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The set of diagrams consisting of an annulus with a finite family of curves
connecting some points on the boundary to each other defines a category in
which a contractible closed curve counts for a certain complex number δ.
For δ = 2 cos(π/n) this category admits a C∗-structure and we determine
all Hilbert space representations of this category for these values, at least in
the case where the number of internal boundary points is even. This result
has applications to subfactors and planar algebras.

1. Introduction

The annular Temperley–Lieb algebra ATL has a parameter δ and is linearly
spanned by isotopy classes of (m, n) diagrams. For m and n nonnegative integers,
an (m, n) diagram consists of an annulus with m marked points on the inside circle
and n marked points on the outside connected to each other by a family of smooth
disjoint curves, called strings, inside the annulus. There may also be (necessarily
closed) curves that do not connect boundary points. If such a curve is homologi-
cally trivial in the annulus, the diagram may be replaced by the same one with the
closed curve removed, but multiplied in the algebra by δ. By definition a basis of
ATL consists of such diagrams with no homologically trivial circles. Multiplication
of an (m, p) diagram T by a (p, n) diagram S is achieved by identifying the outside
boundary T with the inside boundary of S in such a way that the boundary points
coincide, smoothing the strings at the p common marked boundary points, and
removing the common boundary to produce the annular diagram ST .

To the best of our knowledge, the first explicit investigation of ATL appeared in
[Jones 1994], where it was encountered in a concrete form as an algebra of linear
transformations on the tensor powers of the n×n matrices (and δ= n2). This study
was relatively simple because of the concrete situation and the fact that as soon as
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n is greater than 2 the algebra is “generic” and the structure of the representations
does not depend on n. Also, homologically nontrivial circles in the annulus are no
different from contractible ones, which, as we shall see, is quite special.

The second explicit analysis of ATL appeared in [Graham and Lehrer 1998],
where the abstract algebra more or less as defined in the first paragraph was defined
and studied in its own right. One can no longer avoid homologically nontrivial
strings, and the version of ATL in that article introduced a second parameter to
account for this. Graham and Lehrer produced an impressively complete analysis
and we have been greatly inspired by their results. In [Jones 2001] we showed
how to use ATL to obtain results about subfactors. It was recognized that, for
a general planar algebra P , the operadic concept of a module over P is the same
thing as an ordinary module over a canonically defined algebra spanned by annular
tangles in P . This led to the perhaps confusing notion of “TL-module” in [Jones
2001], which in fact means an ordinary module over the annular algebra. Here we
work with a generalization of ATL, which permits shadings on tangles of either
parity. The affine TL algebroid AffTL with parameter δ ∈ C is the category with
objects the elements of N ×{+,−}, and morphisms from (m, sgn) to (n, sgn′) the
elements of the vector space AffTL(m,sgn),(n,sgn′) having as basis the set of shaded
affine (2m, 2n)-diagrams. Multiplication between composable morphisms is the
linear extension of the map on basis elements given by βα = δc(β◦α)(β ◦α). A
convention determines how a diagram is shaded according to the sign in its index.

A representation of AffTL is a covariant functor from this category into the
category of vector spaces. Applications to subfactors require that we restrict atten-
tion to representations on vector spaces with positive-definite and AffTL-invariant
natural sesquilinear forms — these are the “Hilbert” modules. The main result of
this paper is a complete characterization of the irreducible Hilbert AffTL modules.

In analogy with the situation for the ordinary Temperley–Lieb algebra, the nat-
ural candidates for the irreducible modules of AffTL are the quotients of

AffTL(k,sgn′),(n,sgn)

by diagrams with fewer than k through strings (for k ∈ 2N). It makes sense to
restrict to sgn′

= +, and in this annular situation we also need to introduce a
parameterω to correspond to the effect of rotation on the internal annulus boundary,
and quotient by this relation as well. (In the case k = 0, which is slightly different
but no more complicated, factors of ω correspond instead to pairs of homologically
nontrivial curves in the annulus.) The resulting vector spaces are denoted V k,ω

n,sgn.
It turns out that every irreducible representation of the algebroid is isomorphic to
a quotient of some V k,ω

n,sgn; on the other hand, if the natural sesquilinear form on
V k,ω

n,sgn is positive semidefinite, then in fact its quotient by the length zero vectors is
an irreducible representation (denoted Vk,ω

n ).
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In [Jones 2001] it was shown that in the generic case the form is actually positive
definite on V k,ω

n,sgn. Here we determine the exact set of parameter values corre-
sponding to the irreducibles in the nongeneric case. The main result (for the case
k positive; again, k = 0 is similar) is that when δ = 2 or 2 cos πa , then Vk,ω exists
if and only if δ = 2 and ω = 1, or ω = q2r where r is such that k < r ≤ a/2 and
q + q−1

= δ. As a corollary to the proof, we obtain the generating functions for
the dimensions of the irreducible modules in terms of Tchebychev polynomials.

The first main ingredient in our proof, which was used in the paper just men-
tioned, is the observation that Vk,ω

n can be viewed as an ordinary Temperley–Lieb
module, and thus decomposed into a direct sum of the irreducible modules of
this algebra. Positive definiteness of the sesquilinear form is checked on these
summands individually. Checking the form on the copy of the trivial Temperley–
Lieb representation, which is the image of the Jones–Wenzl idempotent, is the
difficult part. A formula of Graham and Lehrer [1998] settles this question at each
level n of the module; one of the main components of our paper is a reworking of
their result to suit our context. There are some simple nongeneric cases in which
this formula alone serves to prove or disprove the existence of Vk,ω

n , but for the
general case, once n is large enough so that the abstract Temperley–Lieb algebra
is no longer semisimple we need to pass to a quotient of V k,ω

n before we can use
the formula. Once we obtain the suitable quotient, the inductive proof of positivity
on the summands goes through, and determining when the trivial representation is
present can be done as usual with the Graham–Lehrer formula.

The paper is structured as follows. In Chapter 2 we establish notation and recall
the relevant background material concerning the ordinary Temperley–Lieb alge-
bra. Chapter 3 introduces the affine algebra and the family of vector spaces V k,ω

n .
Chapter 4 is devoted to Graham and Lehrer’s theorem. In Chapter 5 we state
and prove a necessary condition on ω for Vk,ω

n to exist in the nongeneric case;
namely, that ω = e

π i
a for some integer r with k < r ≤ a/2, where δ = 2 cos πa .

In Chapter 6 it is shown that this condition is in fact sufficient, and thus, together
with the results of [Jones 2001] (along with a brief analysis of the case δ = 2), it
completely characterizes the nongeneric irreducible Hilbert space representations
of the algebra AffTL.

2. Notation

We use the notation [n] =
qn

− q−n

q − q−1 throughout this paper.

The Tchebychev polynomials Pn(x) = [n] with x = q + q−1 satisfy Pn+1 =

x Pn(x)−Pn−1(x) and we define essentially the same polynomials Qn(z) by Q0 =0,
Q1 = 1 and Qn+1(z)= Qn(z)− zQn−1(z). Note that xn−1 Qn(x−2)= [n].
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For the entirety of this paper, if µ is a complex number we let ω be such that
µ=

√
ω+

√
ω

−1. We have ω = −1 if and only if µ= 0.
It will be important to distinguish clearly between the abstract Temperley–Lieb

algebra defined by multiplication on a basis of diagrams, and a quotient of it which
supports a C∗-algebra structure, and is only defined for special values of the param-
eter. So let TLm(δ) be the *-algebra over C with basis formed by systems of disjoint
curves (called strings) in a rectangle with m boundary points on the top and bottom
as usual, with multiplication of diagrams α and β defined by stacking α on top of
β and removing closed strings with a multiplicative factor δ. See [Kauffman 1987]
and [Jones 1999] for details. (The ∗ structure is defined by reflecting diagrams in
a straight line half way between the bottom and top of a rectangle.)

