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ACHILL SCHÜRMANN AND KONRAD J. SWANEPOEL

Volume 228 No. 2 December 2006



PACIFIC JOURNAL OF MATHEMATICS
Vol. 228, No. 2, 2006

THREE-DIMENSIONAL ANTIPODAL
AND NORM-EQUILATERAL SETS

ACHILL SCHÜRMANN AND KONRAD J. SWANEPOEL

We characterize three-dimensional spaces admitting at least six or at least
seven equidistant points. In particular, we show the existence of C∞ norms
on R3 admitting six equidistant points, which refutes a conjecture of Lawlor
and Morgan (1994, Pacific J. Math. 166, 55–83), and gives the existence
of energy-minimizing cones with six regions for certain uniformly convex
norms on R3. On the other hand, no differentiable norm on R3 admits seven
equidistant points. A crucial ingredient in the proof is a classification of all
three-dimensional antipodal sets. We also apply the results to the touching
numbers of several three-dimensional convex bodies.

1. Preliminaries

Let conv S, int S, bd S denote the convex hull, interior and boundary of a subset
S of the n-dimensional real space Rn . Define A + B := {a + b : a ∈ A, b ∈ B},
λA := {λa : a ∈ A}, A− B := A+ (−1)B, x ± A = A± x := {x}± A. Denote lines
and planes by abc and de, triangles and segments by 4abc := conv{a, b, c} and
[de] := conv{d, e}, and the Euclidean length of [de] by |de|. Denote the Euclidean
inner product by 〈 · , · 〉. A convex body C ⊂ Rn is a compact convex set with
nonempty interior. The polar of a convex body C is the convex body C∗

:= {x ∈

Rn
: 〈x, y〉 ≤ 1 for all y ∈ C}. Let ‖ · ‖ be a norm on Rn and denote the resulting

normed space, or Minkowski space, by Xn
= (Rn, ‖ · ‖). Denote its unit ball by

B := {x : ‖x‖≤1}. The dual norm ‖ · ‖
∗ is defined by ‖x‖

∗
:= sup{〈x, y〉 : ‖y‖≤1}.

Denote the dual space by Xn
∗

= (Rn, ‖ · ‖
∗). Its unit ball is the polar B∗ of B. See

[Webster 1994] for further basic information on convex geometry, and [Thompson
1996] for the geometry of Minkowski spaces.
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2. Introduction

An equilateral set S ⊂ Xn is a set of points satisfying ‖x − y‖ = λ for all distinct
x, y ∈ S, and some fixed λ > 0. Let e(Xn) be the largest possible size of an
equilateral set in Xn . For the Euclidean space En with norm ‖(x1, . . . , xn)‖2 =
√

x2
1 + · · · + x2

n it is a classical fact that e(En)=n+1. Petty [1971] and P. S. Soltan
[1975] proved that e(Xn) ≤ 2n for all n-dimensional normed spaces, and that
e(Xn) = 2n if and only if the unit ball is an affine image of an n-cube. Both
proved this by showing that equilateral sets are antipodal (see Section 5), and then
using a result of Danzer and Grünbaum [1962]. Petty also showed that e(Xn) ≥ 4
whenever n ≥ 3, and observed that it follows from a result of Grünbaum [1963]
on three-dimensional antipodal sets that e(X3) ≤ 5 if X3 has a strictly convex
norm. Lawlor and Morgan [1994] constructed a smooth, uniformly convex three-
dimensional normed space X3 such that e(X3) = 5. Here smooth means that the
norm is C∞ on R3

\ {o}, and uniformly convex means that ‖ · ‖ − ε‖ · ‖2 is still a
norm for sufficiently small ε > 0. They furthermore conjectured [1994, p. 68] that
e(X3) ≤ 5 for differentiable norms on R3. See also [Morgan 1992]. Our first result
is that this conjecture is false.

Theorem 2.1. There exists a C∞ norm on R3 admitting an equilateral set of six
points.

Section 3 provides a simple example, with an equilateral set consisting of a
Euclidean equilateral triangle together with a parallel copy rotated by 30◦. Lawlor
and Morgan [1994] used equilateral sets to show the existence of certain surface
energy-minimizing cones. In Section 3 we also describe the cone obtained from
the example given in the proof of Theorem 2.1.

Proving that e(X3) ≤ 6 if the norm is differentiable requires more work; it
involves making a classification of antipodal sets in R3 (see Section 5).

Theorem 2.2. For any differentiable norm on R3 the size of any equilateral set is
at most 6.

Note that by [Petty 1971] we have 4 ≤ e(X3) ≤ 8, with equality on the right if
and only if the unit ball is a parallelepiped. Along the way in proving Theorem 2.2
we derive a characterization of the norms admitting at least six or at least seven
equilateral points. The characterization of six equilateral points is in terms of
affine regular octahedra and semiregular hexagons. An affine regular octahedron
with center o is the convex hull of {±e1, ±e2, ±e3}, where e1, e2, e3 are linearly
independent. Its one-skeleton is the union of its 12 edges. A semiregular hexagon
p1 p2 . . . p6 is a convex hexagon conv{p1, p2, . . . p6} in some plane of X3 such that
all six sides have the same length in the norm, and with p1+ p3+ p5 = p2+ p4+ p6.
In this definition we allow degenerate hexagons where some consecutive sides are
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collinear. It is easy to see that a semiregular hexagon of side length 1 equals
4a1a2a3 −4b1b2b3 for some two equilateral triangles (in the norm) of side length
1 in parallel planes.

