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RODRIGO HERNÁNDEZ R.

We use Oda’s definition of the Schwarzian derivative for locally univalent
holomorphic maps F in several complex variables to define a Schwarzian
derivative operator SF. We use the Bergman metric to define a norm
‖SF‖ for this operator, which in the ball is invariant under composition
with automorphisms. We study the linearly invariant family

Fα = {F : Bn
→ Cn

| F(0) = 0, DF(0) = Id, ‖SF‖ ≤ α},

estimating its order and norm order.

1. Introduction

The link between the Schwarzian derivative of a locally univalent holomorphic
map in one complex variable, given by

S f =

(
f ′′

f ′

)′

−
1
2

(
f ′′

f ′

)2

,

with the univalence of f and distortion problems has been studied extensively;
see [Chuaqui and Osgood 1993; Epstein 1986; Kraus 1932; Nehari 1949], for
example. S f vanishes identically if and only if f is a Möbius mapping, and we have
S( f ◦ g) = (S f ◦ g)(g′)2

+ Sg. An analytic function f with Schwarzian derivative
S f = 2p has the form f = u/v, where u and v are any linearly independent
solutions of the equation u′′

+ pu = 0. If f is defined in the unit disk D, the norm

‖S f ‖ = sup
|z|=1

(1 − |z|2)2
|S f (z)|

is invariant under precomposition with automorphisms of the disk.
Some analogues of the Schwarzian derivative in several complex variables are

available, but results relating it to the aforementioned problems of univalence and

MSC2000: primary 32A17, 32W50; secondary 32H02, 30C35.
Keywords: Several complex varaibles, Schwarzian derivative, Linearly invariant families, Sturm

comparison.

201

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.228-2
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=32A17, 32W50,(32H02, 30C35)


202 RODRIGO HERNÁNDEZ R.

distortion are less satisfactory than in one variable [Molzon and Pinney Mortensen
1997]. Consider the overdetermined system of partial differential equations

(1-1)
∂2u

∂zi∂z j
=

n∑
k=1

Pk
i j (z)

∂u
∂zk

+ P0
i j (z)u, i, j = 1, 2, . . . , n,

where z = (z1, z2, . . . , zn) ∈ Cn . The system is called completely integrable if
(1-1) has n + 1 linearly independent solutions. The system (1-1) is said to be in
canonical form (see [Yoshida 1976]) if the coefficients satisfy

n∑
j=1

P j
i j (z) = 0, i = 1, 2, . . . , n.

T. Oda [1974] defined the Schwarzian derivative Sk
i j of a locally injective holomor-

phic mapping F(z1, z2, . . . , zn) = (w1, w2, . . . , wn) as

Sk
i j F =

n∑
l=1

∂2wl

∂zi∂z j

∂zk

∂wl
−

1
n + 1

(
δk

i
∂

∂z j
+ δk

j
∂

∂zi

)
log 1,

where i, j, k = 1, 2, . . . , n, 1 = det(∂ F/∂z), and δk
i is the Kronecker symbol. For

n > 1 these Schwarzian derivatives satisfy

Sk
i j F = 0 for all i, j, k = 1, 2, . . . , n

if and only if F(z) is a Möbius transformation, that is, if it has the form

F(z) =

(
l1(z)
l0(z)

, . . . ,
ln(z)
l0(z)

)
,

where li (z) = ai0 + ai1z1 + · · · + ainzn with det(ai j ) 6= 0. For a composition we
have

(1-2) Sk
i j (G ◦ F)(z) = Sk

i j F(z) +

n∑
l,m,r=1

Sr
lmG(w)

∂wl

∂zi

∂wm

∂z j

∂zk

∂wr
, w = F(z).

Thus, precomposition with a Möbius transformation G leads to Sk
i j (G ◦ F) = Sk

i j F .
The coefficients S0

i j F are given by

S0
i j F(z) = 11/(n+1)

(
∂2

∂zi∂z j
1−1/(n+1)

−

n∑
k=1

∂

∂zk
1−1/(n+1)Sk

i j F(z)
)

.

The function u = 1−1/n+1 is always a solution of (1-1) with Sk
i j F = Pk

i j .

Remark 1.1. For n = 1, S1
11 f = 0 for all locally injective f , but S0

11 f = −
1
2 S f .



SCHWARZIAN DERIVATIVES AND A LINEARLY INVARIANT FAMILY IN Cn 203

Proposition 1.2 [Yoshida 1976]. Let (1-1) be a completely integrable system in
canonical form and consider a set u0(z), u1(z), . . . , un(z) of linearly independent
solutions. Then

Pk
i j (z) = Sk

i j F(z), i, j, k = 1, 2, . . . , n,

where F(z) = (w1(z), . . . , wn(z)) and wi (z) = ui (z)/u0(z).

