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We generalize the well-known Gauchman theorem for closed minimal sub-
manifolds in a unit sphere, and prove that if M is an n-dimensional closed
submanifold of parallel mean curvature in Sn+ p and if σ(u)≤

1
3 for any unit

vector u ∈ TM, where σ(u) = ‖h(u, u)‖2, and h is the second fundamental
form of M, then either σ(u) ≡ H2 and M is a totally umbilical sphere, or
σ(u) ≡

1
3 . Moreover, we give a geometrical classification of closed submani-

folds with parallel mean curvature satisfying σ(u) ≡
1
3 .

1. Introduction and statement of results

Let Sm(r) be the m-dimensional sphere of radius r , with Sm
= Sm(1). By M we

will always denote an n-dimensional connected and closed Riemannian manifold
isometrically immersed in some Sn+p. We will be interested in the case when M
has parallel mean curvature, meaning that the mean curvature vector ξ on M forms
a parallel vector field in the normal bundle over M . (When ξ vanishes identically,
M is a minimal submanifold; M is a hypersurface of constant mean curvature if
p = 1 and the norm of ξ is constant.)

Our investigation contributes to the theory of geometrical invariants and struc-
tures of Riemannian manifolds and submanifolds, an important problem in global
differential geometry. After the pioneering rigidity theorem for closed minimal
submanifolds in a sphere due to Simons [1968], Lawson [1969], and Chern, do
Carmo and Kobayashi [Chern et al. 1970], A. M. Li and J. M. Li [1992] improved
Simons’ pinching constant to max{n/(2 − 1/p), 2n/3}.

Extending this rigidity result to submanifolds of parallel mean curvature in a
sphere, we have the theorem below, first proved by Okumura [1965] and Yau
[1974; 1975], then by Xu [1991], and finally by Alenca and do Carmo [1994]
in codimension 1 and independently by Xu [1993; 1995] in codimension p.
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Theorem 1.1. For given H ≥ 0 and positive integers n ≥ 2 and p, set

C(n, p, H)=

{
α(n, H) if p = 1 or p = 2 and H 6= 0,

min
(
α(n, H), 1

3(2n + 5nH 2)
)

if p ≥ 3 or p = 2 and H = 0,

where

α(n, H)= n +
n3 H 2

2(n − 1)
−

n(n − 2)H
2(n − 1)

√
n2 H 2 + 4(n − 1).

If Mn is a closed submanifold in the standard unit sphere Sn+p of parallel mean
curvature vector of norm H , and if the squared norm S of the second fundamental
form satisfies

S ≤ C(n, p, H),

then M is congruent to one of the following:

(1) Sn
H := Sn

( 1
√

1+H 2

)
;

(2) the isoparametric hypersurface Sn−1
( 1
√

1+λ2

)
× S1

(
λ

√
1+λ2

)
in Sn+1(1),

where

λ=
nH +

√
n2 H 2 + 4(n − 1)
2(n − 1)

;

(3) one of the Clifford minimal hypersurfaces Sk
(√

k
n

)
×Sn−k

(√
n−k

n

)
in Sn+1,

for k = 1, . . . , n − 1;

(4) the Clifford torus S1(r1)× S1(r2) in S3(r) with constant mean curvature H0,
where 0 ≤ H0 ≤ H ,

r1, r2 =
1√

2(1 + H 2)± 2H0(1 + H 2)1/2
and r =

1√
1 + H 2

− H 2
0

;

(5) the Veronese surface in S4
H = S4

( 1
√

1+H 2

)
.

Taking H = 0, we have:

Corollary 1.2 [Chern et al. 1970; An-Min and Jimin 1992]. If Mn is a closed
minimal submanifold in the standard unit sphere Sn+p, and if

S ≤ max
( n

2−1/p
,

2
3

n
)
,

then M is congruent to one of the following:

(1) Sn;

(2) one of the Clifford minimal hypersurfaces Sk
(√

k
n

)
×Sn−k

(√
n−k

n

)
in Sn+1,

for k = 1, . . . , n − 1;

(3) the Veronese surface in S4.
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Since minH≥0 α(n, H)= 2
√

n − 1, we get from Theorem 1.1:

Corollary 1.3. Let Mn be a closed submanifold with parallel mean curvature in
Sn+p. Suppose that H 6= 0 and that

S ≤

{
2
√

n − 1 if p ≤ 2 or p ≥ 3 and n ≥ 8,
2
3 n if p ≥ 3 and n ≤ 7.