It is important to note that there is a natural inclusion of TLn in TLn+1, obtained
by adding a new through string to the right of a basis element of TLn . We will often
make the identification of TLn with a subalgebra of TLn+1 without comment.

Here is a picture of an element Ei in TLn , where i = 1, . . . , n − 1:

Ei =

i1 2

In [Jones 1983], for δ ≥ 2 and δ= 2 cosπ/a for each integer a = 3, 4, 5, . . . we
constructed a tower of C∗-algebras, which we will call TLn for n = 1, 2, 3, . . .
generated by the identity and orthogonal projections ei , i = 1, 2, . . . , n −1, which
satisfy the relations ei ei±1ei = δ−2ei and ei e j = e j ei for |i − j | ≥ 2. It is well
known (see [Goodman et al. 1989]) that there is a *-algebra homomorphism 8n

from TLn onto TLn sending Ei onto δei . This homomorphism is compatible with
the inclusions of TLn ⊆TLn+1 and TLn ⊆TLn+1. 8 is “generically” (i.e. for δ≥2)
an isomorphism. When 8 is not an isomorphism it is known (see below) that its
kernel is the ideal generated by the “Jones–Wenzl” (JW) idempotent pn ∈ TLn

defined in [Wenzl 1987] by the inductive formula

p1 = 1, pn+1 = pn −
[n]

[n + 1]
pn En pn,

with δ = q + q−1 as long as [ j] 6= 0 for j = 1, 2, . . . , n + 1.
The unique irreducible representation of TLn on which E1 (hence all Ei ) acts by

zero will be called the trivial representation. Note that this passes to TLn exactly
when n < a − 1.
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For the convenience of the reader we give a proof that the kernel of 8 is the
ideal generated by the JW idempotent. Our proof will actually give a set of basis
elements of TLn that span a subalgebra mapped isomorphically onto TLn by 8.

Theorem 2.1 (Goodman–Wenzl). The kernel of the map 8 : TLn → TLn is the
ideal generated by pa−1 for n ≥ a − 1.

Proof. First we construct a sequence An of subalgebras of TLn . For n < a − 1
let An = TLn and proceed inductively, setting An+1 = An En An for n ≥ a − 2.
(Clearly An has a basis consisting of words on the Ei ’s.) Although the An are
not included in one another, each is individually an algebra. To see this use the
maps (“conditional expectations”) En : TLn+1 → TLn defined on the diagram basis
by connecting the rightmost top and bottom boundary points of a TLn+1 diagram
to give a TLn diagram. It is clear that En(x En y) = xy for x, y ∈ TLn and that
Enx En = En−1(x)En for x ∈ TLn .

One then proves inductively the following three assertions:

(i) An is a subalgebra of TLn .
(ii) En(An+1)⊆ An .
(iii) An is an An−1-An−1 bimodule under multiplication in TLn .

Now let In be the ideal in TLn generated by the JW idempotent pa−1 defined
above. Observe that In ⊆ In+1. It follows immediately from the standard form
of words on the Ei ’s (see e.g. [Jones 1983]) that TLn+1 = (TLn)En(TLn)⊕ C id
for all n. So since 1 − pa−1 ∈ (TLn)En(TLn) for n ≥ a − 1, we have TLn+1 =

(TLn)En(TLn) mod (In+1) for n ≥ a − 1. Thus by induction

(*) TLn+1 = An En An mod (In+1) for n ≥ a − 1.

We now show, also by induction, that 8|An is an isomorphism onto TLn . This
assertion for n = a − 1 is in some sense the main point of [Jones 1983] since
ker(8a−1) is spanned by 1 − pa−1. Now consider the commutative diagram

An ⊗An−1 An
x ⊗ y 7→ x En y- An+1

TLn ⊗TLn−1 TLn

8⊗8

? x ⊗ y 7→ xen y- TLn+1

8

?

All the maps in this diagram are A-bimodule homomorphisms where TL be-
comes an A-A bimodule by transport of structure. It is shown in [Goodman et al.
1989] that the bottom horizontal arrow is an isomorphism. The top horizontal arrow
is surjective. It follows that the restriction of 8n+1 to An+1 is an isomorphism.

Together with (∗), this proves the theorem. �
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Thus the tower of algebras TLn admits a Bratteli diagram, which was shown in
[Jones 1983] to be of the form below (exhibited for δ = 2 cosπ/7).

47

1 1

1

2 1

1

1

32

45

5 9 5

14 514

2814 19

1942

This Bratteli diagram can alternatively be thought of as giving the Hilbert space
representations of TL, which may be obtained explicitly as follows. For each n =

0, 1, 2, . . . and each t ≤ n with t ≡ n mod 2, a (t, n) planar diagram is defined
to be a rectangle with n marked points on the top and t on the bottom joined
pairwise by disjoint smooth curves inside the rectangle. A curve is a through
string if it connects the bottom to the top of the rectangle. W t

n is defined to be the
vector space whose basis is the set of (t, n) planar diagrams with t through strings.
TLn acts on W t

n by concatenation of diagrams (as multiplication is defined in TLn

itself), except that the result is zero if there are fewer than t through strings in the
concatenated diagram. There is an invariant inner product 〈 · , · 〉 on W t

n defined
by 〈α, β〉 = β∗α, which is an element of the one dimensional vector space W t

t .
This inner product is positive semidefinite and the quotient Wt

n is a Hilbert space
affording a representation of TLn . This result is well known to the experts but
probably does not appear anywhere in the literature.

Since the source of positivity for our annular Temperley–Lieb modules will be
that of this inner product, we give a reasonably detailed proof here — tracking
positivity down to its von Neumann algebraic origin.
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Theorem 2.2. For δ ≥ 2 or δ = 2 cosπ/a, for a = 3, 4, 5, . . . , the inner product
on W t

n defined in the previous paragraph is positive semidefinite; that is, 〈α, α〉 ≥ 0
for all α.

Proof. We will effectively identify the representation on Wt
n with the action on

a principal left ideal in TLn , which has a positive definite inner product coming
from the Markov trace of [Jones 1983].

The algebra TLn was analyzed in [Jones 1983] using the basic construction.
Adopting that technique, by induction, the irreducible representations ψt for 0 ≤

t ≤ a −2 with t ≡ n mod 2 so obtained are uniquely defined up to equivalence by
the following property: if p is the largest integer such that ψt(e1e3e5 . . . .e2p−1) is
not zero, then p =

1
2(n−t). For each such t let qt be the minimal central idempotent

in TLn corresponding to ψt and define another inner product { · , · } on W t
n by

{α, β} = tr(8(β̃∗α̃)qt)

where tr denotes the Markov trace of [Jones 1983] and, given a basis diagram
γ ∈ W t

n , we write γ̃ for the TLn,n diagram obtained from γ in the following fashion:

t strings

γ

p caps

Now observe that if β∗α has fewer than t through strings then 8(β̃∗α̃)qt = 0.
This is because β̃∗α̃ may be written in the form γ1 E1 E3 E5 . . . .E2k−1γ2 with k >
1
2(n − t). On the other hand if β∗α has t through strings then

β̃∗α̃ = 〈α, β〉8(E1 E3 E5 . . . E2p−1).

