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A knot K is called n-adjacent to another knot K ′ if K admits a projection
containing n generalized crossings such that changing any 0 < m ≤ n of
them yields a projection of K ′. We apply techniques from the theory of
sutured 3-manifolds, Dehn surgery and the theory of geometric structures of
3-manifolds to study the extent to which nonisotopic knots can be adjacent
to each other. A consequence of our main result is that if K is n-adjacent
to K ′ for all n ∈ N, then K and K ′ are isotopic. This provides a partial
verification of the conjecture of V. Vassiliev that finite type knot invariants
distinguish all knots. We also show that if no twist about a crossing circle
L of a knot K changes the isotopy class of K , then L bounds a disc in the
complement of K . This leads to a characterization of nugatory crossings on
knots.

1. Introduction

A crossing disc for a knot K ⊂ S3 is an embedded disc D ⊂ S3 such that K
intersects int D twice with zero algebraic number. Let q ∈ Z. Performing 1

q -
surgery on L1 := ∂ D1, changes K to another knot K ′

⊂ S3. We say that K ′ is
obtained from K by a generalized crossing change of order q (see Figure 1).

An n-collection for a knot K is a pair (D, q), such that

(i) D := {D1, . . . , Dn} is a set of disjoint crossing discs for K ,

(ii) q :=
{ 1

q1
, . . . , 1

qn

}
, with qi ∈ Z \ {0}, and

(iii) the knots L1 := ∂ D1, . . . , Ln := ∂ Dn are labeled by 1
q1

, . . . , 1
qn .

The link L :=
⋃n

i=1 L i is called the crossing link associated to (D, q).
We will use the notation

i := (i1, . . . , in) ∈ {0, 1}
n
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K K ′

Figure 1. The knots K and K ′ differ by a generalized crossing
change of order q = −4.

for an n-tuple with i j ∈ {0, 1} for j = 1, . . . , n. We also set 0 := (0, . . . , 0),
1 := (1, . . . , 1), and i j := (0, . . . , 0, 1, 0, . . . , 0) with the nonzero entry at the j-th
place.

Given a knot K and an n-collection (D, q), for every i , denote by K (i) the knot
obtained from K by a surgery modification of order q j along each L j for which
i j = 1, and of order 0 along each L j for which i j = 0.

Definition 1.1. K is n-adjacent to K ′ if there exists an n-collection (D, q) for K
such that the knot K (i) is isotopic to K ′ for every i 6= 0. In this situation we write
K n

−→ K ′ and we say that (D, q) transforms K to K ′.

Our main result is this:

Theorem 1.2. Suppose that K and K ′ are nonisotopic knots. There exists a con-
stant C(K , K ′) such that if K n

−→ K ′, then n ≤ C(K , K ′).

The quantity C(K , K ′) can be expressed in terms of computable invariants of
the knots K and K ′. Let g(K ) and g(K ′) denote the genera of K and K ′ and let
g := max {g(K ), g(K ′)}. The constant C(K , K ′) encodes information about the
relative size of g(K ), g(K ′) and the behavior of the satellite structures of K and K ′

under the Dehn surgeries imposed by knot adjacency. In many cases C(K , K ′) can
be made explicit. For example, when g(K ) > g(K ′) we have C(K , K ′) = 6g − 3.
Thus, in this case, Theorem 1.2 can be restated as follows:

Theorem 1.3. Suppose that K , K ′ are knots with g(K ) > g(K ′). If K n
−→ K ′,

then n ≤ 6g(K ) − 3.

In the case that K ′ is the trivial knot Theorem 1.3 was proved by H. Howards
and J. Luecke [2002].

A crossing of a knot K , with crossing disc D, is called nugatory if and only
if ∂ D bounds a disc that is disjoint from K . The techniques used in the proof of
Theorem 1.2 have applications to the question of whether a crossing change that
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doesn’t change the isotopy class of the underlying knot is nugatory [Kirby 1997,
Problem 1.58]. As a corollary of the proof of Theorem 1.2 we obtain the following
characterization of nugatory crossings:

Corollary 1.4. For a crossing disc D of a knot K let K (r) denote the knot obtained
by a twist of order r along D. The crossing is nugatory if and only if K (r) is
isotopic to K for all r ∈ Z.

Definition 1.1 is equivalent to the definition of n-adjacency given in [Kalfagianni
and Lin 2004b] (and in the abstract of this paper). With this reformulation, it fol-
lows that n-adjacency implies n-similarity in the sense of [Ohyama 1990], which in
turn, as shown in [Ng and Stanford 1999], implies n-equivalence. Gussarov showed
that two knots are n-equivalent precisely when all of their finite type invariants of
orders < n are the same. Vassiliev [1990] has conjectured that if two oriented knots
have all of their finite type invariants the same then they are isotopic. In the light
of Gussarov’s result, this conjecture can be reformulated as follows:

Conjecture 1.5 (Vassiliev). Suppose that K and K ′ are knots that are n-equivalent
for all n ∈ N. Then K is isotopic to K ′.

Theorem 1.2 implies the following corollary, which provides a partial verifica-
tion to Vassiliev’s conjecture:

Corollary 1.6. If K n
−→ K ′ for all n ∈ N, then K and K ′ are isotopic.

We now describe the contents of the paper and the idea of the proof of the main
theorem. Let K be a knot and let (D, q) be a n-collection with associated crossing
link L . Since the linking number of K and every component of L is zero, K bounds
a Seifert surface in the complement of L . Thus, we can define the genus of K in
the complement of L , say gn

L(K ). In Section 2 we study the extent to which a
Seifert surface of K that is of minimal genus in the complement of L remains of
minimal genus under various surgery modifications along the components of L .
Using a result of from [Gabai 1987] we show that if K n

−→ K ′, and (D, q) is an
n-collection that transfers K to K ′ then gn

L(K ) = g := max { g(K ), g(K ′) }, where
g(K ), g(K ′) denotes the genus of K , K ′ respectively. This is done in Theorem 2.1.

In Section 3 we prove Theorem 1.3. In Section 4, we finish the proof of Theorem
1.2: We begin by defining a notion of m-adjacency between knots K , K ′ with
respect to an one component crossing link L1 of K (see Definition 4.1). To describe
our approach in more detail, set N := S3

\ η(K ∪ L1), and let τ(N ) denote the
number of disjoint, pairwise nonparallel, essential embedded tori in N . We employ
results of Cooper and Lackenby [1998], Gordon [1998] and McCullough [2006]
and an induction argument on τ(N ) to show the following: Given knots K , K ′,
there exists a constant b(K , K ′)∈ N such that if K is m-adjacent to K ′ with respect
to a crossing link L1 then either m ≤ b(K , K ′) or L1 bounds an embedded disc
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in the complement of K . This is done in Theorem 4.3. Theorem 2.1 implies that
if K n

−→ K ′ and n > m(6g − 3), then an n-collection that transforms K to K ′

gives rise to a crossing link L1 such that K is m-adjacent to K ′ with respect to L1.
Combining this with Theorem 4.3 yields Theorem 1.2.

In Section 5, we present some applications of the results of Section 4 and the
methods used in their proofs. Also, for every n ∈ N, we construct examples of
nonisotopic knots K , K ′ such that K n

−→ K ′.
Throughout the entire paper we work in the PL or the smooth category. In

[Kalfagianni 2006], the techniques of this paper are refined and used to study ad-
jacency to fibered knots and the problem of nugatory crossings in fibered knots.
In [Kalfagianni and Lin 2004a] the results of this paper are used to obtain criteria
for detecting nonfibered knots and for detecting the nonexistence of symplectic
structures on certain 4-manifolds. Further applications include, in the same paper,
constructions of 3-manifolds that are indistinguishable by certain Cochran–Melvin
finite type invariants, and in [Kalfagianni 2004] constructions of hyperbolic knots
with trivial Alexander polynomial and arbitrarily large volume.

