>> ,

where, when S = ∅, <<<< t∅ >>>> = 〈1〉 by convention. Whenever I ∈ T , we define
`(I ) = max( Ĩ ). Finally, we define [ Ĩ ]0 := {J ∈ T | J 6= (0, 0, . . . , 0) and J̃ ⊆ Ĩ }
and [ Ĩ c

] := {J ∈ T | J̃ ∩ Ĩ = ∅}.

Lemma 1.4 [Aravire and Jacob 1996, Lemma 1.6]. Suppose that t1, t2, . . . , tn are
2-independent in a field F and let a Ĩ ∈ F. Suppose

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] ∈ I s+1Wq F.

Then each

a Ĩ ∈

(
℘(F)+

∑
J∈[ Ĩ ]0+[ Ĩ c]

t J F2
)

=

(
℘(F)+

∑
J, J̃∩ Ĩ 6=∅

t J F2
)

�

The next result is a modification of [Aravire and Jacob 1996, Proposition 1.7].

Proposition 1.5. Suppose that v : F → Z is a complete discrete valued field and
t1, t2, . . . , tn are as above. Suppose

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] ∈ I s+1Wq F,

where a Ĩ ∈
∑

J+I>I t J (π−1 R)2. Then a Ĩ = 0 for each I . �

Proof. Assume the contrary. Let M be the maximal index among the I with
Ĩ ∈ ns and a Ĩ 6= 0. We express aM̃ as a sum

∑
K+M>M t K A2

K ,M , where each
AK ,M ∈ π−1 R. Since aM̃ 6= 0, there is some J with J + M > M and t J A2

J,M 6= 0.
The result will be proved when we derive the contradiction that t J A2

J,M = 0.
Since J + M > M we have `(J ) 6∈ M̃ . We denote by t ′

1, t ′

2, . . . , t ′
n the 2-basis

obtained from t1, t2, . . . , tn by replacing t`(J ) by t J . Then, since `(J ) 6∈ M̃ , we
have <<<< tM̃ >>>> = <<<< t ′

M̃ >>>> . Also, we have

<<<< t ′

`(J ) >>>> = <<<< t J
>>>> ≡

∑
j∈ J̃

<<<< t j
>>>> (mod I 2 F).
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We now suppose that K ∈ T , K̃ ∈ ns , and `(J )∈ K̃ . We express K̃ as {`(J )}∪ Q̃
for Q̃ ∈ ns−1. Computing in WF modulo I s+1 F we have

<<<< t ′

K̃ >>>> = <<<< t ′

Q̃ >>>> <<<< t ′

`(J ) >>>> = <<<< tQ̃ >>>> <<<< t J
>>>> ≡

∑
j∈ J̃

<<<< tQ̃ >>>> <<<< t j >>>>

≡ <<<< tK̃ >>>> +

∑
j∈ J̃

j 6=`(J )

<<<< tQ̃ >>>> <<<< t j >>>> ≡ <<<< tK̃ >>>> +

∑
j∈ J̃ , j 6=`(J )

j 6∈Q̃

<<<< tQ̃ >>>> <<<< t j >>>> .

The conditions j ∈ J̃ , j 6= `(J ), and j 6∈ Q̃, are equivalent to the single condition
j ∈ J̃ − K̃ . So, as each such j < `(J ) we find <<<< tQ̃ >>>> <<<< t j >>>> = <<<< t ′

Q̃ >>>> <<<< t ′

j >>>> = <<<< t ′

L̃ >>>>

for some L ∈ T with L < K . Altogether this shows that whenever K ∈ T , K̃ ∈ ns ,
and `(J ) ∈ K̃ ,

(1) <<<< tK̃ >>>> ∈ <<<< t ′

K̃ >>>> +

( ∑
L∈T

L̃∈ns, L<K

<<<< t ′

L̃ >>>> WF + I s+1 F
)
.

Expanding using (1) we can rewrite q in terms of the new 2-basis involving the
t ′. We find

q =

∑
Ĩ∈ns

<<<< t Ĩ >>>> [1, a Ĩ ] =

( ∑
K<M
K̃∈ns

<<<< tK̃ >>>> [1, aK̃ ]

)
+ <<<< tM̃ >>>> [1, aM̃ ]

≡

( ∑
K<M
K̃∈ns

<<<< t ′

K̃ >>>> [1, a′

K̃
]

)
+ <<<< t ′

M̃ >>>> [1, aM̃ ] (mod I s+1Wq F),

where the a′

K̃
for K < M are the elements of F that arise in the expansion using

(1) repeatedly. Observe that aM̃ remains unchanged when passing to the 2-basis
using the t ′. We now apply Lemma 1.2, where the 2-basis used is the one with the
t ′. We find that

(2) aM̃ =

∑
K+M>M

t K A2
K ,M ∈ ℘(F)+

∑
L ,L̃∩M̃ 6=∅

t ′L F2.

When constructing the 2-basis involving t ′ we replaced t`(J ) by t J , which means
that t J

= t ′J ′

, where J̃ ′ = {`(J )} ∈ n1. Since `(J ) 6∈ M̃ , this gives J̃ ′ ∩ M̃ = ∅.
Therefore, moving all the other terms on the left side of (2) to the right we find

t J A2
J,M ∈ ℘(F)+

∑
I∈T0,I 6=J

t I F2.

We claim that this gives AJ,M = 0. As t J A2
J,M ∈ π−1 R, if t J A2

J,M 6= 0 we must
have v(t J A2

J,M)= s < 0, where s is even if Jn = 0 and is odd if Jn = 1. For K ∈ T
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let K ′ be such that K ′
n = 0 and K ′

i = Ki for 1 ≤ i < n. With this notation,

π−s t J A2
J,M ∈ t J ′

F2.

Next, if w = ℘(b) +
∑

I∈T0,I 6=J t I b2
I,J ∈ ℘(F) +

∑
I∈T0,I 6=J t I F2 is such that

v(b)= s < 0, then

pi−sw ∈


F2

+
∑

I∈T0,I 6=J
In=0

t I F2 when s is even,

∑
I ′

∈T0,I 6=J
In=1

t I ′

F2 when s is odd.

In either case, because t1, t2, . . . , tn−1 is a 2-basis for F , we cannot have

π−s t J A2
J,M = π−sw,

contrary to the assumption that AJ,M 6= 0. This proves the proposition. �

We may now complete the proof of Theorem 1.3. The main task is showing that
ifψ=

∑
I∈T 〈t I

〉
[
1,

∑
J,J+I>I t J r2

I,J

]
=0∈R with rI,J ∈π−1 R, then each rI,J =0.

Assuming this temporarily for all such complete discrete valued fields, to prove the
uniqueness statements we consider an expression φ = φ1 ⊥ ψ ⊥ 〈π〉φ2 = 0. Let
L be a separable finite unramified extension of F chosen so that (φ1)L = 0 and
(φ2)L = 0. Then L is still complete and discretely valued, the 2-basis is unchanged,
R ⊂ RL , and we have that φL = ψL . So our temporary assumption applies to
ψL = 0 ∈ RL , the rI,J vanish in this case, and we now have φ1 ⊥ 〈π〉φ2 = 0. Now,
by valuation theory, if both φ1 and φ2 are anisotropic over F , then φ1 ⊥ 〈π〉φ2

anisotropic as well, since π is a uniformizing parameter. So this gives φ1 = φ2 = 0
and the uniqueness assertion follows.

Thus we are reduced to studying ψ =
∑

I∈T 〈t I
〉
[
1,

∑
J,J+I>I t J r2

I,J

]
= 0 ∈ R,

where we want to show that each rI,J = 0.

Lemma 1.6 [Aravire and Jacob 1996, Lemma 1.5]. Suppose that t1, t2, . . . , tn are
2-independent in a field F and f ∈ F. Then <<<< t1, t2, . . . , tn >>>> [1, f ] = 0 ∈ Wq F if
and only if

f ∈ ℘(F)+
∑
J∈T0

t J F2.

Applying the identity in WF (symmetric bilinear forms)

<<<< xy >>>> = <<<< x >>>> + <<<< y >>>> + <<<< x, y >>>> ,

we obtain
<< t I

>> =

∑
K , K̃⊆ Ĩ

<<<< tK̃ >>>>
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(recall that <<<< t∅ >>>> = 〈1〉.) Abbreviating aI :=
∑

J,J+I>I t J r2
I,J and rewriting ψ

using this identity we obtain

0 = ψ =

∑
I∈T

<< t I
>> [1, aI ] =

∑
I∈T

( ∑
K , K̃⊆ Ĩ

<<<< tK̃ >>>>

)
[1, aI ]

=

∑
K∈T

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

]
=

∑
s=0,...,n

( ∑
K̃∈ns

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

])
.

By induction on s we shall show that∑
I, K̃⊆ Ĩ

aI = 0

whenever K ∈ ns . When s = 0, K̃ = ∅ and since
∑

I∈T aI is the Arf invariant of q
we find

∑
I∈T aI ∈ ℘(F). Since nonzero elements of π−1 R have negative value,

by valuation theory we find
∑

I∈T0
t I (π−1 R)2 ∩ ℘(F) = {0} and we are done if

s = 0. Assuming the result for 1, 2, . . . , s − 1, we have∑
K̃∈ns

<<<< tK̃ >>>>

[
1,

∑
I, K̃⊆ Ĩ

aI

]
∈ I s+1Wq F.

