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ROGER CHEN AND JIAPING WANG

For an equation or system of equations Lu = 0, where L is a uniformly el-
liptic operator of order 2m and u is a map from R" to RY, we prove that the
dimension of the space of polynomial growth solutions of degree at most d
is bounded by Cd*""V, where C is a constant. If the system is in divergence
form, we prove that this dimension is in fact bounded by Cd™".

Introduction
We consider an equation or a system of equations of the form
Lu =0,

where L is a uniformly elliptic operator of order 2m, with m > 1, defined on R”".
We want to estimate the dimension of the following space of solutions to Lu = 0.

Definition 0.1. For each nonnegative number d we denote by
95 (R") ={u | Lu=0and |u|(x) = 0(r§f(x))}

the space of polynomial growth solutions of degree at most d, where r,(x) is the
Euclidean distance from a fixed point p to x in R*. We denote the dimension of
% (R") by
hE(R") = dim %5 (R").
When L = A is the Laplacian, this subject has been studied extensively for a
variety of open manifolds M (meaning noncompact and without boundary). Let

n be the dimension of M. Yau conjectured that hﬁ (M) < oo forall d > 1. For
M = R" this is easy to see; in fact hﬁ (R™) equals

n+d—1 n+d-2 2 1
0-1) ( d )—i—( d—l) (n—l)!d as d — oo.
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Yau’s conjecture was partially confirmed for the case d = 1 by Li and Tam [1989],
who proved that under the same conditions, if the volume growth of M satisfies
Vp(r) = O(rf,) for some k > 0, then

hy (M) < k+1=h5®Rb.

The conjecture was then proved in full by Colding and Minicozzi [1997], who
showed that for a complete open manifold M of nonnegative Ricci curvature, there
exists C > 0 depending only on the dimension n and such that

he (M) < Cd" ",

In view of the formula (0-1) for A ﬁ([Ri"), this estimate is sharp in the order of d as
d — oo. The authors also proved that if a complete open manifold M satisfies a
Poincaré inequality and a volume doubling property, then i ﬁ (M) is finite and can
be estimated in terms of a constant depending on the manifold and d. However, in
this case, the order in d is not sharp.

Soon thereafter, Li [1997] proved a more general estimate with a substantially
simpler proof. Namely, if M (open, complete) satisfies a mean value inequality
and a volume comparison condition, then

h3(M) < Cad"".

Later Li and Wang [1999a] showed that the finiteness of & ﬁ (M) is actually valid
in a much bigger class of manifolds. In particular, they proved that if M satisfies a
weak mean value inequality and has polynomial volume growth, then & dA (M) must
be finite for all d > 1. However, in this case, the estimate on hﬁ (M) is exponential
ind as d — oo.

Recently, Li and Wang [1999b] showed that if M is a complete manifold satis-
fying the Sobolev inequality ¥(B, v), the space %ﬁ(M ) is finite-dimensional, and
its dimension hﬁ satisfies

h3 (M) < C(B,v)d"

for all d > 1. They proved that if M is a complete n-dimensional open manifold
with nonnegative sectional curvature, then

liminfd ="~V 3 (M) < ,
d—00 (n—1)!

and the equality
2

(n—1)!

liminfd ™" h (M) =

holds if and only if M = R".
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In this note we extend some of the preceding results to higher-order operators.
To simplify the presentation, we restrict ourselves to Euclidean space. So we as-
sume that L is of higher order 2m with m > 1 and try to estimate h‘% (R™).

In Section 1 we show that if Lu = 0 is a uniformly elliptic equation or a uni-
formly elliptic system of equations of order 2m in nondivergence form, then

h[[i(Rn) < Cdzm"N,

where N is the number of equations in the system Lu = 0.
In Section 2 we consider the case where Lu = 0 is a uniformly elliptic equation
or a uniformly elliptic system of equations of order 2m in divergence form. Then

where N is the number of equations in the system Lu = 0.