Theorem 2.3. Let X3 be a three-dimensional normed space with unit ball B, and
let S ⊂ X3 be a set of 6 points. Then S is equilateral if and only if

• either bd B contains the one-skeleton of an affine regular octahedron

conv{±e1, ±e2, ±e3},

and S is homothetic to {±e1, ±e2, ±e3},

• or B has a two-dimensional face that contains a semiregular hexagon

4a1a2a3 − 4b1b2b3

of side length 1, and S is homothetic to {a1, a2, a3, b1, b2, b3}, where 4a1a2a3

and 4b1b2b3 are equilateral triangles of side length 1 in parallel planes of X3.

In particular, if S is equilateral there always exist two parallel planes each con-
taining three points of S.

While it may be simple to see if the boundary of the unit ball contains the one-
skeleton of an affine regular octahedron (consider for example the rhombic dodec-
ahedron, discussed in Section 4B), it seems to be difficult to determine whether a
given 2-dimensional face contains a semiregular hexagon (Section 4D). However,
by Theorem 2.3 such faces must have a perimeter of at least 6, so there cannot be
too many of them.

The characterization of seven equilateral points is much simpler, as expected.
For λ ∈ [0, 1] we define the 3-polytope Pλ to be the polytope with vertex set

±(−1, 1, 1), ±(1, −1, 1), ±(−1, 0, 1), ±(1, 0, 1),

±(0, 1, 1), ±(0, 1, −1), ±(1, 1, −λ), ±(1, 1, 1 − λ).

See Figure 1.

x

y
z

Pλ

Figure 1
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Theorem 2.4. Let X3 be a three-dimensional normed space with unit ball B, and
let S ⊂ X3 be a set of 7 points. Then S is equilateral if and only if there exists a
linear transformation ϕ and a λ ∈ [0, 1] such that Pλ ⊆ ϕ(B) ⊆ [−1, 1]

3, and ϕ(S)

is homothetic to

{(0, 0, λ), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Section 4 contains applications of Theorems 2.2, 2.3 and 2.4. Their proofs are
given in Section 6.

3. A smooth three-dimensional norm with six equilateral points

3A. The construction. This section does not depend essentially on Theorems 2.3
or 2.4. However, the construction described here is in a sense typical and moti-
vates the development in the remainder of the paper. We prove Theorem 2.1 by
constructing a C∞ norm on R3 admitting an equilateral set of size six. Note that
by Theorem 2.3, there will necessarily be two parallel two-dimensional flat pieces
on the boundary of the unit ball B. We’ll see that B can be chosen such that it has
positive curvature at each remaining point of the boundary.

We first construct the equilateral set. Let pk , k = 0, . . . , 11, be the consecutive
vertices of a regular dodecagon D in the xy-plane. To be definite, we may take
pk = (cos 2πk/12, sin 2πk/12, 0). Let e = (0, 0, 1). Let 11 be the triangle with
vertices p3 + e, p7 + e, p11 + e, and 12 the triangle with vertices p0, p4, and p8.
The 1i are congruent equilateral triangles. We want to construct a smooth norm
making S = {p0, p4, p8, p3 + e, p7 + e, p11 + e} equilateral. In other words we
want to construct a C∞ unit ball B such that x − y ∈ bd B for any two distinct
x, y ∈ S. Let P = conv S. We first verify that the boundary of P − P contains all
x − y. Note that P − P = conv(S − S), hence P − P is also the convex hull of the
union of

• 11 − 12 in the plane z = 1,

• 12 − 11 in the plane z = −1,

• and the regular dodecagon
√

3D with vertex set

{±(p0− p4), ±(p0− p8), ±(p4− p8), ±(p3− p7), ±(p3− p11), ±(p7− p11)}

in the plane z = 0.

Therefore, the hexagons ±(11 −12) are facets of P − P . It remains to show that
the vertices of

√
3D are all on bd(P − P). It is sufficient to show that they are not

in the interior of the convex hull Q of the two facets (11 −12)∪ (12 −11). Note
that the intersection of Q with the xy-plane is

1
2(11 − 12) +

1
2(12 − 11) =

1
2(11 − 11) +

1
2(12 − 12),
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which is the dodecagon whose vertices are the midpoints of the edges of
√

3D.
Therefore, the vertices of

√
3D are on the boundary of P − P; even more, they are

vertices of P − P . We have shown that each x − y, where x, y are distinct points in
S, is a vertex of P − P , except for ±(p7− p8+e), ±(p3− p4+e), ±(p11− p0+e),
which are in the relative interiors of the facets ±(11 − 12).

It follows that S is equilateral for the norm with unit ball P− P . We now have to
smooth P−P . The boundary of any such smoothing B should still contain ±(11−

12) and the 12 vertices of
√

3D. It is well-known that by using convolutions one
can construct a C∞ centrally symmetric convex body B satisfying this requirement;
see [Ghomi 2004, Note 1.3], for instance. It follows from the main result of the
same article that B can be chosen such that

• the plane through ±(11 − 12) intersects B in precisely ±(11 − 12),

• the supporting plane at each vertex p of
√

3D is perpendicular to the line op
(a technical condition needed in Section 3B), and

• bd B has positive curvature everywhere except on ±(11 − 12) and possibly
at the 12 vertices of

√
3D.

In fact, by a small modification of the proof in [Ghomi 2004] one can guarantee
positive curvature everywhere on bd B except on ±(11 − 12) (Ghomi, personal
communication). �

3B. Application to energy-minimizing surfaces. Define the ‖ · ‖-energy of a hy-
persurface S to be ‖S‖ :=

∫
S‖n(x)‖dx , where n(x) is the Euclidean unit normal at

x ∈ S. Lawlor and Morgan [1994] gave a sufficient condition for a certain partition
of a convex body by a hypersurface to be energy-minimizing. We restate a special
case of their “General Norms Theorem I”.