2. Taut surfaces, knot genus and multiple crossing changes

Let K be a knot and (D, q) an n-collection for K with associated crossing link
L . Since the linking number of K and every component of L is zero, K bounds a
Seifert surface S in the complement of L . Define

gL
n (K ) := min { genus(S) | S a Seifert surface of K as above }.

Our main result in this section is the following:

Theorem 2.1. Suppose that K n
−→ K ′, for some n ≥ 1. Let (D, q) be an n-

collection that transforms K to K ′ with associated crossing link L. We have

gL
n (K ) = max { g(K ), g(K ′) }.

In particular, gL
n (K ) is independent of L and n.

Before we prove this we need some preparation. For a link L̄ ⊂ S3 we will use
η(L̄) to denote a regular neighborhood of L̄ . For a knot K ⊂ S3 and an n-collection
(D, q), let

ML := S3
\ η(K ∪ L),

where L is the crossing link associated to (D, q).

Lemma 2.2. Suppose that K , K ′ are knots such that K n
−→ K ′ for some n ≥ 1.

Let (D, q) be an n-collection that transforms K to K ′. If ML is reducible then a
component of L bounds an embedded disc in the complement of K . In particular,
K is isotopic to K ′.
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Proof. Let 6 be an essential 2-sphere in ML . Assume that 6 has been isotoped
so that the intersection I := 6 ∩

(⋃n
i=1 Di

)
is minimal. Notice that we must have

I 6= ∅ since otherwise 6 would bound a 3-ball in ML . Let c ∈ (6 ∩ Di ) denote a
component of I that is innermost on 6; that is c bounds a disc E ⊂ 6 such that
int E ∩

(⋃n
i=1 Di

)
= ∅. Since 6 is separating in ML , the disc E can’t contain just

one point of K ∩ Di . Also E can’t be disjoint from K or c could be removed by
isotopy. Hence E contains both points of K ∩ Di and so c = ∂ E is parallel to ∂ Di

in Di \ K . It follows that L i bounds an embedded disc in the complement of K .
Since 1

qi
-surgery on L i turns K into K ′, we conclude that K is isotopic to K ′. �

Definition 2.3 [Thurston 1986]. Let M be a compact, oriented 3-manifold with
boundary ∂ M. For a compact, connected, oriented surface (S, ∂S) ⊂ (M, ∂M),
the complexity χ−(S) is defined by

χ−(S) := max { 0, −χ(S) }, where χ(S) denotes the Euler characteristic of S.
If S is disconnected then χ−(S) is defined to be the sum of the complexities of
all the components of S. Let η(∂S) denote a regular neighborhood of ∂S in ∂ M.
The Thurston norm x(z) of a homology class z ∈ H2(M, η(∂S)) is the minimal
complexity over all oriented, embedded surfaces representing z. The surface S is
called taut if it is incompressible and we have x([S, ∂S]) = χ−(S); that is S is
norm-minimizing.

The proof of the next lemma follows from the definitions:

Lemma 2.4. Let (D, q) be an n-collection for a knot K with associated crossing
link L and ML := S3

\η(K ∪L). A compact, connected, oriented surface (S, ∂S)⊂

(ML , ∂η(K )), such that ∂S = K , is taut if and only if among all Seifert surfaces of
K in the complement of L , S has the minimal genus.

For i ∈ {0, 1}
n as above, let ML(i) denote the 3-manifold obtained from ML

by performing Dehn filling on ∂ ML with slope 1
q j

for the components ∂η(L j ) for
which i j = 1, and slope ∞ :=

1
0 for the components where i j = 0. Clearly we have

ML(i) = S3
\ η(K (i)), where K (i) is as in Definition 1.1. Also let M+

L (i) and
M−

L (i) denote the 3-manifolds obtained from ML by only performing Dehn filling
with slope 1

q j
and ∞, respectively, on the components ∂η(L j ) for which i j = 1.

Lemma 2.5. Let (D, q) be an n-collection for a knot K such that ML is irreducible.
Let (S, ∂S)⊂ (ML , ∂η(K )) be an oriented surface with ∂S = K that is taut. Then at
least one of M+

L (i j ), M−

L (i j ) is irreducible and S remains taut in that 3-manifold.

(The notation i j is defined on page 252.)

Proof. The proof uses a result of [Gabai 1987] in the spirit of [Scharlemann and
Thompson 1989]: For j ∈ {1, . . . , n} set M+

:= M+

L (i j ) and M−
:= M−

L (i j ). Also
set L j

:= L \ L j and T j := ∂η(L j ). We distinguish two cases:
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Case 1: Suppose that every embedded torus that is incompressible in ML and it
separates L j

∪S from L j , is parallel to T j . Then ML is SL j -atoroidal (see Definition
1.6 of [Gabai 1987]). By Corollary 2.4 of the same reference, there is at most one
Dehn filling along T j that yields a 3-manifold which is either reducible or in which
S doesn’t remain taut. Thus the desired conclusion follows.

Case 2: There exists an embedded torus T ⊂ ML such that (i) T is incompressible
in ML ; (ii) T separates L j

∪ S from L j ; and (iii) T is not parallel to T j . In S3, T
bounds a solid torus V , with ∂V = T . Suppose, for a moment, that L j lies in int V
and L j

∪ S lies in S3
\ V . If V is knotted in S3 then, since L j is unknotted, L j

is homotopically inessential in V . But then T compresses in V and thus in ML ; a
contradiction. If V is unknotted in S3 then the longitude of V bounds a disc E in
S3

\V . Since S is disjoint from T , K intersects E at least twice. At the same time,
since T is incompressible in ML and K intersects D j twice, L j is isotopic to the
core of V . Hence, T is parallel to T j in ML ; a contradiction. Hence L j

∪ S lies in
int V while L j lies in S3

\ V . We will show that M+, M− are irreducible and that
S remains taut in both of these 3-manifolds.

Among all tori in ML that have properties (i)–(iii) stated above, choose T to be
one that minimizes |T ∩ D j |. Then D j ∩T consists of a single curve which bounds
a disc D∗

⊂ int D j , such that (K ∩ D j ) ⊂ int D∗ and D∗ is a meridian disc of V .
See Figure 2.

��

�
�
�
��

�
�
�

�
�
�
�

T S

D j

Figure 2. The intersection of T and S with D j .

Since T is not parallel to T j , V must be knotted. For r ∈ Z, let M(r) denote
the 3-manifold obtained from ML by performing Dehn filling along ∂η(L j ) with
slope 1

r . Since the core of V intersects D j once, the Dehn filling doesn’t unknot
V and T = ∂V remains incompressible in M(r) \ V . On the other hand, T is
incompressible in V \ (K ∪ L j ) by definition. Notice that both M(r) \ V and
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V \ (K ∪ L j ) are irreducible and

M(r) = (M(r) \ V )
⋃

T (V \ (K ∪ L j )).

We conclude that T remains incompressible in M(r) and M(r) is irreducible. In
particular M+ and M− are both irreducible.

Next we show that S remains taut in M+ and M−. By Lemma 2.4, we must
show that S is a minimal genus surface for K in M+ and in M−. To that end,
let S1 be a minimal genus surface for K in M+ or in M−. We may isotope so
that S1 ∩ T is a collection of parallel essential curves on T . Since the linking
number of K and L j is zero, S1 ∩ T is homologically trivial in T . Thus, we may
attach annuli along the components of S1 ∩ T and then isotope off T in int V , to
obtain a Seifert surface S′

1 for K that is disjoint from L j . Thus S′

1 is a surface
in the complement of L . Since T is incompressible, no component of S1 \ V is
a disc. Thus, genus(S′

1) ≤ genus(S1). On the other hand, by the definition of S,
genus(S) ≤ genus(S′

1) and thus genus(S) ≤ genus(S1). �

Lemma 2.6. Let (D, q) be an n-collection for a knot K such that ML is irreducible.
Let (S, ∂S) ⊂ (ML , ∂η(K )) be an oriented surface with ∂S = K that is taut. There
exists at least one sequence i := (i1, . . . in), with i j ∈ {1, 0}, such that S remains
taut in ML(i). Thus g(K (i)) = genus(S).