Then M is either a totally umbilical sphere in Sn+p, a Clifford isoparametric hy-
persurface in an (n+1)-dimensional sphere, or the Veronese surface in S4

H .

Gauchman [1986] proved that if M is an n-dimensional closed minimal subman-
ifold in Sn+p and if σ(u)≤ 1

3 for any unit vector u ∈ TM , where σ(u)=‖h(u, u)‖2

for h the second fundamental form of M , then either σ(u) ≡ 0 and M is a totally
geodesic sphere, or σ(u) ≡

1
3 . Moreover, he gave a geometrical classification of

closed minimal submanifolds satisfying σ(u)≡
1
3 .

A natural question is how to generalize this striking rigidity result to the case
where M is an n-dimensional closed submanifold of parallel mean curvature in
Sn+p. In this paper we provide such a generalization. To state our main result
precisely, we start with some explicit examples of submanifolds with parallel mean
curvature in a sphere, which extend Gauchman’s examples for the minimal cases
[Gauchman 1986; Sakamoto 1977].

Example 1.4. Let Sq(r) be a q-dimensional sphere of radius r in Rq+1, and let
1 ≤ k ≤ n − 1. We embed Sk(1/

√
2) × Sn−k(1/

√
2) in Sn+1(1) as follows. Let

u ∈ Sk(1/
√

2) and v ∈ Sn−k(1/
√

2) be vectors of length 1/
√

2 in Rk+1 and Rn−k+1,
respectively. We can consider (u, v) as a unit vector in Rn+2

= Rk+1
× Rn−k+1. It

is easy to see that Sk(1/
√

2)× Sn−k(1/
√

2) is a submanifold in Sn+1(1) of parallel
mean curvature

H =

∣∣∣∣2k − n
n

∣∣∣∣.
In particular, M is minimal if n = 2k. The exact same construction yields an
embedding of Sk(1/

√
2) × Sn−k(1/

√
2) in Sn+2(1).

Example 1.5. Denote by RP2, CP2, QP2, and CayP2 the projective plane over the
real numbers, complex numbers, quaternions and octonions, and by ψ1 : RP2

→

S4(1), ψ2 : CP2
→ S7(1), ψ3 : QP2

→ S13(1) and ψ4 : CayP2
→ S25(1) the

corresponding isometric embeddings. Let ψ ′

1 : S2(
√

3) → S4(1) be the isometric
immersion defined by ψ ′

1 = ψ1 ◦ π , where π : S2(
√

3) → RP2 is the canonical
projection.

For n ≥ 2, m ≥ 0, let Sn(1) be the great sphere in Sn+m(1) given by

Sn(1)=
{
(x1, . . . , xn+m+1) ∈ Sn+m(1) | xn+2 = · · · = xn+m+1 = 0

}
,
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and τn,m : Sn(1)→ Sn+m(1) the inclusion. We set

φ1,p = τ4,p−2 ◦ ψ1 : RP2
→ S2+p, p ≥ 2,

φ2,p = τ7,p−3 ◦ ψ2 : CP2
→ S4+p, p ≥ 3,

φ3,p = τ13,p−5 ◦ψ3 : QP2
→ S8+p, p ≥ 5,

φ4,p = τ25,p−9 ◦ψ4 : CayP2
→ S16+p, p ≥ 9,

φ′

1,p = τ4,p−2 ◦ ψ ′

1 : S2(
√

3)→ S2+p p ≥ 2.

Then φi,p is an isometric minimal embedding and φ′

1,p is an isometric minimal
immersion.

Denote by UM the unit tangent bundle of M . Define

C(p, H)=

{
1 for p = 1 or p = 2 and H 6= 0;

1
3 for p ≥ 3 or p = 2 and H = 0.