Lawlor–Morgan Theorem. Let ‖ · ‖ be a norm on Rn , and let p1, . . . , pm ∈ Rn be
equilateral at distance 1. Let 6 =

⋃
Hi j ⊂ C be a hypersurface which partitions

some convex body C into regions R1, . . . , Rm with Ri and R j separated by a piece
Hi j of a hyperplane such that the parallel hyperplane passing through pi − p j

supports the unit ball B at pi − p j .
Then for any hypersurface M =

⋃
Mi j which also separates the Ri ∩bd C from

each other in C , with the regions touching Ri ∩ bd C and R j ∩ bd C facing each
other across Mi j , we have ‖6‖

∗
≤ ‖M‖

∗, i.e. 6 minimizes ‖ · ‖
∗-energy.

Consider the norm ‖ · ‖
∗ dual to the norm ‖ · ‖ constructed in Section 3A. Since

the unit ball B of ‖ · ‖ has two diametrically opposite two-dimensional faces, the
dual unit ball B∗ has two diametrically opposite boundary points ±e that are not
regular — in fact the set of unit normals of supporting planes at e will be a two-
dimensional subset of the Euclidean unit sphere. Informally, B∗ is shaped like a
spindle.
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Figure 2. Energy-minimizing cone 6 with six regions.

We may now apply the Lawlor–Morgan Theorem as follows. Consider the equi-
lateral set S = {p0, p4, p8, p3 + e, p7 + e, p11 + e} of Section 3A. Let C be the
convex hull of {±e, p2, p3, p6, p7, p10, p11}, and let 6 be the union of the 12
triangles

4op2 p3, 4op3 p6, 4op6 p7, 4op7 p10, 4op10 p11, 4op11 p2,

4p3oe, 4p7oe, 4p11oe, 4p2o(−e), 4p6o(−e), 4p10o(−e).

Then 6 separates C into six regions (Figure 2). By the construction of the norm
‖ · ‖ (in particular, the perpendicularity properties), for any p ∈ {p0, p4, p8} and
q ∈ {p3, p7, p11}+e the supporting plane of B at p −q is parallel to the xy-plane,
and for any distinct p, q ∈ {p0, p4, p8} or p, q ∈ {p3, p7, p11}+ e, the supporting
plane at p − q is perpendicular to p − q. It follows that the hypotheses of the
Lawlor–Morgan Theorem are satisfied, giving that 6 is ‖ · ‖

∗-energy-minimizing.
Note that, since ‖ · ‖ is smooth, ‖ · ‖

∗ is uniformly convex [Lawlor and Morgan
1994], and since bd B has positive curvature everywhere except on the two flat
pieces, bd B∗ is smooth except at ±e.

From Theorem 2.3 it can be seen that the above example is typical. For ‖ · ‖
∗ to

be uniformly convex, ‖ · ‖ must be smooth, therefore B must have two-dimensional
faces, and then B∗ must have two nonregular points making B∗ spindle-shaped.
Because of the two-dimensional faces of B and the structure that the equilateral set
necessarily will have, it also follows that the cone 6 in the Lawlor–Morgan The-
orem must consist of six planar pieces in a plane 5 parallel to the faces, together
with three triangles on one side of 5 and three triangles on the other side, each
with a side on a common line parallel to oe.
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4. Applications of Theorems 2.3 and 2.4

4A. Regular octahedron. Bandelt, Chepoi and Laurent [Bandelt et al. 1998] have
shown that e(`3

1)=6, where `3
1 is the space with norm ‖(α, β, γ )‖1 =|α|+|β|+|γ |.

The unit ball is the regular octahedron, and {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)} is
clearly equilateral. To show that e(`3

1) ≤ 6 using Theorem 2.4, it is sufficient to
show that no affine regular octahedron contained in [−1, 1]

3 can contain a Pλ. This
is easy to see.

4B. Rhombic dodecahedron. The rhombic dodecahedron Z is the unit ball of the
norm ‖ · ‖Z with

‖(α, β, γ )‖Z := max{|α ± β|, |α ± γ |, |β ± γ |}.

The set {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)} is equilateral. It is again easy to see that
no affine rhombic dodecahedron contained in [−1, 1]

3 can contain a Pλ. Therefore,
e(R3, ‖ · ‖Z ) = 6.

4C. Spaces and their duals. As mentioned in the Introduction, for a strictly con-
vex X3 we have e(X3) ≤ 5. The hypothesis of strict convexity cannot be weakened
in the following sense. There exists a unit ball with line segments on its boundary,
but no two-dimensional faces, such that e(X3)>5. Consider for example a “blown-
up octahedron”, where the one-skeleton is fixed (a wire frame), but the facets are
curved out. By Theorems 2.3 and 2.4 we have e(X3) = 6 for this norm. In general
we have the following simple consequences of these two theorems.

Corollary 4.1. Let X3 be a three-dimensional normed space. If the unit ball of X3

does not have a two-dimensional face, then e(X3) ≤ 6. If the unit ball of neither
X3 nor its dual has a two-dimensional face, then e(X3) ≤ 5.

The space `3
∞

has norm ‖(α, β, γ )‖∞ = max{|α|, |β|, |γ |}. Its unit ball is the
cube [−1, 1]

3, hence e(`3
∞

) = 8. Its dual is `3
1, for which we know that e(`3

1) =

6. Consider now any space X3 with e(X3) = 7. By Theorem 2.4, its unit ball
B is between some Pλ and the cube [−1, 1]

3. The polar B∗ of such a unit ball
contains the 1-skeleton of a regular octahedron on its boundary, and therefore,
e(X3

∗
)≥6 by Theorem 2.3. Since bd B contains an edge of the cube, bd B∗ contains

two adjacent triangular facets of the octahedron. It is easily seen that no linear
transformation can take B∗ such that it is between some Pλ and [−1, 1]

3. By
Theorem 2.4, e(X3

∗
) ≤ 6. We have shown:

Corollary 4.2. If e(X3) ≥ 7, then e(X3
∗
) = 6. Conversely, if e(X3) ≤ 5, then

e(X3
∗
) ≤ 6.
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Figure 3. A plane supporting six translates of the smooth unit ball B.