Proof. The proof is by induction on n. For n = 1, the conclusion follows from
Lemma 2.5. Suppose the conclusion is true for every m < n and every m-collection
(D1, q1) of a knot K1 such that ML1 is irreducible, where L1 denotes the crossing
link associated to D1 and ML1 := S3

\ η(K1 ∪ L1).
Let K , (D, q) and S be as in the statement of the lemma. By Lemma 2.5, at least

one of M±

L (i1), say M−

L (i1), is irreducible and S remains taut in that 3-manifold.
Let

D1 := {D2, . . . , Dn} and q1 := {q2, . . . , qn}.

Let L1
:= L \ L1 and let K1 denote the image of K in M−

L (i1). Clearly, ML1 =

M−

L (i1) and thus ML1 is irreducible. By the induction hypothesis, applied to K1

and the (n−1)-collection (D1, q1), it follows that there is at least one sequence
ı̂ := (ı̂2, . . . ı̂n) ∈ {0, 1}

n−1 such that S remains taut in ML1(ı̂). Since ML1(ı̂) =

ML(i), where i := (0, ı̂2, . . . ı̂n), the desired conclusion follows. �

Proof of Theorem 2.1. Suppose K n
−→ K ′and let L and ML be as in the statement

of the theorem. Let S be a Seifert surface for K in the complement of L such that
genus(S) = gL

n (K ). First, assume that ML is irreducible. By Lemma 2.4, S gives
rise to a surface (S, ∂S) ⊂ (ML , η(∂S)) that is taut. By Lemma 2.6, there exists at
least one sequence i ∈ {0, 1}

n such that S remains taut in ML(i). There are three
cases to consider, depending on the relation between g(K ) and g(K ′).
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If g(K ) > g(K ′), for every i 6= 0, we have

g(K ′) = g(K (i)) < g(K ) ≤ genus(S).

Therefore S doesn’t remain taut in ML(i) = S3
\ η(K (i)). Hence S must remain

taut in ML(0) = S3
\ η(K ) and we have gL

n (K ) = g(K ).
If g(K ) < g(K ′), we have a n-collection (D′, q ′) for K ′ where D′

= D and
q ′

= −q, such that K ′(i) = K ′ for all i 6= 1 and K ′(1) = K . So we may argue
similarly as in case (1) that gL

n (K ) = g(K ′). In fact, in this case, S must remain
taut in ML(i) for all i 6= 0.

Finally, if g(K ) = g(K ′), S remains taut in ML(i) for all i , and it follows that
gL

n (K ) = g(K ′) = g(K ).
Now suppose that ML is reducible. By Lemma 2.2, there is at least one compo-

nent of L that bounds an embedded disc in the complement of K . Let L1 denote
the union of the components of L that bound disjoint discs in the complement
of K and let L2

:= L \ L1. We may isotope S so that it is disjoint from the
discs bounded by the components of L1. Now S can be viewed as taut surface in
ML2 := S3

\ η(K ∪ L1). If L2
= ∅, the conclusion is clearly true. Otherwise ML2

is irreducible and the argument described above applies. �

3. Genus reducing n-collections

The purpose of this section is to prove Theorem 1.2 in the case that g(K ) > g(K ′).
The argument is essentially that in the proof of the main result of [Howards and
Luecke 2002].

Proof of Theorem 1.3. Let K , K ′ be as in the statement of the theorem. Let (D, q)

be an n-collection that transforms K to K ′ with associated crossing link L . Let S
be a Seifert surface for K that is of minimum genus among all surfaces bounded
by K in the complement of L . By Theorem 2.1 we have genus(S) = g(K ). Since
S is incompressible, after an isotopy, we can arrange so that for i = 1, . . . , n, each
closed component of S ∩ int Di is essential in Di \ K and thus parallel to L i = ∂ Di

on Di . Then, after an isotopy of L i in the complement of K , we may assume that
S ∩ int Di consists of a single properly embedded arc (αi , ∂αi ) ⊂ (S, ∂S) (Figure
3). Notice that αi is essential on S. For, otherwise, Di would bound a disc in the
complement of K and thus the genus of K could not be lowered by surgery on L i .

We claim that no two of the arcs α1, . . . αn, can be parallel on S. For suppose
to the contrary that the arcs αi := int Di ∩ S and α j := int D j ∩ S are parallel on S.
Then the crossing circles L i and L j cobound an embedded annulus that is disjoint
from K . Let

M := S3
\ η(K ∪ L i ) and M1 := S3

\ η(K ∪ L i ∪ L j ).
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αi

S

Di

Figure 3. The intersection of S with int Di .

For r, s ∈ Z let M(r) be the 3-manifold obtained from M by filling in ∂η(L i )

with slope 1
r , and let M1(r, s) be the manifold obtained from M1 by filling in

∂η(L i ∪ L j ) with slopes 1
r and 1

s . By assumption, S doesn’t remain taut in any
M(qi ) or M1(qi , q j ). Since L i , L j are coannular we see that M1(qi , q j ) = M(qi +

q j ). Notice that qi + q j 6= qi since otherwise we would conclude that a twist of
order q j along L j cannot reduce the genus of K . Hence we would have two distinct
Dehn fillings of M along ∂η(L i ) under which S doesn’t remain taut, contradicting
Corollary 2.4 of [Gabai 1987]. Therefore, we conclude that no two of the arcs
α1, . . . αn, can be parallel on S. Now the conclusion follows since a Seifert surface
of genus g contains 6g − 3 essential arcs no pair of which is parallel. �

4. Knot adjacency and essential tori

In this section we complete the proof of Theorem 1.2. For this we need to study the
case of n-adjacent knots K n

−→ K ′ in the special situation where all the crossing
changes from K to K ′ are supported on a single crossing circle of K . Using
Theorem 2.1, we will see that the general case is reduced to this special one.

Knot adjacency with respect to a crossing circle. We begin with a refined version
of the knot adjacency notion:

Definition 4.1. Let K , K ′ be knots and let D1 be a crossing disc for K . We will
say that K is m-adjacent to K ′ with respect to the crossing circle L1 := ∂ D1, if
there exist nonzero integers s1, . . . , sm such that the following is true: For every
nonempty J ⊂ {1, . . . , m}, the knot obtained from K by a surgery modification of
order sJ :=

∑
j∈J s j along L1 is isotopic to K ′. We will write

K m,L1
−→ K ′.
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Suppose that K m,L1
−→ K ′ and consider the m-collection obtained by taking m

parallel copies of D1 and labeling the i-th copy of L1 by 1
si

. As follows immediately
from the definitions, this m-collection transforms K to K ′ in the sense of Definition
1.1; thus K m

−→ K ′. Here is a converse that’s needed for the proof of Theorem 1.2:

Lemma 4.2. Let K , K ′ be knots and set g := max { g(K ), g(K ′) }. Suppose that
K n

−→ K ′. If n > m(6g − 3) for some m > 0, there exists a crossing link L1 for K
such that K m+1,L1

−→ K ′.