Main Theorem 1.6. Let M be an n-dimensional compact submanifold of the unit
sphere Sn+p, with parallel mean curvature vector field of norm H. If

σ(u)≤ C(p, H) for any u ∈ UM,

we are in one of the following cases:

(1) M is the totally umbilical sphere Sn
H = Sn

( 1
√

1+H 2

)
;

(2) M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2), with k = 1, 2, . . . , n
and k 6=

1
2 n;

(3) the isometric immersion of M in Sn+p is either the totally umbilical sphere
Sn(

√
3/2) → Sn+p, or one of the embeddings φi,p, i = 1, 2, 3, 4, or the

immersion φ′

1,p.

The case H = 0 goes back to Gauchman [1986, p. 781].

2. Preliminaries

We make the following conventions on the range of indices:

1 ≤ A, B,C ≤ n + p, 1 ≤ i, j, k, l,m ≤ n < α, β, γ, δ ≤ n + p.

Choose a local orthonormal frame field {eA} on Sn+p such that, restricted to M ,
the e′

i s are tangent to M . Let {ωA } be the dual frame fields of {eA} and {ωAB } the
connection 1-forms of Sn+p respectively. Restricting these forms to M , we have

ωαi =
∑

j
hαi j ω j , hαi j = hαj i , h =

∑
α,i, j

hαi j ωi ⊗ω j ⊗ eα, ξ =
1
n

∑
α,i

hαi i eα,
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(1) Ri jkl = δik δ jl − δil δ jk +
∑
α

(
hαik hαjl − hαil hαjk

)
,

Rαβkl =
∑

i

(
hαik hβil − hαil hβik

)
,

where h, ξ , Ri jkl and Rαβkl are the second fundamental form, the mean curvature
vector, the curvature tensor and the normal curvature tensor of M . We set

S = ‖h‖
2, H = ‖ξ‖, Hα = (hαi j )n×n.

Denoting the first and second covariant derivatives of hαi j by hαi jk and hαi jkl re-
spectively, we have∑

k
hαi jk ωk = dhαi j +

∑
k

hαk j ωik +
∑
k

hαik ω jk +
∑
β

hβi j ωαβ,(2) ∑
l

hαi jkl ωl = dhαi jk +
∑

l
hαl jk ωil +

∑
l

hαilk ω jl +
∑

l
hαi jl ωkl +

∑
β

hβi jk ωαβ .(3)

The Laplacian of h is defined by1hαi j =
∑

k hαi jkk . Following [Yau 1974; 1975],
we have

1hαi j =
∑
k

hαkki j +
∑
k,m

hαkm Rmi jk +
∑
k,m

hαmi Rmkjk +
∑
k,β

hβki Rαβk j .

From now on we assume that M is a submanifold of parallel mean curvature in
Sn+p. Choose en+1 such that en+1 is parallel to ξ , tr Hn+1 = nH and tr Hβ = 0,
where n + 2 ≤ β ≤ n + p. Again by the same work of Yau, we have

1hn+1
i j =

∑
k,m

hn+1
km Rmi jk +

∑
k,m

hn+1
im Rmkjk,

1hβi j =
∑
k,m

hβmk Rmi jk +
∑
k,m

hβim Rmkjk +
∑

k,α 6=n+1
hαki Rαβ jk, β 6= n + 1.

Since the Laplacian formulas for the special orthonormal frame field as above
are not apply to our case, we will give the following Laplacian formula which holds
for any orthonormal frame fields.

Proposition 2.1. Let M be an n-dimensional submanifold of parallel mean curva-
ture in Sn+p. Then

1hαi j =
∑
k,m

hαkm Rmi jk +
∑
k,m

hαmi Rmkjk +
∑
k,β

hβki Rβα jk,(4)

∑
α

Rαβkl (tr Hα)= 0.(5)
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Proof. Putting cα = (1/n) tr Hα, we have ξ =
∑

cα eα. Since ξ is parallel in the
normal bundle over M , we have

0 = ∇
⊥

X ξ =
∑
α

X (cα) eα +
∑
α

cα ∇
⊥

X eα

=
∑
α

X (cα) eα +
∑
α

cα
(∑
β

ωβα(X) eβ
)

=
∑
α

(
X (cα)+

∑
β

cβ ωαβ(X)
)

eα

for any tangent vector field X on M . It follows that

(6) dcα +
∑
β

cβ ωαβ = 0 for any α.

