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For an arbitrary simple Lie algebra g and an arbitrary root of unity q, we
classify the closed subsets of the Weyl alcove of the quantum group Uq(g).
Here a closed subset is a set such that if any two weights in the Weyl alcove
are in the set, so is any weight in the Weyl alcove which corresponds to an
irreducible summand of the tensor product of a pair of representations with
highest weights the two original weights. The ribbon category associated to
each closed subset admits a “quotient” by a trivial subcategory as described
by Bruguières and Müger, to give a modular category and a framed three-
manifold invariant or a spin modular category and a spin three-manifold
invariant, as proved by the author.

Most of these theories are equivalent to theories defined in Sawin, Adv.
Math. 165 (2002), 1–70, but several exceptional cases represent the first
nontrivial examples of theories that contain noninvertible trivial objects,
making the theory much richer and more complex.

Introduction

Quantum groups, that is, quantized universal enveloping algebras of simple Lie
algebras, together with their representation theory, have been the subject of much
fruitful investigation, and are of interest from many perspectives, but one partic-
ularly important application is to link and three-manifold invariants. The general
setting is that these quantum groups are ribbon Hopf algebras, and hence their
representation theory forms a ribbon category, from which one can construct an
invariant of links and more generally labeled graphs embedded in S3 with similar
properties to the original Jones polynomial. When the complex parameter q on
which these algebras depend is a root of unity, their representation theory satisfies
the more restrictive requirements of a modular category, from which one can con-
struct a three-manifold invariant which satisfies Atiyah’s axioms for topological
quantum field theory. More specifically, the set of representations spanned by
the subset of the irreducible representations in the Weyl alcove, with the ordinary
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tensor product of representations replaced by the truncated tensor product, forms
a modular category.

Any subset of the Weyl alcove which spans a set of representations closed under
both duality and the truncated tensor product determines a new ribbon category
which is a full subcategory of the original. Of course this subcategory encodes
only a subset of the link information of the original theory, and on this basis does
not seem of interest. However, if this ribbon subcategory happens to be modular,
there is no reason to think that the resulting three-manifold invariant is determined
by the original three-manifold invariant, and in fact it is not apparent that it has
any connection with the original. Thus finding closed subsets of the Weyl alcove
which are modular is an important question.

In fact, the modularity requirement can be relaxed quite a bit. Müger [2000] and
Bruguières [2000] have shown that under favorable circumstances which hold for
the quantum group examples (e.g., the existence of a unitary structure) a ribbon cat-
egory admits a kind of quotient which yields a modular category in the absence of a
certain easily identifiable obstruction. In fact, even in the presence of this obstruc-
tion [Sawin 2002a] a similar process yields an invariant of spin three-manifolds.
Thus a classification of the closed subsets of the Weyl alcove, together with an
identification of the quotient and when the quotient yields a modular category,
would give a complete summary of the invariants of three-manifolds which can be
constructed out of the Weyl alcove in this fashion. The present article classifies
the closed subsets of the Weyl alcove and describes the subcategory of so called
degenerate objects by which one quotients.

A second reason for considering the closed subsets of the Weyl alcove is that
they might plausibly correspond to quotients of the quantum group, or at least of
a subalgebra. In fact in the classical case the closed subsets of the Weyl chamber
correspond exactly to quotients of the simply connected groups by a subgroup of
the center: i.e., there is a one-to-one correspondence between closed subsets of the
Weyl chamber on the one hand and Lie groups with the given Lie algebra on the
other. Thus quotients associated to closed subsets of the Weyl alcove, if they exist,
might be viewed as quantum analogues of the nonsimply connected groups.

Finally, in the course of the classification we shall construct some unexpected
theories at level k = 2. Some of these theories (associated to the quantum group of
type Bn and Dn) appear to give new invariants and admit skein relations that suggest
we might be able to compute for these theories much of what can be computed in
the SU(2) (i.e., A1) theory. Nevertheless, these theories exhibit novel behavior
(specifically, the subcategory of degenerate objects is the representation category
of a nonabelian group) worthy of further study.

The analysis of the closed subsets of the Weyl alcove was begun in [Sawin
2002b]. There closed subsets which correspond precisely to the classical closed
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subsets, i.e., to nonsimply connected Lie groups, were found and their invariants
identified. These subsets correspond to Chern–Simons theories for nonsimply con-
nected Lie groups conjectured by Dijkgraaf and Witten [1990]. A second collection
of closed subsets was also identified and classified there. These subsets, associated
with certain corners of the Weyl alcove, formed very simple ribbon categories (in
fact the category associated to the group algebra of an abelian group, with a mildly
deformed R-matrix) and manifold invariants depending only on homology which
had been studied by Murakami, Ohtsuki and Okada [Murakami et al. 1992]. Here
we complete the identification of the closed subsets of the Weyl alcove, demon-
strating that the closed subsets given above are the only ones except for certain
special cases at level k = 2.

The paper is organized as follows. Section 1 introduces the needed facts about
Lie algebras, quantum groups and the truncated tensor product, which can all
be found in [Humphreys 1972; Kirillov 1996; Kassel 1995; Turaev 1994; Sawin
2002b]. Sections 2 and 3 give the classification of the closed subsets, and Section
4 identifies when the quotient is modular and what the resulting invariant is for the
exceptional cases not discussed in [Sawin 2002b]. Finally Section 5 shows that the
closure under duality condition on closed subsets is implied by the closure under
tensor products. This observation is fairly independent of the rest of the paper, but
is a natural question. In particular it is of great relevance when using skein theory
and cabling to explore link and three-manifold invariants; see for example [Turaev
and Wenzl 1993; Wenzl 1993].