4D. Touching numbers. Two convex bodies C, C ′
⊂ Rn touch if C ∩C ′

6= ∅ and
int C ∩ int C ′

= ∅. For any convex body C ⊂ Rn let C0 := C − C be its difference
body and let ‖ · ‖ be the norm with unit ball C0, giving a normed space Xn . Let
{v1, . . . , vm} ⊂ Rn . The family {C + vi : i = 1, . . . , m} is pairwise touching if any
two translates in the family touch. It is well known that {C + vi : i = 1, . . . , m}

is pairwise touching if and only if {C0 + 2vi : i = 1, . . . , m} is pairwise touching,
if and only if {v1, . . . , vm} is equilateral in Xn . The touching number t (C) of C
is the largest m such that there exists a pairwise touching family of m translates
of C . Then clearly t (C) = e(Xn). The previous examples show that the touching
number of the regular octahedron and the rhombic dodecahedron is 6.

The unit ball B of the norm constructed in Section 3A has touching number
t (B) = 6. In particular, there exist six pairwise touching translates of the smooth
convex body B. There is a plane, parallel to the xy-plane, separating three of the
translates from the other three, and with each translate on one side touching each
translate on the other side. This is not easy to visualize and may seem impossible
at first. However, Figure 3 shows the intersection of the plane with each trans-
late; there are three translates of the face 11 − 12 touching three translates of
the opposite face 12 − 11. It is easy to see how to modify the construction in
Section 3A such that B is still smooth but now any pair of the six translates has a
two-dimensional intersection.

Consider now any convex disc D in the xy-plane of R3, and let C be the trun-
cated cone conv({e}∪ D), where e = (0, 0, 1). For example, if D is a triangle, then
C is a tetrahedron and its difference body C0 is the cuboctahedron. Also, if D is a
square, C is a pyramid, and if D is a circular disc, C is a truncated circular cone.
It is easy to see that the touching number of both the tetrahedron and pyramid is at
least 5. Koolen, Laurent and Schrijver [2000] determined the touching number of
the tetrahedron, by showing that 5 is also an upper bound (see also [Bezdek et al.
2003]). This is a special case of the following corollary of Theorem 2.3.
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Corollary 4.3. For any truncated cone C whose base is a convex disc D we have
t (C) ≤ 5.

Proof. Note that C −C equals the convex hull of (D − e)∪ (e − D)∪ (D − D). In
particular, the extreme points of C − C are contained in the relative boundaries of
the three discs ±(D − e) and D − D. Let ‖ · ‖ be the norm with unit ball C − C .
Suppose that ‖ · ‖ has an equilateral set of 6 points. Then by Theorem 2.3 C − C
either contains the 1-skeleton of an affine regular octahedron on its boundary or
has a 2-dimensional face of perimeter at least 6.

If bd(C −C) contains the 1-skeleton of an affine regular octahedron, then the 6
vertices of the octahedron must be extreme points of C −C . If D −e contains two
of these vertices, say a and b, then the plane through ±a, ±b intersects C − C in
the parallelogram with these points as vertices. In particular, this plane intersects
D − D in the segment with endpoints ±

1
2(a −b). However, since [ab] ⊂ D − e, it

follows that the segment with endpoints ±(a − b) must be contained in D − D, a
contradiction.

Therefore, D −e, and similarly e− D, each contains at most one of the vertices
of the octahedron, and it follows that D − D must contain at least 4 of the vertices.
Therefore, D − D contains exactly 4 of them, and must be a parallelogram. Then
D is necessarily also a parallelogram, C an affine square pyramid, and C − C the
difference body of an affine square pyramid, which is easily seen not to contain
the 1-skeleton of an affine regular octahedron.

In the second case C − C contains a 2-dimensional face F of perimeter at least
6. Suppose F = D − e. It is easy to see that the perimeter of D − D is twice the
perimeter of D −e (and more generally, for any two convex bodies A and B in the
same plane, the perimeter of A + B equals the sum of the perimeters of A and B,
in any norm). The perimeter of D − D is at most 8, by the theorem of Goła̧b (see
[Thompson 1996, Theorem 4.3.6], for example). Then D − e has perimeter ≤ 4, a
contradiction.

Therefore, F 6= ±(D − e). Furthermore, F cannot contain extreme points from
both D − e and −D + e: if a + e and −b − e are extreme points of F , where
a, b ∈ D, then their midpoint is 1

2(a − b) ∈ int(C − C), a contradiction. Thus
without loss of generality, the extreme points of F are in (D − e) ∪ (D − D). It
follows that F ∩ (D −e) and F ∩ (D − D) are (possibly degenerate) segments, say
F ∩ (D − e) = [ab] − e and F ∩ (D − D) = [cd], for some [ab] on the relative
boundary of D and [cd] on the relative boundary of D − D. (Thus F is either
a triangle or a quadrilateral with one pair of opposite edges parallel.) Without
loss, d − c is a positive multiple of b − a if a 6= b and c 6= d . By the definition
of D − D, D must contain a (possibly degenerate) maximal second edge [a′b′

]

on its relative boundary parallel to [ab] such that a − b′
= c and b − a′

= d .
Therefore, ‖(a − e) − c‖ = ‖b′

− e‖ = 1. Similarly, ‖(b − e) − d‖ = 1. Finally,
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‖(a−e)−(b−e)‖=‖a−b‖≤‖c−d‖≤ 2, and it follows that the perimeter of F is
at most 6. Therefore, it equals 6, forcing ‖a −b‖ = ‖c−d‖ = 2 and ‖a′

−b′
‖ = 0.