1. Equations in nondivergence form

In Euclidean space R" with rectangular coordinates xi, ..., x,, we consider the
differential operator

Lu= Z ag(x) D%u(x),

|oe|=2m
where o = (1, ...,a,) €N, |¢| =a; + - -+ a,, and
aZm
o _
D* = — o -
'xl ...xn

Throughout the section, we impose the following condition on the operator L.

Condition L. The coefficients a,, in the equation Lu = 0 are uniformly continuous
and satisfy the uniform ellipticity condition; that is, there exists a constant A > 0
such that
AEP" 2 ) au()E” = AT EP"
la|=2m

forall x, 8 e R".

The assumptions imply that there exists a constant C > 0 such that, for any
function w € C°(R"),

/lvzmw|2(x)dx§C/ |ILw|*(x)dx
R" n

(see [Agmon et al. 1959; 1964]). We establish some preliminary lemmas before
we prove our first main result.
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Lemma 1.1 [Li and Wang 1999b]. Let V be a k-dimensional subspace of a vector
space W. Assume that W is endowed with an inner product 1 and a bilinear form
®. Then for any given linearly independent set of vectors {wy, ..., wxg—1} C W,
there exists an orthonormal basis {vi, ..., v} of V with respect to I such that
®(vi,w;)=0foralll < j<i=<k

Let ¢ be a positive function defined on a fixed geodesic ball B, (r). We introduce
two inner products I, and @, on the space W = Lz(Bp (r),dx)N LZ(BP (r), pdx):

I(f. )= fgx)dx, &,(f, 8 = S gx)p(x)dx.
Bp(r) Bp(r)
Fori =1,2,..., let A;(r) be the i-th Dirichlet eigenvalue of B, (r) arranged in
nondecreasing order.

Lemma 1.2. Let V be a k-dimensional subspace of ?765 (R™). For any fixed number
0 > 1, let try,, 1,(V) denote the trace of the bilinear form I, with respect to the
inner product Iy, on V. Then

C894m—2
A (Or) (6 — 1)4mr?’

k
tryy, (V) <)
i=1

where Cg is a constant.

Proof. Set 0= %(14—0) and let ¢ € CS’” (B, (Or)) be a nonnegative function defined
on B,(0r) satisfying ¢ =1 on B,(r),0 <¢ < 1 on B,(0r), ¢ =0 on dB,(Or),
and

Vel = @ —1)rJ

for some constant C = C(n,m), and 1 < j < 2m. By unique continuation,
VC Hz’"(Bp Or), dx)ﬂHzm(Bp (r), ¢ dx) is a k-dimensional subspace. Applying
Lemma 1.1 with wy, ..., wy the Dirichlet eigenfunctions of B, (6r) corresponding
to the eigenvalues MO, ..., a(Or), we get an orthonormal basis {vy, ..., v}
of V with respect to the inner product /5, and

D5, (vi, wj) =/B o vix)w;(x)p(x)dx =0

for 0 < j <i <k. Thus, for any 1 <i <k, the variational principle implies that

m@m/ _wwfsf
B, (r) B

V)|
©r)

P
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Hence,
k
1 2

-1ty L(V < _ V(pv;
At (V) = Z/M D 55 o 7O

oo

<cy — |V2(pv))|* 62>
i

—; 2i(0r) JB,6r)

2 Z4m—2 Am—
) |v2m(¢vi)‘ ) m 2r m—2
B, (0r)

where C; and C, are constants.

2m—1 4m 2 4m—2 |Vjvl.|2
20 X (0r) /Bp«ir) (6 — 1)4m=2jyp4m=2j"

53

Let n € C3"(B,(6r)) be a nonnegative function defined on B, (0r) satisfying

n=1onB,0r),0<n<1,n=00ndB,(®r), and

V= G i

for some constant C = C (n,m), and 1 < j <2m. Note that

2
(1-2) / |v2mvi|25f 92" )| §C3/ L)
B,(0r) B, (6r) B, (6

P p(6r)
2m—1

V7 v |?
<C . -
4/8 L 6r) Z (9_ 1)4m—2/r4m—2j

Introduce the weighted seminorms

U, = sup (G—I)Zerkf |VEv; |2
B,(or)