1. Quantum groups and the Weyl alcove

Let g be a simple Lie algebra and let {αi }i≤r be the simple roots of g. The
weight lattice 3 is spanned by the fundamental weights {λi }i≤r given by (λi , α j )=

δi, j (αi , αi )/2.
The Weyl group is denoted by W, and the set of weights in the fundamental Weyl

chamber is called 3+ (we will loosely refer to this set itself as the Weyl chamber).
Half the sum of the positive roots is called ρ, the unique short root in the Weyl
chamber is called β, and the unique long root in the Weyl chamber is called θ (in
the simply laced case either will refer to the unique root in the Weyl alcove). The
root θ is the highest weight of the adjoint representation of g. The dual Coxeter
number ȟ is defined to be (ρ, θ) + 1, the value of the quadratic Casimir on the
adjoint representation.

Let q = e2π i/(k+ȟ), for some natural number k. Recall that there is an irreducible
representation Vλ of the quantum group Uq(g) for each weight λ in the Weyl al-
cove 30, i.e., weights λ ∈ 3+ such that (λ, θ) ≤ k. Kirillov [1996] shows that
the category of representations of the quantum group which are a direct sum of
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representations in the Weyl alcove forms a semisimple ribbon ∗-category if the
ordinary tensor product is replaced by the truncated tensor product, ⊗, which
is the maximal subspace of the ordinary tensor product isomorphic to a direct
sum of representations in the Weyl alcove (since we will never use the ordinary
tensor product in this article, we use ⊗ for the truncated tensor product without
confusion). Kirillov’s q is normalized a bit differently from what we use here,
which follows the conventions of [Sawin 2002b], but because of differences in
the normalization of the quantum group defining relations, the above sentence still
holds, and determines the normalization. The truncated tensor product operation
on the lattice of isomorphism classes of representations in the category (with direct
sum as addition) forms a commutative, distributive, associative multiplication with
the trivial representation V0 acting as identity, determined by

Vλ⊗Vγ
∼=

⊕
η∈30

N η
λ,γ � Vη,

where N η
λ,γ are nonnegative integers and N � V indicates the direct sum of N

copies of the representation V (or equivalently, the tensor product of V with an N -
dimensional trivial representation). In [Sawin 2006] we gave the following formula
for these numbers, generalizing a result from [Andersen and Paradowski 1995]:

(1–1) N η
λ,γ =

∑
σ∈W0

(−1)σ mγ (λ − σ(η)),

where mλ(µ) is the dimension of the µ weight space inside the classical represen-
tation of highest weight λ and W0 is the quantum Weyl group, which is generated
by reflection about the hyperplanes {x |(x + ρ, αi ) = 0} for each simple root αi

together with {x |(x, θ) = k + 1}. Also

Cλ = q(λ,λ+2ρ)/2

and qdim(λ) > 0, where qdim(λ) is the invariant of the unknot and Cλ is the factor
which a full twist applies to the link invariant.

For simplicity, since we will only ever need to consider representations up to
isomorphism, we will confuse the (isomorphism class of the) representation Vλ

with the weight λ, for example writing λ⊗γ =
⊕

η N η
λ,γ � η. Caution should be

used with the operations ⊕ and �, because the weights are elements of the weight
lattice and therefore admit a lattice addition and scalar multiplication denoted by
λ + γ and nλ, respectively, which we will also make frequent use of. Note that
λ+γ 6= λ⊕γ , and nλ 6= n�λ. In particular, 0 is the additive identity in the lattice,
but is the multiplicative identity for ⊗. We hope that the brevity of the notation
outweighs this modest awkwardness.
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Theorem 0 [Sawin 2002b]. There is an injection ` from Z(G), the center of the
simply connected Lie group with Lie algebra g, to the fundamental weights of the
Weyl alcove such that z acts on the classical representation Vγ as

exp(2π i(γ, `(z))) · idγ .

The fundamental weights λi in the image of ` are exactly those for which (λi , θ)=1
and the associated root αi is long, and are also exactly those for which there is a
unique element τi of the classical Weyl group sending the standard base to the base
{α j } j 6=i ∪{−θ}. If we define φi (γ ) = kλi +τi (γ ), then φi is an isometry of the Weyl
alcove and of the simplex {λ : (λ, α j )≥ 0 and (λ, θ)≤ k} and φi (λ⊗γ )=φi (λ)⊗γ

If we use k also to represent the map on the weight lattice which multiplies each
weight by the number k, then k` is a homomorphism in the sense that k`(zz′) =

k`(z)⊗k`(z′). Weights in the range of k` can be characterized as extreme points of
the simplex {λ : (λ, α j ) ≥ 0 and (λ, θ) ≤ k} such that a neighborhood of the weight
0 intersected with the simplex is isometric to a neighborhood of the extreme point
intersected with the alcove, the isometry being given by φi .

If Z is a subgroup of Z(G), let 1Z be the image of Z under k`. The subset
of the Weyl chamber consisting of weights γ such that Z acts trivially on Vγ is
the intersection of the Weyl chamber with a sublattice of the weight lattice, and its
elements are in one-to-one correspondence with representations of the Lie group
G/Z . The intersection 0Z of this set with the Weyl alcove may be thought of
loosely as the “Weyl alcove for quantized G/Z ,” and consists of those weights γ

in the alcove for which (γ, `(z)) is an integer for all z ∈ Z.
A few key facts about the truncated tensor product were proven in [Sawin

2002b].

Lemma 1. For any σ in the classical Weyl group W, and any weights γ , λ in the
Weyl alcove, if λ + σ(γ ) is in the Weyl alcove, then λ⊗γ contains λ + σ(γ ) as a
summand.

Lemma 2. λ⊗λ† contains as a summand θ if k ≥ 2 and λ is not a corner (i.e.
a multiple of a fundamental weight such that (λ, θ) = k). In the nonsimply laced
case it contains as a summand β unless (λ, αi ) = 0 for every short simple root αi .