Remark 1.3. In contrast to the one-dimensional case, when n > 1 the Schwarzian
derivatives Sk

i j F are differential operators of order 2. One way to understand this
phenomenon is through a dimensional argument: For n = 1 the Möbius group has
dimension 3, which allows one to choose f (z0), f ′(z0) and f ′′(z0) for a holomor-
phic mapping f at a given point z0 arbitrarily. It would therefore be pointless to
seek a Möbius-invariant differential operator of order 2. But for n > 1 the number
of parameters involved in the value and all derivatives of order 1 and 2 of a locally
biholomorphic mapping is n2(n + 1)/2 + n2

+ n, which exceeds the dimension
n2

+ 2n of the corresponding Möbius group in Cn . Moreover, since Sk
i j F = Sk

ji F
for all k and

n∑
j=1

S j
i j F = 0,

there are exactly n(n − 1)(n + 2)/2 independent terms Sk
i j F , which is equal to the

excess mentioned above.

In this paper we employ the Oda Schwarzian derivatives Sk
i j to propose a Schwar-

zian derivative operator SF . Using the Bergman metric, we will define a norm for
SF , which for mappings defined in the ball B turns out to be invariant under the
group of automorphisms. We then focus on the study of geometric properties of
the linearly invariant family given by bounded Schwarzian norm. We will appeal to
the relationship with the completely integrable system (1-1) and Sturm comparison
techniques adapted to this special situation.

2. The Schwarzian derivative operator

For � ⊂ Cn open, let F : � → Cn , F(z1, . . . , zn) = (w1, . . . , wn), be a locally
univalent holomorphic mapping, and set 1= det(∂ F/∂z). For k = 1, . . . , n, define
an n × n matrix

Sk F = (Sk
i j F), i, j = 1, . . . , n.

Proposition 2.1. Let F be a locally injective holomorphic mapping and let w =

G(z) be a Möbius transformation. Then

Sk(F ◦ G) =

n∑
r=1

∂zk

∂wr
DG t((Sr F) ◦ G

)
DG for k = 1, . . . , n.
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Proof. From (1-2) and the Möbius property of G we have

Sk
i j (F ◦ G)(z) =

n∑
l,m,r=1

Sr
lm F(w)

∂wl

∂zi

∂wm

∂z j

∂zk

∂wr
+ Sk

i j G(z)

=

n∑
r=1

∂zk

∂wr

n∑
m,l=1

∂wl

∂zi
Sr

lm F(w)
∂wm

∂z j
+ Sk

i j G(z)

=

n∑
r=1

∂zk

∂wr

n∑
m,l=1

∂wl

∂zi
Sr

lm F(w)
∂wm

∂z j
.

The proposition follows after rewriting this in terms of matrices. �

Definition 2.2. The Schwarzian derivative operator is the operator SF(z) : Tz�→

TF(z)� given by

SF(z)(Ev) =
(
Ev t S1 F(z)Ev, Ev t S2 F(z)Ev, . . . , Ev t Sn F(z)Ev

)
,

where Ev ∈ Tz�.

Recall that the Bergman metric on Bn is the hermitian product defined by

(2-1) gi j (z) =
n + 1

(1 − |z|2)2

(
(1 − |z|2)δi j + z̄i z j

)
.

Any automorphism of the ball is an isometry of the Bergman metric.
We define the norm of the Schwarzian derivative operator by

‖SF(z)‖ = sup
‖Ev‖=1

‖SF(z)(Ev )‖,

where ‖Ev‖ =
(∑

gi jvi v̄ j
)1/2 is the Bergman norm of Ev ∈ TzBn .

A routine calculation using the fact that u0 =1−1/n+1 is a solution of (1-1) with
Pk

i j = Sk
i j F allows one to rewrite the Schwarzian derivative operator as

SF(z)(Ev, Ev) = (DF(z))−1 D2 F(z)(Ev, Ev) −
2

n + 1

(
1
1

n∑
j=1

1 j (z) v j

)
Ev,

or yet

(2-2) SF(z)(Ev, Ev) = (DF(z))−1 D2 F(z)(Ev, Ev) + 211/n+1 (∇u0 · Ev) Ev,

where 1 j =
∑n

k=1(−1) j−1 δ jk and δ jk is the determinant of DF(z) with the k-th
column replaced by the column(

∂2 f1

∂z j∂zk
, . . . ,

∂2 fn

∂z j∂zk

)tr

(z).
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The operator (DF(z))−1 D2 F(z)(z, ·) was considered by Pfaltzgraff [1974] in his
generalization of the Becker criterion.

Theorem 2.3. Let F : Bn
→ Cn be a locally injective holomorphic mapping and

let σ be an automorphism of Bn . Then∥∥S(F ◦ σ)(z)
∥∥ =

∥∥SF(σ (z))
∥∥.

Proof. We know that

Sk(F ◦ σ) =

n∑
l=1

∂zk

∂wl
(Dσ)t Sl F ◦ σ(Dσ)

=

(
∂zk

∂w1
, . . . ,

∂zk

∂wn

) (Dσ)t S1 F ◦ σ(Dσ)
...

(Dσ)t Sn F ◦ σ(Dσ)

 .

Hence

(SF◦σ)(z)(Ev) = Dσ−1

Evt(Dσ)t S1 F(σ (z))(Dσ)Ev
...