Thus in this case the Markov trace of (β̃∗α̃)qt is a positive multiple, K , depending
only on n, δ, and t , of 〈α, β〉. Combining the two possibilities for the number of
through strings we see that in any case there is a K ≥ 0 such that {α, β} = K 〈α, β〉.
Since the trace on a II1 factor gives a positive definite inner product, { · , · } is
positive semidefinite and so is 〈 · , · 〉. �

We shall now obtain formulae for the dimensions of the individual Wt
n for δ =

2 cosπ/a. To this end let dt,m = dim(Wt
t+2m) for t = 0, 1, 2, . . . , a − 2 and m =

0, 1, 2, . . . . Then the meaning of the Bratteli diagram is precisely that

dt,m = dt−1,m + dt+1,m−1,



226 VAUGHAN F. R. JONES AND SARAH A. REZNIKOFF

with dt,−1 = 0 for all t , da−1,n = 0 for all n and d−1,0 = 1 but d−1,n = 0 for n > 0.
By induction these relations uniquely determine the dt,n . If we form the generating
functions

Dt(z)=

∞∑
n=0

dt,nzn

then these relations are equivalent to

zDt+1 = Dt − Dt−1,

with Da−1 = 0 and D−1 = 1.
Thus any power series Dt(z) satisfying these conditions must be the generating

functions for the dt,n . But if Qr are the modified Tchebychev polynomials defined
above then setting Dt(z)= Qa−t−1(z)/Qa(z)we see that the relations are satisfied.

We see we have proved the following.

Theorem 2.3. For δ = 2 cosπ/a and all integers t ≥ 0, the generating function
Dt(z)=

∑
∞

n=0 dim Wt
t+2nzn is equal to Qa−t−1/Qa .

Remark 2.4. The ordinary Temperley–Lieb algebras may be turned into an al-
gebroid in the obvious way with objects being the nonnegative integers and mor-
phisms from m to n being linear combinations rectangular Temperley–Lieb dia-
grams with m points on the bottom boundary and n on the top. (So the morphisms
are the zero vector space if m and n are different modulo 2.) It is clear that if we
define for each t the vector space (graded by m), Wt

= {Wt
m} to be zero if t < m

or t and m are not equal modulo 2, then these are the Hilbert space modules over
the algebroid.

3. Affine Temperley–Lieb

Motivated by a conjecture of Freedman and Walker, we are going to define a
slightly different version of the annular Temperley–Lieb algebra from that of [Jones
2001]. It will be essentially the same as that of [Graham and Lehrer 1998]. The
difference is in how isotopies are required to act on the boundary. In order to avoid
confusion with the definitions of [Jones 2001], we will here call our diagrams
“affine” rather than annular.

In the following definition, for a positive integer k, {k} will denote the set of
k-th roots of unity in C. “The” annulus A will mean the set of complex numbers z
with 1 ≤ |z| ≤ 2.

Definition 3.1. Let m and n be two nonnegative integers equal mod 2. An affine
(m, n) TL diagram is the intersection with the annulus of a system of smooth closed
curves (strings) in C that meet the boundary of the annulus transversally, precisely
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in the points {m} and 2{n}. Such diagrams are considered to be the same if they
differ by isotopies of the annulus which are the identity on the boundary.

An affine TL diagram is called connected if it has no closed curves in the interior
of the annulus.

A through string in an affine TL diagram is a string whose end points lie on
different boundary components of A.

To make the set of all affine TL diagrams into a category we compose an (m, p)
diagram α with a (p, n) diagram β by β◦α= O(2β∪α), where we have smoothed
the strings of α and 2β where they meet and O is the transformation of C which
sends reiθ to

√
reiθ . (Smoothing could be avoided by requiring the isotopies to be

the identity in a neighborhood of the boundary and insisting that the strings be C∞

perpendicular to the boundary.)
If m and n are even, an affine TL diagram admits a shading, that is, a 2-coloring

of the connected components of the complement of the strings in A, so that two
components whose closures meet have different colors. The precise category that
will interest us is the category with two objects (n,±) for each nonnegative inte-
ger n and where the set of morphisms from (m,±) to (n,±) is the set of shaded
affine (2m, 2n) TL diagrams. Shadings are determined by the following convention
where + means shaded and − means unshaded: if β is a diagram giving a mor-
phism from (m, sgn) to (n, sgn′) then on the inner boundary of A a small region
close to 1 and in the first quadrant is shaded according to sgn and a small region
close to 2 and in the first quadrant is shaded according to sgn′. We illustrate this
here by giving an example of a morphism from (2,−) to (3,+).

Given an affine TL diagram α, α̂ will denote the connected diagram formed by
removing all contractible closed strings from α, and c(α) will be the number of
contractible closed strings in α.

Definition 3.2. The affine TL algebroid AffTL with parameter δ ∈ C will be the
category with objects the elements of N ∪{0}× {+,−}, and where the set of mor-
phisms from (m,±) to (n,±), denoted AffTL(m,±),(n,±), is the vector space having
as basis the set of shaded connected affine TL (2m, 2n) diagrams as above, with
multiplication between composable morphisms defined to be the linear extension
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of the map on basis elements given by

βα = δc(β◦α)β̂ ◦α.

A representation of AffTL will be a covariant functor from this category into the
category of vector spaces.

The transformation z 7→ 2/z̄ of C preserves affine TL diagrams and so defines
a conjugate-linear antiinvolution ∗ of the algebroid AffTL. A representation π of
AffTL will be called a Hilbert representation if the representing vector spaces are
Hilbert spaces and π(α∗)= π(α)∗ for all diagrams α.

Remark 3.3. Having taken linear combinations of annular diagrams we can now
give a meaning to an annular diagram which also contains a (contractible) rectangle
with 2m boundary points labeled by an element x ∈ TLm . Such a diagram will
mean the linear combination of annular diagrams obtained by writing x as a linear
combination of basis elements and inserting those basis elements in the rectangle
to obtain a linear combination of AffTL elements. The beginning boundary point
on the rectangle would need to be marked if there were any ambiguity.

Hilbert representations admit an obvious direct sum operation and in this paper
we wish to classify all Hilbert representations into the category of finite dimen-
sional Hilbert spaces. They will all be quotients of a universal family which we
now define.

For the rest of this section we suppose that sgn is a fixed sign, + or −, and all
statements are to be true for both values of sgn.

Definition 3.4. For any positive integer k and complex number ω let V k,ω
n,sgn be the

graded vector space (graded by the subscripts, in (N ∪ {0})× {+,−}) that is the
quotient of AffTL(k,+),(n,sgn) by the subspace spanned by all diagrams with fewer
than 2k through strings (so that V k,ω

n,sgn = 0 for n < k) and all elements of the form
αρ−ωα, where ρ ∈AffTL(k,+),(k,+) is the diagram all of whose strings are through
strings and for which 1 is connected to 2e4π i/2k . (We will use the notation ρk if we
need to specify the actual number of strings ρ has. Note that ρk

k is the rotation by
2π .)

For ω 6= −1 and µ 6= δ we let V 0,ω
n,sgn be the graded vector space (graded by

(N ∪ {0})× {+,−}) that is the quotient of the vector space AffTL(0,+),(n,sgn) by
the linear span of elements of the form ασ ∗σ − µ̄µα, where σ is the diagram in
AffTL(0,+),(0,−) having exactly one closed homologically nontrivial (in A) string.