We say a fundamental weight λi is long or short according to whether αi is long
or short. We say a long weight λi is sharp or dull according to whether 〈λi , θ〉 = 1
or not. Finally, we say that a weight λ is a long, short, sharp or dull corner if
〈λ, θ〉 = k and it is a multiple of a fundamental weight with the corresponding
property. Thus for example the above lemmas tell us that λ ⊗ λ† contains θ or β

as a summand unless λ is a dull corner.
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2. Closed subsets

Following [Sawin 2002b], we say that a subset 0 of the set of representations in
the Weyl alcove 30 is closed if it is closed under duals (for every γ ∈0, the weight
γ † of the dual representation is in 0) and under the truncated tensor product (if
λ, γ ∈ 0 then every η such that N η

λ,γ 6= 0, i.e. such that η corresponds to a direct
summand of λ⊗γ , is in 0). We will see in Section 5 that in the quantum groups
case the second condition implies the first. Such subsets correspond exactly to
ribbon subcategories, and Müger [2000] showed that if they meet a certain easily
checked condition they admit a quotient which is modular and gives a TQFT and
three-manifold invariant. The following theorem gives a complete classification
of closed subsets of the Weyl alcove. The proof encompasses this and the next
section.

Theorem 1. The closed subsets of the Weyl alcove are:

(a) For any subgroup Z ⊂ Z(G), the set 0Z .

(b) For any subgroup Z ⊂ Z(G), the set 1Z .

(c) For k = 2,
(1) E7 the set {0, λ6},
(2) E7 with set {0, λ2, 2λ7},
(3) E8 with set {0, λ1},
(4) Bl with set {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j/2} where j > 2 and 2l + 1 = nj ,
(5) Dl with set {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j , 2λl−1, 2λl} where j > 2 and l =

nj ,
(6) Dl with set {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j/2} where j > 2 and 2l = nj for n

odd.
Here the λi are the fundamental weights ordered as in [Humphreys 1972]. We
will call (1)–(6) the exceptional closed subsets.

Before embarking on a proof of the theorem, some general discussion is in order.
Equation (1–1) is difficult to use in general, but we will find it suffices for most of
our purposes to examine it carefully only when one of the factors is θ or β. Our
strategy will be to show that for any λ which is not in one of these exceptional
cases and not a sharp corner(and therefore not in the image of k`) an appropriate
tensor product of factors of λ and λ† contains θ or β. It will be easy to see that any
closed subset containing θ or β is of the first type in the theorem. By Lemma 2, θ

or β is contained in a tensor product of copies of λ and λ† unless λ is a long corner.
By Lemma 1, λ⊗β will contain as a summand with multiplicity one every

weight λ + α for which α is a root (or a short root in the nonsimply laced case)
and λ + α is in the Weyl alcove. Thus a crucial question is this : Given any dull
corner λ, for which α is λ + α in the Weyl alcove? Of course if λi + α is in the
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Weyl alcove for k = (θ, λi ) (i.e. when λi is a corner), then nλi + α is in the Weyl
alcove whenever nλi is a corner.

Below we list for each dull λi the roots (or in the nonsimply laced case short
roots) α such that λi +α is in the Weyl alcove for k = (λi , θ). The labeling of the
roots and fundamental weights are as in [Humphreys 1972]. The roots are written
out as a sum of simple roots and θ in such a way that each additional simple root
has negative inner product with the sum up to that point (as can be checked using
the Cartan matrix: see Humphreys, p. 59), confirming recursively that the sum is a
root. That the root is short in the nonsimply laced case and that the entire sum has
nonnegative inner product with each simple root and inner product with θ less than
or equal to that of λi can be checked from the Cartan matrix and the expansion of
θ (Humphreys, p. 66).

Bl : For 2 ≤ i ≤ l − 1. λi + αi+1 + αi+2 + · · · +αl , λi − (αi + αi+1 + · · · +αl).

Cl : λl + α1 + α2 + · · · +αl−1, λl − (α1 + · · · +αl).

Dl : For 2 ≤ i ≤ l −2. λi − (αi−1 +αi +· · ·+αl−2 +αl−1 +αl +αl−2 +· · ·+αi ),
λi +αi+1+αi+2+· · ·+αl−2+αl−1+αl +αl−2+αl−3+· · ·+αi+2 (for the cases i =

l−2, and i = l−3 the last formula should read λl−2+αl−1 and λl−3+αl−2+αl−1+αl

respectively).

E6: λ2 + α1 + α3 + α4 + α5 + α6, λ2 − θ . λ3 + α1, λ3 − θ + α2 + α4 + α5 + α6,
λ4 + α1 + α3, λ4 + α5 + α6, λ4 − θ + α2. λ5 + α6, λ5 − θ + α2 + α4 + α3 + α1.

E7: λ1+α3+α4+α5+α6+α7+α2+α4+α5+α6, λ1−θ . λ2−θ +α1+α3+α4+

α5 +α6 +α7. λ3 +α2 +α4 +α5 +α6 +α7, λ3 −θ −α1. λ4 +α2, λ4 +α5 +α6 +α7.
λ5+α6+α7, λ5−θ+α1+α3+α4+α2. λ6+α7, λ6−θ+α1+α3+α4+α5+α4+α3.

E8: λ1 − θ + α8 + α7 + α6 + α5 + α4 + α3 + α2 + α4 + α5 + α6 + α7, λ1 −

(α3 + α4 + α2 + α5 + α6 + α7 + α8 + α4 + α5 + α6 + α7). λ2 − θ + α1 + α3 +

α4 + α5 + α6 + α7 + α8, λ2 − (α2 + α4 + α3 + α1 + α5 + α6 + α4 + α3 + α5 +

α4 + α2). λ3 + α1, λ3 − (α1 + α3 + α4 + α2 + α5 + α4 + α3). λ4 + α1 + α3,
λ4 + α2. λ5 + α1 + α3 + α4 + α2, λ5 − θ + α6 + α7 + α8. λ6 + α1 + α3 + α4 + α2,
λ6 − θ + α7 + α8. λ7 + α1 + α3 + α4 + α2 + α5 + α6 + α4 + α3 + α5 + α4 + α2,
λ7 − θ +α8. λ8 + θ −α8 −α7 −α6 −α5 −α4 −α3 −α2 −α4 −α5 −α6 −α7 −α8,
λ8 − θ .