We observe that if K̃ ⊆ Ĩ and J + I > I , then J + K > K . Therefore Proposition
1.5 applies and we conclude for fixed K̃ ∈ ns that∑

I, K̃⊆ Ĩ

aI = 0.

Using aI =
∑

I+J>I t J r2
I,J we obtain

0 =

∑
I, K̃⊆ Ĩ

aI =

∑
I, K̃⊆ Ĩ

( ∑
I+J>I

t J r2
I,J

)
=

∑
J∈T0

t J
( ∑

I, K̃⊆ Ĩ
I+J>I

r2
I,J

)
.

Since t1, t2, . . . , tn form a 2-basis of F , for fixed K , J we find

(3)
∑

I, K̃⊆ Ĩ
I+J>I

r2
I,J = 0.

We next show that r2
I,J = 0 for all I, J such that I + J > I . We proceed by

reverse induction on card( Ĩ ). If card( Ĩ )= n we have I = (1, . . . , 1) and I + J > J
is impossible, so the conclusion is vacuous. Now suppose the desired conclusion is
known for all I with card( Ĩ ) > r . Fix some K with card(K̃ )= r and some J with
J + K > K . If I 6= K , and if K̃ ⊂ Ĩ , we have card( Ĩ )> r . Our inductive hypothesis
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implies that r2
I,J = 0 for these I , J , and since these are all but one summand of

(3), we find that r2
K ,J = 0 as well. This completes the induction. The definitions

give aI = 0 and the proof of Theorem 1.3 is complete.

Since the ring R = F[π−1
] ⊂ F is simply a polynomial ring over the residue

field F of F , the choice of the lift to F of the 2-basis t1, t2, . . . , tn−1 of F does not
affect the isomorphism type of R or R. This, together with the uniqueness results,
implies:

Corollary 1.7. Suppose that v : F → Z is a complete discrete valued field of
characteristic 2 with residue field F and uniformizing parameter π . Then up to
isomorphism, the submodule R is independent of the choice of lift of the 2-basis
t1, t2, . . . , tn−1 of F. In particular, the cokernel

W1 F := coker(Wq F → Wq F)

is independent of the choice of lift of this 2-basis.

Remark 1.8. Both residue forms φ1 and φ2 in Theorem 1.3 depend upon the choice
of the uniformizing parameter π .

When F is complete and discretely valued, the group W1 F defined in Corollary
1.7 will play the role of the “second residue forms” in characteristic 2. The pro-
jection map ∂v : Wq F → W1 F , is the analogue of the second residue map. It is an
immediate consequence of this definition that

0 - Wq F - Wq F
∂v- W1 F - 0

is split exact. (This definition also coincides with the second residue map away
from characteristic 2, for in that case Springer’s Theorem gives a group isomor-
phism WF ∼= WF ⊕ 〈p〉WF , so W1 F ∼= WF .)

Remark 1.9. Arason [2003] has proved a result that captures all the information in
Theorem 1.3. His proof uses the generator-relation structure of the Witt group. His
description of R is different (it uses a filtration based on negative exponents of the
uniformizing parameter) and his proof does not require powers of the fundamental
ideal since he directly uses the generator relation structure for the Witt group.

2. The filtration of WqF(x)

We now denote by F a fixed field of characteristic 2 with 2-basis t1, t2, . . . , tn . We
study the Witt group of the field of rational functions F = F(x). The results of the
previous section will be applied to the completions of F at its discrete valuations,
which are trivial on F. Following Milnor’s original approach away from charac-
teristic 2, we also filter the Witt group Wq F by degree. We denote by F[x]≤d the
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set of polynomials in F[x] of degree at most d , and by F[x]<d those of degree less
than d.

Definition 2.1. For d ≥ 1, let Ld be the subgroup of WqF(x) generated by all
forms 〈 f 〉[1, h/ue

], where f, u ∈ F[x]≤d and h ∈ F[x]. When d = 0, let L0 be the
subgroup of WqF(x) generated by the forms [λ1x i , λ2x j

], where λ1, λ2 ∈ F and
i, j ∈ N.

Lemma 2.2. (i) For any polynomials p, g, h ∈ F[x] we have 〈p〉[g, ph] ∈ L0.

(ii) For d ≥1, Ld is generated by the forms 〈axε〉[1, h/ue
], where a ∈F, ε∈{0, 1},

h ∈ F[x] and u factors as a product of elements in F[x]≤d .

(iii) If f, u ∈ F[x]<d and p ∈ F[x] then 〈p f 〉[1, pg/ue
] ∈ Ld−1.

Proof. (i) The first statement follows from the identity 〈a〉[b, c] = [ab, c/a]. For
then 〈p〉[g, ph] = [pg, h], and using the biadditivity of the symbol [ , ] this can
be expressed as a sum of generators for L0.

(ii) For the second statement, since the u’s used as generators in this version are
products of elements in F[x]≤d , we can use apply partial fractions to h/ue to-
gether with the additivity of [ , ] to express 〈axε〉[1, h/ue

] as a sum of generators
of the type in specified in Definition 2.1. Conversely, given 〈 f 〉[1, h/ue

] as in
Definition 2.1, where f, u ∈ F[x]≤d , and given h ∈ F[x], we write f =

∑d−1
i=0 ai x i

with ai ∈ F and use the fundamental relation to express 〈 f 〉[1, h/ue
] in the form∑d−1

i=0 〈ai x i
〉[1, hai x i/ f ue

]. Since 〈x i
〉 = 〈xεi 〉, where εi ∈ {0, 1} and i ≡ εi (mod

2), and since hai x i/ f ue
= hai x i f e−1/( f u)e, we have a generator of the desired

type.

(iii) We apply the fundamental relation, expressing p f as
∑n−1

i=1 ai x i with ai ∈F, so
〈p f 〉[1, pg/ue

] =
∑n−1

i=1 〈ai x i
〉[1, pi x i pg/p f ue

] =
∑n−1

i=1 〈ai x i
〉[1, pi x i g/ f ue

] =∑n−1
i=1 〈ai x i

〉[1, pi x i g f e−1/( f u)e] ∈ Ld−1 by part (ii). �

In particular, by the lemma, for any λ ∈ F and h ∈ F[x], both 〈λ〉[1, h] and
〈λx〉[1, hx] lie in L0. This will be used frequently.

Lemma 2.3. Suppose that p is a monic irreducible polynomial of degree d. If
r ∈ F is a vp-unit, and if s is vp-integral, then ∂p(〈r〉[1, s]) = 0. Consequently, if
deg p = d and φ ∈ Ld−1, we have ∂p(φ)= 0.

Proof. Since r is a vp-unit we can write r = r0 + pr ′ with 0 6= r0 ∈ Fp, where r ′

is vp-integral. Next, in Fp we can write s(r0/r)= s0 + ps ′, where s0 ∈ Fp and s ′

is vp-integral in Fp. Since vp(s(pr ′/r)) > 0 and vp(ps ′) > 0, we know that both
s(pr ′/r) and ps ′ lie in ℘(Fp). Computing in Wq Fp we find that

〈r〉[1, s] = 〈r0 + pr ′
〉[1, s] = 〈r0〉[1, s(r0/r)] + 〈pr ′

〉[1, s(pr ′/r)]

= 〈r0〉[1, s0 + ps ′
] = 〈r0〉[1, s0].
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Since each of r0 and s0 lie in Fp we see 〈r〉[1, s] ∈ im(Wq Fp → Wq Fp) and
∂p(〈r〉[1, s])= 0 follows.

Now consider a generator 〈 f 〉[1, h/ue
] for Ld−1. As f, u ∈ F[x]<d , we know

that h/ue is vp-integral and f is a vp-unit, so ∂p(〈 f 〉[1, h/ue
]) = 0 and we are

done in this case. Next consider a generator [λ1x i , λ2x j
] = 〈λ1x i

〉[1, λ1λ2x i+ j
]

of L0. If p 6= x then λ1x i is a p-adic unit and λ1λ2x i+ j is vp-integral. If p = x
and i = 0, then again λ1 is an x-adic unit and λ1λ2x j is vp-integral. Otherwise if
p = x and i > 0 we know that vx(λ1λ2x i+ j ) > 0 and so λ1λ2x i+ j

∈℘(Fvx ), giving
[λ1x i , λ2x j

] = 0 ∈ Wq Fvx . This proves the lemma. �

Definition 2.4. Whenever p is a monic irreducible polynomial we define Sp to
be the subgroup of WqF(x) generated by all forms 〈r〉[1, h/ps

], where r ∈ F,
h ∈ F[x], and s ≥ 0. When p =

1
x we denote by S1

x
the subgroup generated by all

forms generated by 〈r〉[1, hx], where r ∈ F and h ∈ F[x].

We observe that WqF(x) =
⋃

∞

d=0 Ld . This is because the usual additive gen-
erators for WqF(x) are included in some Ld for large enough d. The next lemma
describes several generating sets for the Ld .

Lemma 2.5. (i) Ld =
∑

p, deg p≤d(Sp + 〈x〉Sp).

(ii) WqF(x)=
∑

p(Sp + 〈x〉Sp).

(iii) When d ≥ 1, Ld is generated by Ld−1 and Sp ∪ 〈x〉Sp, where deg p = d.