To prove (4), it is sufficient to show that
∑

k hαkki j = 0 for any α, i, j . By (2),
we get∑

i,k
hαi ik ωk = d

(∑
i

hαi i
)

+ 2
∑
i,k

hαik ωik +
∑
β,i

hβi i ωαβ = n
(

dcα +
∑
β

cβ ωαβ
)

= 0.

Therefore,
∑

i hαi ik = 0 for all k, α. Together with (3), this implies∑
i,l

hαi ikl ωl = d
(∑

i
hαi ik

)
+ 2

∑
i,l

hαilk ωil +
∑
i,l

hαi il ωkl +
∑
i,β

hβi ik ωαβ = 0.

Hence
∑

i hαi ikl = 0 for all k, l, α.
Taking the exterior derivative of (6) we get

0 = d2cα + d
(∑
β

cβ ωαβ
)

=
∑
β

dcβ ∧ωαβ +
∑
β

cβ
(
−

∑
γ

ωαγ ∧ωγβ +
1
2

∑
k,l

Rαβkl ωk ∧ωl

)
=

∑
β

(
dcβ +

∑
γ

cγ ωβγ
)

∧ωαβ +
1
2

∑
β,k,l

cβ Rαβkl ωk ∧ωl

=
1
2

∑
β,k,l

cβ Rαβkl ωk ∧ωl .

Thus
∑

β Rαβkl (tr Hβ)= 0 for all α, k, l, as desired. �

3. Maximal directions

Let x ∈ M . A vector u ∈ UMx is called a maximal direction at x if σ(u) =

maxv∈UMx σ(v).
Choose an orthonormal frame {e1, . . . , en+p} at x such that restricted to M , the

vectors e1, . . . , en are tangent to M . Assume that e1 is a maximal direction at x ,
σ(e1) 6= 0, and en+1 = h(e1, e1)/‖h(e1, e1)‖. Choose en+2 such that

en+2 =
ξ − 〈ξ, en+1〉en+1

‖ξ − 〈ξ, en+1〉en+1‖
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if ξ is not parallel to en+1. By our choices of en+1 and en+2, we have

(7) hα11 = 0 if α 6= n + 1 and cα = 0 if α 6= n + 1, n + 2.

Since e1 is a maximal direction, we have at the point x for any t ∈ R

(8) ‖h(e1 + tei , e1 + tei )‖
2
≤ (1 + t2)2 (hn+1

11 )2.

Expanding in terms of t , we obtain

4 t hn+1
11 hn+1

1i + O(t2)≤ 0.

It follows that

(9) hn+1
1i = 0, i = 2, . . . , n.

It is easy to see that e1 is also an eigenvector of the Weingarten transformation
An+1. Therefore, we can choose an adapted frame at x ∈ M such that in addition
to (7) and (9),

(10) hn+1
i j = 0, i 6= j.

Once more expanding (8) in terms of t , we obtain

−2t2
(

hn+1
11 (hn+1

11 − hn+1
i i )− 2

∑
α 6=n+1

(hα1i )
2
)

+ O(t3)≤ 0.

It follows that

(11) 2
∑

α 6=n+1
(hα1i )

2
≤ hn+1

11 (hn+1
11 − hn+1

i i ) for i = 2, . . . , n.

Define a tensor field T = (Ti jkl) on M by

Ti jkl =

∑
α

hαi j hαkl .

It is obvious that σ(u)= T (u, u, u, u).