F4: λ1 + α2 + α3 + α4 + α3, λ1 − (α1 + α2 + α3). λ2 + α3 + α4, λ2 − (α2 + α3).

G2: λ2 + α1, λ2 − (α1 + α2).

We see from this list that for each of the nonsimply laced algebras except Bl there
is a short root α such that θ + α is in the Weyl alcove for k ≥ 2 (For Cl we have
θ = λl and α = α1 +α2 +· · ·+αl−1; for F4, θ = λ1 and α = α2 +α3 +α4 +α3; and
for G2, θ = λ2 and α = α1). Thus by Equation (1–1) N θ+α

θ,θ contains a contribution
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from σ = 1 since mθ (α)= 1. In order for it to contain a contribution for some other
σ , that σ would have to be a reflection about a short root αi such that (θ+α, αi )=0
and α − αi is long. If α − αi is long then (α, αi ) = 0. One can easily check by
direct computation that there is no such αi in any of these case. Therefore θ⊗θ

contains θ + α, so θ⊗θ⊗θ contains (θ + α)⊗θ , which by Lemma 1 contains β.
For Bl when k > 2 the same argument applies to θ + β. When k = 2 we will see
below that a power of θ contains 2λl , which is a short corner and hence a higher
power contains β. We conclude that if a closed subset of the Weyl alcove contains
θ , it also contains β.

Lemma 3. If a closed subset of the Weyl alcove contains β, it is of the form 0Z for
some Z.

Proof. Consider λ in the root lattice and in the Weyl alcove, and choose a path
in the root lattice connecting λ to 0 such that the difference between successive
points in the path is a short root. By reflecting about hyperplanes of reflection
in the quantum Weyl group we can replace it by such a path crossing fewer such
hyperplanes, and by induction can find such a path entirely within the alcove. Then
by Lemma 1 λ is contained in β⊗n , where n is the length of this path. Thus if a
closed subset contains β it contains all of the root lattice 3r .

If λ, γ are in the Weyl alcove and in the same coset of 3/3r , their difference is
in the root lattice, and thus any closed subset containing one of these and β contains
the other. So any closed subset containing β is a union of cosets intersected with
the Weyl alcove. The tensor product of two weights is a nonempty sum (because
the quantum dimensions are nonzero) and is in the product of their cosets, so the set
of cosets making up such a closed subset is a subgroup of 3/3r . This proves that
the closed subset is in the intersection of the preimage of a subgroup of 3/3r with
the Weyl alcove. By Theorem 0 the map sending z ∈ Z(G) to exp(2π i(`(z), ·)) ∈

(3/3r )
∗ is a group isomorphism. So such a subgroup is dual to some subgroup

Z ⊂ Z(G), and the closed subset is exactly 0Z . �

Now if λ is a dull corner it is a multiple of one of the weights in the chart above.
If λi +α is in the Weyl alcove for k = (λi , θ), then nλi +α is in the Weyl alcove for
k = n(λi , θ). So from the chart there are at least two elements of the Weyl alcove
a short root away from λ, except if λ is a multiple of λ2 for E7. In this exceptional
case λ2/2 −α2 is in the Weyl alcove, so there are still at least two elements of the
alcove a short root away from λ except when λ = λ2 and k = 2. Thus with this
exception if λ is a dull corner then by Lemma 1 λ⊗β contains two weights. But
each of these weights when tensored with β contain λ, so λ⊗β⊗β contains λ with
multiplicity at least 2. Therefore λ⊗λ† contains two weights in β⊗β. Of course
one is the trivial weight, so the other must be of the form β + α for α a short root
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different from −β. If this β +α is not a corner dual to a long root, a tensor power
of it then contains β.

3. Proof of the Theorem

Proof of Theorem 1. It was shown in [Sawin 2002b] that the subsets of the form
0Z and 1Z are closed . We will see below that the exceptional cases are closed by
computing the truncated tensor product completely. So we have only to show that
every closed subset is of this form.

We will assume the closed set contains some λ not in the image of k`, and show
it is either the exceptional case or it contains θ or β, in which case by Lemma 3 it
falls into the first category. By Lemma 2 we may assume λ is a corner dual to a
long root.

Case k = 1. There are no dull corners, so there is nothing to prove.

Case k = 2. Except for λ2 of E7 if λ is a corner dual to a long root and not in the
range of k` then λ⊗λ† contains something nontrivial in β⊗β, so we may assume
that λ is a such a corner and λ⊗λ† contains a summand of the form β +α for α a
short root.

• For Al , there are no dull corners.

• For Bl , there is nothing to prove if l = 2, so assume l > 2. The Weyl alcove
consists of λi for i ≤ l and 2λ1 and 2λl . By checking which differences among
these are short roots and noting λ1 = β we conclude

λi⊗λ1 =



λi−1 ⊕ λi+1 for 1 < i < l − 1,

0 ⊕ 2λ1 ⊕ λ2 for i = 1,

2λl ⊕ λl−2 for i = l − 1,

λl for i = l,

2λl⊗λ1 = 2λl ⊕ λl−1,

2λ1⊗λ1 = λ1,

2λ1⊗2λ1 = 0.

From this we conclude recursively that

2λ1⊗λi = λi for i ≤ l,

2λ1⊗2λl = 2λl,
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λi⊗λ j =



λi− j ⊕ λi+ j for l > i > j and i + j < l

λi− j ⊕ 2λl for l > i > j and i + j = l, l + 1

λi− j ⊕ λ2l+1−i− j for l > i > j and i + j > l + 1

0 ⊕ 2λ1 ⊕ λ2i for l > i = j and 2i < l

0 ⊕ 2λ1 ⊕ 2λl for l > i = j and 2i = l, l + 1

0 ⊕ 2λ1 ⊕ λ2l+1−2i for l > i = j and 2i > l + 1.