Proof. Part (i) follows from Lemma 2.2(ii) and partial fractions. Part (ii) follows
from (i) since WqF(x) =

⋃
∞

d=0 Ld . Part (iii) follows using partial fractions and
(i). �

We next establish a result from linear algebra needed to relate 〈x〉Sp and 〈p〉Sp.
For p = xd

+ p1xd−1
+ · · · + pd−1x + pd we express each pi as

∑
K∈T t K p2

i,K ,
where pi,J ∈ F. For each K ∈ T we define PK ∈ F(x)p by

(4) PK :=

t K (p2
1,K xd−1 + p2

3,K xd−3 + · · · + p2
d−1,K x) when d is even,

t K (xd + p2
2,K xd−2 + · · · + p2

d−1,K x) when d is odd.

Next let M be the 2n
× 2n-matrix with entries indexed by the group T and with

(I, J )-th entry PI+J . We show that M is invertible:

Lemma 2.6. Assume T is an elementary abelian 2-group with 2n elements and PK

are elements of a field of characteristic 2 indexed by K ∈ T . Suppose that M is the
(2n

×2n)-matrix with (I, J )-th entry PI+J . If
∑

K∈T PK 6= 0, then M is invertible.

Proof. Let Perm T denote the set of permutations of T . We know that

det M =

∑
σ∈Perm T

( ∏
τ∈T

Pτ+σ(τ)

)



32 ROBERTO ARAVIRE AND BILL JACOB

For each s ∈ T we define σs ∈ Perm T by σs(τ )= τ + s. In this case τ +σs(τ )= s
for all τ and we have

∏
τ∈T Pτ+σs(τ ) = P2n

s .
Now let T act on Perm T via σ ε(τ )= σ(τ+ε)+ε for all ε ∈ T . (That this is an

action is readily checked using the fact that T is abelian.) If σ ε = σ for all ε ∈ T ,
then σ(ε)= σ ε(ε)= σ(ε+ ε)+ ε = σ(0)+ ε for all ε, and we see that σ = σσ(0)

in this case. In particular, if σ 6= σs for some s ∈ T then the orbit of σ under T has
more than one element. We next note that for any σ ∈ Perm T and ε ∈ T we have∏

τ∈T

Pτ+σ ε(τ ) =
∏
τ∈T

Pτ+σ(τ+ε)+ε =

∏
(τ+ε)∈T

P(τ+ε)+σ(τ+ε) =
∏
τ∈T

Pτ+σ(τ),

and consequently for any σ different from the σs we have∑
θ∈Orbit(σ )

( ∏
τ∈T

Pτ+θ(τ )

)
= card(Orbit(σ ))

∏
τ∈T

Pτ+σ ε(τ ) = 0,

since card(Orbit(σ )) is a proper power of 2. Decomposing the sum in the determi-
nant over the orbits in Perm T shows that

det M =

∑
K∈T

P2n

K =

( ∑
K∈T

PK

)2n

.

If M fails to be invertible, we have det M = 0, which implies
∑

K∈T PK = 0,
contrary to our hypothesis. The lemma is proved. �

Corollary 2.7. If p is irreducible and separable and if the PK are defined as in (4),
then M is invertible as a matrix over F(p) := F[x]/(p).

Proof. Suppose that det M = 0. Then
∑

K∈T PK = 0. Each PK lies in t K xF(x)2p,
and since the t1, t2, . . . , tn remain 2-independent in F(x)p (because p is separable),
we see that each PK = 0. Now, since 1, x, x2, . . . xd−1 are linearly independent
over F, we find for all K that each pi,K vanishes, where i is odd when d is even
and even when d is odd. So the same follows for the pi . The first case contradicts
the separability of p and the second case contradicts the irreducibility of p. �

We are now able to apply Corollary 2.7 and relate Sp, 〈x〉Sp and 〈p〉Sp. When-
ever p is not separable we choose i so that ti ∈ F(p)2(t1, . . . , ti−1) and then we
denote by S̃p the subgroup of Sp +〈x〉Sp generated by the elements 〈t I

〉[1, h/pe
],

where t I is a product of t1, t2, . . . t j−1, t j+1, . . . , tn, x .

Proposition 2.8. (i) For all p, we have Sp + 〈p〉Sp ⊆ Sp + 〈x〉Sp.

(ii) If p is separable, Sp + L0 + 〈x〉Sp = Sp + L0 + 〈p〉Sp.

(iii) If p is not separable, Sp + L0 + 〈x〉Sp = S̃p + L0 + 〈p〉S̃p.
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Proof. Part (i) essentially follows from Lemma 2.2(ii), but we give a direct calcu-
lation here because it is necessary for part (ii). Consider 〈p〉[1, h/ps

] ∈ 〈p〉Sp and
apply the fundamental relation in Wq to obtain

〈p〉

[
1,

h
ps

]
=

d∑
j=0

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
.

Whenever d − j is even, we have

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
= 〈p j 〉

[
1,

p j xd−j h
ps+1

]
∈ Sp,

from which we find, modulo Sp,

〈p〉

[
1,

h
ps

]
≡

∑
d−j odd

〈p j xd−j
〉

[
1,

p j xd−j h
ps+1

]
≡

∑
d−j odd

( ∑
K∈T

〈t K x〉

[
1,

t K p2
j,K xd−j h

ps+1

])

≡

∑
K∈T

〈t K x〉

[
1,

t K
(∑

d−j odd p2
j,K xd−j

)
h

ps+1

]
≡

∑
K∈T

〈t K x〉

[
1,

PK h
ps+1

]
,

where the second equivalence uses p j =
∑

K∈T t K p2
j,K , the third changes order of

summation, and the fourth uses the definition of the PK . Part (i) follows from this.
For (ii) we consider the problem of reversing this process when p is separable.

Namely, we must express an element 〈x〉[1, g/ps+1
] ∈ WqF(x) as a sum, modulo

Sp + L0, of elements of the form
∑

J 〈t
J p〉[1, h J/ps

]. For this we denote by Sp,s

the subgroup of Sp generated by the generators of Sp, where the exponent of p
doesn’t exceed s. We can then proceed by backwards induction on s and calculate
in F(x)vp . Multiplying the equivalence in the previous paragraph by 〈t J

〉 gives a
system of 2n such equivalences, one for each J ∈ T :

〈t J p〉

[
1,

h J

ps

]
≡

∑
K∈T

〈t K+J x〉

[
1,

PK h J

ps+1

]
(mod Sp).

Taking the sum gives, again modulo Sp,∑
J

〈t J p〉

[
1,

h J

ps

]
≡

∑
J

∑
K∈T

〈t K+J x〉

[
1,

PK h J

ps+1

]
≡

∑
L

〈t L x〉

[
1,

∑
J PL+J h J

ps+1

]
,

where in the second sum the variable L is introduced to collect terms with like
K + J . Since we want the latter sum to equal 〈x〉[1, g/ps+1

], we obtain for the h J

the equations ∑
J

PJ h J = g and
∑

J

PL+J h J = 0 when L 6= O
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in F(x)p. In matrix form this system is

M · (h J )=
(
g 0 · · · 0)T ,

where (h J )means the column with 2n entries aligned with corresponding entries of
M , whose (I, J )-th entry is PI+J . Since M is invertible over F(x)p by Corollary
2.7, we can find elements h J ∈ F[x]<deg p such that

〈x〉

[
1,

g
ps+1

]
≡

∑
J

〈t J p〉

[
1,

h J

ps

]
(mod Sp + 〈x〉Sp,s).

By backwards induction on s we can reduce to s = 0. When s = 0, the error terms
are sums

∑
J 〈t

J p〉[1, h J p] lying in L0 by Lemma 2.2(i). The result in (ii) follows.
For part (iii) we write p =

∑
j p j xd−j and note that since p is not separable, each

d−j is even, and we have a 2-dependence between t1, t2, . . . tn−1, tn, p. Reordering
t1, t2, . . . , tn we can assume that tn ∈ F(x)2(t1, t2, . . . , tn−1, p). This relabeling
guarantees that t1, t2, . . . tn−1, x, p is a basis for F(x) as well as F(x)p. We express
each p j as p0, j + p1, j tn , where pi, j ∈ F(x)2(t1, t2, . . . , tn−1), and further express
each p1, j as

∑
J t J p2

1, j,J ; here each Jn vanishes. Then we can form

P̃K = t K (p2
1,0,K xd

+ p2
1,2,K xd−2

+ · · · + p2
1,d,K )

and note that
∑

K P̃K = ∂p/∂tn 6= 0 ∈ F2(t1, t2, . . . , tn−1)[x2
].

We can write

〈p〉

[
1,

h
pe

]
=

∑
i

〈pi 〉

[
1,

pi xd−i h
pe+1

]
=

∑
i

〈p0,i + p1,i tn〉
[
1,

pi xd−i h
pe+1

]
,

and so, modulo S̃p,

〈p〉

[
1,

h
pe

]
≡

∑
i

〈p1,i tn〉
[
1,

p1,i tnxd−i h
pe+1

]
≡

∑
i,K

〈t K tn〉
[
1,

t K p2
1,i,K tnxd−i h

pe+1

]
≡

∑
K

〈t K tn〉
[
1,

P̃K tnh
pe+1

]
.