It follows that 1
2(c − d) is a unit vector. Since 1

2(c − d) is the midpoint of unit
vectors c and −d , all on the relative boundary of D − D, the segment [c, −d] is
also on the relative boundary. Therefore, D − D is a parallelogram. It follows that
D is also a parallelogram. Then ‖a′

− b′
‖ = ‖a − b‖ = 2, a contradiction.

We have shown that neither case in Theorem 2.3 can occur; therefore, t (C) ≤ 5.
�

5. Classifying all antipodal sets in three-space

A set S ⊂ Rn is antipodal if for any two x, y ∈ S there exist two parallel hyper-
planes, one through x and one through y, such that S is contained in the closed slab
bounded by the two hyperplanes. See [Martini and Soltan 2005] for a recent survey
on antipodal sets. We recall the following facts. It is well-known that an antipodal
set S is finite, in fact |S| ≤ 2n with equality if and only if S is affinely equivalent to
the vertex set of an n-cube [Danzer and Grünbaum 1962]. It is easily seen that each
point of S is a vertex of the polytope conv S. Two important examples of antipodal
sets are equilateral sets in finite-dimensional normed spaces [Petty 1971] (this is
how the bound e(Xn) ≤ 2n is deduced) and sets in Euclidean spaces in which no
three points span an obtuse angle [Danzer and Grünbaum 1962].

In the plane R2, a set is antipodal if and only if it consists of at most two points,
or three noncollinear points, or is the vertex set of a parallelogram. In R3, it is
clear that any noncoplanar set of four points (the vertex set of a tetrahedron) is
antipodal. By [Danzer and Grünbaum 1962], an antipodal set in R3 has at most
8 points, with equality if and only if it is the vertex set of a parallelepiped. In
order to characterize three-dimensional antipodal sets it remains to consider sets
of size 5, 6 and 7. Technically the most complicated part is showing that the
convex hull of an antipodal set of size 6 has two parallel facets (Theorem 5.7).
This has independently been done by Bisztriczky and Böröczky [2005]. In fact,
they prove this under the weaker requirement that the convex hull is an edge-
antipodal polytope. See also [Bezdek et al. 2005].

We constantly refer to the following well-known and easily proved fact.

Lemma 5.1. A set S is antipodal if and only if for any two distinct points x, y ∈ S,
x − y is on the boundary of conv(S − S).

Note that it follows from this lemma that equilateral sets are antipodal, and that an
antipodal set S is equilateral in the norm with unit ball conv(S − S).

5A. Five points.

Proposition 5.2. A set of five points in R3 is antipodal if and only if the points can
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a

b
c

p

β

α

β

α

β

α

Figure 4

be labeled as a, b, c, d, e such that d and e are on opposite sides of the plane abc,
[de] intersects 4abc in p such that if we write p =λa+µb+νc where λ, µ, ν ≥ 0,
λ + µ + ν = 1, then

(∗) λ, µ, ν ≤
min{|dp|, |ep|}

|de|
.

In other words, if we let α = min{|dp|, |ep|} and β = max{|dp|, |ep|}, then p must
be inside the shaded triangle of Figure 4.

Proof. Let S = {a, b, c, d, e} be antipodal. Then conv S has S as vertex set. It is
easily seen, e.g. by Radon’s theorem, that we may label the points in S such that
[de] intersects 4abc in a point not in S. Therefore, we may assume without loss
of generality in both directions of the proposition that S = {a, b, c, d, e} is given
so that it is the vertex set of its convex hull, and with [de] intersecting 4abc in a
point p = λa + µb + νc /∈ S with λ, µ, ν ≥ 0 and λ + µ + ν = 1.

After applying an appropriate linear transformation we may assume that 4abc
is equilateral, that de is perpendicular to the plane abc, and that abc is parallel to
the xy-plane (hence de is parallel to the z-axis). Moreover, we may assume that d
is in the half space z < 0 with |dp| ≤ |ep|.

We show that the nonzero points of S − S are on the boundary of conv(S − S)

if and only if p satisfies (∗). Note that (S − S) \ {o} consists of

(1) the vertices {±(a − b), ±(a − c), ±(b − c)} of a regular hexagon H in the
xy-plane, symmetric about o,

(2) the vertices {a, b, c}−d of a triangle 1 in the half space z >0, and the vertices
of its negative −1 in z < 0,

(3) the vertices e−{a, b, c} of a triangle ∇ in the half space z > 0, and the vertices
of its negative −∇ in z < 0,

(4) the point e − d in z > 0, and d − e in z < 0.
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b−a c−a

b−c o c−b

a−c a−b

b−p c−p

a−p

Figure 5

Since p ∈ conv{a, b, c}, it follows that if we orthogonally project the part of S − S
in the half space z ≥ 0 onto the xy-plane, we obtain the situation in Figure 5. Since
a similar picture holds for the part of S − S in z ≤ 0, it follows that (S − S) \ {o}

is on the boundary of conv(S − S) if and only if e − d and the vertices of 1, ∇

and H are on the boundary of conv({e − d} ∪ 1 ∪ ∇ ∪ H), i.e., we only have to
consider the upper half plane z ≥ 0. Clearly e − d and H will be on the boundary.
It remains to show that the vertices of 1 and ∇ are on the boundary if and only if
p satisfies (∗). We first show

Claim 5.3. The vertices of 1 are not in the interior of the truncated cone 0 =

conv({e − d} ∪ H), if and only if p satisfies (∗).