Notice first of all that a closed subset containing λ2 = θ will contain λi for all
even i < l. In particular it must contain either λl−2 or λl−1, so it must contain 2λl ,
and therefore since this is a short corner it must contain β. Thus we recover our
promised assertion that even for Bl at level k = 2, a closed subset containing θ

contains β and therefore is of the from 0Z .
Let 0 be a closed subset which is not of the form 0Z or 1Z . We know that 0

cannot contain λ1, λ2, λl or 2λl , or else it would be of the form 0Z , and 0 must
contain something other than 0 and 2λ1. So let j be the least j such that λ j ∈ 0.
Necessarily l > j > 2. By the product rules above λ j , λ2 j , λ3 j , . . . ∈ 0Z . Suppose
m is the largest such that λmj ∈0. Then every summand of λmj⊗λ j is in 0. Clearly
(m + 1) j ≥ l, and in fact (m + 1) j > l + 1, or else 2λl ∈ 0. So we conclude that
λ2l+1−(m+1) j ∈ 0. Now mj < l < (m +1) j so 2l +1− (m +1) j is within j of mj .
If they are not equal then λmj⊗λ2l+1−(m+1) j contains λi where i is this difference,
contradicting the minimality of j . Thus we conclude mj = 2l +1− (m +1) j , and
0 contains set (4) in the statement of the theorem, with n = 2m +1. If it contained
any λi not in this set, there would be p such that |i − pj | < j , and hence λ|i−pj |

would be in the set, contradicting the minimality of j .

• For Cl there is nothing to prove since θ is the only dull corner.

• For Dl at k = 2 the weights are λi for 1 ≤ i ≤ l, 2λ1, 2λl−1, 2λl , and λl−1 + λl .
By checking which differences among these are roots we see

λi⊗θ =



λ1 ⊕ λ3 for i = 1

0 ⊕ 2λ1 ⊕ λ4 for i = 2

λi−2 ⊕ λi+2 for 2 < i < l − 3

λl−5 ⊕ (λl−1 + λl) for i = l − 3

λl−4 ⊕ 2λl ⊕ 2λl−1 for i = l − 2.

Since 2λ1 is in the range of k` and hence invertible, it follows 2λ1⊗θ = θ .
Since λ1⊗λ1 contains 2λ1 by Lemma 1, we conclude 2λ1⊗λ1 = λ1 so inductively
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2λ1⊗λi = λi for i < l − 1. Similarly

2λl⊗θ = λl−2,

2λl−1⊗θ = λl−2,

2λl⊗2λ1 = 2λl−1,

2λl−1⊗2λ1 = 2λl .

Since λ1⊗θ contains λ1, it is clear that λ1⊗λ1 contains 0, θ , and 2λ1, each with
multiplicity one. Notice that by Equation (1–1), η is not a direct summand of λ⊗γ

if the distance between λ and η is more than ‖γ ‖ (this is argued explicitly in the
proof of [Sawin 2002b, Lemma 2]). Noting that ‖λ1‖ = 1 and computing ‖λ−λ1‖

for λ = λi with 2 < i < l − 1 and λ = λl−1, λl, (λl−1 + λl) we conclude

λ1⊗λ1 = 0 ⊕ θ ⊕ 2λ1.

It then follows recursively that

λi⊗λ1 =

λi−1 ⊕ λi+1 for 1 < i < l − 2

λl−3 ⊕ (λl−1 + λl) for i = l − 2,

(λl−1 + λl)⊗λ1 = λl−2 ⊕ 2λl−1 ⊕ 2λl,

2λl−1⊗λ1 = λl−1 + λl,

2λl⊗λ1 = λl−1 + λl .

Finally, we get recursively from this

λi⊗λ j =



λi− j ⊕ λi+ j for j < i < l − 1 and i + j < l − 1

λi− j ⊕ (λl−1 + λl) for j < i < l − 1 and i + j = l − 1, l + 1

λi− j ⊕ 2λl−1 ⊕ 2λl for j < i < l − 1 and i + j = l

λi− j ⊕ λ2l−i− j for l > i > j and i + j > l + 1

0 ⊕ 2λ1 ⊕ λi+ j for j = i < l − 1 and i + j < l − 1

0 ⊕ 2λ1 ⊕ (λl−1 + λl) for j = i < l − 1 and 2i = l − 1, l + 1

0 ⊕ 2λ1 ⊕ 2λl−1 ⊕ 2λl for j = i < l − 1 and 2i = l

0 ⊕ 2λ1 ⊕ λ2l−2i for j = i < l and 2i > l + 1,

λ⊗λ j =

λl−1 + λl for λ = 2λl−1 or λ = 2λl and j = 1

λl− j for λ = 2λl−1 or λ = 2λl and 1 < j < l − 1.
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Thus if the closed subset 0 contains λ1, λ2, λl−1, λl or λl−1 + λl it contains θ

and is of the form 0Z . If it contains only a subset of 0, 2λ1, 2λl−1, and 2λl it is of
the form 1Z . If 0 is not of the form 0Z or 1Z then it must contain λ j for some
2 < j < l − 1, so suppose j is the least such. Then 0 contains λ j , λ2 j , . . . , λmj ,
where m is the greatest such that mj < l−1. Again 0 must contain every summand
of λmj⊗λ j . Then by the maximality of m we know (m + 1) j > l − 2, and since 0

cannot contain λl−1 + λl we know (m + 1) j 6= l − 1, l + 1. If (m + 1) j = l, then
0 contains {0, 2λ1, λ j , λ2 j , . . . , λmj , 2λl−1, 2λl}. If it contained any other λi for
2 < i < l − 1 then there would be p with |i − pj | < j , so λ|i−pj | would be in the
set, contradicting the minimality of j . Since 0 cannot contain any other weights in
the alcove, we conclude 0 is of the form of set (5) in the theorem, with m = n −1.