What we must do is reverse this process and solve, modulo S̃p+L0, the congruence

〈tn〉
[
1,

g
pe+1

]
≡

∑
L

〈t L p〉

[
1,

hL

pe

]
≡

∑
K ,L

〈t L+K tn〉
[
1,

P̃K tnhL

pe+1

]
≡

∑
J

〈t J tn〉
[
1,

∑
L P̃J+L tnhL

pe+1

]
,
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for appropriate polynomials hL . As in part (ii) it suffices to reduce the exponent
e by 1. This system is equivalent to solving the system in 2n−1 variables in F(p),
g =

∑
L P̃L tnhL and 0 =

∑
L P̃K+L tnhL , where K 6= O . This can be written in

matrix form as
M̃ · (hL)=

(
g 0 · · · 0)T ,

for the hL ∈ F(p). Here M̃ is the matrix with (K , L)-th entry P̃K+L tn ∈ F(p).
However, we have noted that

∑
K P̃K 6= 0, so the invertibility of M̃ follows from

Lemma 2.6. This gives what is needed. �

3. The maps ∂ p and their splitting

From now on, unless stated otherwise, p denotes either a monic irreducible poly-
nomial in F[x] or 1

x . Then vp denotes the associated valuation and we continue
to use Fp to denote the completion of F = F(x) at vp. We use Fp to denote the
completion of F = F(x) at vp. We continue to assume that F has a finite 2-basis
t1, t2, . . . , tn . To apply the results from Section 1 we will need to specify a 2-basis
for F(p) := F[x]/(p) = Fp. So in this section we will have to be careful and
keep track of separability conditions. We recall a well-known result, whose proof
is embedded in the subsequent discussion, where we set up notation.

Lemma 3.1. A 2-basis for F is a 2-basis for F(p) if and only if p is separable.

Since t1, t2, . . . , tn is the fixed 2-basis for F, t1, t2, . . . , tn, x is a 2-basis for
F = F(x). We express the monic irreducible p ∈ F[x] as

p =

∑
I∈T

t I (pI (x))2,

where pI (x) ∈ F[x] and the multiindices t I refer to the 2-basis for F (which
includes x). Since Fp ∼= F[x]/(p), we find that t1, t2, . . . , tn remain 2-independent
in Fp if and only if for some I with In+1 6= 0 we also have pI (x) 6= 0. But this
happens if and only if p(x) has a nonzero summand of odd degree, i.e., if and only
if p is separable. Now, when p is separable, if In+1 6= 0 for some pI (x) 6= 0 we
take t1, t2, . . . , tn as our 2-basis for Fp ⊂ Fp and then we can use t1, t2, . . . , tn, p
as our 2-basis for Fp.

Otherwise, when p is not separable, we choose j maximal with I j 6= 0 for some
pI (x) 6= 0 and we note that in this case t1, t2, . . . , t j−1, t j+1, . . . , tn, x is a 2-basis
for Fp. We then take t1, t2, . . . , t j−1, t j+1, . . . , tn, x, p as our 2-basis for Fp. In
this case we use the lifting to t1, t2, . . . , t j−1, t j+1, . . . , tn−1, x ∈ F to define the
embedding Fp ↪→ Fp needed to define ∂p : Wq F → W1 Fp.

We will need to keep track of products of elements of these various 2-bases.
This will be accomplished by using three different notations for multiindex sets:
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• We use {t I
| I ∈ T } to denote products of elements of the original 2-basis for F.

• We use {t I
| I ∈ Tp} to denote products of elements of the residue 2-basis of

F(p) as described above (which vary depending upon whether p is separable).

• We use {t I
| I ∈ T̃p} to denote products of elements of the local 2-basis of Fp as

described above.

In our study of Wq F we will need to understand how Wq F elements map to
elements of W1 Fp, so we need to represent W1 Fp classes in a special way. The
next result is a consequence of Theorem 1.3. Whenever s ∈ F[x] we denote by
s ∈ F[x]<deg p the unique polynomial with s ≡ s (mod p). When applying Theorem
1.3, the Teichmüller lifting used is the one associated with the 2-basis T̃p.

Theorem 3.2. (i) If p is monic and irreducible, every class φ in W1 Fp can be
expressed uniquely as

φ = ψ ⊥ 〈p〉φ2,

where
ψ =

∑
I∈T̃p

〈t I
〉

[
1,

∑
J,J+I>I

t J u I,J

]
,

u I,J =
∑

r≥1 s2
I,J,r/p2r with sI,J,r ∈ F[x]< deg p and φ2 ∈ WqvFp, and where sI,J,r

and the Witt classes of ψ in Wq Fp and φ2 in WqvFp are uniquely determined by
the class of φ.

(ii) Every class φ in W1 F1
x

can be expressed as

φ = ψ ⊥

〈1
x

〉
φ2,

where ψ =
∑

I∈T̃1
x
〈t I

〉
[
1,

∑
J,J+I>I t J u2

I,J

]
with u I,J ∈ x · F[x] and φ2 ∈ WqF,

and where the Witt classes of ψ in WFp and φ2 in WqF are uniquely determined
by the class of φ. In this expression we note that

∑
J,J+I>I t J u2

I,J ∈ x · F[x].

Proof. In (i), since Fp = F(p), applying valuation theory we conclude that every
element f ∈ Fp ⊂ Fp can be expressed as f1 + f2, where f1 ∈ F[x]< deg p, f2 ∈ Fp,
and vp( f2) > 0. Consequently, any element r ∈ R = F(x)p[p−1

] can be expressed
in the form r = s1 + s2, where s1 ∈ F[x]

2
< deg p[p−1

] and vp(s2) > 0. Part (i)
now follows, interpreting Theorem 1.3 in this setting and making the appropriate
substitutions. Part (ii) is a direct consequence of Theorem 1.3, since there is no
ambiguity about viewing the residue field as a subfield of F1

x
. �

We next digress slightly and give a generator-relation structure for the Witt
group. A very similar characterization was found by Arason [2003].
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Theorem 3.3. For any field F of characteristic 2 the Witt group Wq F is isomorphic
to (F+

⊗ F+)/W, where W is the subgroup generated by

(i) a ⊗ b for ab ∈ ℘(F),

(ii) a ⊗ b + b ⊗ a for all a, b ∈ F , and

(iii) a ⊗ b + c ⊗ ab/c whenever c ∈ DF [a, b].

Proof. We show that the epimorphism F+
⊗ F+

→ Wq F defined by a⊗b 7→ [a, b]

has kernel W. First we note that the generators of W map to trivial elements of
Wq F . For type (i) generators, the Arf invariant of ax2

+ xy + by2 is ab, and
therefore [a, b] = 0 ∈ Wq F if and only if ab ∈ ℘(F). Type (ii) generators vanish
by the symmetry of [a, b]. For type (iii) generators, since c ∈ DF [a, b], we know
the form [a, b] ⊥ 〈c〉[1, ab] = 〈a, c〉[1, ab] is isotropic, hence hyperbolic. So
[a, b] = 〈c〉[1, ab] = [c, ab/c], which is what we want.

We next note that whenever [a, b] = [c, d] ∈ Wq F , and since c ∈ DF [a, b], we
find [a, b]= [c, ab/c]= [c, d], the later equality being equivalent to [c, ab/c+d]=

0. By our observations about (i) this is equivalent to ab + cd ∈ ℘(F). This shows
that all equalities [a, b] = [c, d] ∈ Wq F are a consequence of multilinearity and
the relations (i), (ii), and (iii).

Next, given an isomorphism q = [a1, b1] ⊥ ψ ∼= [c, d] ⊥ χ , we must show that
it follows from the relations defining W. For this we view each representation q
as having the same underlying vector space V = F2n and we let v,w ∈ V denote
the first two symplectic basis elements in the second expression. Hence q(v)= c,
q(w)= d and the inner product (v,w)q equals 1. We suppose ψ = [a2, b2] ⊥ · · · ⊥

[an, bn]. If we view v ∈ V according to the decomposition given by the first form,
we can express c as a sum c1 +c2 +· · ·+cn , where ci ∈ DF [ai , bi ]. Applying (iii)
at each summand, we can write [a1, b1] ⊥ [a2, b2] ⊥ · · · ⊥ [an, bn] ∼= [c1, e1] ⊥

[c2, e2] ⊥ · · · ⊥ [cn, en] for ei = ai bi/ci ∈ F . Using the bilinearity of the symbol
[ , ], and since c = c1 +c2 +· · ·+cn , we have [c1, e1] ⊥ [c2, e2] ⊥ · · · ⊥ [cn, en] ∼=

[c, e1] ⊥ [c2, e1 + e2] ⊥ · · · ⊥ [cn, e1 + en]. If v1 = v,w1, v2, w2, . . . , vn, wn

is the symplectic basis corresponding to this new decomposition q = [c, e1] ⊥

[c2, e1 +e2] ⊥ · · · ⊥ [cn, e1 +en], we can express w as z1 + z2 +· · ·+ zn with each
zi a linear combination of vi andwi . This means that if di =q(zi ) for 1≤ i ≤n, then
d =q(w)=d1+d2+· · ·+dn . Since (v,w)q =1 while (v, zi )q =0 for 2≤ i ≤n, we
see that (v, z1)q = 1. Since span(v,w1) = span(v, z1), restricting our attention to
this subspace we see that in fact [c, e1] ∼= [c, d1]. We now apply relation (iii) to the
other summands to obtain [ci , e1 +ei ] ∼= [c′

i , di ] for c′

i = ci (e1 +ei )/di ∈ F . Using
bilinearity again we find [c, e1] ⊥ [c2, e1 + e2] ⊥ · · · ⊥ [cn, e1 + en] ∼= [c, d1] ⊥

[c′

2, d2] ⊥ · · · ⊥ [c′
n, dn] ∼= [c, d] ⊥ [c + c′

2, d2] ⊥ · · · ⊥ [c + c′
n, dn]. Altogether,

using only bilinearity and the rules (i), (ii), (iii), we have shown that our original
[a1, b1] ⊥ ψ is Witt equivalent to [c, d] ⊥ ψ ′ for some ψ ′. By Witt cancellation
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we now have ψ ′ ∼= χ . By induction on n we can reduce to the case [a, b] ∼= [c, d]

already considered. This proves the theorem. �

We now define the Milnor splittings.