Lemma 3.1. Let u be a maximal direction at x ∈ M. Assume that σ(u) 6= 0. Let
e1, . . . , en+p be an adapted frame at x such that

e1 = u, en+1 =
h(e1, e1)

‖h(e1, e1)‖
,

hn+1
i j = 0 for i 6= j , and en+2 = (ξ − 〈ξ, en+1〉en+1)/‖ξ − 〈ξ, en+1〉en+1‖ if ξ is

not parallel to en+1. At the point x ,

(i) if p = 1, or p = 2 and H 6= 0, then

(12) 1
2(1T )1111 ≥ hn+1

11

(
n
(
hn+1

11 + cn+1(hn+1
11 )2 − cn+1

)
− hn+1

11
∑
k
(hn+1

kk )2
)
;
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(ii) if p ≥ 3, or p = 2 and H = 0, then

(13) 1
2(1T )1111

≥ hn+1
11

(
n(hn+1

11 + 3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3)− 2hn+1
11

∑
k
(hn+1

kk )2
)
,

and equality holds if and only if

(14) (hn+1
11 − hn+1

kk )
(

hn+1
11 (hn+1

11 − hn+1
kk )− 2

∑
α 6=n+1

(hα1k)
2
)

= 0

and hα11k = 0, for all k and α.

Proof. We have

(15) 1
2(1T )1111 = hn+1

11 1hn+1
11 +

∑
i,α
(hα11i )

2.

From Proposition 2.1 and equations (7) and (10), we have

1hn+1
11 =

∑
k,m

hn+1
km Rm11k +

∑
k,m

hn+1
m1 Rmk1k +

∑
k,α

hα1k Rαn+11k

=
∑
k
(hn+1

11 − hn+1
kk )R1k1k +

∑
k,α

hα1k

(∑
l
(hαl1hn+1

lk − hαlkhn+1
l1 )

)
=

∑
k
(hn+1

11 − hn+1
kk )

(
1 − (δ1k)

2
+

∑
α

(hα11hαkk − (hα1k)
2)

)
+

∑
k,α
(hα1k)

2(hn+1
kk − hn+1

11 )

=
∑
k
(hn+1

11 −hn+1
kk )+

∑
k
(hn+1

11 −hn+1
kk )hn+1

11 hn+1
kk − 2

∑
k,α
(hα1k)

2(hn+1
11 −hn+1

kk )

= n
(
hn+1

11 + cn+1(hn+1
11 )2 − cn+1

)
− hn+1

11
∑
k
(hn+1

kk )2

− 2
∑

k,α 6=n+1
(hα1k)

2(hn+1
11 − hn+1

kk ).

If p =1, the last term above vanishes. If p =2 and H 6=0, we have R(n+1)(n+2)kl =0
for any k, l, by (5) and (7); hence the last term above vanishes again. If p ≥ 3, or
if or p = 2 and H = 0, we obtain by (11)

1hn+1
11 ≥ n

(
hn+1

11 +cn+1(hn+1
11 )2−cn+1

)
−hn+1

11
∑
k
(hn+1

kk )2−
∑
k

hn+1
11 (hn+1

11 −hn+1
kk )2

= n
(
hn+1

11 + 3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3
)
− 2hn+1

11
∑
k
(hn+1

kk )2.

Substituting this into (15), we obtain

1
2(1T )1111 ≥ hn+1

11

(
n(hn+1

11 + cn+1(hn+1
11 )2 − cn+1)− hn+1

11
∑
k
(hn+1

kk )2
)
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if p = 1 or p = 2 and H 6= 0, and

1
2(1T )1111 ≥ hn+1

11

(
n(hn+1

11 +3cn+1(hn+1
11 )2 − cn+1 − (hn+1

11 )3)−2hn+1
11

∑
k
(hn+1

kk )2
)

if p ≥ 3 or p = 2 and H = 0. �

Lemma 3.2. Let {e1, . . . , en+p} be an adapted frame at x ∈ M as in Lemma 3.1.
Suppose that

σ(u)≤

{
1 if p = 1 or p = 2 and H 6= 0,
1
3 if p ≥ 3 or p = 2 and H = 0,

for all u ∈ UM. Then (1T )1111 ≥ 0. If equality holds, i.e., if (1T )1111 = 0, then

(16) hn+1
11 =

∣∣hn+1
22

∣∣ = · · · =
∣∣hn+1

nn

∣∣.
Proof. Since e1 is a maximal direction at x ∈ M ,

(17) −hn+1
11 ≤ hn+1

kk ≤ hn+1
11 , k = 2, . . . , n.