For k = 0 and µ = δ we let V 0,ω
n,sgn be the vector space with basis the set of all

ordinary Temperley–Lieb diagrams in a disc with boundary points being the 2n-th
roots of unity, and having the shading determined by sgn. This is acted on in the
obvious way by AffTL. Note also that it is the quotient of AffTL(0,sgn),(n,sgn) by
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the relation that sets a diagram equal to any other diagram with the same system
of connections between boundary points.

For ω = −1 (hence µ= 0) we let

(a) V 0,−1,sgn
n,sgn be the quotient of the vector space AffTL(0,sgn),(n,sgn) by the linear

span of elements of the form ασ ∗σ , and

(b) V 0,−1,−sgn
n,sgn be the quotient of the vector space AffTL(0,−sgn),(n,sgn) by the linear

span of elements of the form ασ ∗ (or ασ according to sgn).

Remark 3.5. Note that V 0,ω
n,sgn depends on µ only through ω (as µ=

√
ω+

√
ω

−1),
so using ω in the notation is justified.

The special treatment of the case ω= −1 is unfortunate but unavoidable. If one
defined two different such representations in all cases, then if k 6= 0 they would
be isomorphic via either ρ or a diagram with one homologically nontrivial circle,
but this last map is not invertible if µ = 0. Also of course these two represen-
tations V 0,−1,± are inequivalent since the two spaces graded by 0 have different
dimensions.

Remark 3.6. Since composition of tangles does not increase the number of through
strings and the action of tangles on the inside annular boundary commutes with the
action on the outside, the V k,ω become modules over AffTL by composition in that
category.

Remark 3.7. Observe that V k,ω
n,± is finite dimensional for fixed k and n. We will

need their dimensions, which can be calculated by counting diagrams exactly as in
[Jones 2001]:

(a) For k > 0 and n ≥ k, dim V k,ω
n,± =

(
2n

n − k

)
.

(b) For k = 0, µ= 0 and n> 0, we have dim V 0,ω,±
n,± =

1
2

(
2n
n

)
, dim V 0,−1,sgn

0,sgn = 1,

and dim V 0,−1,sgn
0,−sgn = 0.

(c) For k = 0 and µ= δ, dim V 0,ω
n,± =

1
n + 1

(
2n
n

)
.

(d) For k = 0 and 0< µ< δ, dim V 0,ω
n,± =

(
2n
n

)
.

For uniformity of notation, in the case k = 0, µ= 0 we will use the superscript
ω to denote the pair (−1,±) in the above formulae.

We now define the key ingredient of this paper, a sesquilinear form on each V k,ω
n,± .

To this end note that the quotient Affk,sgn of AffTL(k,sgn),(k,sgn) by the subspace
spanned by diagrams with fewer than k through strings is a unital ∗-algebra freely
generated by the element ρ when k > 0, and σ ∗σ when k = 0. These generators
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are unitary and self-adjoint, respectively. Thus if |ω| = 1 and µ∈ C we may define
unital ∗-algebra homomorphisms φ : Affk,sgn → C by φ(ρ) = ω, and φ(σ ∗σ) =

µ̄µ respectively. We also use the letter φ for the ∗-algebra homomorphism from
AffTL(k,sgn),(k,sgn) to C obtained by composing with the quotient map.

Definition 3.8. With notation as in the last paragraph, define the sesquilinear forms
〈 · , · 〉 on each AffTL(k,+),(n,sgn) by 〈v,w〉 = φ(w∗v).

Proposition 3.9. The sesquilinear form of Definition 3.8 is invariant; that is,
〈αv,w〉 = 〈v, α∗w〉.

Proof. This follows immediately from w∗αv = (αw)∗v and the fact that φ is a
∗-algebra homomorphism. �

Proposition 3.10. The sesquilinear form of Definition 3.8 passes to the quotient
V k,ω

n,sgn.

Proof. If δ 6=µ it follows from the ∗-homomorphism property of φ that the elements
defined in Definition 3.4 spanning the subspace by which the quotient was taken are
orthogonal to all diagrams in AffTL(k,+),(n,sgn). Case (b) of the definition requires
care. One observes that if v=ασ andw is any diagram in the same space thenw∗v

is actually a multiple of δ times an element of the form βσ ∗σ . This is because, after
the removal of homologically trivial circles, w∗v has a homologically nontrivial
circle, hence at least two because the shadings near the inner and outer boundaries
have to match.

Finally in the case µ = δ, if two diagrams v and v′ define the same system
of connections among boundary points, the diagrams for w∗v and w∗v′ are both
the same system of closed curves with the inner annulus boundary possibly in
different regions. The homologically nontrivial closed curves must occur in pairs
for the annulus boundary shadings to match, and since µ= δ, such a pair will count
the same if it is dealt with by φ or if it is homologically trivial. �

The element 1 ∈ V k,ω
k,+ clearly generates V k,ω as a representation of AffTL. We

will call it the vacuum vector and write it vω . It satisfies the following properties,
where the εi are as in Definition 2.8 of [Jones 2001].

(a) When k > 0, we have 〈vω, vω〉 = 1, ρ(vω)= ωvω, and εi (vω)= 0 for 0 ≤ i ≤

2k − 1.

(b) When k > 0, we have 〈vω, vω〉 = 1 and σ ∗σ(vω)= µ̄µvω.

The following fundamental lemma was poorly treated in [Jones 2001]. This
was because the conclusion was obvious from spherical invariance in the planar
algebras to which it was applied. We give a careful proof here.

Lemma 3.11. The inner products in V k,ω can be calculated using just properties
(a) and (b) above.
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Proof. Since any vector in V k,ω is a linear combination of affine diagrams applied
to vω, it suffices by invariance to show how the equations can be used to calculate
〈αvω, vω〉, with α connected. First consider the case k > 0. Then α is a connected
affine tangle with 2k inner and outer boundary points. If all the strings are not
through strings, α = α′εi for some i , and the inner product is zero. If all the
strings are through strings α is necessarily some power of ρ so the inner product
is determined by properties 〈vω, vω〉 = 1 and ρ(vω)= ωvω.

Now suppose k = 0. Then by connectedness α consists of a certain number
of strings which may be isotoped into concentric circles. They must be even in
number since the inner and outer boundaries have the same shading. This means
precisely that α is a power of σ ∗σ . �

Corollary 3.12. Any Hilbert representation of AffTL is isomorphic to a quotient
of V k,ω for some root of unity ω, and the corresponding 〈 · , · 〉 of Definition 3.8 is
positive semidefinite. If k = 0, then 0 ≤ µ≤ δ.

Proof. As in [Jones 2001], if U is an irreducible Hilbert space representation, all
the Um,sgn have to be irreducible AffTL(m,sgn),(m,sgn) modules. Let k be the smallest
integer for which Uk,± is nonzero (this k is called the lowest weight and U(k,±) is
called the lowest weight space). Then AffTL(k,sgn),(k,sgn) acts on the lowest weight
space via the abelian quotient AffTLk,sgn defined before Definition 3.8. By some
version of Schur’s lemma the lowest weight space is thus one dimensional and the
unitary ρ must act by some ω, with |ω| = 1, or, if k = 0, σ ∗σ must act by some
nonnegative real — choose µ to be a nonnegative square root of that constant and
then choose ω accordingly. A lowest weight vector of unit length in Uk,+ will then
satisfy all the conditions of (a) or (b) above so we may define a 〈 · , · 〉-preserving
map from the corresponding V t,ω onto U by sending, for any connected α, α(vω)
onto the α applied to a lowest weight unit vector u ∈ U. So 〈 · , · 〉 is positive
semidefinite, since the inner product in U is.