Lemma and Definition 3.4. Suppose p is a monic irreducible polynomial of de-
gree d ≥ 1 and that φ ∈ W1 Fp is of the form

φ = ψ ⊥ 〈p〉φ2,

where
ψ =

∑
I∈Tp

〈t I
〉

[
1,

∑
J,J+I>I

t J r2
I,J

]
with r I,J ∈ p−1F[x]< deg p[p−1

] and φ2 ∈ WqvFp. Here the t I depend upon the 2-
basis for F(x)p, which has last element p and will include x in the case where p is
not separable. We further write φ2 =

∑
i [ri (x), si (x)], where x denotes x modulo

p(x) and the ri (x), si (x) lie in F[x]<deg p. Then the map τp defined by

τp(φ)= ψ ⊥ 〈p〉

(∑
i

[ri (x), si (x)]
)
(mod Ld−1) ∈ Ld/Ld−1

is a well defined homomorphism τp : W1 Fp → Ld/Ld−1.

Proof. According to Theorem 3.2(i) every class φ in W1 Fp can be expressed as
stated, and the Witt classes of ψ ∈ Wq Fp and φ2 ∈ Wq Fp are uniquely deter-
mined. Further, the Witt class of ψ uniquely determines the rI,J as elements of
p−1F[x]< deg p[p−1

].
The expression of φ2 as

∑
i [ri (x), si (x)] need not be unique so we suppose

also that φ2 =
∑

j [u j (x), v j (x)] ∈ WqF(p), where each u j (x) and v j (x) lies in
F[x]<deg p. By Theorem 3.3, using the biadditivity of the symbol [ , ] we have the
expansion ∑

i

[ri (x), si (x)] +

∑
j

[u j (x), v j (x)] =

∑
k

[ak(x), bk(x)],

where the latter sum is a sum of relations of the form given in Theorem 3.3(i),
(ii) or (iii). Since we only used the biadditivity of [ , ] in the expansion, we
know that each ak(x), bk(x) ∈ F[x]<deg p and we also have

∑
i [ri (x), si (x)] +∑

j [u j (x), v j (x)] =
∑

k[ak(x), bk(x)] ∈ WqF(x). Checking for each of the types
of relations given in Theorem 3.3 we will show that 〈p〉 times this sum lies in Ld−1.

Suppose first we have a summand [a, b] with a, b ∈ F[x]<deg p, where ab ∈

℘(F(p)) . Then we can write ab = ℘(z)+ pg in F[x] and we find that [a, b] =

〈a〉[1, ab] = 〈a〉[1, ℘ (z)+ pg] = 〈a〉[1, pg] in Wq F . By Lemma 2.2(iii) the form
〈p〉〈a〉[1, pg] lies in Ld−1 since a ∈ F[x]<deg p. Next, any pair in the sum of the
form [a, b] + [b, a] is zero in Wq F as well. Finally, suppose we have a pair in
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the sum [a, b] + [c, d], where c ∈ DF(p)[a, b] and d = ab/c where a, b, c, d ∈

F[x]<deg p. Then we can write c = ar2
+ rs + bs2

+ pg and ab = cd + ph in
F[x] where r, s ∈ F[x]<deg p also. Since (s/r + bs2/r2)b ∈ ℘(F), we obtain
[s/r + bs2/r2, b] = 0. Rewriting the expression for c, we find a = c/r2

+ s/r +

bs2/r2
+ pg/r2, so in Wq F we have

[a, b] + [c, d] = [c/r2, b] + [s/r + bs2/r2, b] + [pg/r2, b] + [c, d]

= 〈c〉[1/r2, bc] + [pg/r2, b] + 〈c〉[1, cd]

= 〈c〉[1, bc/r2
] + 〈c〉[1, cd] + [pg/r2, b].

Next, substituting bc/r2
= ab + bs/r + b2s2/r2

+ bpg/r2 and cd = ab + ph we
find

[a,b]+ [c,d] = 〈c〉[1,ab+bs/r +b2s2/r2
+ pgb/r2

]+〈c〉[1,ab+ ph]+[pg/r2,b]

= 〈c〉[1, pgb/r2
+ ph]+[pg/r2,b],

since bs/r+b2s2/r2
∈℘(F). Applying Lemma 2.2(iii) to each of these latter forms

we find that 〈p〉([a, b] + [c, d]) lies in Ld−1. It follows that τp is well defined. It
is clear from the defining formula that τp is additive in ψ , and the proof that the
lift of φ2 is well defined shows that τp is additive in that term as well. Hence τp is
a homomorphism. �

Our goal is to prove the surjectivity of the Milnor splitting. This requires the
information provided in Proposition 2.8 and is given next.

Theorem 3.5. The map
⊕
τp :

⊕
p, deg p=d W1 F(x)vp → Ld/Ld−1 is an isomor-

phism for d ≥ 1.

Proof. It suffices to show the map is surjective, since for any p the composite
W1 F(x)vp → Ld/Ld−1 → W1 F(x)vp is the identity. (Here, the first map is τp

and the second map is ∂p, which vanishes on Ld−1 by Lemma 2.3.) By the
definition of τp, every element ψ =

∑
I∈Tp

〈t I
〉
[
1,

∑
J,J+I>I t J r2

I,J

]
with rI,J ∈

p−1F[x]< deg p[p−1
] lies in the image. When p is separable, these elements gen-

erate Sp + 〈p〉Sp so we have Sp + 〈p〉Sp ⊆ im(τp), and when p is not separable,
these elements generate S̃p + 〈p〉S̃p and we have S̃p + 〈p〉S̃p ⊆ im(τp). Further,
if p is separable, then Sp + 〈p〉Sp + L0 = Sp + 〈x〉Sp + L0 by Proposition 2.8(ii)
and in case p is not separable we have S̃p + 〈p〉S̃p + L0 = Sp + 〈x〉Sp + L0 by
Proposition 2.8(iii). However, Ld is generated by Sp ∪〈x〉Sp for p with deg p = d
together with Ld−1 by Lemma 2.5. From this the theorem is proved. �

The definition of L0 combined with Theorem 3.2(ii) gives:

Theorem 3.6. There is an exact sequence

0 → WqF → L0 → W1 F1
x
→ WqF → 0,
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where the first two maps are induced by inclusion and the last map is φ 7→ φ2,
where φ2 is as given in Theorem 3.2(ii).

Proof. Since L0 is generated by the forms [λ1x i , λ2x j
] = 〈λ1x i

〉[1, λ1λ2x i+ j
],

applying the relations in Wq F we see that every element φ ∈ L0 can be expressed
as φ=φ1 ⊥ψ , where φ1 ∈ WqF andψ=

∑
I+J>I 〈t

I
〉[1, t J r2

I,J ] with rI,J ∈ x ·F[x].
Moreover, the expression ofψ as such a sum is unique, according to the local theory
at the v1

x
-adic valuation as given in Theorem 3.2(ii). This means that the natural

map from L0 to W1 F1
x

has kernel WqF and cokernel the elements in 〈
1
x 〉WqF. The

result follows. �

4. The transfer maps s∗
p

We continue to use the 2-bases for F(p) and F(x)p defined in the discussion fol-
lowing Lemma 3.1, as well as the notation T , Tp and T̃p. When p fails to be
separable and I ∈ Tp, we denote by Ix the entry corresponding to the exponent
of x (so x occurs in t I if and only if Ix = 1.) In the next definition, we define
subgroups Sp,r of Sp + 〈p〉Sp, for each r ≥ 1. We include p =

1
x in our list. We

set d = deg p and d = 1 when p =
1
x . As in the last section, when considering

elements of Sp of the form 〈t I
〉[1, h/pr

] for h ∈ F[x], we write h ∈ F[x]<deg p for
the unique element with h ≡ h (mod p).

Definition 4.1. (i) Suppose p is separable or is 1
x . We define Sp,r ⊂ Sp + 〈p〉Sp

as the subgroup generated by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , r is even, and where I + J > I .

(ii) Suppose p is not separable. We define Sp,r ⊂ S̃p + 〈p〉S̃p as the subgroup
generated by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where I, J ∈ T = Tp, sI,J ∈ F[x]<d , r is even, and where I + J > I .
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(iii) Suppose p is not separable. We define S0
p,r ⊂ Sp,r as the subgroup generated

by elements of two types: those of the form

〈t I
〉[1, t J s2

I,J/pr
],

where Ix = 0, I, J ∈ Tp, sI,J ∈ F[x]<d , and where I + J > I whenever r is even,
and those of the form

〈t I p〉[1, t J s2
I,J/pr

],

where Ix = 0, I, J ∈ Tp, r is even, sI,J ∈ F[x]<d , and where I + J > I .