It is clear that the convex function f (hn+1
22 , . . . , hn+1

nn ) =
∑n

k=2 (h
n+1
kk )2 subject to

the constraint (17) attains its maximal value when∣∣hn+1
22

∣∣ = · · · =
∣∣hn+1

nn

∣∣ = hn+1
11 .

Therefore, by inequalities (12) and (13),

1
2(1T )1111 ≥

{
nhn+1

11 (hn+1
11 − cn+1)(1 − σ(e1)) if p = 1 or p = 2 and H 6= 0,

nhn+1
11 (hn+1

11 − cn+1)(1 − 3σ(e1)) if p ≥ 3 or p = 2 and H = 0,

where cn+1 = (1/n)
∑n

i=1 hn+1
i i ≤ hn+1

11 . �

Let L(x) be a function on M defined by L(x) = maxu∈UMx σ(u). By a similar
argument as in [Gauchman 1986], we get:

Lemma 3.3. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere Sn+p(1). If

σ(u)≤

{
1, for p = 1, or p = 2 and H 6= 0
1
3 , for p ≥ 3, or p = 2 and H=0,

for all u ∈ UM , then L(x) is a constant function on M.

4. Rigidity of submanifolds of parallel mean curvature

This section is devoted to the proof of the Main Theorem 1.6, through a series of
intermediate results.
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Lemma 4.1. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere Sn+p(1). Suppose that

σ(u) <

{
1 if p = 1 or p = 2 and H 6= 0,
1
3 if p ≥ 3 or p = 2 and H = 0,

for all u ∈ UM. Then M is the totally umbilical sphere Sn
H .

Proof. Let e1 be a maximal direction at x ∈ M . Assume σ(e1) 6= 0. By Lemmas 3.2
and 3.3, we have (1T )1111 = 0 on M . From the proof of Lemma 3.2, we see that

hn+1
11 = cn+1.

Thus the average value of the {hn+1
i i }

n
i=1 equals their maximum. This possibility

occurs if and only if
hn+1

11 = · · · = hn+1
nn .

This and (11) yield hα1i = 0, for α 6= n + 1 and i = 2, . . . , n. Since each of the
vectors ei , for i = 1, . . . , n, is a maximal direction, we have

hαi j = 0 for i, j = 1, 2, . . . , n and i 6= j.

From ‖h(ei , ei )‖
2
≤ (hn+1

11 )2, we obtain

hαi i = 0 for α 6= n + 1 and i = 1, 2, . . . , n.

The last three displayed equations say that M is a totally umbilical sphere. �

For convenience, we establish a convention on indices a, b, . . . , r, s, . . . :

1 ≤ a, b, c, d ≤ k < r, s, t, w ≤ n,

where k is a fixed integer in the range 1, . . . , n.
Here is the rigidity theorem for hypersurfaces with constant mean curvature in

a sphere:

Theorem 4.2. Let M be an n-dimensional compact hypersurface with constant
mean curvature in a unit sphere Sn+1(1).

(i) If σ(u) < 1 for any u ∈ UM , then M is the totally umbilical sphere Sn
H .

(ii) If maxu∈UM σ(u)= 1, M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2),
with k = 1, 2, . . . , n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (1T )1111 = 0. By (16), we may assume after a suitable renumbering
of e1, . . . , en that

hn+1
aa = −hn+1

rr = 1 for a = 1, . . . , k and r = k + 1, . . . , n.
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By Lemma 3.1, hn+1
11k vanishes for k = 1, . . . , n. It follows that hn+1

i ik = 0. By
polarization, hn+1

i jk vanishes for all i, j, k. By (2) and (10), we have

0 =

∑
l

hn+1
il ωl j +

∑
l

hn+1
l j ωli = (hn+1

i i − hn+1
j j )ωi j .