Proof. Let (D, q) be an n-collection that transforms K to K ′ and let L denote the
associated crossing link. Let S be a Seifert surface for K that is of minimal genus
among all surfaces bounded by K in the complement of L . Isotope so that, for
i = 1, . . . , n, the intersection S ∩ int Di is an arc αi that is properly embedded and
essential on S. By Theorem 2.1, we have genus(S) = g. Since n > m(6g −3), the
set {αi | i = 1, . . . , n} contains at least m + 1 arcs that are parallel on S. Suppose,
without loss of generality, that these are the arcs αi , i = 1, . . . , m + 1. It follows
that the components L1, . . . , Lm+1 of L are isotopic in the complement of K ; thus
any surgery along any of these components can be realized as surgery on L1. It
now follows from Definitions 1.1 and 4.1 that K m+1,L1

−→ K ′. �

The main ingredient needed to complete the proof of Theorem 1.2 is provided
by the following theorem:

Theorem 4.3. Given knots K , K ′, there exists a constant b(K , K ′) ∈ N such that if
L1 is a crossing circle of K and K m,L1

−→ K ′, then either m ≤ b(K , K ′) or L1 bounds
an embedded disc in the complement of K .

Proof of Theorem 1.2 assuming Theorem 4.3. Suppose that K , K ′ are nonisotopic
knots with K n

−→ K ′. If g(K ) > g(K ′) the conclusion follows from Theorem 1.3
by simply taking C(K , K ′) := 6g − 3. In general, let

C(K , K ′) := b(K , K ′) (6g − 3),

where b := b(K , K ′) is the constant of Theorem 4.3. We claim that n ≤ C(K , K ′).
Suppose, to the contrary, that n >C(K , K ′). By Lemma 4.2, there exists a crossing
circle L1 for K such that K b+1,L1

−→ K ′. By Theorem 4.3, L1 bounds an embedded
disc in the complement of K . But this implies that K is isotopic to K ′ contrary to
our assumption. �

The rest of this section will be devoted to the proof of Theorem 4.3. For that we
need to study whether the complement of K ∪ L1 contains essential tori and how
these tori behave under the crossing changes from K to K ′. Given K , K ′ and L1

such that K m,L1
−→ K ′, set N := S3

\η(K ∪L1) and N ′
:= S3

\η(K ′). By assumption,
N ′ is obtained by Dehn filling along the torus T1 := ∂η(L1). If N is reducible,
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Lemma 2.2 implies that L1 bounds a disc in the complement of K ; thus Theorem
4.3 holds. For irreducible N , as it turns out, there are three basic cases to consider:

(a) K ′ is a composite knot.

(b) N is atoroidal.

(c) N is toroidal and K ′ is not a composite knot.

By [Thurston 1979], if N is atoroidal it is either hyperbolic (it admits a complete
hyperbolic metric of finite volume) or it is a Seifert fibered space. To handle the
hyperbolic case we will use a result of Cooper and Lackenby [1998]. The Seifert
fibered spaces that occur are known to be very special and this case is handled by a
case-by-case analysis. Case (c) is handled by induction on the number of essential
tori contained in N . To set up this induction one needs to study the behavior of
these essential tori under the Dehn fillings from N to N ′. In particular, one needs
to know the circumstances under which these Dehn fillings create essential tori in
N ′. For this step, we will employ a result of Gordon [1998].

Composite knots. Here we examine the circumstances under which a knot K is
n-adjacent to a composite knot K ′. We will need the following theorem.

Theorem 4.4 [Torisu 1999]. Let K ′
:= K ′

1#K ′

2 be a composite knot and K ′′ a knot
obtained from K ′ by a generalized crossing change with corresponding crossing
disc D. If K ′′ is isotopic to K ′ then either ∂ D bounds a disc in the complement of
K ′ or the crossing change occurs within K ′

1 or K ′

2.

Proof. For an ordinary crossing the result is [Torisu 1999, Theorem 2.1]. The proof
given there works for generalized crossings. �

The next lemma handles possibility (a) above (K ′ is composite), reducing The-
orem 4.3 to the case that K ′ is a prime knot.

Lemma 4.5. Let K , K ′ be knots such that K m,L1
−→ K ′, where L1 is a crossing circle

for K . Suppose that K ′
:= K ′

1#K ′

2 is a composite knot. Then either L1 bounds a
disc in the complement of K or K is a connect sum K = K1#K2 and there exist
J ∈ {K1, K2} and J ′

∈ {K ′

1, K ′

2} such that J m,L1
−→ J ′.

Proof. By assumption there is an integer r 6= 0 so that the knot K ′′ obtained from
K ′ by a generalized crossing change of order r is isotopic to K ′. By Theorem
4.4, either L1 bounds a disc in the complement of K ′ or the crossing change
occurs on one of K ′

1, K ′

2; say on K ′

1. Thus, in particular, in the latter case L1

is a crossing link for K ′

1. Since K is obtained from K ′ by twisting along L1, K is
a, not necessarily nontrivial, connect sum of the form K1#K ′

2. By the uniqueness
of knot decompositions it follows that K1

m,L1
−→ K ′

1. �
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Dehn surgeries that create essential tori. Suppose M is a compact orientable 3-
manifold. For a collection T of disjointly embedded, pairwise nonparallel, es-
sential tori in M we will use |T| to denote the number of components of T. By
Haken’s finiteness theorem [Hempel 1976, Lemma 13.2], the number

τ(M) = max
{
|T|

∣∣ T is a collection of tori as above
}

is well defined. A collection T for which τ(M) = |T| will be called a Haken
system.

We will study the behavior of essential tori under the various Dehn fillings from
N := S3

\ η(K ∪ L1) to N ′
:= S3

\ η(K ′). Since N ′ is obtained from N by Dehn
filling along T1 := ∂η(L1), essential tori in N ′ occur in two ways:

Type I: An essential torus T ′
⊂ N ′ that can be isotoped in N ⊂ N ′; thus such a

torus is the image of an essential torus T ⊂ N .

Type II: An essential torus T ′
⊂ N ′ that is the image of an essential punctured

torus (P, ∂ P) ⊂ (N , T1), such that each component of ∂ P is parallel on T1 to
the curve along which the Dehn filling from N to N ′ is done.

We begin with a lemma that examines circumstances under which twisting a
knot that is geometrically essential inside a knotted solid torus V yields a knot
that is geometrically inessential inside V . In the notation of Definition 4.1, the
lemma implies that an essential torus in N either remains essential in N (sJ ), for
all nonempty J ⊂ {1, . . . , m}, or it becomes inessential in all N (sJ ).

Lemma 4.6. Let V ⊂ S3 be a knotted solid torus and let K1 ⊂ V be a knot that
is geometrically essential in V . Let D ⊂ int V be a crossing disc for K1 and let
K2 be a knot obtained from K1 by a nontrivial twist along D. Suppose that K1 is
isotopic to K2 in S3. Then K2 is geometrically essential in V . Furthermore, if K1

is not the core of V then K2 is not the core of V .

Proof. Suppose that K2 is not geometrically essential in V . Then there is an
embedded 3-ball B ⊂ int V that contains K2. Since making crossing changes on
K2 doesn’t change the homology class it represents in V , the winding number
of K1 in V must be zero. Set L := ∂ D and N := S3

\ η(K ∪ L). Let S be a
Seifert surface for K1 such that among all the surfaces bounded by K1 in N , S
has minimum genus. As usual we isotope S so that S ∩ D is an arc α properly
embedded on S. As in the proof of Theorem 2.1, S gives rise to Seifert surfaces
S1, S2 of K1, K2, respectively. Now K1 can be recovered from K2 by twisting ∂S2

along α.

Claim. L can be isotoped inside B in the complement of K1.

Assume this for the moment. Since K1 is obtained from K2 by a generalized
crossing change supported on L it follows that K1 lies in B. Since this contradicts
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our assumption that K1 is geometrically essential in V , K2 must be geometrically
essential in V . To finish the proof of the lemma, assuming the claim, observe that
if K1 is not the core C of V , then C is a companion knot of K1. If K2 is the core
of V , C and K1 are isotopic in S3 which by [Schubert 1953] is impossible.