On the other hand if (m+1) j 6= l, the (m+1) j > l+1, and therefore λ2l+1−(m+1) j .
Of course 2l + 1 − (m + 1) j is a distance less than j from mj , so if the difference
is nonzero then again we contradict the minimality of j . Therefore the distance
between them is zero, so 2l +1 = (2m+1) j , and 0 contains {0, 2λ1, λ j , · · · , λmj }.
Again it cannot contain any other weight in the Weyl alcove without contradicting
the minimality of j (if it contained 2λl or 2λl−1 it would contain λl− j , which is
distinct from λmj but l − j is less than j away from mj) so 0 is set (6) in the
theorem, with n = 2m + 1.

• For E6, the weights of the Weyl alcove are 0, λ1, 2λ1, λ2, λ3, λ5, λ6, 2λ6, and
λ1 +λ6. A closed subset containing a dull corner must contain a nontrivial weight
of the form θ + α, but the only such weight is λ1 + λ6, which is not a corner.

• For E7, the weights in the alcove are those in k` (0 and 2λ7), the other corners
(λ1 = θ , λ2 and λ6) and one other (λ7). We have

2λ7⊗θ = λ6,

θ⊗θ = 0 ⊕ λ6,

λ6⊗θ = θ ⊕ 2λ7,

λ2⊗θ = λ7,

λ7⊗θ = λ2 ⊕ λ7,

so
λ6⊗λ6 = 0 ⊕ λ6, λ2⊗λ6 = λ7, λ7⊗λ6 = λ2 ⊕ λ7.

Since every weight in E7 is self-dual, λ7⊗λ7 consists of weights in the root lattice,
and since N δ

λ,γ = N γ ∗

λ,δ∗ we can read off from the previous equations

λ7⊗λ7 = 0 ⊕ θ ⊕ 2λ7 ⊕ λ6,

so
λ2⊗λ7 = θ ⊕ λ6 and λ2⊗λ2 = 0 ⊕ 2λ7.
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Thus the smallest closed subset containing λ6 is {0, λ6}, the smallest one con-
taining λ2 is {0, λ2, 2λ7}, and the smallest one containing any other nonunit is a
subset containing θ .

• For E8, the only weights are 0, λ1 and λ8 =θ . As above we see that θ⊗θ =0⊕λ1,
λ1⊗θ = θ , and hence λ1⊗λ1 = 0. Thus λ1 is invertible, {λ1, 0} is a closed subset,
and every other closed subset contains θ .

• For F4 and G2 there is nothing to prove since the only elements are 0, θ , β, and
2β, where 2β is a short weight.

Case k = 3. Since now for all dull corners we know λ⊗λ† contains something
nontrivial in β⊗β, we may assume our closed set contains a corner which is of the
form β + α for α short.

In the nonsimply laced case there are no such corners, so we need only consider
the simply laced case. The only corners are fundamental weights with (λi , θ) = 3
together with the range of k`.

• For Dl there are no fundamental weights with (λi , θ) = 3, and the range of k`,
(3λ1, 3λl−1, and 3λl) contains nothing in the root lattice.

• For E6, neither 3λ1 nor 3λ6 is the sum of two roots, so only λ4 is such a cor-
ner. Since λ4⊗θ contains at least three summands, λ4⊗λ4 contains two distinct
nontrivial summands of θ⊗θ , so it must contain a noncorner.

• For E7, since 3λ7 is not in the root lattice, only λ3 and λ5 are such corners, and
only λ3 among all corners is of the form θ +α. Thus any closed subset containing
a corner contains λ3, so since λ3⊗θ contains at least three summands, λ3⊗λ3

contains two distinct nontrivial summands of θ⊗θ , one of which must not be a
corner.

• For E8, Only λ2 and λ7 are corners, and neither is of the form θ + α.

Case k = 4. Again we need consider only the simply laced case, and we need only
consider corners of the form θ +α, which means the corner 2θ . Now in each case
θ = λi for some i , so in addition to the weights in the chart, we have 2θ − αi is a
summand of 2θ⊗θ , so 2θ⊗2θ contains two distinct nontrivial summands of θ⊗θ ,
one of which must not be a corner.

Case k > 4. For any dull corner λ, λ⊗λ∗ contains a nontrivial summand of θ⊗θ ,
which cannot be a corner. �
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4. Modular categories and closed subsets of the Weyl alcove

As alluded to in the introduction, there is a well-defined procedure for constructing
a modular or spin modular category out a ribbon ∗-category (all of our ribbon cate-
gories inherit the ∗-structure from the original ribbon category). These techniques
were developed by Müger [2000] and Bruguières [2000].

First one should identify the subcategory of degenerate objects, which are simple
objects (in our case irreducible representations) λ such that Rλ,γ = R−1

γ,λ for every
simple object γ in the ribbon category, where R is the R-morphism associated to
a crossing. These come in two sorts, even or odd, according to whether the effect
of the full twist Cλ is multiplication by one or minus one. If all are even, one can
quotient by them to get a modular category. If in addition they are all invertible and
form a cyclic group, [Sawin 2002a] offers a detailed description of the invariant
and TQFT in terms of the original category. In the same work it is shown that
if there are odd degenerate objects, one can still quotient by the even degenerate
objects and the result is a spin-modular category which gives an invariant of spin
three-manifolds.

For the ribbon categories associated to the closed sets of the form 0Z and 1Z

[Sawin 2002b] proves that all degenerate objects are invertible and identifies in
which cases they are all odd. Below we identify for each exceptional closed cate-
gory what the degenerate objects are, when they are even, when they are invertible,
and when the resulting TQFT is equivalent to a nonexceptional TQFT.

The case E7 with {0, λ6}. Here λ6⊗λ6 = 0 ⊕ λ6.
For E7 we have h = 18 so k + h = 20. We have (λ6, λ6) = 4 and (λ6, ρ) = 26,

so
Cλ6 = e2π i(4+2·26)/(2·20)

= e4π i/5.