Evt(Dσ)t Sn F(σ (z))(Dσ)Ev

= Dσ−1

Eut S1 F(σ (z))Eu
...

Eut Sn F(σ (z))Eu

,

where Eu = Dσ(z)(Ev). Then

‖S(F ◦ σ)(z)(Ev)‖ = ‖DGσ−1SF(σ (z))(Eu)‖ = ‖SF(σ (z))(Eu)‖,

and since σ is a isometry in the Bergman metric, the theorem follows after taking
supremum over all unit vectors Ev. �

The definition of norm for the Schwarzian operator can be given using any her-
mitian metric or even a Finsler metric. Since in ball the Bergman metric coincides
up to constant multiples with the Kobayashi or the Carathéodory metric, the re-
sulting norm for SF is the same. This will certainly not be the case on arbitrary
domains. Theorem 2.3 will also fail on arbitrary domains because it requires the
automorphisms to be Möbius.

3. The family Fα

Definition 3.1. Consider the family

L S = {F : Bn
→ Cn

| F(0) = 0, DF(0) = Id}

of normalized locally biholomorphic mappings on the ball Bn , and the Koebe trans-
formations 3σ (F) of the ball, given by

3σ (F)(z) =
(
Dσ(0)

)−1(DF(σ (0))
)−1(F(σ (z)) − F(σ (0))

)
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for F ∈ L S and σ ∈ Aut Bn . A family F ⊆ L S is called linearly invariant (LIF) if
3σ (F) ∈ F for all F ∈ F and σ ∈ Aut Bn .

This extends the notion of a linearly invariant family in one dimension, that is,
a family F of analytic functions f (z) = z +a2z2

+· · · defined on D that is closed
under Koebe transformations

g(z) =

f
( z0+z

1+z0z

)
− f (z0)

(1 − |z0|2) f ′(z0)
, z0 ∈ D.

In one dimension, several properties such as growth, covering, distortion and com-
pactness are determined by the order sup f ∈F a2( f ) of the family F. Pommerenke
[1964] showed that the linearly invariant family defined by a Schwarzian derivative
bound, Fα = { f : D → C : f (0) = 0, f ′(0) = 1, ‖S f ‖ ≤ α}, has norm

√
1+α/2.

Definition 3.2. The order of a linearly invariant family F in arbitrary dimension
is defined as

ord F = sup
F∈F

sup
|Ev|=1

∣∣ tr
{1

2 D2 F(0)(Ev, · )
}∣∣,

where |Ev| is the Euclidean norm of Ev.

The order of an LIF F can be written equivalently as

ord F = sup
F∈F

∣∣∣∣ 1
2

n∑
j=1

∂2 f j

∂z j∂zk
(0)

∣∣∣∣
(see [Pfaltzgraff 1997]). For example, for n = 2 a straightforward computation
shows that the order is

sup
F∈F

∣∣∣∣ 1
2

∂2 f1

∂z2
1

(0, 0) +
∂2 f2

∂z1∂z2
(0, 0)

∣∣∣∣.
Pfaltzgraff and Suffridge [2000] have introduced the notion of norm order,

which has much broader applicability to the study of geometric properties of locally
biholomorphic mappings than does the order. Consider the Taylor expansion

F(z) = z +
1
2 D2 F(0)(z, z) + · · · = z + A2(z, z) + A3(z, z, z) + · · · ,

where Am( · , . . . , · )= (1/m!)Dm F(0), for m = 1, 2, . . ., is an m-linear symmetric
mapping. Then

‖Am‖ = sup
|λ|≤1

|Am(λ, . . . , λ)|.

Definition 3.3. The norm order of a linearly invariant family F is defined as

‖Ord‖ F = sup
F∈F

‖A2(F)‖.
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We define

Fα = {F : Bn
→ Cn

| F(0) = 0, DF(0) = Id, ‖SF(z)‖ ≤ α}.

By Theorem 2.3, this is an LIF.

Remark 3.4. The task of calculating the exact value of the norm of SF is, in
general, not easy, especially because the Bergman and the Euclidean metrics are
not conformal. For example, define a locally univalent holomorphic mapping in
the ball Bn by Fδ = ( f (z1), ẑg(z1)), where ẑ = (0, z2, . . . , zn),

g(z1) =
1

1−z1
and f (z1) =

1
2δ

((1+z1
1−z1

)δ

− 1
)

.

For n = 2 a direct calculation shows that

S1 Fδ(z) =

 2(δ−1)

3(1−z2
1)

0

0 0

 , S2 Fδ(z) =


2z2(1−δ)

(1−z1)2(1+z1)
−

2(δ−1)

3(1−z2
1)

−
2(δ−1)

3(1−z2
1)

0

 .

Then
SFδ(z)(Ev) =

2(δ−1)

3(1−z2
1)

(
v2

1,
−3z2
1−z1

v2
1 − 2v1v2

)
.

Is easy to see that for z2 = 0 the norm of the Schwarzian operator is

‖SFδ(z)‖ =
4
9(δ − 1), δ > 1,

while for z1 = 0 with a little bit more effort one can show that

‖SFδ(z)‖
2

√
3

(δ − 1), δ > 1.