The case k = 0, ω=−1 does not quite work as above. Then either U0,+ or U0,−

must be nonzero; suppose that it is U0sgn and choose u therein. Then ‖σ(u)‖ = 0
(or ‖σ ∗(u)‖ = 0), so by irreducibility U0,sgn vanishes. Then proceed as before to
obtain an isomorphism between U and V 0,−1sgn.

That µ≤ δ follows as in [Jones 2001]. �

Conversely, if 〈 · , · 〉 is positive semidefinite on some V k,ω, the quotient by its
kernel is a Hilbert space representation of AffTL, which we call Vk,ω.

Lemma 3.13. Vk,ω is irreducible.

Proof. Suppose v ∈ Vk,ω is nonzero. Then 〈v, v〉 6= 0. But v =
∑

α cαα vω for
some affine diagrams α and constants cα. So

〈∑
α cαα∗v, vω

〉
6= 0; since AffTLksgn

is one-dimensional it follows that vω, hence all of Vk,ω, is in the AffTL span of v.
�
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Definition 3.14. If U is an irreducible representation of AffTL isomorphic to Vk,ω

then k will be called the lowest weight of U and ω will be called the chirality.

The determination of the set of values of δ, ω and µ for which the sesquilinear
form 〈 · , · 〉 is positive semidefinite is the subject of the next sections.

Finally remark that the representations V k,ω are all mutually inequivalent except
when k = 0 (when clearly V k,ω and V k,ω−1

are the same). Also V 0,0,+ and V 0,0,−

are inequivalent since the dimensions of the spaces graded by (0,+) and (0,−)
are different. Thus at the end of this paper we will have obtained a complete list
of irreducible Hilbert representations of AffTL.

4. The formula of Graham and Lehrer

Let V k,ω, with |ω| = 1 or 0 ≤ µ ≤ δ, be the affine Temperley–Lieb module con-
structed in the previous section and let vω be a lowest weight unit vector therein.

Definition 4.1. For k ≤n we will call αn the element of AffTL(k,+),(n,+) containing
one copy of the JW idempotent p2n in a rectangle whose first boundary point is
connected to −2 and the next 2n − 1 (in cyclic order) are also connected to the
outside boundary of A. The 2k boundary points on the inside boundary of A are
connected to the middle 2k of the remaining boundary points of the rectangle and
the other boundary points of the rectangle are connected to each other in the unique
(planar) way so that none is connected to its nearest neighbor.

We illustrate this definition in Figure 1 for k = 2 and n = 5. The boundary points
of the inner circle are the fourth roots of unity and the ones on the outer circle are
the tenth ( = 2n-th) roots of unity. The order of shaded regions on the boundary

p2nαn =Figure 1
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of the rectangle containing p2n will depend on the parity of n, but the ordinary TL
algebra makes sense without shading the regions.

Note that Figure 1 represents a (nonzero) linear combination of annular (2, 6)
tangles obtained by expanding the J-W idempotent p2n in the rectangle.

For each r ≥ 0 we set 2n = 2k + 2r and define the vector wn ∈ V k,ω
n to be the

result of applying the annular element αn of Figure 1 to vω.
Let Cn = 〈wn, wn〉 for n > k and Ck = 1. Our main task in this paper will be to

establish whether Cn is positive, negative or zero.

Theorem 4.2. Suppose δ (= q + q−1) and n satisfy δ > 2 cosπ/2n ≥ 0 (so that in
particular the map8 : TL2n−1 → TL2n−1 is an isomorphism, and the JW idempo-
tent p2n is defined). Then with r = n − k,

Cn =
[r ][r + k]

[2n][2n − 1]
(q2n

+ q−2n
−ω−ω−1)Cn−1

Proof. First note that neither [2n] nor [2n − 1] is zero. If δ > 2 this is obvious.
Otherwise write δ = 2 cosπ/a (a not necessarily an integer) so that the condition
becomes π/2n > π/a, or 2nπ/a < π . Then [2n] = sin(2nπ/a)/sin(π/a), which
is strictly positive.

We want to calculate Cn = 〈αn(vω), αn(vω)〉. By invariance it will suffice to
express α∗

nαn in terms of α∗

n−1αn−1, which we proceed to do.
Case (i), k > 0.
In Figure 2 we have drawn α∗

nαn (with n = 4 for clarity, rather than 5 as in the
previous figure).

The first step is to introduce a JW idempotent on one less string. Because of
the order on these idempotents, the AffTL element in Figure 3 is the same as in
Figure 2.

p2nFigure 2
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p2n
p
2n−1Figure 3

It is easily seen that there are only 3 tangles in the expansion of p2m that give
nonzero contributions in Figure 3. There must be at least 2n − 2 through strings
inside the rectangle, or two adjacent boundary points on the left side of the rec-
tangle containing p2n−1 would be connected — giving zero. So the only adjacent
boundary points on the right side of the p2n rectangle that can be connected are
the top two. Then it is easy to check that the only two pairs of adjacent boundary
points on the left side of the p2n rectangle that can be connected are the ones having
exactly one point connected to the inner boundary circle of A. Thus we see that

α∗

nαn = X + cY Y + cZ Z

where X, Y and Z are given in Figures 4, 5, and 6, respectively.

p
2n−1

Figure 4
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p
2n−1

Figure 5

p
2n−1

Figure 6

We deal first with the situation in Figure 4. Here after an isotopy we see that
the bottom left and right boundary points of the p2n−1 rectangle are connected to
each other. The result is well known to be a multiple of p2n−2. By comparing the
coefficient of the identity in the expansion of the idempotent, the multiple is seen
to be [2n]/[2n − 1], so that

X = ([2n]/[2n − 1]) α∗

n−1αn−1.

The arguments for Y and Z are structurally identical and differ only in the
constants and the direction in which the inner circle is rotated. In Figure 5, the
diagram inside the rectangle for p2n is Er Er−1 · · · E1, which has a coefficient of
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(−1)r [r+2k]/[2n] in JW; see [Jones 2001], for example. In Figure 6, the diagram
is Er+2k Er+2k−1 Er+2k−2 · · · E1; this diagram’s coefficient is (−1)r [r ]/[2n]. Since
we will be doing many of these calculations, we record the relevant coefficient in
the JW idempotent pictorially:

Coefficient in JW of

r−1

is (−1)r
[r+2k]

[2n]
.

Figure 7

Thus at this stage we have

α∗

nαn =
[2n]

[2n − 1]
α∗

n−1αn−1 + (−1)r
(

[r + 2k]

[2n]
Y +

[r ]

[2n]
Z
)
.

If we now start with Figure 6 and insert a p2n−2 we obtain Figure 8.

p
2n−1

p
2n−2Figure 8

For Z , consideration of all possible TL diagrams inside the p2n−1 rectangle
shows that the only ones with a nonzero contribution are those with 2n−2 through
strings and the top and bottom boundary points of the inner annulus boundary con-
nected down and up respectively to their nearest neighbors, as in Figures 9 and 10.

The coefficient of the TL diagram from Figure 9 is, again by Figure 7,

(−1)r+1
[r + 2k]

[2n − 1]

and the coefficient of the TL diagram from Figure 10 is

(−1)r+1
[r ]

[2n − 1].
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p
2n−2Figure 9

p
2n−2Figure 10

But notice that Figure 9 is just α∗

n−1αn−1 composed with ρ and Figure 10 is just
α∗

n−1αn−1 . So we have

Z = (−1)r+1α∗

n−1αn−1

(
[r +2k]

[2n−1]
ρ+

[r ]

[2n−1]

)
.