Since this is not ±1 then λ6 is not degenerate, so the set is in itself modular.
Straightforward calculations show that this ribbon category is determined up to

isomorphism by the link invariant, which is in turn determined by a skein relation,
the same skein relation that determines the SO(3) theory at k = 3, and thus this
ribbon category is isomorphic to the SO(3) level 3 category.

The case E7 with {0, λ2, 2λ7}. Here λ2⊗λ2 = 0 ⊕ 2λ7 and λ2⊗2λ7 = λ2.
Again h+k = 20, (λ2, λ2)= 7/2, (λ2, ρ)= 49/2, (2λ7, 2λ7)= 6 and (2λ7, ρ)=

27 so

Cλ2 = e2π i(7/2+2·49/2)/(2·20)
= e5π i/8

C2λ7 = e2π i(6+2·27)/(2·20)
= −1.

Of course
Rλ2,2λ7 R2λ7,λ2 = Cλ2C−1

λ2
C−1

2λ7
= −1
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so neither 2λ7 nor λ2 is degenerate and the theory is modular. Again direct calcu-
lation shows that this theory is isomorphic to the SU(2) theory at level k = 2 but
this time with a nonstandard choice for q1/4

= e13π i/8 (see [Sawin 2006]).

The case E8 with {0, λ1}. Here λ1⊗λ1 = 0.
For E8 h = 30 so k + h = 32. (λ1, λ1) = 4 and (λ1, ρ) = 46 so

Cλ1 = e2π i(4+2·46)/(2·32)
= −1.

This is an odd degenerate object and of course the ribbon category is isomorphic to
that for SO(3) at k = 2. As argued in [Sawin 2002a], this gives the trivial invariant
of spin three-manifolds.

The case Bl with {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j/2} where 2l + 1 = n j . Here h =

2l − 1 so k + h = 2l + 1. Also, (ρ, λi ) = li − i2/2 and (λi , λi ) = i . Thus

C2λ1 = eπ i(4+2(2l−1))/(2l+1)
= 1

and thus
R2λ1,λmj R−1

λmj ,2λ1
= 1,

so 2λ1 is even degenerate. On the other hand

Cλmj = eπ i(mj−m2 j2/(2l+1)),

so

Cλ(m±p) j C
−1
λmj

C−1
λpj

= e∓2π impj2/(2l+1),

Cλ2l+1−(m+p) j C
−1
λmj

C−1
λpj

= e−2π impj2/(2l+1),

C2λ1C−1
λmj

C−1
λmj

= C0C−1
λmj

C−1
λmj

= e2π im2 j2/(2l+1).

This will be 1 for all p, and thus λmj will be degenerate, exactly if m is a multiple
of n/d , where d is the greatest common divisor of n and j . If m = rn/d then

Cλmj = eπ i(mj−m2 j2/(2l+1))
= eπ i(r(2l+1)/d−r2(2l+1)/d2).

Since (2l + 1)/d and (2l + 1)/d2 are both odd, this is one whether r is even or
odd, and thus all such λmj are even. Thus we get a modular category which is a
quotient by the Z/2 action if m and j are relatively prime, and by the set of even
simple degenerates

{0, 2λ1, λ(2l+1)/d , λ2(2l+1)/d , . . . , λ(d−1)(2l+1)/(2d)}

if (n, j) = d 6= 1. Notice that when d 6= 1 the set of simple degenerates does
not form a group, which is to say that there are noninvertible degenerate objects.
In fact one can check that the subcategory generated by these representations
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is isomorphic to the representation theory of the nonabelian group presented by
〈x, y | x2

= y2
= (xy)d

= 1〉 (any eigenvector of xy generates a two-dimensional
irreducible subrepresentation if the eigenvalue of xy is a nontrivial d-th root of
unity and a one-dimensional subrepresentation if the eigenvalue is 1, recalling that
d is necessarily odd. These two-dimensional representations are classified by the
eigenvalue of xy, and the one-dimensional by the eigenvalue of x .) For example,
when l = 13 and j = 3, we have n = 9, d = 3, and the subcategory generated by

{0, 2λ1, λ3, λ6, λ9, λ12}

contains as its trivial subcategory

{0, 2λ1, λ9},

where 2λ2⊗2λ1 = 0, 2λ1⊗λ9 = λ9, and λ9⊗λ9 = 0 ⊕ 2λ1 ⊕ λ9.
This is the first example of which the author is aware of a nonsymmetric ribbon

category with noninvertible degenerate objects. Whether the resulting quotient
gives a truly new TQFT is not clear, and in any case this example is worthy of
further study.

The case Dl with {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j , 2λl−1, 2λl} where l = n j . Here
h = 2l − 2 so k + h = 2l, (ρ, λi ) = i(2l − i − 1)/2, and (λi , λi ) = i , so

C2λ1 = eπ i(4+2·2·(2l−2)/2)/(2l)
= 1,

C2λl = eπ i(4l+2·2l(2l−l−1)/2)/(2l)
= eπ i(l+1),

C2λl−1 = eπ i(4(l−1)+2·2(l−1)(2l−l)/2)/(2l)
= eπ i(l+1),

Cλmj = eπ i(mj+2mj (2l−mj−1)/2)/(2l)
= eπ i(mj−m2 j2/(2l)),

so 2λ1 is even degenerate and

R2λl ,λmj R−1
λmj ,2λl

= Cλl−mj C
−1
λmj

C−1
2λl

= eπ i(−l/2−mj−1),

R2λl−1l,λmj R−1
λmj ,2λl−1

= Cλl−mj C
−1
λmj

C−1
2λl−1

= eπ i(−l/2−mj−1),

and 2λl , 2λl−1 are thus degenerate exactly when j is even and l/2 is odd. They
are always odd degenerate. Also

Cλ(m±p) j C
−1
λpj

C−1
λmj

= e∓π impj2/ l,

Cλl−(m+p) j C
−1
λmj

C−1
λpj

= e−π impj2/ l,

C2λ1C−1
λmj

C−1
λmj

= C0C−1
λmj

C−1
λmj

= e−π im2 j2/ l,

C2λl−1C−1
λmj

C−1
λl−mj

= C2λl C
−1
λmj

C−1
λl−mj

= eπ i(1+mj2/ l−mj+l/2).
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This will be 1 for all p, and thus λmj will be degenerate, exactly when l is even, l/2
is odd, and either m is an even multiple of n/d , where d is the greatest common
divisor of n and j , or j is even and m is a multiple of l/d . If m = rn/d , then

Cλmj = eπ i(rl/d−r2l/(2d2))

which is 1 if and only if r is even.
Thus the set of simple degenerate elements consists of

{0, 2λ1}

if (a) l is odd, or (b) l and l/2 are even, or (c) l is even, l/2 is odd and gcd(n, j)= 1.
In this case the quotient is modular.