We now prove the claim. Since K1, K2 are isotopic in S3 by Corollary 2.4 of
[Gabai 1987] (as used in the proof of Theorem 2.1), we see that S1 and S2 are
minimum genus surfaces for K1 and K2 in S3. By assumption ∂V is a nontrivial
companion torus of K1. Since the winding number of K1 in V is zero, the intersec-
tions S1 ∩ ∂V and S2 ∩ ∂V are homologically trivial in ∂V . Thus, for i = 1, 2, we
may replace the components of Si ∩ S3 \ V with boundary parallel annuli in int V
to obtain a Seifert surface S′

i inside V . It follows that Si ∩ S3 \ V is a collection of
annuli and S′

i is a minimum genus Seifert surface for Ki . Now S′

2 is a minimum
genus Seifert surface for K2 such that α ⊂ S′

2. By assumption, K2 lies inside
B. Since S′

2 is incompressible and V is irreducible, S′

2 can be isotoped in B by a
sequence of disc trading isotopies in int V . But this isotopy will also bring α inside
B and thus L . �

Next we focus on the case that N ′ is toroidal and examine the circumstances
under which N ′ contains type II tori.

Proposition 4.7. Let K , K ′ be knots such that K ′ is a nontrivial satellite but not
composite. Suppose that K m,L1

−→ K ′, where L1 is a crossing circle for K and let the
notation be as in Definition 4.1. At least one of the following is true:

(a) L1 bounds an embedded disc in the complement of K .

(b) For every nonempty J ⊂ {1, . . . , m}, there is in N (sJ ) a Haken system that
doesn’t contain tori of type II.

(c) We have m ≤ 6.

Proof. For s ∈ Z, let N (s) be the 3-manifold obtained from N by Dehn filling
along T1 with slope 1

s . Assume that L1 doesn’t bound an embedded disc in the
complement of K and that, for some nonempty J1 ⊂ {1, . . . , m}, N (sJ1) admits
a Haken system that contains tori of type II. We claim that, for every nonempty
J ⊂ {1, . . . , m}, N (sJ ) has such a Haken system. To see this, first assume that
N doesn’t contain essential embedded tori. Then, since N ′

= N (sJ ) and K ′ is
a nontrivial satellite, the conclusion follows. Suppose that N contains essential
embedded tori. By Lemma 4.6 it follows that an essential torus in N either remains
essential in N (sJ ), for all nonempty J ⊂ {1, . . . , m}, or it becomes inessential in
all N (sJ ) as above. Thus the number of type I tori in a Haken system of N (sJ )

is the same for all J as above. Thus, since we assume that N (sJ1) has a Haken
system containing tori of type II, a Haken system of N (sJ ) must contain tori of
type II, for every nonempty J ⊂ {1, . . . , m}. We distinguish two cases:
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Case 1: Suppose that s1, . . . , sm > 0 or s1, . . . , sm < 0. Let s :=
∑m

j=1 s j and
recall that we assumed that N is irreducible. By our discussion above, both of
N (s1), N (s) contain essential embedded tori of type II. By [Gordon 1998, Theorem
1.1], we must have

1(s, s1) ≤ 5,

where 1(s, s1) denotes the geometric intersection on T1 of the slopes represented
by 1

s1
and 1

s . Since 1(s, s1) =
∣∣∑m

j=2 s j
∣∣, and |s j | ≥ 1, in order for 1(s, s1) to be

at least 5 we must have m − 1 ≤ 5 or m ≤ 6.

Case 2: Suppose that not all of s1, . . . , sm have the same sign. Suppose, without
loss of generality, that s1, . . . , sk > 0 and sk+1, . . . , sm < 0. Let s :=

∑k
j=1 s j and

t :=
∑m

j=k+1 s j . Since both of N (s), N (t) contain essential embedded tori of type
II, by [Gordon 1998, Theorem 1.1]

1(s, t) ≤ 5.

But 1(t, s) = s − t =
∑m

j=1 |s j |. Thus, in order for 1(s, t) ≤ 5 to be true, we must
have m ≤ 5. The result follows. �

Proposition 4.7 and Lemma 4.5 yield:

Corollary 4.8. Let K , K ′ be knots and let L1 be a crossing circle for K . Suppose
that the 3-manifold N contains no essential embedded torus and that K m,L1

−→ K ′. If
K ′ is a nontrivial satellite, then either m ≤ 6 or L1 bounds an embedded disc in
the complement of K .

Hyperbolic and Seifert fibered manifolds. We now deal with the case that the
manifold N is atoroidal. As already mentioned, by Thurston’s uniformization the-
orem for Haken manifolds [Thurston 1979], N is either hyperbolic or a Seifert
fibered manifold.

First we recall some terminology about hyperbolic 3-manifolds. Let N be a
hyperbolic 3-manifold with boundary and let T1 a component of ∂ N . In int N
there is a cusp, which is homeomorphic to T1 × [1, ∞), associated with the torus
T1. The cusp lifts to an infinite set, say H, of disjoint horoballs in the hyperbolic
space H3 which can be expanded so that each horoball in H has a point of tangency
with some other. The image of these horoballs under the projection H3

→ int N is
the maximal horoball neighborhood of T1. The boundary R2 of each horoball in
H inherits a Euclidean metric from H3 which in turn induces a Euclidean metric
on T1. A slope s on T1 defines a primitive element in π1(T1) corresponding to a
Euclidean translation in R2. The length of s, denoted by l(s), is the length of the
corresponding translation vector.

Given a slope s on T1, let us use N [s] to denote the manifold obtained from N
by Dehn filling along T1 with slope s. We remind the reader that in the case that
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the slope s is represented by 1
s , for some s ∈ Z, we use the notation N (s) instead.

Next we recall a result of Cooper and Lackenby the proof of which relies on work
of Thurston and Gromov. We only state the result in the special case needed here:

Theorem 4.9 [Cooper and Lackenby 1998]. Let N ′ be a compact orientable man-
ifold, with ∂ N ′ a collection of tori. Let N be a hyperbolic manifold and let s be
a slope on a toral component T1 of ∂ N such that N [s] is homeomorphic to N ′.
Suppose that the length of s on the maximal horoball of T1 in int N is at least
2π + ε, for some ε > 0. Then, for any given N ′ and ε > 0, there is only a finite
number of possibilities (up to isometry) for N and s.

Remark 4.10. With the notation of Theorem 4.9, let E denote the set of all slopes s
on T1, such that l(s)≤2π . It is a consequence of the Gromov–Thurston 2π theorem
that E is finite. More specifically, the Gromov–Thurston theorem (a proof of which
is found in [Bleiler and Hodgson 1996]) states that if l(s) > 2π , then N [s] admits
a negatively curved metric. But in Theorem 11 of [Bleiler and Hodgson 1996],
Bleiler and Hodgson show that there can be at most 48 slopes on T1 for which
N [s] admits no negatively curved metric. Thus, there can be at most 48 slopes on
T1 with length ≤ 2π .

Using Theorem 4.9 we will prove the following proposition which is a special
case of Theorem 4.3 (compare possibility (b) on page 261):

Proposition 4.11. Let K , K ′ be knots such that K m,L1
−→ K ′, where L1 is a cross-

ing circle for K and m > 0. Suppose that N := S3
\ η(K ∪ L1) is a hyperbolic

manifold. Then there is a constant b(K , K ′), depending only on K , K ′, such that
m ≤ b(K , K ′).