Hence, ωar = 0. It follows that the two distributions defined by ω1 = · · · = ωk = 0
and ωk+1 = · · ·=ωn = 0 are integrable and give a local decomposition of M . Then
every point of M has a neighborhood U which is a Riemannian product V1 × V2

with dim V1 = k and dim V2 = n − k. The curvatures of V1 and V2 are

Rabcd = 2(δacδbd − δadδbc) for 1 ≤ a, b, c, d ≤ k,

Rrstw = 2(δr tδsw − δrwδst) for k + 1 ≤ r, s, t, w ≤ n.

Thus V1 and V2 are spaces of constant curvature 2. The compactness of M allows
us to complete the proof. �

For the case of codimension two:

Theorem 4.3. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere Sn+2(1), H 6= 0.

(i) If σ(u) < 1 for any u ∈ UM , then M is the totally umbilical sphere Sn
H .

(ii) If maxu∈UM σ(u)= 1, M is one of the embeddings Sk(1/
√

2)× Sn−k(1/
√

2),
with k = 1, . . . , n, k 6=

1
2 n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (1T )1111 = 0. By (16), we have

hn+1
aa = −hn+1

rr = 1 for a = 1, . . . , k and r = k + 1, . . . , n.

From (7) and (11) we obtain hn+2
1a = 0 for a = 1, . . . , k. Since each of vectors ei ,

for i = 1, . . . , n, is a maximal direction, we get

hn+2
ab = 0 for a, b = 1, . . . , k.

Similarly,
hn+2

rs = 0 for r, s = k + 1, . . . , n.

As in the proof of Lemma 3.1, we have R(n+1)(n+2)kl = 0. Hence

hn+2
kl (hn+1

kk − hn+1
ll )= 0,

which implies hn+2
ar = 0 for a = 1, . . . , k and r = k + 1, . . . , n. Thus

(18) hn+2
i j = 0 for i, j = 1, . . . , n.
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By a similar argument as in the proof of Theorem 4.2, we have hn+1
i jk = 0 for all

i, j, k. By (2), (10) and (18), we have

0 =

∑
l

hn+1
il ωl j +

∑
l

hn+1
jl ωli = (hn+1

i i − hn+1
j j )ωi j .

Therefore, ωar =0. Then M is a locally Riemannian product V1×V2, with dim V1 =

k and dim V2 = n − k. The curvature of V1 is

Rabcd = δacδbd − δadδbc +

n+2∑
α=n+1

(hαachαbd − hαadhαbc)

= δacδbd − δadδbc + hn+1
ac hn+1

bd − hn+1
ad hn+1

bc = 2(δacδbd − δadδbc)

(see (1)), where the second equality follows from (18). A similar argument applies
to V2. In conclusion, V1 and V2 are spaces of constant curvature 2. The compact-
ness of M allows us to complete the proof. �

Remark 4.4. In assertion (ii) of Theorem 4.3, we exclude the case of n = 2m even
and k = m, in that it results in H = 0, contradicting the theorem’s assumption.

Let F be the real numbers, the complex numbers, or the quaternions, and let
d be the dimension of F as a real vector space (1, 2, or 4). Let FPm denote
the projective space over F , Mn(c) the n-dimensional Riemannian manifold with
constant curvature c.

Lemma 4.5 [Sakamoto 1977]. Let f : Mn
→ Sn+p(c̄) be an isotropic immersion

of parallel second fundamental tensor. Except for the totally umbilical case, f
is a composition of a minimal isotropic immersion η : Mn

→ Sn+q(c̃) (q ≤ p)
of parallel second fundamental tensor, and a totally umbilical τ : Sn+q(c̃) →

Sn+p(c̄), where n = md and M must be one of Sn(c), FPm and CayP2. Assume
that the isotropic constants of f and η are λ and µ respectively. Then

c =
m

2(m + 1)
c̃, q =

(m − 1)(md + 2)
2

, µ2
=

m − 1
m + 1

c̃,

where m = n if M = Sn(c) and m = 2 if M = CayP2.

Lemma 4.6. Let f : Mn
→ Sn+p(1) be a λ-isotropic immersion of parallel second

fundamental tensor. If λ2
≤ (m−1)/(m+1), then f is totally umbilical, or minimal

with λ2
= (m − 1)/(m + 1).