The set of simple degenerate objects consists of

{0, 2λ1, λ2l/d , λ4l/d , . . . , λ(d−1)l/d}

if l is even, j and l/2 are odd and gcd(n, j) 6= 1. In this case all the degenerate
objects are even and the quotient is modular. The subcategory of degenerate objects
is isomorphic to the category of representations of the group 〈x, y | x2

= y2
=

(xy)(d+1)/2
= 1〉.

The set of simple degenerate objects is

{0, 2λ1, λl/d , λ2l/d , . . . , λ(d−1)l/d , 2λl−1, 2λl}

if l and j are even and l/2 is odd (here the set is understood to have just four
elements if d = 1). In this case the odd multiples of l/d and the last two entries
give odd degenerate objects. Notice the even degenerate objects are isomorphic to
the category of representations of the group 〈x, y | x2

= y2
= (xy)d

= 1〉.

The case Dl with {0, 2λ1, λ j , λ2 j , . . . , λ(n−1) j/2} where 2l = n j for n odd.
Again

C2λ1 = eπ i(4+2·2·(2l−2)/2)/(2l)
= 1,

Cλmj = eπ i(mj+2mj (2l−mj−1)/2)/(2l)
= eπ i(mj−m2 j2/(2l)),

so 2λ1 is still even degenerate and

Cλ(m±p) j C
−1
λpj

C−1
λmj

= e∓π impj2/ l

Cλl−(m+p) j C
−1
λmj

C−1
λpj

= e−π impj2/ l,

C2λ1C−1
λmj

C−1
λmj

= C0C−1
λmj

C−1
λmj

= e−π im2 j2/ l .

This will be 1 for all p, and thus λmj will be degenerate, exactly when m is a
multiple of n/d, where d is the greatest common divisor of n and j . If m = rn/d ,
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then
Cλmj = eπ i(2rl/d−2r2l/d2)

which is always 1. Thus the set of simple degenerate objects is

{0, 2λ1, λl/d , λ2l/d , . . . , λ(d−1)l/d},

all degenerate objects are even, and again the category of even degenerate objects is
isomorphic to the representation category of the group 〈x, y | x2

= y2
= (xy)d

= 1〉.

5. Tensor closed implies closed

The definition of closed involves two conditions: closed under the truncated tensor
product and closed under duality. Under the sort of conditions found in the quantum
group examples the first condition actually implies the second. In particular for any
sum of weights in the Weyl alcove, the set of weights appearing as summands of
tensor powers of that sum is one of the closed subsets classified above. This is of
particular relevance to skein-theoretic and Young diagrammatic approaches to the
link invariants (see, e.g., [Turaev and Wenzl 1993]), where all the link information
is recovered from cabling — that is, tensor powers — of an invariant corresponding
to one particular weight, corresponding to the fundamental representation. The
approach to the proof of the following proposition was suggested to the author by
A. Liakhovskaia.

Proposition. If λ is in the Weyl alcove then there is an n such that λ⊗n contains λ†

as a summand.

Proof. We shall actually show there is an m such that λ⊗m contains the weight 0
as a summand: Of course n = m − 1 then suffices for the proposition.

For any two elements of the Weyl alcove λ and γ let Sλ,γ be the value of the
link invariant on the Hopf link with its two components labeled by λ and γ re-
spectively. Recall from [Sawin 2002b] that viewed as a |30|-by-|30| matrix S is
nondegenerate, and that∑

γ∈30

qdim(γ )Sλ,γ = δλ,0
∑
γ∈30

qdim(γ )2.

Thus if
∑

γ Sλ⊗m ,γ is nonzero λ⊗m contains 0 as a summand. Thus it suffices to
show

∑
γ Sλ⊗m ,γ is nonzero for some m. Dividing by qdim(λ)m we see

(5–1)∑
γ

Sλ⊗m ,γ qdim(γ )/ qdim(λ)m
=

∑
γ

[
Sλ,γ / qdim(γ ) qdim(λ)

]m qdim(γ )2.

Now
Sλ,γ =

∑
µ∈30

Nµ
λ,γ CµC−1

λ C−1
γ qdim(µ)
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and
Sλ⊗γ,µ = Sλ,µSγ,µ/ qdim(µ)

so since qdim(γ ) is positive, Cµ is a root of unity and

qdim(λ) qdim(γ ) =

∑
µ∈30

Nµ
λ,γ qdim(µ),

we see that
∣∣Sλ,γ /(qdim(λ) qdim(γ ))

∣∣ ≤ 1, and Sλ,γ /(qdim(λ) qdim(γ )) is a root
of unity when the absolute value equals one.

The quantity in brackets on the right-hand side of Equation (5–1) has modulus at
most 1 for all values of γ , and for at least one term in the sum (γ = 0) has modulus
equal to 1. So for very large m this sum is dominated by terms where the modulus
is equal to 1. In each of these terms the quantity Sλ,γ / qdim(γ ) qdim(λ) is a root
of unity, so for infinitely many values of m the value of (Sλ,γ / qdim(γ ) qdim(λ))m

is equal to 1 simultaneously for all of the values of γ for which the ratio has
modulus 1. Thus for sufficiently large m the sum must be positive. �
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