Proof. We will apply Theorem 4.9 for the manifolds N := S3
\ η(K ∪ L1), N ′

:=

S3
\ η(K ′) and the component T1 := ∂η(L1) of ∂ N . Let s1, . . . , sm be integers

satisfying Definition 4.1. That is, for every nonempty J ⊂ {1, . . . , m}, N (sJ ) is
homeomorphic to N ′. By abusing the notation, for r ∈ Z we will write l(r) for the
length on T1 of the slope represented by 1

r . Also, as in the proof of Proposition
4.7, we will use 1(r, t) to denote the geometric intersection on T1 of the slopes
represented by 1

r and 1
t . Let A(r, t) denote the area of the parallelogram in R2

spanned by the lifts of these slopes and let A(T1) denote the area of a fundamental
domain of the torus T1. It is known that A(T1) ≥

√
3/2 (see [Bleiler and Hodgson

1996]) and that 1(r, t) is the quotient of A(r, t) by A(T1). Thus, for every r, t ∈ Z,
we have

l(r)l(t) ≥ 1(r, t)

√
3

2
.

Let λ > 0 denote the length of a meridian of T1; in fact it is known that λ ≥ 1. As-
sume to the contrary that no constant b(K , K ′) as in the statement of the proposition
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exists. Then there exist infinitely many integers s such that N (s) is homeomorphic
to N ′. Applying the preceding displayed inequality (to l(s) and λ) we obtain

l(s) ≥ |s|

√
3

2λ
.

Thus, for |s| ≥
(
4πλ + 2λ

)
/
√

3, we have l(s) ≥ 2π + 1. But then, for ε = 1, we
have infinitely many integers such that l(s)≥ 2π +ε and N (s) is homeomorphic to
N ′. Since this contradicts Theorem 4.9 the proof of the proposition is finished. �

Next we turn our attention to the case where N := S3
\η(K ∪ L1) is an atoroidal

Seifert fibered space. Since N is embedded in S3 it is orientable. It is know that an
orientable, atoroidal Seifert fibered space with two boundary components is either
a cable space or a trivial torus bundle T 2

× I . Let us recall how a cable space
is formed: Let V ′′

⊂ V ′
⊂ S3 be concentric solid tori. Let J be a simple closed

curve on ∂V ′′ having slope a
b , for some a, b ∈ Z with |b| ≥ 2. The complement

X := V ′
\int η(J ) is a a

b -cable space. Topologically, X is a Seifert fibered space over
the annulus with one exceptional fiber of multiplicity |b|. We show the following:

Lemma 4.12. Let K , K ′ be knots such that K m,L1
−→ K ′, where L1 is a crossing circle

for K and m > 0. Suppose that N := S3
\ η(K ∪ L1) is an irreducible, atoroidal

Seifert fibered space. Then there is a constant b(K , K ′) such that m ≤ b(K , K ′).

Proof. As discussed above, N is either a cable space or a torus bundle T 2
× I . Note,

however, that in a cable space the cores of the solid tori bounded in S3 by the two
components of ∂ N have nonzero linking number. Thus, since the linking number
of K and L1 is zero, N cannot be a cable space. Hence, we only have to consider
the case where N ∼= T 2

× I . Suppose T1 = T 2
×{1} and T2 := ∂η(K )= T 2

×{0}. By
assumption there is a slope s on T1 such that the Dehn filling of T1 along s produces
N ′. Now s corresponds to a simple closed curve on T2 that must compress in N ′.
By Dehn’s Lemma, K ′ must be the unknot. It follows that either g(K ) > g(K ′) or
K is the unknot. In the later case, we obtain that L1 bounds a disc disjoint from
K , contrary to our assumption that N is irreducible. Thus, g(K ) > g(K ′) and the
conclusion follows from Theorem 1.3. �

The next result complements nicely Corollary 4.8; however, it is not needed for
the proof of the main result. A reader eager to get to the proof of Theorem 4.3 can
move to the next page without loss of continuity.

Proposition 4.13. Let K , K ′ be nonisotopic hyperbolic knots. Suppose there exists
a crossing circle L1 for K such that K m,L1

−→ K ′, for some m ≥ 6. Then, for given K
and K ′, there is only a finite number of possibilities for m and for L1 up to isotopy
in the complement of K .
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Proof. As before, set N := S3
\η(K ∪L1), N ′

:= S3
\η(K ′) and let D be a crossing

disc for L1. Since K is not isotopic to K ′, N is irreducible and ∂-irreducible.

Claim. N is atoroidal.

Proof. Suppose that N contains an embedded essential torus T and let V denote
the solid torus bounded by T in S3. If L1 cannot be isotoped to lie in int V then
D ∩ T contains a component whose interior in D is pierced exactly once by K .
This implies that T is parallel to ∂η(K ) in N ; a contradiction. Thus, L1 can be
isotoped to lie inside V . Now let S be a Seifert surface of K that is taut in N .
After isotopy, D ∩ S is an arc α that is essential on S. By Theorem 2.1, S remains
of minimum genus in at least one of N ′′

:= S3
\ η(K ), N ′. Assume S remains of

minimum genus in N ′; the other case is completely analogous. Since K , K ′ are
hyperbolic T becomes inessential in both of N ′′, N ′. But since K , K ′ are related by
a generalized crossing change, either T becomes boundary parallel in both of N ′′,
N ′ or it becomes compressible in both of them. First suppose that T is boundary
parallel in both of N ′′, N ′: Then it follows that the arc α is inessential on S and K
is isotopic to K ′; a contradiction. Now suppose that T is compressible in both of
N ′′, N ′: Then both of K , K ′ are inessential in V and they can be isotoped to lie in
a 3-ball B ⊂ int V . By an argument similar to this in the proof of Lemma 4.6 we
can conclude that α, and thus L1, can be isotoped to lie in B. But this contradicts
the assumption that T is essential in N and finishes the proof of the claim.

To continue with the proof of the proposition, observe that the argument of the
proof of Lemma 4.12 shows that if N is a Seifert fibered space then K ′ is the unknot.
But this is impossible since we assumed that K ′ is hyperbolic. Thus, by [Thurston
1979], N is hyperbolic. Let s1, . . . , sm be integers that satisfy Definition 4.1 for
K , K ′. Thus we have 2m

−1 integers s, with N (s)= N ′. Now [Bleiler and Hodgson
1996] implies that we can have at most 48 integers so that the corresponding slopes
have lengths ≤ 2π on T1. Since m ≥ 6 we have 2m

− 1 > 48. Thus we have
km := 2m

− 49 > 0 integers s such that l(s) > 2π and N (s) = N ′. By Theorem
4.9, there is only a finite number of possibilities (up to isometry) for N and s. The
proposition follows. �

Remark 4.14. Proposition 4.13 implies Theorem 4.3, and thus also Theorem 1.2,
if K , K ′ are hyperbolic.

We now turn to the proof of Theorem 4.3. We will need the following theorem,
a special case of a result proved in [McCullough 2006].

Theorem 4.15 [McCullough 2006]. Let M be a compact orientable 3-manifold,
and let C be a simple loop in ∂ M. Suppose that h : M → M is a homeomorphism
whose restriction to ∂ M is isotopic to a nontrivial power of a Dehn twist about C.
Then C bounds a disc in M.
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Recall also that for a compact orientable 3-manifold M , τ(M) denotes the car-
dinality of a Haken system of tori (page 262). In particular, M is atoroidal if and
only if τ(M) = 0.

Proof of Theorem 4.3. Let K , K ′ be knots and let L1 be a crossing circle of K such
that K m,L1

−→ K ′. As before we set N := S3
\ η(K ∪ L1) and N ′

:= S3
\ η(K ′). If

g(K ) > g(K ′), by Theorem 1.3, we have m ≤ 3g(K ) − 1. Thus, in this case, we
can take b(K , K ′) := 3g(K ) − 1 and Theorem 4.3 holds. Hence, we only have to
consider that case that g(K ) ≤ g(K ′).

Next we consider the complexity

ρ = ρ(K , K ′, L1) := τ(N ).

First, suppose that ρ = 0, that is N is atoroidal. Then N is either hyperbolic or a
Seifert fibered manifold [Thurston 1979]. In the former case, the conclusion of the
theorem follows from Proposition 4.11; in the later case it follows from Lemma
4.12.