Proof. Assume that f is not totally umbilical. Following Lemma 4.5, f can be
considered as composition of a minimal µ-isotropic immersion η : Mn

→ Sn+q(c̃)
and a totally umbilical sphere τ : Sn+q(c̃)→ Sn+p(1), where µ and c̃ satisfy

µ2
=

m − 1
m + 1

c̃.
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On the other hand, if H is the mean curvature of immersion f , it is easy to see

µ2
+ H 2

= λ2, c̃ =
−
→ c + H 2.

Substituting into the preceding equation, we get

(19) λ2
−

m − 1
m + 1

=
2m

m + 1
H 2

≥ 0.

The assumption λ2
≤ (m − 1)/(m + 1) and (19) together give

λ2
=

m − 1
m + 1

and H = 0. �

Theorem 4.7. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere Sn+p(1). Assume that p ≥ 3, or p = 2 and H = 0.

(i) If σ(u) < 1
3 for any u ∈ UM , then M is the totally umbilical sphere Sn

H .

(ii) If maxu∈UM σ(u)= 1
3 , then σ(u)≡ 1

3 on UM , and the isometric immersion of
M into Sn+p is either the totally umbilical sphere Sn(

√
3/2)→ Sn+p(1), one

of the embeddings φi,p, i = 1, 2, 3, 4, or one of the immersions φ′

1,p described
above.

Proof. We need only consider the case maxv∈UMx σ(v)= σ(u). As in the proof of
Lemma 4.1, we obtain (1T )1111 = 0. By (16), we have, after a suitable renumber-
ing of e1, . . . , en ,

(20) hn+1
aa = −hn+1

rr =

√
3

3
for a = 1, . . . , k and r = k + 1, . . . , n.

Since ‖h(ea, ea)‖
2
≤

1
3 and ‖h(er , er )‖

2
≤

1
3 , we obtain

(21) hαaa = hαrr = 0 for α 6= n + 1, a = 1, . . . , k and r = k + 1, . . . , n.

Still from (11),

(22) hαab = hαrs = 0 for α 6= n + 1, a, b = 1, . . . , k and r, s = k + 1, . . . , n.

By (14),
∑

α 6=n+1 (h
α
1r )

2
=

1
3 . Since each vector ei , for i = 1, . . . , n, is a maximal

direction,

(23)
∑
α 6=n+1

(hαar )
2
=

1
3 for a = 1, . . . , k and r = k + 1, . . . , n.

For x2, . . . , xn and t ∈ R, using (20)–(23) and (7)–(10), expanding the inequality

(24)
∥∥∥∥h

(
e1 + t

n∑
i=2

x i ei , e1 + t
n∑

i=2

x i ei

)∥∥∥∥2

≤

(
1 + t2

n∑
i=2

(x i )2
)2

(hn+1
11 )2
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in terms of t , we obtain

4t2
∑
α

∑
r,s

hα1r hα1s xr x s
+ O(t3)≤ 0.

It follows that
∑

α hα1r hα1s = 0 if r 6= s. Since each vector ei is a maximal direction,
we have ∑

α

hαar hαas = 0 if r 6= s,
∑
α

hαar hαbr = 0 if a 6= b.

Once more expand (24) to obtain

2t3
∑

(hα1r hαbs + hα1shαbr )x
axr x s

+ O(t4)≤ 0.

It follows that

(25)
∑
α

(hαar hαbs + hαashαbr )= 0 if a 6= b or r 6= s.

Using (10) and (20)–(25), we obtain by direct computation that σ(u)≡ 1
3 for any

u ∈ UM . It is easy to see that hαi jk = 0 for all α, i, j, k. Therefore, M is a (
√

3/3) -
isotropic submanifold in a unit sphere of parallel second fundamental tensor. By
Lemmas 4.5 and 4.6 we know that M is either totally umbilical or minimal. This,
together with a [Gauchman 1986, Theorem 3], completes the proof. �

Theorems 4.2, 4.3 and 4.7 together imply the Main Theorem 1.6.
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