With α = |dp| and β = |ep| we know that e − d is in the plane z = α + β, and 1

is in the plane z = α. By projecting the slice z = α of 0 onto the xy-plane, we see
that no vertex of 1 is in int 0 if and only if no vertex of the projection of 1 is in
the interior of the hexagon β

α+β
H . See Figure 6. The projection a − p of a − d

is in the triangle a − 4abc. Then a − p /∈ int β

α+β
H if and only if a − p and o

are not in the same open half plane of the xy-plane bounded by the line through

o

a−c a−b

β
α+β (a−c)

a−p
β

α+β (a−b)

Figure 6
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a−c a−b

e−c

a−d

e−b

Figure 7

β

α+β
(a−b) and β

α+β
(a−c). This is easily seen to be equivalent to λ≤

α
α+β

. Similar
considerations for b − d and c − d establish Claim 5.3.

Since ∇ has a larger z-coordinate than 1 (from |dp| ≤ |ep|), and the projections
of ∇ and 1 are reflections in o, it follows that if 1 is outside int 0, then ∇ is also
outside int 0. It then remains to show

Claim 5.4. The vertices of 1 are not in the interior of the half cuboctahedron
6 = conv(∇ ∪ H) if and only if P satisfies (∗). See Figure 7.

Note that a − d is outside int 6 if and only if a − d and o are not in the same half
space bounded by the plane through the parallelogram with vertex set {a−c, a−b,

e−c, e−b}. Also, a−d is in the plane z =α, which intersects the parallelogram in
the line through α

β
(e−c)+(1−

α
β
)(a−c) and α

β
(e−b)+(1−

α
β
)(a−b). Projecting

onto the xy-plane, we find that a − d /∈ int 6 if and only if a − p and o are not in
the same open half plane bounded by the line through α

β
(p − c) + (1 −

α
β
)(a − c)

and α
β
(p − b) + (1 −

α
β
)(a − b), which is easily seen to be equivalent to λ ≤

α
α+β

.
Similar considerations for b − d and c − d then give Claim 5.4. �

5B. Six points. In the sequel we only need the following two consequences of
Proposition 5.2.

Lemma 5.5. Let S = {a, b, c, d, e} ⊂ R3 be an antipodal set such that [de] inter-
sects int conv S. Then the following planes support conv S:

(1) the plane through e that contains lines parallel to ab and cd,

(2) the plane through a parallel to bcd.

Proof. (1). Consider the plane through ab that contains a line parallel to cd . Let
e′ be the intersection of this plane with de. Note that it is sufficient to prove
that e′

∈ [de]. Let de intersect 4abc in p. Let the line through p parallel to
ab intersect ac in q, and let cp intersect ab in r . Then similar triangles give
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|e′ p|/|pd| = |r p|/|pc| = |aq|/|qc|. By (∗) we must have

|aq|/|qc| ≤ min{|ep|, |pd|}/ max{|ep|, |pd|} ≤ |ep|/|pd|.

It follows that |ep| ≥ |e′ p|, as required.
(2). By the first part of this lemma, the plane through d containing lines parallel

to ae and bc supports conv S. It follows that the plane bcd separates conv S from
the ray emanating from d in the direction e − a. Translating bcd so that it passes
through a we obtain that the ray from a through e and the points b, c, d are on the
same side of the translated plane, i.e., it supports conv S at a. �

The next proposition describes a construction of antipodal sets of six points
which generalizes the construction in Section 3A.

Proposition 5.6. Let 5a and 5b be two parallel planes in R3. Let a1, a2, a3 ∈ 5a

and b1, b2, b3 ∈ 5b. Then the following are equivalent:

(1) The set S = {a1, a2, a3, b1, b2, b3} is antipodal.

(2) None of the 12 (not necessarily distinct) points ai − a j , bi − b j , i 6= j , is in
the relative interior of the convex hull of the remaining 11.

Proof. By Lemma 5.1 we have to show that (2) is necessary and sufficient for
the nonzero points in S − S to be on the boundary of D := conv(S − S). The
points ai − b j ∈ 5a − 5b and bi − a j ∈ 5b − 5a are all clearly on bd D, in the
facets ±F := D ∩±(5a −5b). Therefore, we only have to consider the 12 points
ai − a j , bi − b j , i 6= j . Condition (2) is clearly necessary for them to be on the
boundary. To see that (2) is also sufficient, we only have to show that the section 6

of conv(F∪−F) by the plane through the origin parallel to 5a and 5b is contained
in the polygon P with vertex set ai − a j , bi − b j , i 6= j . This follows upon noting
that

6 = conv{
1
2(ai − b j ) +

1
2(bk − a`) : 1 ≤ i, j, k, ` ≤ 3}

and
1
2(ai − b j ) +

1
2(bk − a`) =

1
2(ai − a`) +

1
2(bk − b j ) ∈ P. �

In the next theorem we show that any 6-point antipodal set in R3 is as described
in the above proposition. We also describe all the combinatorial types of their
convex hulls.

Theorem 5.7. Let S be an antipodal set of 6 points in R3. Then there exist two par-
allel planes 51 and 52 such that |S ∩5i | = 3, i = 1, 2 (thus S is as in Proposition
5.6). Furthermore, conv S is of one of the following two types:

(1) combinatorially equivalent to an octahedron, with some two opposite facets
parallel,
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a b

cd

e f

a b

cd

e
f

e′ f ′

Figure 8

(2) a “skew” triangular prism with one facet a parallelogram with vertices

{a, b, c, d}

and an edge [e f ] which is a translate of some segment [e′ f ′
] where e′

∈ [ad]

and f ′
∈ [bc] (hence ade and bc f are parallel planes). There are two combi-

natorial types, depending on whether e f is parallel to ab or not. See Figure 8.

