
Pacific
Journal of
Mathematics

AN EXPLICIT EXAMPLE OF RIEMANN SURFACES WITH
LARGE BOUNDS ON CORONA SOLUTIONS

BYUNG-GEUN OH

Volume 228 No. 2 December 2006



PACIFIC JOURNAL OF MATHEMATICS
Vol. 228, No. 2, 2006

AN EXPLICIT EXAMPLE OF RIEMANN SURFACES WITH
LARGE BOUNDS ON CORONA SOLUTIONS

BYUNG-GEUN OH

By modifying Cole’s example, we construct explicit Riemann surfaces with
large bounds on corona solutions in an elementary way.

1. Introduction

For a given Riemann surface R, consider the algebra H∞(R) of bounded analytic
functions on R separating the points in R. The corona problem asks whether ι(R)

is dense in the maximal ideal space M(R) of H∞(R), where ι : R → M(R) is the
natural inclusion defined by the point evaluation. If ι(R) is dense in M(R), we say
that the corona theorem holds for R. Otherwise R is said to have corona.

The corona theorem holds for R if and only if the following statement is true (see
[Gamelin 1978, Chapter 4] or [Garnett 1981, Chapter VIII]): for every collection
F1, . . . , Fn ∈ H∞(R) and any δ ∈ (0, 1) with the property

(1-1) δ ≤ max
j

|F j (ζ )| ≤ 1 for all ζ ∈ R,

there exist G1, . . . , Gn ∈ H∞(R) such that

(1-2) F1G1 + F2G2 + · · · + FnGn = 1.

We refer to G1, . . . , Gn as corona solutions, F1, . . . , Fn as corona data, and
max{‖G1‖, . . . , ‖Gn‖} as a bound on the corona solutions or corona constant.
Here the notation ‖ · ‖ indicates the uniform norm. Throughout this paper, we
assume that the corona data satisfies (1-1) for the given δ. The letter δ is reserved
only for this use.

Theorem 1 (B. Cole; see [Gamelin 1978, Theorem 4.1, pp. 47–49]). For any
δ ∈ (0, 1) and M > 0, there exist a finite bordered Riemann surface R and corona
data F1, F2 ∈ H∞(R) such that any corona solutions G1, G2 ∈ H∞(R) have a
bound at least M ; that is, max{‖G1‖, ‖G2‖} ≥ M.

MSC2000: 30H05, 30D55.
Keywords: corona problem, bounded analytic function.

297

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.228-2
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=30H05, 30D55


298 BYUNG-GEUN OH

The purpose of this paper is to construct the Riemann surface R in Theorem 1
in an elementary way and describe it explicitly. Once Theorem 1 is proved, it is
possible to construct a Riemann surface with corona.

Theorem 2 (B. Cole; see [Gamelin 1978, Theorem 4.2, pp. 49–52]). There exists
an open Riemann surface with corona.

The basic idea of the proof of Theorem 2 is that if a Riemann surface R is
obtained by connecting two Riemann surfaces R1 and R2 with a thin strip, then
any holomorphic function on R behaves almost independently on R1 and R2.

The corona theorem holds for the unit disc [Carleson 1962], finitely connected
domains in C [Gamelin 1970], Denjoy domains [Garnett and Jones 1985], and var-
ious other classes of planar domains and Riemann surfaces [Alling 1964; Behrens
1970; 1971; Jones and Marshall 1985; Stout 1965]. On the other hand, examples
of Riemann surfaces with corona (other than Cole’s) can be found in [Barrett and
Diller 1998] and [Hayashi 1999]. Furthermore, by modifying the proof of Theorem
2, Cole’s example can be used to obtain a Riemann surface R with corona that is of
Parreau–Widom type [Nakai 1982]. (This means that

∑
z∈E G(z, w)<+∞, where

G( · , w) is the Green’s function on R with the pole w and E ={z : ∇G(z, w)= 0}.)
The corona problem for a general domain in C is still open, and the answer is

also unknown for a polydisc or a unit ball in Cn , for n ≥ 2.

2. Proof of Theorem 1

For given δ ∈ (0, 1) and M > 0, we choose a natural number n such that δn
≤

min
{
(16M)−1, 1

4

}
. Let d = 4δn2

+n and c = 2δn2
. Since 2δn2

< 2δn
≤

1
2 , we have

(2-1)
4δn+1

1 − c
≤ 8δn+1 < 8δn

≤
1

2M
.