Assume now that τ(N ) > 0; that is N is toroidal. Suppose, inductively, that for
every triple K1, K ′

1, L ′

1, with ρ(K1, K ′

1, L ′

1)< r , there is a constant d = d(K1, K ′

1)

satisfying the following condition:

If K1
m,L ′

1
−→ K ′

1, then either m ≤ d or L ′

1 bounds an embedded disc in the comple-
ment of K1.

Let K , K ′, L1 be knots and a crossing circle for K such that K m,L1
−→ K ′ and

ρ(K , K ′, L1) = r . Let s1, . . . , sm be integers satisfying Definition 4.1 for K , K ′

and L1. For every nonempty J ⊂{1, . . . , m}, let N (sJ ) be the 3-manifold obtained
from N by Dehn filling of ∂η(L1) with slope 1

sJ
. By assumption, N ′

= N (sJ ).
Assume, for a moment, that for some nonempty J1 ⊂ {1, . . . , m}, N (sJ1) contains
essential embedded tori of type II. Then Proposition 4.7 implies that either m ≤ 6
or L1 bounds an embedded disc in the complement of K . Hence, in this case, the
conclusion of the theorem is true for K , K ′, L1, with b(K , K ′) := 6. Thus we may
assume that, for every nonempty J ⊂ {1, . . . , m}, N (sJ ) doesn’t contain essential
embedded tori of type II.

Claim. There exist knots K1, K ′

1 and a crossing circle L ′

1 for K1 such that

(1) K1
m,L ′

1
−→ K ′

1 and ρ(K1, K ′

1, L ′

1) < ρ(K , K ′, L1) = r , and

(2) if L ′

1 bounds an embedded disc in the complement of K1 then L1 bounds an
embedded disc in the complement of K .

Assume the claim for the moment. By induction, there is d = d(K1, K ′

1) such
that either m ≤ d or L ′

1 bounds a disc in the complement of K1. Let Km denote
the set of all pairs of knots K1, K ′

1 such that there exists a crossing circle L ′

1 for
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K1 satisfying properties (1) and (2) of the claim. Define

b = b(K , K ′) := min { d(K1, K ′

1) | K1, K ′

1 ∈ Km }.

Clearly b satisfies the conclusion of the statement of the theorem. �

Proof of the claim. Let T be an essential embedded torus in N . Since T is essential
in N , T has to be knotted. Let V denote the solid torus component of S3

\T . Note
that K must lie inside V . For, otherwise L1 must be geometrically essential in V
and thus it can’t be the unknot. There are various cases to consider according to
whether L1 lies outside or inside V .

Case 1: Suppose that L1 lies outside V and it cannot be isotoped to lie inside V .
Now K is a nontrivial satellite with companion torus T . Let D1 be a crossing
disc bounded by L1. Notice that if all the components of D1 ∩ T were either
homotopically trivial in D1 \(D1 ∩ K ) or parallel to ∂ D1, then we would be able to
isotope L1 inside V , contrary to our assumption. Thus D1∩T contains a component
that encircles a single point of the intersection K ∩ D1. This implies that the
winding number of K in V is one. Since T is essential in N we conclude that K
is composite, say K := K1#K2, and T is the follow-swallow torus. Moreover, the
generalized crossings realized by the surgeries on L1 occur along a summand of
K , say along K1. By the uniqueness of prime decompositions of knots, it follows
that there exists a (not necessarily nontrivial) knot K ′

1, such that K ′
= K ′

1#K2 and
K1

m,L1
−→ K ′

1. Set N1 := S3
\η(K1∪L1) and N ′

1 := S3
\η(K ′

1). Clearly, τ(N1)<τ(N ).
Thus, ρ(K1, K ′

1, L1) < ρ(K , K ′, L1) and part (1) of the claim has been proved in
this case. To see part (2) notice that if L1 bounds a disc D in the complement of
K1, we may assume D ∩ K = ∅.

Case 2: Suppose that L1 can be isotoped to lie inside V . Now the link K ∪ L1 is
a nontrivial satellite with companion torus T . We can find a standardly embedded
solid torus V1 ⊂ S3, and a 2-component link (K1 ∪ L ′

1) ⊂ V1 such that (i) K1 ∪ L ′

1
is geometrically essential in V1, (ii) L ′

1 is a crossing disc for K1, and (iii) there
is a homeomorphism f : V1 −→ V such that f (K1) = K and f (L ′

1) = L1 and
f preserves the longitudes of V1 and V . In other words, K1 ∪ L ′

1 is the model
link for the satellite. Let T be a Haken system for N containing T . We will
assume that the torus T is innermost; i.e. the boundary of the component of N \T

that contains T also contains ∂η(K ). By twisting along L1 if necessary, we may
without loss of generality assume that V̄ := V \ (K ∪ L1) is atoroidal. Then V̄1 :=

V1 \ (K1 ∪ L ′

1) is also atoroidal. For every nontrivial J ⊂ {1, . . . , m}, let K (sJ )

denote the knot obtained from K1 by performing 1
sJ

-surgery on L ′

1. By assumption
the knots f (K (sJ )) are all isotopic to K ′.
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Case 2a: There is a nonempty J1 ⊂ {1, . . . , m} such that ∂V is compressible
in V \ f (K (sJ1)). By Lemma 4.6, for every nonempty J ⊂ {1, . . . , m}, ∂V is
compressible in V \ f (K (sJ )). It follows that there is an embedded 3-ball B ⊂ int V
such that (i) f (K (sJ )) ⊂ int(B), for every nonempty J ⊂ {1, . . . , m}; and (ii) the
isotopy from f (K (sJ1)) to f (K (sJ2)) can be realized inside B, for every J1 6= J2

as above. From this observation it follows that there is a knot K ′

1 ⊂ int V1 such that

f (K ′

1) = K ′ and K1
m,L ′

1
−→ K ′

1

in V1. Set N1 := S3
\ η(K1 ∪ L ′

1) and N ′

1 := S3
\ η(K ′

1). Clearly, τ(N1) < τ(N ).
Hence, ρ(K1, K ′

1, L1) < ρ(K , K ′, L1) and the part (1) of the claim has been
proved.

We will prove part (2) of the claim for Case 2a together with the next case.

Case 2b: For every nonempty J ⊂{1, . . . , m}, f (K (sJ )) is geometrically essential
in V . By Lemma 4.5, the conclusion of the claim is true if K ′ is composite. Thus,
we may assume that K ′ is a prime knot. In this case, we claim that, for every
nonempty J1, J2 ⊂ {1, . . . , m}, there is an orientation preserving homeomorphism
φ : S3

−→ S3 such that φ(V ) = V and φ( f (K (sJ1))) = f (K (sJ2)). Since we as-
sumed that N (sJ1), N (sJ1) do not contain essential tori of type II, T remains inner-
most in the complement of f (K (sJ1)), f (K (sJ2)). By the uniqueness of the torus
decomposition of knot complements [Jaco and Shalen 1979] or the uniqueness
of satellite structures of knots [Schubert 1953], there is an orientation preserving
homeomorphism φ : S3

−→ S3 such that φ(V )∩V = ∅ and K̄ := φ( f (K (sJ1))) =

f (K (sJ2)) (compare [Motegi 1993, Lemma 2.3]). Since T is innermost in V̄ , we
have S3

\ int V ⊂ int φ(S3
\ int V ) or φ(S3

\ int V ) ⊂ int(S3
\ int V ). In both

cases, by Haken’s finiteness theorem, it follows that T and φ(T ) are parallel in
the complement of K̄ . Thus after an ambient isotopy, leaving K̄ fixed, we have
φ(V ) = V . Let h = f ◦ φ ◦ f −1

: V1 −→ V1. Then h preserves the longitude of
V1 up to a sign and h(K (sJ1)) = K (sJ2). So, in particular, the knots K (sJ1) and
K (sJ2) are isotopic in S3. Let K ′

1 denote the knot type in S3 of {K (sJ )}J⊂{1,...,m}.
By our earlier assumptions, we have K1

m,L ′

1
−→ K ′

1. Set N1 := S3
\ η(K1 ∪ L ′

1) and
N ′

1 := S3
\ η(K ′

1). Clearly, τ(N1) < τ(N ). Thus part (1) of the claim has been
proved also in this subcase.