For arbitrary z ∈ B2 we had to resort to a numerical calculation in AMPL [Fourer
et al. 2003]. The numerical results show that

‖SFδ(z)‖ ≤
2

√
3
(δ − 1), δ > 1.

On the other hand, Pfaltzgraff and Suffridge [2000] have shown that the norm order
of the linear family generated for Fδ is equal to δ; then for δ =

√
3

2 α + 1 the norm
of Schwarzian operator of Fδ is α, so that Fδ ∈ Fα and

‖Ord‖ Fα ≥

√
3

2
α + 1.

Pfaltzgraff and Suffridge [2000] show that an LIF is normal if and only if the
norm order is bounded. Our aim is to study the family Fα, and we shall prove that
it is normal. We begin with some lemmas.
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Lemma 3.5. Let F be a holomorphic mapping in Fα. For z1 = (z1, 0, . . . , 0) ∈ Bn ,

(i)
∣∣S1

11F(z1)
∣∣ ≤

√
n+1 α

1 − |z1|2
,

(ii)
∣∣S1

i i F(z1)
∣∣ ≤

√
n+1 α for i = 2, 3, . . . , n,

(iii)
∣∣Sk

11F(z1)
∣∣ ≤

√
n+1 α

(1 − |z1|2)3/2 for k = 2, 3, . . . , n,

(iv)
∣∣Sk

1 jF(z1)
∣∣ ≤

2
√

n+1 α

1 − |z1|2
for k, j = 2, 3, . . . , n,

(v)
∣∣S1

1 jF(z1)
∣∣ ≤

2
√

n+1 α

(1 − |z1|2)1/2 for j = 2, 3, . . . , n,

(vi)
∣∣S1

i j F(z1)
∣∣ ≤ 2

√
n+1 α for i 6= j 6= 1,

(vii)
∣∣Sk

ii F(z1)
∣∣ ≤

√
n+1 α

(1 − |z1|2)1/2 for k, i = 2, 3, . . . , n,

(viii)
∣∣Sk

i j F(z1)
∣∣ ≤

2
√

n+1 α

(1 − |z1|2)1/2 for k 6= 1, i 6= j 6= 1.

Proof. From (2-1) we have

g11(z1, 0, 0, . . . , 0) =
n + 1

(1 − |z1|2)2 and gi j (z1, 0, 0, . . . , 0) =
n + 1

(1 − |z1|2)
,

for all i, j 6=1. Let Ev be a unit vector in the Bergman metric. Since ‖SF(z1)(Ev )‖≤

α, by setting Ev = (λ, 0, . . . , 0) with λ = (1 − |z1|
2)/

√
n+1 we obtain

∥∥SF(z1, 0, . . . , 0)(Ev)
∥∥2

= (n+1)

(
|S1

11λ
2
|
2

(1−|z1|2)2 +
|S2

11λ
2
|
2

1−|z1|2
+· · ·+

|Sn
11λ

2
|
2

1−|z1|2

)
≤ α2,

whence (i) and (iii) follow. Now consider Ev = (0, 0, . . . , λk, 0, . . . , 0) with λ2
k =

(1−|z1|
2)/(n+1). As above we have that Ev is a unit vector in the Bergman metric.

Since ‖SF(z1, 0, . . . , 0)(Ev )‖≤α then (ii) and (vii) follow. We obtain (vi) and (vii)
analogously, by setting Ev = (0, . . . , λi , 0, . . . , λ j , 0, . . . , 0), where

λi = λ j =
1

√
2

(1 − |z1|
2)1/2

√
n+1

.

Finally, (iv) and (v) are established by letting Ev = (λ1, . . . , λ j , 0, . . . , 0), with

λ1 =
1

√
2

(1 − |z1|
2)

√
n+1

and λ2 =
1

√
2

(1 − |z1|
2)1/2

√
n+1

. �
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Lemma 3.6. If F ∈ Fα we have

(3-1)
∣∣S0

11 F(z1, 0, . . . , 0)
∣∣ ≤

C(n, α)

(1 − |z1|2)2

with

C(n, α) =

(
4n2

+ 2n − 2 +
n+1
n−1

)
α2

+

(
4
√

n+1 + 8
√

n+1
n−1

)
α,

and

(3-2)
∣∣S0

1 j F(z1, 0, . . . , 0)
∣∣ ≤

K (n, α)

(1 − |z1|2)3/2 ,

with
K (n, α) = (16 + 3

√
2)

√
n+1 α + 6(n2

− 1) α.