(iv) We define Up :=
∑

r≥1 Sp,r for all p and U 0
p :=

∑
r≥1 S0

p,r when p is not
separable.

The definitions in (i) and (ii) are formally the same, except that the Tp’s differ
according to whether p is separable or not, which also accounts for using Sp or
S̃p. In part (iii) the listed elements are a subcollection of those listed in (ii), and
are precisely those without an x in the t I . The reason for the restrictions on I , J , r
in the definition will become clear in the proof of the next lemma, where we apply
Theorem 3.2.

Lemma 4.2. (i) For each p, Sp + 〈p〉Sp ⊆ Up + L0 + 〈p〉L0.

(ii) The group
Up =

⊕
r≥1

Sp,r ⊂ Sp + 〈p〉Sp

is a direct sum.

(iii) Let the image of this group in W1 Fp also be denoted by Up. Then

W1 Fp/Up ∼= 〈p〉 · WqF(p).

Thus every element in W1 Fp/Up can be represented by an element of 〈p〉L0.

Proof. (i) This follows from the additive property of the symbol [1, a], expanding
elements of Sp into sums of Sp,r elements one power of p at a time, leaving an
element of the form [1, g] where g ∈ F[x]. The last summands lie in L0.

(ii) The summands from ψ in Theorem 3.2 can be uniquely expressed as a sum of
elements of the form

〈t I
〉[1, t J s2

I,J,r/p2r
],

where I, J ∈ T̃p satisfy I + J > I and sI,J,r ∈ F[x]<deg p. Given this, we claim
that the generators identified in Definition 4.1 are equivalent to those required to
apply Theorem 3.2. There are four cases, depending upon whether I, J ∈ Tp or
not. In case both I, J ∈ Tp , then the condition that I + J > I is the same for Tp

elements as for T̃p elements, and this is recorded in Definition 4.1 in the first type
where r is even. In case I ∈ Tp but J 6∈ Tp, then I + J > I is automatic and this
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corresponds to the first type in Definition 4.1 where r is odd. In case, I 6∈ Tp but
J ∈ Tp then I + J > I in T̃p is equivalent to I ′

+ J > I ′ in Tp where I ′ is the same
as I except the p component is deleted, and this is the case of the second type of
generator in Definition 4.1. Finally, if both I, J 6∈ Tp, then I + J > I is impossible
as elements of T̃p, and this case is ignored by Definition 4.1. So we are ready to
apply Theorem 3.2.

First, every sum of elements of Sp,r can be represented as

∑
r≥1

∑
I+J>I

〈t I
〉

[
1,

t J s2
I,J,r

pr

]
+

∑
r≥2, even

∑
I+J>I

〈t I p〉

[
1,

t J s ′2
I,J,r

pr

]
,

where sI,J,r , s ′
I,J,r lie in F[x]<d and as elements of Tp we have I + J > I in each

summand. These expressions can be rewritten as

∑
I+J>I

〈t I
〉

[
1,

∑
r≥1

t J s2
I,J,r

pr

]
+

∑
I+J>I

〈t I p〉

[
1,

∑
r≥2, even

t J s ′2
I,J,r

pr

]
.

Now, in Theorem 3.2 the 2-basis T̂p is used, which is in this case consists of the
elements of Tp and p · Tp. So each of the sums in the additive slots of the last
expression, ∑

r≥1

t J s2
I,J,r

pr and
∑

r≥2, even

t J s ′2
I,J,r

pr ,

correspond uniquely to elements listed as t J s2
I,J,r in the statement of Theorem

3.2(i). The directness of the sum is follows. The statement in (iii) is also a conse-
quence of Theorem 3.2, proving the lemma. �

We are now able to define the transfer maps s∗
p.

Definition 4.3. Forψ ∈ W1 Fp we define θp(ψ)∈ WqF(p) to be the unique element
of WqvFp for which ψ ≡ 〈p〉θp(ψ) (mod Up). We denote by t∗

p : F(p)→ F the
Scharlau transfer associated to the linear functional tp for which tp(xd−1)= 1 but
tp(x i ) = 0 when 0 ≤ i < d − 1. Finally, whenever f ∈ F[x] is a polynomial we
denote by fc its constant term.

(i) Suppose p is separable or 1
x . Then we define s∗

p(ψ) := t∗
p(θp(ψ)) ∈ WqF.

(ii) If p is not separable we express ψ − θp(ψ) modulo U 0
p as

∑
Ix=1,r

〈t I
〉

[
1,

t J s2
I,J,r

pr

]
+

∑
Ix=1,r

〈(t I )p〉

[
1,

t J s ′2
I,J,r

pr

]
.
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Then we define s∗
p(ψ) ∈∈ WqF by

s∗

p(ψ) := t∗

p(θp(ψ))+
∑

Ix=1,r

〈t I /x〉

[
1,
(t J s2

I,J,r )c

pr
c

]
+

∑
Ix=1,r

〈t I pc/x〉

[
1,
(t J s ′2

I,J,r )c

pr
c

]
.

(Note that t I /x ∈ F since Ix = 1.)

To prove reciprocity, we must check it for each 〈p〉L0 and each Up. This will
be done in the next two sections.

5. The reciprocity law for L0 + 〈 p〉L0

In this section we prove the reciprocity law in a critical special case. We assume
p = xd

+ p1xd−1
+ · · · + pd ∈ F[x] is a monic irreducible polynomial of degree

d = 2e when d is even, and of degree d = 2e + 1 when d is odd. Since we will be
calculating in both F[x] and F[x]/(p) we will use x to represent the variable in
F[x] as well as its residue in F[x]/(p), since no confusion will arise. For h ∈{0, 1},
λ1, λ2 ∈ F, and k ≥ 0 we will compute the transfer t∗

p([λ1xh, λ2xk
]) = φ ∈ WqF

described in Definition 4.3. We note that in case h′>1 we can write h′
=h+2h0 for

h ∈ {0, 1} and as [λ1xh′

, λ2xk
] = 〈λ1xh′

〉[1, λ1λ2xk+h′

] = 〈λ1xh
〉[1, λ1λ2xk+h′

] =

[λ1xh, λ2xk+h′
−h

] we see there is no loss of generality in our restriction on h.
For 0 ≤ j ≤ e we define the polynomials f j = xe+ j

+ p1xe+ j−1
+· · ·+ p2 j xe−j

and g j = xe+ j
+ p1xe+ j−1

+· · ·+ p2 j+1xe−j−1. Thus g j = f j + p2 j+1xe−j−1. We
next define γi ∈F by expressing xd+i−1

=γi xd−1
+Gi ∈F[x]/(p)where Gi ∈F[x]

is a polynomial of degree at most d −2. Note that this means that tp(xd+i−1)= γi .
Clearly, γ0 = 1, and using the equation xd

= p1xd−1
+· · ·+ pd ∈ F(p) := F[x]/(p)

we see that γ1 = p1 and by induction for i ≥ 1,

xd+i−1
= p1xd+i−2

+ p2xd+i−3
+ · · · + pd x i−1

= (p1γi−1 p2γi−2 + · · · + piγ0)xd−1
+ p1Gi−1 p2Gi−2 + · · · + pi G0.

This shows that in general the γi satisfy the recurrence relation

γi = γi−1 p1 + γi−2 p2 + · · · γ0 pi for i ≥ 1.

In fact, this recurrence relation is the same as the relation that guarantees that, as
power series, (1 + p1 X + p2 X2

+ · · · )(1 + γ1 X + γ2 X2
+ · · · )= 1 ∈ F((X)), and

which we use below in proving Lemma 5.3.

Lemma 5.1. (i) Suppose d = 2e. We have tp( f 2
0 )= γ1 = p1 and tp(x f 2

0 )= γ2 =

p2
1 + p2. For all j with 1 ≤ j ≤ e we have tp( f 2

j )= p2 j+1, tp(x f 2
j )= p2 j+2.

For all k ≥ 0 we have tp(xk g2
0)= γk+1 + p2

1γk−1.
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(ii) Suppose d = 2e + 1. We have tp( f 2
0 ) = γ0 = 1 and tp(x f 2

0 ) = γ1 = p1. For
all j with 1 ≤ j ≤ e we have tp( f 2

j )= p2 j , tp(x f 2
j )= p2 j+1. For all k ≥ 0 we

have and tp(xk g2
0)= γk + p2

1γk−2.

Proof. Since f0 = xe we have t (xh f 2
0 ) = t (xh+2e) so when d = 2e we find

t (xh f 2
0 ) = γh+1 and when d = 2e + 1 we find t (xh f 2

0 ) = γh as required. When
j > 0 and d = 2e we have in F(p)

f 2
j = (xe+ j

+ p1xe+ j−1
+ · · · + p2 j xe−j )2

= (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )(x2 j
+ p1x2 j−1

+ · · · + p2 j )

= (p2 j+1xd−2 j−1
+ · · · + pd)(x2 j

+ p1x2 j−1
+ · · · + p2 j )

= p2 j+1xd−1
+ (p2 j+1 p1 + p2 j+2)xd−2

+ · · · + pd p2 j .