We now prove part (2) of the claim for both subcases. Note that it is enough to
show that if L ′

1 bounds an embedded disc, say D′, in the complement of K1 in S3,
then it bounds one inside V1.

Let D′

1 ⊂ V1 be a crossing disc bounded by L ′

1 and such that int D′
∩int D′

1 = ∅.
Since ∂V1 is incompressible in V1 \ K1, after a cut and paste argument, we may
assume that E = D′

1 ∪ (D ∩ V1) is a proper annulus whose boundary components
are longitudes of V1.
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K (s) K (s+r)

E EL ′

1 L ′

1

A twist of order r

Figure 4. The annulus E contains the crossing circle L ′

1 and sep-
arates V1 into solid tori V ′

1 (part above E) and V ′′

1 (part below E).
In V ′′

1 the knots K (s) and K (s + r) differ by a twist of order r
along D′

1.

By assumption, in both subcases, there exist nonzero integers s, r , such that
K (s) and K (s + r) are isotopic in S3. Here, K (s) and K (s + r) denotes the
knots obtained from K1 by a twist along L ′

1 of order s and s + r respectively.
Let ĥ : S3

−→ S3 denote the extension of h : V1 −→ V1 to S3. We assume that
ĥ fixes the core circle C1 of the complementary solid torus of V1. Since the 2-
sphere D ∪ D′

1 gives the same (possible trivial) connected sum decomposition of
K ′

1 = K (s) = K (s + r) in S3, we may assume that ĥ(D) = D and ĥ(D′

1) = D′

1 up
to an isotopy. During this isotopy of ĥ, ĥ(C1) and ĥ(V1) remain disjoint. So we
may assume that at the end of the isotopy, we still have ĥ(V1) = V1. Thus, we can
assume that h(E) = E .

The annulus E cuts V1 into two solid tori V ′

1 and V ′′

1 . See Figure 4, where the
solid torus above E is V ′

1 and below E is V ′′

1 . We have either h(V ′

1) = V ′

1 and
h(V ′′

1 ) = V ′′

1 or h(V ′

1) = V ′′

1 and h(V ′′

1 ) = V ′

1. In the case when h(V ′

1) = V ′

1 and
h(V ′′

1 ) = V ′′

1 , we may assume that h|∂V1 = id and h|E = id. Thus K (s +r)∩ V ′

1 =

K (s) ∩ V ′

1 and K (s + r) ∩ V ′′

1 is equal to K (s) ∩ V ′′

1 twisted by a twist of order
r along L ′

1. Let M denote the 3-manifold obtained from V ′′

1 \ (V ′′

1 ∩ K (s)) by
attaching a 2-handle to ∂V ′′

1 ∩ E along K (s) ∩ V ′′

1 . Now h|∂ M can be realized by
a Dehn twist of order r along L ′

1. By Theorem 4.15, L ′

1 must bound a disc in M .
In order words, L ′

1 bounds a disc in V1 \ K (s). This implies that L ′

1 bounds a disc
in V1 \ K1.
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In the case when h(V ′

1) = V ′′

1 and h(V ′′

1 ) = V ′

1, we may assume that h|∂V1 and
h|E are rotations of 180◦ with an axis on E passing through the intersection points
of D′

1 with K (s) and K (s + r). Thus K (s + r) ∩ V ′

1 and K (s) ∩ V ′′

1 differ by a
rotation, and K (s + r) ∩ V ′′

1 is equal to K (s) ∩ V ′

1 twisted by a twist of order r
along L ′

1 followed by a rotation. Now we consider the 3-manifold N obtained from
V ′

1 \ (V ′

1 ∩ K (s)) by attaching a 2-handle to ∂V ′

1 ∩ E along K (s) ∩ V ′

1. As above
we conclude that a Dehn twist of order r along L ′

1 extends to N and we complete
the argument by applying Theorem 4.15. �

5. Applications and examples

Applications to nugatory crossings. Recall that a crossing of a knot K with cross-
ing disc D is called nugatory if ∂ D bounds a disc disjoint from K . This disc and
D bound a 2-sphere that decomposes K into a connected sum, where some of the
summands may be trivial. Clearly, changing a nugatory crossing doesn’t change
the isotopy class of a knot. An outstanding question is whether the converse is
true:

Question 5.1 [Kirby 1997, Problem 1.58]. If a crossing change in a knot K yields
a knot isotopic to K , is the crossing nugatory?

The answer is known to be yes when K is the unknot [Scharlemann and Thomp-
son 1989] or a 2-bridge knot [Torisu 1999]. Torisu conjectures that the answer is
always yes. Our results in Section 5 yield the following corollary, which shows
that an essential crossing circle of a knot K can admit at most finitely many twists
that do not change the isotopy type of K :

Corollary 5.2. For a crossing of a knot K, with crossing disc D, let K (r) denote
the knot obtained by a twist of order r along D. The crossing is nugatory if and
only if K (r) is isotopic to K for all r ∈ Z.

Proof. One direction of the corollary is clear. To obtain the other direction apply
Theorem 4.3 for K = K ′. �

In the view of this corollary, Question 5.1 is reduced to the following: In the
same setting of Corollary 5.2, let K+ := K and K− := K (1). If K− is isotopic to
K+ is it true that K (r) is isotopic to K , for all r ∈ Z?

Examples. Here we outline some methods that for every n > 0 construct knots
K , K ′ with K n

−→ K ′. It is known that given n ∈ N there exists a plethora of
knots that are n-adjacent to the unknot. In fact, [Askitas and Kalfagianni 2002]
provides a method for constructing all such knots. It is easy to see that given knots
K , K ′ such that K1 is n-adjacent to the unknot, the connected sum K := K1#K ′

is n-adjacent to K ′. Clearly, if K1 is nontrivial then g(K ) > g(K ′). To construct
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examples K , K ′ in which K is not composite, at least in an obvious way, one can
proceed as follows: For n > 0 let K1 be a knot that is n-adjacent to the unknot
and let V1 ⊂ S3 be a standard solid torus. We can embed K1 in V1 so that it has
nonzero winding number and is n-adjacent to the core of V1 inside V1. Note that
there might be many different ways of doing so. Now let f : V1 −→ S3 be any
embedding that knots V1. Set V := f (V1), K := f (K1) and let K ′ denote the core
of V . By construction, K n

−→ K ′. Since K1 has nonzero winding number in V1

we have g(K ) > g(K ′) (see, for example, [Burde and Zieschang 1985]).
We will say that two ordered pairs of knots (K1, K ′

1), (K2, K ′

2) are isotopic if
and only if K1 is isotopic to K2 and K ′

1 is isotopic to K ′

2. From our discussion
above we obtain:

Proposition 5.3. For every n ∈ N there exist infinitely many nonisotopic pairs of
knots (K , K ′) such that K n

−→ K ′ and g(K ) > g(K ′).

Remark 5.4. We don’t know of any examples of knots (K , K ′) such that K n
−→ K ′

and g(K ) ≤ g(K ′). In fact the results of [Kalfagianni 2006], and further exam-
ples constructed in [Torisu 2006], prompt the following question: Is it true that if
K n

−→ K ′ for some n > 1, then either g(K ) > g(K ′) or K is isotopic to K ′?
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