Proof. Differentiating (1-1) and using Proposition 1.2 we get

S0
i i F(z) = −

1
n−1

n∑
k=1

∂

∂zk
Sk

ii F(z)+
1

n−1

n∑
k=1

n∑
j=1

Sk
i j F(z)S j

ki F(z),

S0
i j F(z) =

∂

∂z j
Si

i i F(z)−
∂

∂zi
Si

i j F(z)+
n∑

k=1

Sk
ii F(z)Si

k j F(z)−
n∑

k=1

Sk
i j F(z)Si

ki F(z)

for i 6= j . Thus, the coefficients S0
i j depend on the Sk

i j . Let F(z1)= F(z1, 0, . . . , 0),
so that for all mappings in Fα we have∣∣S0

11 F(z1)
∣∣ ≤

1
n − 1

n∑
k=1

∣∣∣∣ ∂

∂zk
Sk

11 F(z1)

∣∣∣∣ + 1
n − 1

n∑
k=1

n∑
j=1

|Sk
1 j F(z1)||S

j
k1 F(z1)|,

=
1

n − 1

n∑
k=1

∣∣∣∣ ∂

∂zk
Sk

11 F(z1)

∣∣∣∣ + 1
n − 1

n∑
k=2

n∑
j=2

|Sk
1 j F(z1)||S

j
k1 F(z1)|

+
1

n − 1

n∑
k=2

∣∣Sk
11 F(z1)

∣∣ ∣∣S1
k1 F(z1)

∣∣ + 1
n − 1

∣∣S1
11 F(z1)

∣∣2
.

Therefore Lemma 3.5 implies∣∣S0
11 F(z1, 0, . . . , 0)

∣∣
≤

4(n+1)(n−1)α2

(1 − |z1|2)2 +
2(n + 1)α2

(1 − |z1|2)2 +

n+1
n−1 α2

(1 − |z1|2)2 +
1

n − 1

n∑
k=1

∣∣∣∣ ∂

∂zk
Sk

11 F(z1)

∣∣∣∣ .
Since F ∈ Fα, by taking the unit vector Ev = (λ, 0, . . . , 0) where

|λ|
2
=

(1 − |z1|
2
− |zk |

2)2

(n + 1)(1 − |zk |
2)
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in the Bergman metric, a straightforward calculation shows that

∣∣Sk
11 F(z1, 0, . . . 0, zk, 0, . . . , 0)

∣∣ ≤

√
n+1 α(1 − |zk |

2)

(1 − |z1|2 − |zk |
2)3/2 for k 6= 1.

By considering Sk
11 F(z1, 0, . . . 0, zk, 0, . . . , 0) as a holomorphic function of zk we

deduce from Cauchy’s integral formula that∣∣∣∣ ∂

∂zk
Sk

11 F(z1, 0, . . . , 0)

∣∣∣∣ ≤
4
√

n+1 α

(1 − |z1|2)2 for k 6= 1.

Similarly, ∣∣∣∣ ∂

∂z1
S1

11 F(z1, 0, . . . , 0)

∣∣∣∣ ≤
8
√

n+1 α

(1 − |z1|2)2 .

Using these two inequalities we conclude that∣∣S0
11 F(z1, 0, . . . , 0)

∣∣
≤

(4n2
+ 2n − 2)α2

(1 − |z1|2)2 +

n+1
n−1 α2

(1 − |z1|2)2 +
4
√

n+1 α

(1 − |z1|2)2 +
1

n − 1
8
√

n+1 α

(1 − |z1|2)2 .

For j 6= 1 we have

∣∣S0
1 j F(z1)

∣∣ ≤

∣∣∣∣ ∂

∂z j
S1

11 F(z1)

∣∣∣∣ + ∣∣∣∣ ∂

∂z1
S1

1 j F(z1)

∣∣∣∣
n∑

k=1

∣∣Sk
11 F(z1)

∣∣∣∣S1
k j F(z1)

∣∣ + ∣∣Sk
1 j F(z1)

∣∣∣∣S1
k1 F(z1)

∣∣,
The contribution of the last two summands is at most

2α(n + 1)(n − 1)

(1 − |z1|2)3/2 +
4α(n + 1)(n − 1)

(1 − |z1|2)3/2 ,

while the first two can be estimated using Cauchy’s integral formula:∣∣∣∣ ∂

∂z1
S1

1 j F(z1)

∣∣∣∣ ≤
16

√
n+1 α

(1 − |z1|2)3/2 ,

∣∣∣∣ ∂

∂z j
S1

11 F(z1)

∣∣∣∣ ≤
3
√

2
√

n+1 α

(1 − |z1|2)3/2 .

Putting it all together,

∣∣S0
1 j F(z1)

∣∣ ≤
6α(n2

− 1)

(1 − |z1|2)3/2 +
16

√
n+1 α

(1 − |z1|2)3/2 +
3
√

2
√

n+1 α

(1 − |z1|2)3/2 ,

proving the theorem. �
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It is clear that if u(z1, . . . , zn) is a solution of the system (1-1) then u(z1) =

u(z1, 0, . . . , 0) satisfies

u′′
= S1

11u′
+

n∑
j=2

S j
11φ j + S0

11u and φ′

k = S1
1ku′

+

n∑
j=2

S j
1kφ j + S0

1ku

for k = 2, 3, . . . , n, where φk(z) = ∂u/∂zk .