Doing the corresponding calculation for Figure 5 we obtain that

Y = (−1)r+1α∗

n−1αn−1

(
[r +2k]

[2n−1]
+

[r ]

[2n−1]
ρ−1

)
.
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So CY Y + CZ Z equals

−1
[2n][2n − 1]

α∗

n−1αn−1([r ]
2
+ [2k + r ]

2
− [r ][r + 2k](ρ+ ρ−1)).

Altogether,

α∗

nαn =
[r ][r + 2k]

[2n][2n − 1]
α∗

n−1αn−1

(
[2n]

2

[r ][r + 2k]
−

[r ]

[r + 2k]
−

[r + 2k]

[r ]
− ρ− ρ−1

)
.

But we have the identity [2n]
2
−[r ]

2
−[2n −r ]

2
= (q2n

+q−2n)[r ][2n −r ], and
on V k,ω

k , ρ = ω so that

Cn =
[n − k][n + k]

[2n][2n − 1]

(
q2n

+ q−2n
−ω−ω−1)Cn−1

This proves the theorem when k > 0.
The case µ= δ needs no consideration since in this case ordinary TL diagrams

inside a disc provide a Hilbert representation.
Case (ii); 0< µ< δ.
We may consider Figure 3 when k = 0. In this case there are only two ways to

fill in the p2n rectangle to obtain nonzero diagrams. The first is with the identity

which gives
[2n]

[2n − 1]
as before, and the second, which is the common case r = n

of the terms Y and Z in the previous argument , so we have:

α∗

nαn =
[2n]

[2n − 1]
α∗

n−1αn−1 + (−1)n
[n]

[2n]
Y ′

where Y ′ is the tangle with the inner annulus boundary surrounded by a homolog-
ically nontrivial circle as illustrated in Figure 11.

Introducing a p2n−2 as before there is only one contributing diagram that can be
put in the p2n−1 rectangle and its coefficient is

(−1)n−1
[n]

[2n − 1]
.

The resulting annular diagram is Figure 12.
Note that the innermost circle is an annulus boundary and the next two are

strings, which contribute precisely σ ∗σ . Thus we have

α∗

nαn = α∗

n−1αn−1

(
[2n]

[2n − 1]
−

[n]
2

[2n][2n − 1]
σ ∗σ

)
.

But σ ∗σ acts as µ2 on V 0,ω
0 so that

Cn =

(
[2n]

[2n − 1]
−

µ2
[n]

2

[2n][2n − 1]

)
Cn−1.
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p
2n−1Figure 11

p
2n−2Figure 12

Using [m] =
qm

− q−m

q − q−1
and µ2

= 2 +ω+ω−1 we get

Cn =
[n]

2

[2n][2n − 1]

(
q2n

+ q−2n
−ω−ω−1)Cn−1.

This proves the theorem in case (ii).
The only remaining case is k = 0, ω = 0, where of course ω+ω−1 is taken to

mean zero. In this case the argument is extremely simple as the term Y in case (ii)
already acts by zero. Note that in fact there are two cases for wn in this situation
according to the shading on the inside annulus boundary. This does not change the
argument in any way. �
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5. Restrictions on δ, k and ω when δ < 2

Theorem 5.1. Suppose U is an irreducible Hilbert space AffTL module with low-
est weight k and chirality ω. Suppose δ = 2 cosπ/a for a = 3, 4, . . . (choose
q = eπ i/a). Then

ω = q±2r for some integer r with k < r ≤ a/2.

Proof. Our first job is to show that k < a/2. Suppose 2k ≥ a and let u be a unit
vector spanning Uk . Then consider the a annular tangles νl , l = 1, . . . , a with 2k
inner boundary points and 2k + 2 outer ones, 2k through strings, with 2elπ i/(k+1)

connected to 2e(l+1)π i/(k+1) and 1 connected to 2. The matrix of inner products
of the vectors νl(u) is the a × a matrix with δ on the diagonal, one on the first
off-diagonals and 0 elsewhere. The determinant of this matrix is well known to be

(5-1) [a + 1] =
sin(a + 1)π/a

sinπ/a
,

which is negative. This is impossible in a Hilbert space, so k < a/2.
Since the rotation is unitary and 0 ≤ µ ≤ δ we know that |ω| = 1 and we

may suppose, by taking the complex conjugate if necessary, that Im(ω) ≥ 0. Let
θ = arg(ω). We know from Corollary 3.12 that U is a quotient of a V k,ω so that
it makes sense to talk about vk , wn etc. Then if θ is not 2rπ/a for some r with
k < r ≤ a/2 then let r0 be the largest value of r with θ ≥ 2rπ/a. Suppose first that
2(r0 + 1) < a. Then by Theorem 4.2 we have Cm > 0 for k ≤ m ≤ r0 but Cm < 0
for m = r0 + 1, which is disallowed by positivity. So we may suppose 2r0 < a but
2(r0 + 1)≥ a. We will divide the proof into two cases.

Case (i) a odd so that 2r0 + 1 = a.
The difficulty is clear: using Theorem 4.2 we get Cm > 0 for 1 ≤ m ≤ r0, but

we cannot apply the theorem for r0 + 1 since its hypotheses are no longer valid.
But the vector wr0 still exists and by Theorem 4.2 it is nonzero. Now form, as

above, 2r0 +1 vectors in Ur0+1 from wr0 by applying 2r0 +1 annular (2r0, 2r0 +2)
diagrams in which one pair of outer boundary points is connected to its nearest
neighbor and all other strings are through strings, excluding the one in which −2
is connected to the neighboring boundary point with negative imaginary part. If
the vector wr0 is normalized to be a unit vector, we get vectors whose matrix of
inner products is the (2r0 + 1)× (2r0 + 1) matrix with δ on the diagonal, one on
the first off-diagonals and 0 elsewhere. (Careless choice of how the inside annulus
boundary is connected to the outside will lead to powers of ω on the off-diagonal
but they can be removed by renormalizing the vectors one after another.) The
determinant of this matrix is well known to be [2r0 + 2] = [a + 1], given in (5-1),
and hence negative. This is impossible in a Hilbert space.
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p
2a−1Figure 13

Case (ii) a even so that 2r0 = a − 2.
We will suppose that k > 0. The case k = 0 goes in exactly the same way but

the diagrams need to be modified a little. We leave the details to the reader.
Here we will use the tangle encountered midway through the proof of Theorem

4.2. First let β be the (2k, a) annular tangle with the 2k internal boundary points
connected to a JW idempotent on a − 1 strings (the last one for which the induc-
tive definition works) in a rectangle, a − 2k − 2 boundary points of the rectangle
connected pairwise by strings that go around the internal annulus boundary and
one rectangle boundary point connected to −2, as shown in Figure 13 for a = 8
and k = 1. The other a − 1 rectangle boundary points are connected to the outer
annulus boundary points.

The first thing we want to show is that β(vω) = 0. We do this by calculating
〈β∗β(vω), vω〉. Since pa−1 is a projection, β∗β is as in Figure 14.

But in Figure 14 we see the JW idempotent with two boundary points capped
off. In general this would be nonzero since the boundary points are not on the
same side of the rectangle, but since this JW idempotent is the last one to exist,
it spans the kernel of the natural inner product on TL diagrams so is invariant (at
least up to a scalar) under the rotation. Thus if any two adjacent boundary points
are connected the result is zero. (One can also show this by Wenzl’s inductive
formula.)