Proof. We first show that if conv S has a nontriangular facet then the second case
occurs. If, on the other hand, all facets are triangular, we show that conv S must be
an octahedron, and then (this being the most involved part of the proof) that some
two opposite facets are parallel.

Let P = conv S. By Lemma 5.1 each nonzero point of S − S is on the boundary
of P − P .

Case I. P has a nontriangular facet. The vertex set of this facet is a planar an-
tipodal set of more than three points, and so it must be a parallelogram abcd, say.
Denote the remaining two points of S by e and f . After making an appropriate
relabeling of the points and an affine transformation we have the following coor-
dinates.

a = (0, 0, 0), b = (1, 0, 0), c = (1, 1, 0), d = (0, 1, 0),

e = (0, 0, 1), f = (α, β, γ ), α ≥ β ≥ 0, 0 < γ ≤ 1

(We may assume γ ≤ 1 after possibly interchanging e and f . We may assume
α ≥ β ≥ 0 after relabeling a, b, c, d .)

If β = 0 then e, f, a, b are coplanar, hence must form a parallelogram, and we
obtain an affine triangular prism. Assume then without loss of generality that β >0.
We show that this implies γ = 1.

Suppose γ < 1. Consider P − P and its projection onto the xy-plane (Figure 9).
In the sequel we use the words “above” and “below” in the sense of an observer
looking at P − P from a point on z-axis with a large z-coordinate. It then follows
from γ < 1 that f − c is below the triangle with vertices e − c, f − b, f − d , and
so f − c ∈ int conv{e − c, f − b, f − d, ±(a − c), ±(b − d)}, a contradiction.
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a − c

e − c e − d b − d

f − c f − d

e − b e − a

f − b f − a

d − b d − a c − a

Figure 9. The view of P − P from above.

Therefore, γ = 1, and f −e is in the xy-plane. However, since the difference of
any two of a, b, c, d is on bd(P − P), it follows that the intersection of P − P with
the xy-plane is the square with vertices ±(a −c), ±(b−d). Therefore, f −e must
be on the boundary of this square, which gives α = 1. We now have the second
type.

Case II. All facets of P are triangles. There are only two combinatorial types
of 3-polytopes with 6 vertices and all facets triangular (by Steinitz’s theorem —
see [Ziegler 1995, Chapter 4], for instance — it is sufficient to enumerate the 3-
connected planar triangulations on 6 vertices). One type (Figure 10) is easily
eliminated. With the vertices labeled as shown, we apply Lemma 5.5.(1) to S \{ f }

to obtain that e is in the half space bounded by the plane through cd containing a
line parallel to ab, opposite a and b. A similar argument with S \ {e} gives that

a b

c

d

ef

Figure 10. First 3-connected planar triangulation on 6 vertices.
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a

bc

d

e
f

Figure 11. Second 3-connected planar triangulation on 6 vertices.

f is also in this half space. It follows that 4cde and 4cd f cannot be facets, a
contradiction.

The second combinatorial type is an octahedron. Let its diagonals be ab, cd , e f ,
say. If each pair of diagonals is coplanar, then each such pair must be the diagonals
of a parallelogram (since we then have a planar antipodal subset). It then follows
that all three diagonals are concurrent, and we obtain that P is an affine regular
octahedron (with any two opposite facets parallel).

In the remaining case some two diagonals are not coplanar. It remains to show
that some two opposite facets are parallel. Without loss of generality we let ab and
cd be noncoplanar. After an appropriate affine transformation (mapping the ver-
tices of the tetrahedron abcd to the vertices of the cube {±1}

3 with an odd number
of minus signs), we may assume that the 6 points have the following coordinates
(Figure 11):

a = (−1, −1, −1), b = (1, 1, −1), c = (−1, 1, 1), d = (1, −1, 1),

e = (α, β, γ ), γ > 1, f = (α′, β ′, γ ′), γ ′ < −1, −γ ′
≥ γ.

Consider the antipodal set S \ { f } with convex hull P1, say. By Lemma 5.5.(2)
the two planes through a, one parallel to bce and one parallel to bde, both support
P1. These planes have normals (1 − β, α + γ, 1 − β) and (α + γ, 1 − β, 1 − β),
respectively. A simple calculation with inner products gives α ≤ 1 and β ≤ 1.
Considering in the same way the planes through b parallel to ace and ade, we
obtain α, β ≥−1. A similar argument with P2 :=conv(S\{e}) gives −1≤α′, β ′

≤1.
We now consider P − P and project it orthogonally onto the xy-plane. The

differences of pairs of a, b, c, d form the 12 vertices of a cuboctahedron that are
projected onto the boundary of the square 6 with vertices ±(b−a)=±(2, 2, 0) and
±(c − d) = ±(−2, 2, 0). Let 61 (62) be the square in the xy-plane with vertices
the projections of e−{a, b, c, d} ({a, b, c, d}− f ). Since −1 ≤ α, β, α′, β ′

≤ 1, we
have 61, 62 ⊂ 6. See Figure 12. In particular, 61 and 62 intersect, and it follows
that one of the points in e − {a, b, c, d} is projected onto 62. We now consider
each of these four cases.
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a − b d − b d − c

c − b d − a

c − d c − a b − a

6

61

e − a

e − b e − c

e − d

a − b d − b d − c

c − b d − a

c − d c − a b − a

6

62

b − f

a − f d − f

c − f

Figure 12. P − P when viewed from above.