Lemma 3.7. Let P = P(x), Q = Q(x) be continuous functions defined on [0, 1),
with Q(x) ≥ 0. Let u = u(x), v = v(x) satisfy

u′′
+ Pu + Q ≥ 0, u(0) = 1, u′(0) = 0,

v′′
+ Pv + Q = 0, v(0) = 1, v′(0) = 0.

Then u ≥ v on [0, x0), where x0 is the first zero of v.

Proof. For ε > 0, let uε = u + εy, where y is solution of y′′
+ Py = 0, y(0) = 0,

y′(0)= 1. Then w = u′
εv−v′uε satisfies w(0)= ε > 0 and w′

≥ Q(uε−v). Because
of the initial conditions of uε and v, the function w has w′ > 0 on an interval (0, r).
But then w > 0 (in fact, ≥ ε) on that interval, which implies that u′

ε/uε > v′/v if
v > 0, thus uε > v. It follows from this argument that the first zero of uε cannot
occur before the first zero of v, and the lemma obtains after letting ε → 0. �

Lemma 3.8. Let u be a solution of the system (1-1) satisfying u(0, . . . , 0) = 1,
∇u(0, . . . , 0) = 0 and Pk

i j = Sk
i j F with F ∈ Fα. Then there exists r > 0 and δ > 0

such that |u| > δ > 0 for |z| < r .

Proof. Let z0 ∈ Bn be a zero of u of smallest euclidean norm, that is, u(z0) =

0 and u(z) 6= 0 for |z| < |z0| = r0. Since Fα is a linearly invariant family we
can assume that z0 = (x0, 0, . . . , 0). We shall study the zeros of the function
u(x) = u(x, 0, . . . , 0) in 0 < x < 1. If F(x) = F(x, 0, . . . , 0), then u(x) and
ϕk(x) = (∂u/∂zk)(x, 0, . . . , 0) satisfies the system

(3-3)

u′′(x) =

n∑
k=1

Sk
11 F(x)ϕk(x) + S0

11 F(x)u(x),

ϕ′

j (x) =

n∑
k=1

Sk
1 j F(x)ϕk(x) + S0

1 j F(x)u(x), j = 2, . . . , n,

with initial conditions u(0) = 1 and ϕk(0) = 0. With θ = (ϕ1, . . . , ϕn, u), we can
rewrite the system (3-3) as

(3-4) θ ′(x) = A(x) · θ(x), θ(0) = (0, 0, . . . , 1),

where A(x) is the (n+1)×(n+1) matrix of coefficients of the system. Let f 2(x)=

‖θ(x)‖2 be the square of the Euclidean norm of θ(x). Using · to represent the
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Euclidean inner product of vectors in Cn+1
= R2n+2, we have

f ′(x) f (x) = θ ′(x) · θ(x) = A(x)θ(x) · θ(x);

therefore f ′(x) f (x) ≤ ‖A(x)‖‖θ(x)‖2
= ‖A(x)‖ f 2(x), so

f ′(x)

f (x)
≤ ‖A(x)‖.

Since f (0) = 1 we conclude that f (x) ≤ e
∫ x

0 p(s) ds , where p(s) stands for the
bounds obtained for ‖A(s)‖ from Lemmas 3.5 and 3.6. In particular, we have

|u′(x)| ≤ e
∫ x

0 p(s) ds, |ϕk(x)| ≤ e
∫ x

0 p(s) ds for k = 2, . . . , n.

Setting U 2(x) = |u(x)|2, we obtain 2UU ′
= 2 Re(u′ū), hence (U ′)2

+ UU ′′
=

Re(u′′ū) + |u′
|
2, U (0) = 1, U ′(0) = 0. Since |U ′

| ≤ |u′
|, we have

UU ′′
≥ Re(u′′ū).

Using this in (3-3) we get

UU ′′
≥ Re{S0

11 F(x)}U 2
+ Re

(
q(x)ū

)
,

where q(x) = S1
11 F(x)u′(x) +

∑n
k=2 Sk

11 F(x)ϕk(x); hence

U ′′
≥ −

∣∣S0
11 F(x)

∣∣ U − |q(x)|,

or U ′′
+ P(x)U +Q(x)≥ 0, where P and Q are the bounds obtained from Lemmas

3.5 and 3.6 for |S0
11 F(x, 0, . . . , 0)| and |q(x)|, respectively. It follows now from

Lemma 3.7 that U ≥ v on [0, x0), where x0 is the first zero of v, which is solution
of v′′

+ Pv + Q = 0, v(0) = 1, v′(0) = 0. The lemma follows taking r < x0. �

Remark 3.9. It is clear that we need to estimate the first zero of the function
v. In fact, we proved that |S0

11 F(x, 0, . . . , 0)| ≤ c(n, α)(1 − x2)−2
= P , where

c = c(n, α) is a constant. Also one can obtain from Lemmas 3.5 and 3.6 a bound
of |q(x)| of the form

|q(x)| ≤
M

(1 − x2)δ+1 = Q,

where M =
√

n(n+1) α and δ also depends on n and α. Then v is a solution of

v′′
+

c
(1 − x2)2 v +

M
(1 − x2)δ+1 = 0, v(0) = 1, v′(0) = 0.