Thus β(vω)= 0.
We will now derive a contradiction by showing that the inner product of β(vω)

with another vector is nonzero. This vector will be obtained from applying a (2k, a)
tangle called γ to vω where γ is obtained from the (2k, a − 2) tangle αa−2 of
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p
2a−1Figure 14

p
a−2Figure 15

Definition 4.1 by connecting −2 to −2e(a+1)π i/a and the other outer boundary
points to the boundary points of the rectangle, as indicated in Figure 15.

To calculate the inner product 〈β(vω), γ (vω)〉 we use the tangle γ ∗β, which we
have drawn in Figure 16.

As in the proof of Theorem 4.2, there are only two diagrams that can be put in
the rectangle which give nonzero contributions- those in which the boundary points
connected to the first and last internal annular boundary points are connected to
their neighbors (which are not connected to the inner annulus boundary). The
coefficients of these diagrams are (from Figure 7)

[a/2 − k]

[a − 1]
and

[a/2 + k]

[a − 1]
.
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p
2n−1

p
2n−2Figure 16

But these are both equal to
cos kπ/a

sin(a − 1)π/a
,

which is nonzero. On the other hand, the two resulting tangles are (δ times)
α∗

a−2αa−2ρ and α∗

a−2αa−2. Since ω 6= −1 (by the assumption on θ ) , the sum of
these two tangles applied to vω is nonzero. Hence, by Theorem 4.2, 〈β(vω), γ (vω)〉
is nonzero, a contradiction. �

We point out two corollaries of Theorem 5.1. The first is immediate but some-
how surprising.

Corollary 5.2. Let U be a Hilbert space representation of AffTL. Then none of
the rotations ρt for t ≥ 1 acts by the identity.

Proof. One may reduce to the irreducible case by using a maximal abelian subal-
gebra in the commutant of the algebra acting on the lowest weight space. Then the
result follows from Theorem 5.1. �

In [Jones 2001] we studied representations of the quotient AnnTL of our AffTL
in which the rotations by 2π , ρt

t , act by the identity. We know that any Hilbert
space representation of AnnTL will give one of AffTL, so we now identify those
ones allowed by Theorem 5.1.

Corollary 5.3. Let U be an irreducible Hilbert space representation of AffTL with
chirality ω and lowest weight k > 0. Then U passes to AnnTL if and only if there
is an integer b such that a = rk/b.
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Proof. The main thing is that ρk
k = 1 on Uk,± implies that ρn

n = 1 on Un,± for all
n ≥ k. This is because U is a quotient of V k,ω and it is clear that ρn

nα = αρk
k for

any α ∈ AffTL(ksgn),(n,±sgn).
So whenever ω is a k-th root of unity, U passes to AnnTL. This is the condition

a = rk/b combined with the conclusion of Theorem 5.1. �

6. Construction of the allowed Hilbert space representations

In this section we will undertake the most difficult part of this paper, namely the
explicit construction of a representation Vk,ω for each pair (k, ω) allowed by The-
orem 5.1.

Theorem 6.1. Let (k, ω) be a pair where k is a nonnegative integer and ω is a
complex number (or ω = (−1,±), if k = 0). Then Vk,ω exists if

(i) δ ≥ 2 and either k = 0 and 0 ≤ µ≤ δ,
or k > 0 and |ω| = 1, or

(ii) δ = 2 cosπ/a for a = 3, 4, 5, . . . , and ω = q±2r for some integer r with
k < r ≤ a/2 (where by −1 we mean (−1,±) if k = 0).

Proof. As observed in Section 3, it suffices to show that the sesquilinear forms
〈 · , · 〉 of Definition 3.8 are positive semidefinite on V k,ω. The method, as in [Jones
2001], where it is done for the generic case, is to inductively decompose the rep-
resentation V k,ω

(n,±) with respect to a large ordinary TL subalgebra, which we will
soon define.

First let us completely handle the case q =1 (so that δ=2). When ω 6=1, we can
inductively decompose the representation as is done for δ > 2 in [Jones 2001], and
then confirm positive definiteness on the span of the vector ωn by using Theorem
4.2. The case ω= 1 is quite different, as the form is only positive semidefinite and
we must identify the kernel. In this case, it follows from the same theorem that
Cn = 0 for all n ≥ k + 1, so that in fact Vk,ω is generated by V k,1

k .
In the case δ < 2, the large ordinary TL subalgebra will eventually fail to be

semisimple. Semisimplicity is so important to our analysis — it allows us to use
the inductive technique of [Jones 2001] — that we begin our proof by taking a
quotient of V k,ω on which, by Theorem 2.1, the action of TL passes to the C∗

quotient, TLn .
It will be convenient to consider only the spaces V k,ω

n,+ . The rotation provides
an isometry between this and V k,ω

n,− in all but a special case when k = 0, where the
situation is clear.

Thus let δ=2 cosπ/a for a =3, 4, 5, . . . and letω and k be as in the statement of
the theorem. Define the subspace JW k,ω

n,± of V k,ω
n,± to be the span of the image of vω

under annular diagrams containing a rectangle labeled by the JW idempotent pa−1
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(see Remark 3.3). The subspaces JW k,ω
n,±, as n varies, are clearly invariant under

the action of AffTL. We claim that they are in the kernel of 〈 · , · 〉. To see this, it
suffices to show that an annular (k, k) diagram containing the JW idempotent pa−1

in a rectangle is zero modulo diagrams with fewer than k through strings. Let α
be such a diagram. We shall show that it has the same form as the element α∗

nαn

of Theorem 4.2 and then apply the Graham–Lehrer formula.
If α had a string connecting the inside annulus boundary to the outside, then,

cutting along that string, the rectangle would lie in a disc (after isotopy) with 4k−2
boundary points. The rectangle itself has 2a − 2 boundary points and k < a/2 so
some boundary point on the rectangle must be connected to its nearest neighbor,
which gives zero. So all of the strings from the inner annulus boundary are con-
nected to the rectangle as are all those from the exterior annulus boundary. In fact
k ≤ a/2 − 1 so that 4k ≤ 2a − 4 so there are boundary points on the rectangle that
are not connected to the annulus boundary. If these points were not connected sym-
metrically around the interior of the annulus there would be a rectangle boundary
point connected to its nearest neighbor.

Let us first treat the case where a is odd so the rectangle has an even number
of boundary points at the top and at the bottom. Since the JW idempotent is ro-
tationally invariant (up to a scalar, as observed in the proof of Theorem 5.1), and
since vω is invariant up to a scalar, we may suppose that α is as in Figure 2 (which
illustrates the case a = 9, n = 3). Thus 〈α(vω), vω〉 is equal to C(a−1)/2 and thus,
by Theorem 4.2, proportional to Cr since r ≤ (a − 1)/2. But, again by the same
theorem, Cr = 0 since ω = q2r .

Now turn to the case where a is even. Then by rotational invariance as above
we may suppose that α is as in Figure 16.

First suppose r = a/2 so ω = −1. Then by the argument after Figure 16 we
get that 〈α(vω), vω〉 = 0 precisely because ω = −1 (which is the value it did not
take there). The case k = 0 is slightly different. In this case there is only one
diagram, shown in Figure 17, that can be put into the rectangle to give a nonzero
contribution, and that results in a homologically nontrivial circle surrounding the
inner annulus boundary. This will give zero for 〈α(vω), vω〉.