Moreover,

(2-2)
d

c − d
=

4δn2
+n

2δn2
− 4δn2+n

=
2δn

1 − 2δn ≤ 4δn <
1

2M
.

The important features in our choice of c, d and n are that d1/n is small (equation
(2-1)), d/c is small (equation (2-2)), and (d/c)1/n is not small — say greater than
δ.

Let D be the unit disc in C, B := B(0, d) = {z ∈ C : |z| < d}, and A := D\B.
Further, define

D := {z : (z + c)/(1 + cz) ∈ A},

D1 := {z : zn
∈ A} = {z : d/zn

∈ A},

D2 := {z : zn2
∈ D}.
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Thus D is the image of A under the Möbius transformation L(z) := (z−c)/(1−cz),
and D1 and D2 are preimages of A and D under h1(z) := d/zn and h2(z) := zn2

.
Finally we define the bordered Riemann surface

(2-3) R :=

{
(z1, z2) ∈ C2

: z1 ∈ D1, z2 ∈ D2 and
zn

1 − c
1 − czn

1
= zn2

2

}
.

preimages of c

c

F2(z1, z2) = z2

h2(z) = zn2

h1(z) =
d
zn

F1(z1, z2) =
d1/n

z1

A

D2D1

R

L(z) =
z − c

1 − cz

B

D

Scheme of the construction of R, for n = 4.
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Note that R is an n-sheeted covering of D2 and an n2-sheeted branched covering
of D1. This is because D1 is an n-sheeted covering of A and D2 is an n2-sheeted
branched covering of D.

We claim that the Riemann surface R, together with the holomorphic functions

F1(z1, z2) =
d1/n

z1
and F2(z1, z2) = z2,

satisfies the conditions in Theorem 1.
First, note that F1 and F2 have values in D1 and D2, respectively. Thus we have

max{‖F1‖, ‖F2‖} ≤ 1. Furthermore, if |F2(z1, z2)| = |z2| < δ, we have

|zn
1 − c| = |z2|

n2
|1 − czn

1 | < 2δn2
,

and hence |z1|
n < c + 2δn2

= 4δn2
. Therefore

|F1(z1, z2)| =
d1/n

|z1|
>

41/nδn+1

41/nδn = δ,

and the inequality max{|F1(z1, z2)|, |F2(z1, z2)|}≥ δ holds for all (z1, z2)∈ R; i.e.,
(F1, F2) becomes a pair of corona data for the given δ.

It remains to show that max{‖G1‖, ‖G2‖} ≥ M for any corona solutions G1, G2

such that

(2-4) F1G1 + F2G2 = 1.

In fact, we will show that ‖G1‖≥ M . To prove this claim, we assume, without loss
of generality, that G1 and G2 are holomorphic across the boundary of R. Then we
define for all z ∈ A,

f (z) :=
1
n3

∑
F1(z1, z2)G1(z1, z2),

where the summation is over all the points (z1, z2) ∈ R such that zn
1 = z, counting

multiplicity. (Note that the map (z1, z2) 7→ zn
1 is an n3-sheeted branched covering

from R to A.) Then f is analytic in (a neighborhood of) A.
Since F2(z1, z2) = z2 = 0 when zn

1 = c, it is easy to see from (2-4) that f (c) = 1.
On the other hand, | f (z)| ≤ ‖G1‖ for all z ∈ A since ‖F1‖ ≤ 1, and | f (z)| ≤

4δn+1
‖G1‖ for |z| = 1 since on {|z1| = 1} we have

|F1(z1, z2)| =
d1/n

|z1|
= 41/nδn+1

≤ 4δn+1.
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Therefore, by Cauchy’s integral formula,

1 = | f (c)| =

∣∣∣∣ 1
2π i

∫
|ξ |=1

f (ξ)

ξ − c
dξ −

1
2π i

∫
|ξ |=d

f (ξ)

ξ − c
dξ

∣∣∣∣
≤

4δn+1
‖G1‖

1 − c
+

2πd‖G1‖

2π(c − d)
.

This inequality, together with (2-1) and (2-2), proves the claim. This completes
the proof.

3. Further remarks

1. In the construction of R, one can take F1 as the projection map (z1, z2) 7→ z1,
but then it is necessary to modify the definition (2-3) of R to

R :=

{
(z1, z2) ∈ C2

: z1 ∈ D1, z2 ∈ D2 and
d/zn

1 − c
1 − cd/zn

1
= zn2

2

}
because we want to make the pair (F1, F2) a set of corona data satisfying (1-1).