In general, for given constants c, M, δ, one will be able to estimate the first zero
of v only numerically. However, if δ < 1 then by comparison, it follows that the
first zero of v does not occur before the first zero of the solution w of

w′′
+

c
(1 − x2)2 w +

M
(1 − x2)2 = 0, w(0) = 1, w′(0) = 0,
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and this can be determined analytically. Indeed we have w = (M + 1) yc − M ,
where yc is the solution of

y′′
+

c
(1 − x2)2 y = 0, y(0) = 1, y′(0) = 0,

which can be found, for example, in [Kamke 1930]. Thus the first zero of w is the
solution of the (transcendental) equation yc(x) = M/(1+M).

Theorem 3.10. Fix α < ∞. The family

Fα =
{

F : Bn
→ Cn

| F(0) = 0, DF(0) = Id, ‖SF(z)‖ ≤ α
}

is a normal family.

Proof. Let F ∈ Fα. From Proposition 1.2 we have

(3-5) F =

(
u1

u0
, . . . ,

un

u0

)
= ( f1, . . . , fn),

where ui and u0 = 1−1/n+1 are linearly independent solutions of (1-1) such that
(∂ui/∂zk)(0) = 0 for all k 6= i and (∂ui/∂zi )(0) = 1 for i = 1, . . . , n; see [Yoshida
1984]. From equation (2-2) we deduce that

D2 F(0)(Ev, Ev) = SF(0)(Ev, Ev) + 2 (∇u0(0) · Ev) Ev.

Hence |A2(z)| will be uniformly bounded for F in the family Fα provided that the
same holds for the derivatives

∣∣(∂u0/∂z j )(0)
∣∣ for j = 1, . . . , n. To show the latter,

consider the composition G = T ◦ F with the Möbius transformation given by

T (z) =
z

1 + z · ā
,

where we have introduced the inner product 〈z, w〉 = z1w1 + · · · + znwn . Using
(3-5), we get

G(z) =
F(z)

1 + 〈F(z), ā〉
=

( u1

u0 + a1u1 + · · · + anun
, . . . ,

un

u0 + a1u1 + · · · + anun

)
=

( ũ1

ũ0
, . . . ,

ũn

ũ0

)
,

where ũ0 = u0 + a1u1 + · · · + anun and ũi = ui for i = 1, . . . , n. Differentiating
and setting ak = (∂u0/∂zk)(0) for k = 1, . . . , n, we obtain ∇(ũ0)(0) = 0. This
may introduce a pole of G but away from the origin. The function ũ0 satisfies the
system

∂2ũ0

∂zi∂z j
(z) =

n∑
k=1

Sk
i j F(z)

∂ ũ0

∂zk
+ S0

i j F(z)ũ0(z), ũ0(0) = 1, ∇ũ0(0) = 0,
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and in view of Lemma 3.8, ũ0 does not vanish on Br for some r > 0. At the same
time, since satisfies ũi (0) = 0 and |∇ũi (0)| = 1 for each i = 1, . . . , n, it is easy
to see from (1-1) and the bounds in Lemmas 3.5 and 3.6 that the functions ũi will
be uniformly bounded on compact subsets. Therefore, the class of mappings G
obtained with this normalization is normal on |z| < r0 with r0 < r ; then there exists
s0 > 0 such that G(Bn

r0
) ⊃ Bn

s0
. Since the image of G := ( f̃1, . . . , f̃n) covers a ball

of radius s0 and

F =
G

1 − 〈a, f̃ 〉

is holomorphic, we conclude that |a1|
2

+ · · · + |an|
2

≤ 1/s2
0 . This shows that

|∇u0(0)| =
√

|a1|2 + · · · + |an|
2 is uniformly bounded and the theorem follows. �

In analogy to the result of Pommerenke cited on page 206, we have:

Theorem 3.11. ‖Ord‖ Fα ≤

√
n+1
2

α + λα, where λα =
2
√

n
n + 1

ord Fα.

Proof. Equation (2-2) yields D2 F(0)(Ev, Ev) = SF(0)(Ev, Ev) + 2 (∇u0(0) · Ev) Ev. Is
not difficult to see that

∂u0

∂zk
(0) = −

1
n + 1

n∑
j=1

∂2 f j

∂z j∂zk
(0);

hence, taking the Euclidean norm and the supremum over all unit vectors Ev, we
obtain

|A2(F)| ≤

√
n+1
2

‖SF(0)‖ + |∇u0(0)|,

where ‖ · ‖ is the Bergman metric. Therefore

‖Ord‖ Fα ≤

√
n+1
2

α + λα. �

Nehari [1949] proved that if f belongs to the univalent class in the unit disk,
the Schwarzian derivative of f has norm at most 6; but this has no counterpart in
higher dimensions, since the norm order of univalent mappings is infinite.

Corollary 3.12. Let F be a convex holomorphic mapping in B2, then

‖SF(z)‖ ≤ αK , where αK =
2

√
3

+
4
√

2

3
√

3
· 1.761.