We find that tp( f 2
j ) = tp(p2 j+1xd−1) = p2 j+1γ0 = p2 j+1 and that tp(x f 2

j ) =

tp(p2 j+1xd
+ (p2 j+1 p1 + p2 j+2)xd−1)= p2 j+1γ1 + (p2 j+1 p1 + p2 j+2)γ0 = p2 j+2

as γ0 = 1 and γ1 = p1.
When j > 0 and d = 2e + 1 we have

f 2
j = (xe+ j

+ p1xe+ j−1
+ · · · + p2 j xe−j )2

= (x2e+1
+ p1x2e

+ · · · + p2 j x2e−2 j+1)(x2 j−1
+ p1x2 j−2

+ · · · + p2 j−1)

+ (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )p2 j

= (p2 j+1xd−2 j−1
+ · · · + pd)(x2 j−1

+ p1x2 j−2
+ · · · + p2 j−1)

+ (x2e
+ p1x2e−1

+ · · · + p2 j x2e−2 j )p2 j

= p2 j xd−1
+ (p2 j+1 + p1 p2 j )xd−2

+ · · · + pd p2 j−1.

So we find tp( f 2
j ) = p2 j and tp(x f 2

j ) = p2 jγ1 + (p2 j p1 + p2 j+1)γ0 = p2 j+1, as
γ0 = 1 and γ1 = p1.

Finally, as g0 = xe
+p1xe−1, we find that xk g2

0 = x2e+k
+p2

1x2e+k−2 and therefore
tp(xk g2

0)=γk+1+p2
1γk−1 when d =2e and tp(xk g2

0)=γk+p2
1γk−2 when d =2e+1.

This proves the lemma. �

The next lemma calculates the transfers.

Lemma 5.2. Let λ1, λ2 ∈ F, h ∈ {0, 1}, and k ≥ 0. When d = 2e, the transfer is
given by

t∗

p([λ1xh, λ2xk
])= [λ1h, λ2(γk+1 + p2

1γk−1)] +

e−1∑
i=1

[λ1 p2(e−i)+h+1, λ2γk+2i−d−1]

+ [λ1γh+1, λ2γk−1]
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and when d = 2e + 1 by

t∗

p([λ1xh, λ2xk
])=

e∑
i=0

[λ1 p2(e−i)+h, λ2γk+2i−d+1].

Proof. We first give a symplectic basis for t∗
p([λ1xh, λ2xk

]). For (r, s)∈F[x]/(p)×
F[x]/(p), applying the quadratic form we have

t∗

p([λ1xh, λ2x j
])(r, s)= tp(λ1xhr2

+ rs + λ2x j s2).

If d = 2e is even we consider the basis

{(1, 0), (0, ge−1); (x, 0), (0, ge−2); . . . ; (xe−1, 0), (0, g0);

( fe−1, 0), (0, 1); ( fe−2, 0), (0, x); . . . ; ( f0, 0), (0, xe−1)}.

If d = 2e + 1 is odd we consider the basis

{(1, 0), (0, ge); (x, 0), (0, ge−1); . . . ; (xe−1, 0), (0, g1);

( fe, 0), (0, 1); ( fe−1, 0), (0, x); . . . ; (0, xe), ( f0, 0)}.

In each case we claim the basis is symplectic. When d = 2e, since each polynomial
x i−1 fe−i and x i−1ge−i is monic of degree d − 1 when 1 ≤ i ≤ e we see that the
inner products ((x i−1, 0), (0, ge−i )) and ((0, x i−1), ( fe−i , 0)) equal 1. Likewise,
when d = 2e + 1 each of ((x i , 0), (0, ge−i )) and ((0, x i ), ( fe−i , 0)) equal 1. Next,
whenever i + j ≤ d −2 we have ((x i , 0), (0, x j ))= 0, showing that such pairs are
always orthogonal. Since the product x i fe−j has degree i + 2e − j , when d = 2e
and i < j we have tp(x i−1 fe−j ) = 0, and when d = 2e + 1 with i < j we have
tp(x i fe−j )= 0. For i > j , when d = 2e, we have

x i−1 fe−j = x i−1(x2e−j
+ · · · + p2(e−j)x j )

= (xd
+ · · · + p2(e−j)x2 j )x i−j−1

= (p2(e−j)+1x2 j−1
+ · · · + pd)x i−j−1,

this last having degree i + j − 2 < d − 1. For i > j , when d = 2e + 1, we
have x i fe−j = x i−1(x2e−j

+ · · · + p2(e−j)x j ) = (xd
+ · · · + p2(e−j)x2 j )x i−j−1

=

(p2(e−j)+1x2 j−1
+ · · · + pd)x i−j−1, this last having degree i + j − 2 < d − 1. So

we see that the inner products (( fe−j , 0), (0, x i−1)) vanish whenever i 6= j and
d = 2e, while (( fe−j , 0), (0, x i )) vanish whenever i 6= j and d = 2e +1. This also
shows that when i 6= j the inner product ((0, ge−j ), (x i−1, 0)) vanishes as well
when d = 2e:

((0, ge−j ), (x i−1, 0))= ((0, fe−j + p2(e−j)+1x j−1), (x i−1, 0))

= tp(p2(e−j)+1x i+ j−2)= 0.

Similarly ((0, ge−j ), (x i , 0))= 0 when d = 2e + 1.
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So to check the required orthogonality we must calculate tp(gi f j ) where 0 ≤

i, j ≤ e − 1 and j = e as well as when d = 2e + 1. When d = 2e and j > i or
d = 2e + 1 and j > i + 1 we calculate

tp(gi f j )= tp((xe+i
+ · · · + p2i+1xe−i−1)(xe+ j

+ · · · + p2 j xe−j ))

= tp((x2i+1
+ · · · + p2i+1)(x2e+ j−i−1

+ · · · + p2 j x2e−j−i−1))

= tp((x2i+1
+ · · · + p2i+1)(p2 j+1x2e−j−i−2

+ · · · + pd x j−i−1))= 0,

because the latter polynomial has degree 2e + i − j −1< d −1. When d = 2e and
j ≤ i or d = 2e + 1 and i ≤ j + 1 we calculate

tp(gi f j )= tp((xe+i
+ · · · + p2i+1xe−i−1)xe−j (x2 j

+ · · · + p2 j ))

= tp((x2e+i−j
+ · · · + p2i+1x2e−i−j−1)(x2 j

+ · · · + p2 j ))

= tp((p2i+2x2e−i−j−2
+ · · · + pd x i−j )(x2 j

+ · · · + p2 j ))= 0,

because the latter polynomial has degree 2e−i + j −2< d −1. This shows that the
inner products (( fi , 0), (0, g j ))= 0 and therefore both bases listed are symplectic.

We are now able to compute the transfer t∗
p([λ1xh, λ2xk

]), where h ∈ {0, 1}.
When d = 2e, since h ≤ 1 the vectors (x i , 0) are isotropic as long as 0 ≤ i < e−1.
So we can apply the previous lemma and we only need to use the portion of the
symplectic basis that involves g0 and the f j . We find

t∗

p([λ1xh,λ2xk
])=[tp(λ1xhx2(e−1)),tp(λ2xkg2

0)]+
e∑

i=1
[tp(λ1xh f 2

e−i),tp(λ2xkx2(i−1))]

=[λ1h,λ2(γk+1 + p2
1γk−1)]

+

e−1∑
i=1

[λ1 p2(e−i)+h+1,λ2γk+2i−d−1] + [λ1γh+1,λ2γk−1],

where in this last summand we have used t (xh f 2
0 ) = γh+1. When d = 2e + 1 we

note that, since h ≤ 1, each of the vectors (x i , 0), where 0 ≤ i ≤ e−1, is isotropic.
Hence we need only consider the part of the symplectic basis involving the f j and
we find

t∗

p([λ1xh, λ2xk
])=

e∑
i=0

[tp(λ1xh f 2
e−i ), tp(λ2xk x2i )]

=

e∑
i=0

[λ1 p2(e−i)+h, λ2γk+2i−d+1],

where in the latter sum we have used γh = ph for h = 0, 1 when i = e. This proves
the lemma. �

We next have to compute ∂ 1
x
(〈p〉[λ1xh, λ2xk

])= ∂ 1
x
(〈pxh

〉[λ1, λ2xh+k
]). There

are four cases, depending upon the parity of h and d:



QUADRATIC FORMS OVER k(x) WHEN char k = 2 47

Lemma 5.3.

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=


∑e−1

j=0[λ1 p2 j+1, λ2γk−2 j−1] if d is even,∑e
j=0[λ1 p2 j , λ2γk−2 j ] if d is odd;

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk+1

]))=


∑e

j=0[λ1 p2 j , λ2γk−2 j+1] if d is even,∑e
j=0[λ1 p2 j+1, λ2γk−2 j ] if d is odd.

Proof. As p = xd
+ p1xd−1

+ · · · + pd we are able to express 〈pxh
〉[1, xh+k

] as

〈xd+h
〉[1, xh+k+d p−1

] + 〈p1xd+h−1
〉[1, p1xh+k+d−1 p−1

]

+ · · · + 〈pd xh
〉[1, pd xh+k p−1

].

Since p = xd(1 + p1x−1
+ p2x−2

+ · · · pd x−d), inside the completion F(x)1
x

we
can write p−1

= x−d(1 + γ1x−1
+ γ2x−2

+ · · · ). When d + h − i is even we have
s∗

1
x
(〈pi xd+h−i

〉[λ1, λ2 pi xh+k+d−i p−1
])= 0 and when d + h − i is odd we have

s∗
1
x
(〈pi xd+h−i

〉[λ1, λ2 pi xh+k+d−i p−1
])

= s∗
1
x
(〈pi x−1

〉[λ1, λ2 pi xh+k−i (1 + γ1x−1
+ · · · )])

= 〈pi 〉[λ1, λ2 piγh+k−i ].