2. Consider the function h(z) := zn defined on D1. It is not difficult to see that the
Riemann surface R constructed in Section 2 is nothing but the Riemann surface of
the multivalued function

h−1
◦ L−1

◦ h2(z) =

(
zn2

+ c
1 + czn2

)1/n

defined on D2. This function takes values in D1. Similarly, one can consider R as
a Riemann surface of the multivalued function

h−1
2 ◦ L ◦ h(z) =

(
zn

− c
1 − czn

)1/n2

defined on D1.

3. We can construct R by cutting and pasting. For example, we can construct the
Riemann surface of h−1

◦ L−1
◦h2 over D2 in the following way: we make n2 cuts

on D2 radially so that each cut connects a hole to the outer boundary of D2 (i.e., to
the unit circle). We denote this region (D2 minus cuts) by D(1), and enumerate the
cuts by e(1, k, l), k =1, . . . , n2, l =1, 2 so that e(1, k, 1)=e(1, k, 2) as sets, and as
z approaches e(1, k, 1) the argument of z increases. Let D( j), j = 1, . . . , n, be the
copies of D(1) with the corresponding cuts e( j, k, l), j = 1, . . . , n, k = 1, . . . , n2,
l = 1, 2. For all j (mod n), paste D( j) and D( j +1) by identifying e( j, k, 1) with
e( j + 1, k, 2), k = 1, 2, . . . , n2. The resulting surface is conformally equivalent
to R with the natural projection map π ≈ F2. By analytic continuation, the map



302 BYUNG-GEUN OH

h−1
◦ L−1

◦h2 ◦π is well-defined on R, hence analytic. We leave the details to the
reader.

4. One can recover the same Riemann surface R via interpolation problems. Fix
ε ∈ (0, 1

2) and let D′

1 := {z : ε < |z| < 1}. Choose a natural number n sufficiently
large so that 2−n < ε, and let En be the set of n-th roots of 2−n . Note that |z| =

1
2

for all z ∈ En .
We consider two interpolation problems:

(1) Find G1 ∈ H∞(D′

1) (with the smallest uniform norm) such that G1(z) = z for
all z ∈ En .

(2) Find F2 ∈ H∞(D′

1) (with the largest δ0 := minz∈D′

1
{|F2(z)|, |z|}) such that

‖F2‖ = 1 and F2(z) = 0 for all z ∈ En .

Any solution G1 of (1) has uniform norm greater than C/ε, for some absolute
constant C . To see this, one can repeat the argument in Section 2; thus, for w such
that εn < |w| < 1, define

f (w) =
1
n

∑
zG1(z),

where the summation is over all z ∈ D′

1 such that (ε/z)n
=w. Note that f (2nεn)= 1

4
since zG1(z) equals 1

4 for z ∈ En , and then Cauchy’s integral formula gives a lower
bound estimate ‖G1‖ ≥ C/ε.

On the other hand, any solution F2 of (2) should yield a small δ0 =o(1) as ε →0.
To see this, let F1 = z and F2 be the solution of (2). Now if δ0 were not o(1), the
pair (F1, F2) would become a set of corona data on D′

1 with corresponding 0 <δ ≤

lim infε→0 δ0. But then any corona solutions G1 and G2 such that F1G1+F2G2 =1
would have a bound ≥C/ε, because G1/4 should be a solution of (1). This violates
the corona theorem on annuli [Scheinberg 1963; Stout 1965]. (In fact, it violates
a statement slightly stronger than the corona theorem, which is true for annuli;
namely, for any annulus D′

1 and corona data defined on D′

1, there always exist
corona solutions with bound ≤ M = M(δ), where M does not depend on D′

1. See
[Gamelin 1978, p. 47] for details.) Therefore to make F1 and F2 corona data, or to
get a solution for (2) with large δ0, we take a number N such that the multivalued
function

F(z) =

(
zn

− 2−n

1 − 2−nzn

)1/N

,

has modulus ≥
1
4 for |z| < 1

4 . (Such an N should be asymptotically greater than
a fixed multiple of n2 as n → ∞, as we have seen in Section 2. Also note that
F N is a solution for (2).) Now since F is not analytic on D′

1, we consider the
Riemann surface of F over D′

1, which gives us the Riemann surface R constructed
in Section 2 (with δ =

1
4 ).
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