Proof. Barnard, FitzGerald and Gong [Barnard et al. 1994] established that 3
2 ≤

ord K (B2) ≤ 1.761 for the family of convex mappings K (B2). Using (2-2) and
setting the Bergman norm in the origin, we deduce that

‖SF(0)(Ev)‖ ≤
√

3 |D2 F(0)(Ev)| + 2|∇u0(0) · Ev|,
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where | · | is the Euclidean norm. Thus, taking the supremum over all vectors with
‖Ev‖ = 1, we obtain

‖SF(0)‖ ≤
2

√
3

‖Ord‖ K (B2) +
4
√

2

3
√

3
ord K (B2) ≤

2
√

3
+

4
√

2

3
√

3
· 1.761.

To establish the estimate at an arbitrary point in the ball, apply the appropriate
Koebe transform and Theorem 2.3. �

The order of K (Bn) for n ≥ 2 is unknown, but Liu [1989] has established
an upper bound in any dimension. The conjecture in [Barnard et al. 1994] that
ord K (Bn) =

1
2(n +1) for n ≥ 2 was shown to be false by Pfaltzgraff and Suffridge

[2000].

Definition 3.13. A holomorphic mapping F ∈ Fα is an extremal order function for
Fα if its order is equal to the order of family Fα.

Theorem 3.14. Let F be a extremal order function for the family Fα. There exists
{zk} ∈ Bn with |zk | → 1 when k → ∞, such that

lim
k→∞

|F(zk)| = ∞.

Proof. Let F = ( f1, . . . , fn) = (u1/u0, . . . , un/u0) be an extremal order mapping
and consider the Möbius transformation

G =

(
f1

1 + ε f1
, . . . ,

fn

1 + ε f1

)
,

for ε > 0. We have SF(z) = SG(z), G(0) = 0, DG(0) = Id and we can write
G = (u1/ũ0, . . . , un/ũ0), where ũ0 = u0 + εu1. Differentiating with respect to z1

and evaluating in the origin, we obtain

∂ ũ0

∂z1
(0) =

∂u0

∂z1
(0) + ε.

But is easy to see that

∂u0

∂z1
(0) =

1
n + 1

n∑
j=1

∂2 f j

∂z1∂z j
(0) =

2
n + 1

ord Fα.

If G were holomorphic in the ball, it would lie in Fα, contradicting the fact that F is
an extremal order function. Hence there must exist a point zε such that 1+ε f1(zε)=

0, that is, f1(zε) = −1/ε. It is also clear that |zε| → 1 when ε → 0, which finishes
the proof. �
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4. An estimate for λα

To find explicit bounds for λα in terms of α we have to estimate the radius s0 of
a ball covered by the function G = (u1/u0, . . . , un/u0) considered in the proof of
Theorem 3.10. Recall that the ui formed a set of linearly independent solutions of
(1-1) with initial conditions u0(0) = 1, ∇u0(0) = 0, ui (0) = 0 and |∇ui (0)| = 1
for i = 1, . . . , n. Set u(x) = uk(x, 0, . . . , 0) and

θ(x) =

(
∂u
∂z1

(x),
∂u
∂z2

(x)(1 − x2)−
1
2 , . . . ,

∂u
∂zn

(x)(1 − x2)−
1
2 , u(x)(1 − x2)−1

)
.

It follows from Lemmas 3.5 and 3.6 that θ ′
= Bθ for some modification B of the

matrix A of (3-4), such that

‖B(x)‖ ≤
k

1 − x2 with k = δ(n, α)+ 2,

where δ(n, α) → 0 when α → 0. As in the proof of Lemma 3.8 we obtain

(4-1) ‖θ(x)‖ ≤

(
1 + x
1 − x

)k/2

.

In particular, taking u = u0 we get |u0(x)| ≤ (1 − x2)
(1+x

1−x

)k/2
. Now we need to

find a lower bound for |ui |, i = 1, . . . , n. Consider the real function U (x)= |u(x)|,
for which

U ′′
≥ −

∣∣∣∣S1
11G(x)

∂u
∂z1

(x) + · · · + Sn
11G(x)

∂u
∂zn

(x) + S0
11G(x)u(x)

∣∣∣∣.
Using (4-1) and Lemmas 3.5 and 3.6, we obtain

U ′′
+

C
(1 − x2)2 U ≥ −

√
n(n + 1) α

1 − x2

(
1 + x
1 − x

)k/2

, U (0) = 0, U ′(0) = 1.

Then U ≥ y until the first zero x = xα of the solution y of

y′′
+

C
(1 − x2)2 y = −

√
n(n + 1) α

1 − x2

(
1 + x
1 − x

)k/2

, y(0) = 0, y′(0) = 1.

Hence

|G(x)| ≥

√
n y(x)

(1 − x2)
( 1+x

1−x

)k/2 = φ(x).

It follows that G(Bxα
) covers a ball of radius Mα = max{φ(x) : 0 < x ≤ xα}. From

the proof of Theorem 3.10 we finally see that

λα ≤
1

Mα

.
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AVENIDA LAS TORRES 2640
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