So when h = 0 and d is even we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))= 〈p1〉[λ1, λ2 p1γk−1] + 〈p3〉[λ1, λ2 p3γk−3]

+ · · · + 〈pd−1〉[λ1, λ2 pd−1γk−d+1]

=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j−1].

Similarly, if h = 1 and d is even we find

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk+1

]))= 〈p0〉[λ1, λ2 p0γk+1] + 〈p2〉[λ1, λ2 p2γk−1]

+ · · · + 〈pd〉[λ1, λ2 pdγk−d+1]

=

e∑
j=0

[λ1 p2 j , λ2γk−2 j+1].

Next, if h = 0 and d is odd,

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk+1

]))= 〈p0〉[λ1, λ2 p0γk] + 〈p2〉[λ1, λ2 p2γk−2]

+ · · · + 〈p2e〉[λ1, λ2 p2eγk−2e]

=

e∑
j=0

[λ1 p2 j , λ2γk−2 j ].
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Finally, if h = 1 and d is odd,

s∗
1
x
(∂ 1

x
(〈px〉[λ1, λ2xk

]))= 〈p1〉[λ1, λ2 p1γk] + 〈p3〉[λ1, λ2 p3γk−2]

+ · · · + 〈pd−1〉[λ1, λ2 pd−1γk−d+1]

=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j ]. �

Theorem 5.4. The reciprocity law
∑

q s∗
q (∂q(φ))= 0 holds for all φ ∈ L0 +〈p〉L0.

Proof. We first consider a generator φ= [λ1x i , λ2x j
] of L0. By Lemma 2.3, ∂p(φ)

vanishes for all p 6=
1
x . When p =

1
x , Theorem 3.6 shows that s∗

1
x
(φ) = 0. So

the reciprocity law holds for elements of L0. We next note that for any generator
φ = 〈p〉[λ1xh, λ2xk

] of 〈p〉L0 we have s∗
q (∂q(φ))= 0 as long as q 6= p, 1

x . So we
must check that s∗

p(∂p(φ))= s∗
1
x
(∂ 1

x
(φ)) for all such generators.

When d = 2e and h = 0, we have by Lemma 5.2

t∗

p([λ1, λ2xk
])=

e−1∑
i=1

[λ1 p2(e−i)+1, λ2γk+2i−d−1] + [λ1γ1, λ2γk−1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=

e−1∑
j=0

[λ1 p2 j+1, λ2γk−2 j−1],

But p1 = γ1; therefore the terms in these sums match exactly, which shows that
s∗

p(∂p(〈p〉[λ1, λ2xk
]))= t∗

p([λ1, λ2xk
])= s∗

1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])) in this case.
When d = 2e and h = 1, we have by Lemma 5.2

t∗

p([λ1x, λ2xk
])= [λ1, λ2(γk+1 + p2

1γk−1)] +

e−1∑
i=1

[λ1 p2(e−i)+2, λ2γk+2i−d−1]

+ [λ1γ2, λ2γk−1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1x, λ2xk

]))=

e∑
j=0

[λ1 p2 j , λ2γk−2 j+1].

These two expressions will be equal provided we can show

[λ1, λ2(γk+1 + p2
1γk−1)] + [λ1γ2, λ2γk−1] = [λ1, λ2γk+1] + [λ1 p2, λ2γk−1]

since the summands
∑e−1

i=1 [λ1 p2(e−i)+2, λ2γk+2i−d−1] correspond exactly to the
summands

∑e
j=2[λ1 p2 j , λ2γk−2 j+1]. So we need that

[λ1, λ2 p2
1γk−1] + [λ1γ2, λ2γk−1] = [λ1 p2, λ2γk−1]
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which follows because [λ1, λ2 p2
1γk−1] = 〈p2

1〉 · [λ1 p2
1, λ2γk−1] and γ2 = p2

1 + p2.
When d = 2e + 1 and h = 0, we have by Lemma 5.2

t∗

p([λ1, λ2xk
])=

e∑
i=0

[λ1 p2(e−i), λ2γk+2i−d+1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

]))=

e∑
j=0

[λ1 p2 j , λ2γk−2 j ],

which shows that t∗
p([λ1, λ2xk

])= s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])), since the summations are
the same apart from indexing.

When d = 2e + 1 and h = 1, we have by Lemma 5.2

t∗

p([λ1x, λ2xk
])=

e∑
i=0

[λ1 p2(e−i)+1, λ2γk+2i−d+1].

Also in this case by Lemma 5.3 we have

s∗
1
x
(∂ 1

x
(〈p〉[λ1x, λ2xk

]))=

e∑
j=0

[λ1 p2 j+1, λ2γk−2 j ],

which shows that t∗
p([λ1, λ2xk

]) = s∗
1
x
(∂ 1

x
(〈p〉[λ1, λ2xk

])) again since the summa-
tions are the same. This gives the reciprocity law for 〈p〉L0. �

6. The reciprocity law and the analogue of Milnor’s theorem

We next turn to the reciprocity law for WqF(x).

Theorem 6.1. The composite Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF is zero.

Proof. According to Lemma 2.5(ii), WqF(x) =
∑

p(Sp + 〈x〉Sp). So it suffices
to check the composite vanishes on Sp + 〈x〉Sp for each p. In case p =

1
x then

S1
x
+ 〈x〉S1

x
⊂ L0 + 〈

1
x 〉L0 = L0 + 〈x〉L0. Since the reciprocity law holds for

L0 + 〈x〉L0 by Theorem 5.4, we can assume that p is monic and irreducible. By
Lemma 4.2, we know that Sp + 〈x〉Sp ⊂ Up + L0 + 〈p〉L0. By Theorem 5.4 we
know the composite vanishes on L0 + 〈p〉L0. Since Up =

∑
r Sp,r , therefore, it

suffices to verify the composite vanishes on each generator of Sp,r . If q is not one
of p, x, 1

x , we know by Lemma 2.3 that ∂p vanishes on Sp,r , so we only need to
worry about those three primes.
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We consider first the generators of Sp,r of the form φ = 〈t I
〉[1, h/pr

] ∈ Sp or
φ = 〈t I p〉[1, h/pr

] ∈ 〈p〉Sp where deg h < deg p and r ≥ 1. Since t I
∈ F we

can assume I = 0 by Frobenius reciprocity. If p 6= x then p is both an x-unit
and a 1

x -adic unit. This means vx(h/pr ) ≥ 0 and since deg h < deg p we must
have v1

x
(h/pr ) > 0. So by Lemma 2.3 we find that ∂x(φ) = ∂ 1

x
(φ) = 0 in these

cases. However by definition we know that s∗
p(∂p(φ)) = 0 for these particular

generators of Up so reciprocity is established in these cases. In case p = x then
v1

x
(h/x) > 0 so ∂x(φ) = ∂ 1

x
(φ) = 0 in this case as well. In case p is separable

we know that all generators for Up are of the form just considered so we are done
when p is separable. When p is not separable, the generators just considered are
the generators in U 0

p, so we are done in that case as well.
Finally, when p is not separable, we must consider generators of Up that don’t lie

in U 0
p. These have the form 〈t I x〉[1, h/pr

] ∈ S̃p or 〈t I px〉[1, h/pr
] ∈ 〈p〉S̃p where

deg h < deg p and r ≥ 1. Again, since t I
∈ F we can by Frobenius reciprocity as-

sume I =0. In these cases we have by Definition 4.3(ii) that s∗
x (∂x(〈x〉[1, h/pr

]))=

[1, hc/pr
c], and s∗

x (∂x(〈px〉[1, h/pr
])) = 〈pc〉[1, hc/pr

c]. Since v1
x
(h/pr ) > 0 we

have s∗
1
x
(∂ 1

x
(〈x〉[1, h/pr

])) = 0, and s∗
1
x
(∂ 1

x
(〈px〉[1, h/pr

])) = 0. By the definition
of s∗

p, we know that s∗
p(∂p(〈x〉[1, h/pr

])= [1, hc/pr
c] and s∗

p(∂p(〈px〉[1, h/pr
])=

〈p0〉[1, hc/pr
c], giving the reciprocity law in this case. �

Putting everything together gives the main result of the paper.

Theorem 6.2 (Analogue of the Milnor–Scharlau Sequence). Suppose that F is a
field of characteristic 2 and F = F(x) is a rational function field in one variable
over F. There exists a compatible collection of second residue and transfer maps
that fit into an exact sequence

0 - WqF - Wq F
⊕
∂p-

⊕
p,1x

W1 Fp

⊕
s∗

p- WqF - 0,

where the direct sum is taken over discrete valuations on F.

Proof. Everything completed previously applies when F has a finite 2-basis. In
that case Theorem 3.5 shows that

Wq F/L0 ∼=

⊕
d≥1

Ld/Ld−1 →

⊕
p

W1 Fp

is an isomorphism. Theorem 3.6 shows that

0 → WqF → L0 → W1 F1
x
→ WqF → 0

is an exact sequence. Theorem 6.1 shows we can patch the two sequences together
and obtain the result. When F does not have a finite 2-basis, the result follows
from the finite 2-basis case because any element in any group in the sequence lies
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in the same sequence defined for a finitely generated subfield of F. This proves
the theorem. �
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