Finally if r < a/2 we also get the situation of Figure 16, and again by the
argument after that figure, we see that 〈α(vω), vω〉 is proportional to Ca/2−1. By
Theorem 4.2, Ca/2−1 is proportional to Cr , but as ω= q2r and k < r , Theorem 4.2
applies again to give Cr = 0.

At this stage we have shown that in all cases allowed by the theorem, JW is
contained in the kernel of 〈 · , · 〉, so that 〈 · , · 〉 defines an invariant form on the
quotient AffTL-module 2k,ω

= V k,ω/JW k,ω. Positive semidefiniteness of 〈 · , · 〉

on 2k,ω would therefore imply it on V k,ω. We will establish this positivity by
restricting to a large ordinary TL algebra of AffTL(n,+),(n,+) for n ≥ 1.
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p
2n−2

Figure 17

The intersection of the annulus A with the complement of the wedge{
reiθ

∈ C :

(
1 +

1
n+2

)
π < θ <

(
1 +

1
n+1

)
π

}
is isotopic to a rectangle with 2n marked points on the top and on the bottom. Thus
the subalgebra of AffTL(n,+),(n,+) spanned by isotopy classes of tangles that lie
outside the wedge is isomorphic to the Temperley–Lieb algebra TL2n . We will call
it t`2n . Define Fn ∈ AffTL(n,+),(n,+) to be the unique diagram in t`2n with 2n − 2
through strings and −1 connected to ei(1−1/n)π . One may jiggle the boundary
points to exhibit an isomorphism between Fnt`2n Fn and t`2(n−1), which makes
FnV k,ω

(n,+) into a t`2(n−1)-module isomorphic to V k,ω
(n−1,+).

All this is as in [Jones 2001]. Moreover, these isomorphisms take the sub-
space JW k,ω

(n,+) to the subspace JW k,ω
(n−1,+) and the ideal I2n generated in t`2n by

pa−1 (which we take to be zero when 2n < a − 1) onto I2n−2. It is obvious
that the ideal I2n preserves JW k,ω

(n,+) so that the quotients Xk,ω
n = V k,ω

(n,+)/JW k,ω
(n,+)

become modules over the quotients T`2n = t`2n/I2n . But by Theorem 2.1, T`2n

is a finite-dimensional C∗-algebra (with irreducible representations as described in
Section 2). Further, by using the isomorphisms established above, we see that for
every value of t , FnWt

2n is isomorphic to Wt
2n−2 as a T`2n−2-module.

Thus Xk,ω
n as a T`2n-module is a direct sum of as many copies of each Wt

2n as
Xk,ω

n−1 is of Wt
2n−2, plus a certain number of copies of the trivial representation if

2n<a−1 (and none if 2n ≥a−1). The form 〈 · , · 〉 is invariant under t` and there is
only one such form (up to a scalar) on W, so positive semidefiniteness on the span
of the nontrivial representations follows by induction as soon as it is established
on the trivial ones as they appear. (The statement for the generic case is [Jones
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2001, Proposition 4.10], the proof of which goes through as long as 2n ≤ a − 1.)
But the JW idempotent p2n projects onto the trivial representation for 2n < a − 1,
and annihilates all vectors in V k,ω

n,+ except for

w =

where all strings that connect the outside boundary to itself go through the wedge
defined above.

Thus there is exactly one copy of the trivial representation for 2n < a − 1 and
none for 2n ≥a−1. Inspection of the preceding figure shows that p2n(w)=αn(vω)

so that positive semidefiniteness of 〈 · , · 〉 follows from Cn ≥ 0. This follows from
Theorem 4.2 and the choice of k, ω and δ, which force Cn to be zero before it has
a chance to be negative. �

We see in the proof of the theorem that we have in fact determined the structure
of the Hilbert space representations as modules over the large Temperley–Lieb sub-
algebra. In fact the Vk,ω

n,+ become modules over the TL algebroid discussed in Re-
mark 2.4. The ordinary TL algebroid is spanned by all diagrams in AffTL(m,+),(n,+)
that do not intersect the wedge{

reiθ
∈ C :

(
1 +

1
r +2

)
π < θ <

(
1 +

1
r +1

)
π

}
,

where r = max(m, n). The Hilbert space representations of this algebroid are
precisely the modules Wt .

Scholium 6.2. Suppose ω and k satisfy the conditions of Theorem 6.1. For any
n ≥ k, as a module over the ordinary TL algebroid, Vk,ω

(n,+) is

(i) W2k
2k if δ = 2 and q = 1,

(ii)
r−1⊕
j=k

W
2 j
2n if k ≥ 0, or k = 0 and ω 6= (−1,±).

(iii)
⊕

0≤ j≤m
j+1∈2N

W
2 j
2n if k = 0 and ω = (−1,+),

(iv)
⊕

1≤ j≤m
j∈2N

W
2 j
2n if k = 0 and ω = (−1,−),
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where in (iii) and (iv) m = a/2−1. (Note that for these values of ω, a is guaranteed
to be even, so m is indeed an integer.)

Proof. The first statement follows immediately from the remarks at the beginning
of this section.

Item (ii) follows from the inductive procedure used to decompose Vk,ω
(n,+) as a

module over the ordinary TL algebroid, which relies on the following two facts
from [Jones 2001]. First, when 2n ≤ a − 1 and 0 ≤ j < n, a representation π
of T`2n contains a copy of W

2 j
2m if and only if π restricted to E2n−1(T`2n)E2n−1

contains a copy of W
2 j
2n−2: this is Proposition 4.10 of [Jones 2001] (with a weak-

ened assumption on the genericity of the index, which does not affect the proof).
Second, Theorem B1 of the same paper says that if Vk,ω

(m,+) has dimension
( 2m

m−k

)
−1

then for all n ≥ m, as a T`2n module, Vk,ω
(n,+) is isomorphic to

⊕m−1
j=k W

2 j
2n . (Note

that the hypothesis on the dimension is satisfied since r ≤ a/2.)
Parts (iii) and (iv) are proved by introducing a second copy of the ordinary

Temperley–Lieb algebroid, T̃`2n , and arguing that (for n > 1) W2n
2 j is present in

Vk,ω
(n,+) as a T`2n-module when j is odd and as a T̃`2n module when j is even. The

induction is as in Theorem 5.23 of [Jones 2001]. An adjustment of the dimension
hypothesis of Theorem B.1 of the same paper can be made for this case so that that
proof guarantees the form of the Vk,ω

(n,+) when n ≥ a. �

Corollary 6.3. The dimension of Vk,ω is

(i) zk C(z)2k
− zC(z)2k+2

√
1 − 4z

if δ = 2 and q = 1,

(ii)
1

Qa(z)

r−1∑
j=k

z j Qa−2 j−1(z) if ω = q±2r ,

(iii)
1
2

+
1

2Qa(z)

a/2−1∑
j=0

z j Qa−2 j−1(z) if k = 0, ω = (−1,+),

(iv) −
1
2

+
1

2Qa(z)

a/2−1∑
j=0

z j Qa−2 j−1(z) if k = 0, ω = (−1,−).

Proof. To prove part (i), note that dim W t
n =

( 2n
n−t

)
−

( 2n
n−t−1

)
, so by [Graham et al.

1994, page 203], we obtain the result. Part (ii) follows directly from Theorem 2.3
and the scholium. For (iii) and (iv) use the fact that Vk,ω is isomorphic to both⊕

1≤ j≤m
j∈2N

W
2 j
2n and

⊕
1≤ j≤m
j+1∈2N

W
2 j
2n,

so these must have equal dimension. �
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