61

e − a

e − b e − c

62

d − f

Figure 13

e − d

c − f

e − b

a − f

e − a

b − f

e − c

d − f

6

61

62

c − f b − f

e − b e − c

6

61 62

Figure 14

If e − c projects onto 62, then e − c is below the triangle with vertices e − a,
e−b, d − f (Figure 13). Since e−c /∈ int(P − P), we must have that e−c projects
onto the boundaries of 62 and 6, as in Figure 14. It follows that either bde and
ac f (Figure 14, left), or ade and bc f (Figure 14, right), are parallel, and we are
finished.

A similar argument gives that if e − d projects onto 62, there will again be two
opposite parallel facets.
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e − d e − a

e − b e − c

c − f b − f

a − f d − f

61

62

Figure 15

Some more care is necessary with e − a and e − b. Suppose for instance that
e − a projects onto 62. If −1 − γ ′

≤ γ + 1, then a − f is below the triangle with
vertices e − b, c − f , d − f (Figure 15). Since a − f /∈ int(P − P), we obtain
that the projection of a − f must be on the boundaries of 61 and 6, and we obtain
opposite parallel facets as before. If on the other hand −1−γ ′ > γ +1, then e−a
is below either 4bcd− f or 4acd− f . Since e−a /∈ int(P − P), we obtain that the
projection of e −a is on the boundaries of 62 and 6, and we again obtain parallel
facets.

The case where e − b projects onto 62 is similar, completing Case II. �

5C. Seven points.

Theorem 5.8. Let S be an antipodal set of 7 points in R3. Then there is a linear
transformation ϕ such that ϕ(S) consists of the 7 points obtained from the vertices
of a cube if some two adjacent vertices of the cube are replaced by any point on
the edge joining them.

Proof. The convex hull of S is a 3-polytope P with 7 vertices. We consider various
cases depending on the degrees of the vertices.

Suppose first that one of the vertices of P , say a, has degree 6, so that it is joined
by an edge to the 6 other vertices. Remove one of the other vertices, say b. Then
S \ {b} will be an antipodal set of 6 points, and in its convex hull the vertex a will
have a degree of 5. However, by Theorem 5.7, no vertex can have a degree of 5,
which is a contradiction.

Suppose next that no vertex of P has degree 3. Then all degrees are either 4 or
5. Since the 1-skeleton of P is a planar graph, it has at most 15 edges, and there
are exactly two cases:

(1) all vertices have degree 4,

(2) 5 vertices have degree 4, and two have degree 5.

There are exactly two graphs on 7 vertices with each vertex of degree 4, none of
them planar. In the second case there are three graphs. In two of them the two
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vertices of degree 5 are adjacent, and by removing this edge, one obtains the two
graphs in which all vertices have degree 4, which we already know to be nonplanar.
In the third graph the vertices of degree 5 are not adjacent. By removing one of
them, the other vertex still has degree 5, and we again obtain an antipodal set on 6
points with a vertex of degree 5 in its convex hull, a contradiction as before.

The only remaining possibility is that one of the vertices of P , say a, has degree
3. Remove a point, say e, that is not a neighbor of a. Then the convex hull P ′ of
the antipodal set S \ {e} still has a as a vertex of degree 3. Therefore, P ′ is not an
octahedron, and by Theorem 5.7, a must be a vertex of a parallelogram facet abcd
of P ′. This parallelogram is also a facet of P . Again using Theorem 5.7 we see that
the remaining vertices of P , say e, f, g, are in a plane parallel to abcd. Moreover,
some translates of the edges [e f ], [ f g], [eg] meet opposite sides of abcd . This is
only possible if one of [e f ], [ f g], [eg] is a translate of one of the sides of abcd,
and we obtain the conclusion. �

6. Proofs of Theorems 2.2, 2.3 and 2.4

Proof of Theorem 2.3. Let S be an equilateral set of 6 points at distance 1. Then S
is antipodal, and by Theorem 5.7 and Proposition 5.6 there exist two parallel planes
51 and 52 such that S1 = S∩51 = {a1, a2, a3} and S2 = S∩52 = {b1, b2, b3}, and
the points ai − a j , bi − b j , i 6= j , are all in the relative boundary of their convex
hull. Also, S1 − S2 ⊂ bd B.

Suppose that S1 and −S2 are translates, say with ai − a j = b j − bi for all
distinct i, j . Then ±(ai − b j ) = ±(a j − bi ) are the midpoints of the segments
±[ai −bi , a j −b j ], i < j , and ai −a j = bi −b j is the midpoint of [ai −bi , b j −a j ],
i 6= j . These 12 segments are therefore contained in bd B and form the 1-skeleton
of an affine regular octahedron with center o and vertex set V = {±(ai − bi ) : i =

1, 2, 3}. Letting t = ai +bi (which is independent of i) we also have S =
1
2(V + t).

If S1 and −S2 are not translates, then one of the points in S1 − S2 will be in the
relative interior of P := conv(S1 − S2), which forces P to be contained in bd B.
Also, P = 4a1a2a3 − 4b1b2b3 is a semiregular hexagon of side length 1.

The converse is similar. �

Proof of Theorem 2.4. Let S be an equilateral set of 7 points. By Theorem 5.8, S
must be as stated. Furthermore, bd B must contain (S − S) \ {o}, which implies
that B must contain a 3-polytope which equals some Pλ after an appropriate lin-
ear transformation ϕ, and also that the planes through the facets of [−1, 1]

3 must
support ϕ(B).

The converse is easy. �

Proof of Theorem 2.2. If there exists an equilateral set of size 7, then by Theorem
2.4 the unit ball of the norm cannot be differentiable. �
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