1<f<o <6
for each 0 < k < 2m. In terms of these seminorms, (1-2) implies that

2m—1

(1-3) Vo <Cs ) Wi

For each 1 <k <2m — 1, we apply an interpolation inequality to get

(1-4) Wy < €Wy + C (k)X *=2my,
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for any € > 0, where C (k) is a constant. Putting (1-4) into (1-3), and arranging
€ > 0 to be small, we conclude that ¥,,, < C¢Wy. In particular, we have

C
/ _ |V2mvi|25% f viz.
B, (r) O —D¥r m Jp,or)

Therefore,

2m—1
|V ;)2
1-5
(1-5) /B,,(Gr) Z (9_1)4m 2jpdm—2j

2m—1

1

< =

—Z — 1\4m—2j -4m—2j
o (6 — 1yt

x(ej / VP C el f , v?)
B,(6r) B,(6r)
C
§2m/ |V ;|2 +ﬁf v}
B, (r) @ —D*r*m Jp,@r

T O =Dt Jpor ’

where we have set €; = (9 — 1)*"=2/#m=2/_Substituting (1-5) into (1-1), we get

k 2m—1 o F4m—2 4m-2 .

C Qrm— |val.|

try, I,(V) < § : _ | |
: ( = ; Jj=0 Ai (91") /Bp(ér) R ])4m—2]r4m—2]

Co C,0%m=2p4m=2 k Cy*m—2
o i Or) (0 — D)¥mrim pr<9r) ; A (Or)(6 — 1)4my2’
Lemma 1.3 [Li 1997]. Let K be a k-dimensional linear space of functions defined
on R". Suppose that each function u € K is of polynomial growth of at most degree
d. Then for any 0 > 1,68 > 0, and ro > 0, there exists r > ry such that if{u,-}f“zl is

an orthonormal basis of K with respect to the inner product

Tor(u, v) =f u(x)v(x)dx,
B,(0r)

then
k
trg, I, = Z/ u?(x) dx > kg~ G4+,
i=1 Y Bp(r)
Proof. We reproduce Li’s argument. Let tr, /, denote the trace of the bilinear form

I, with respect to I,, and let det, I, be the determinant of I, with respect to /,.
Assume that the lemma is false. Then, for r > ry, we have

trg, I, < kO~ CdHn+9),
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The arithmetic-geometric mean inequality asserts that
(deto, 1'% < k™' (o, I).

This implies that
dety, I, < §~k@d+n+d)
for all r > rg. Setting r = rg + 1 and iterating the inequality j times yields
(1-6) dety;, I, < = IkC2d+n+8),
However, for a fixed I,-orthonormal basis {ui}f , of K, the assumption on K
implies that there exists a constant C > 0, depending on K, such that

f u?(x)dx < C(1 42+
B, (r)

for all 1 <i <k. In particular, this implies that
detr Iejr < kcejk(2d+n) rk(2d+n).

This contradicts (1-6) as j — 0. 0

Theorem 1.4. Assume that Condition L holds. Let n > 2. Then the space %5([@’)
is finite-dimensional, and its dimension hj (R™) satisfies the estimate

hg(R") < Ciod™™"
forall d > 1, where Cq is a constant.
Proof. It is well known that the k-th Dirichlet eigenvalue of B, (r) C R" satisfies
() > Cr2i/n
for all k and r > 0, where C is a constant depending only on n. In particular,
k
D oalor) =coPr it em.
i=1

Lemma 1.3 yields that for any k-dimensional subspace V of %é(R) and any 0 > 1,
there exists R > 0 such that

try,, Ig(V) > kg~ @dtnTh,
Applying Lemma 1.2, we conclude that

kO~CAETD < tpp TR (V)

Cgh*m—2 Xk: 1 4 4m ,1-(2/n)

<—— A (OR) < CoO™ (6 — 1)k~
— \4m R2 i

(6 — ) R2 £
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Choosing 6§ = 14+d ', we obtain k < Cjod*™. This shows that hg (R™) < Cyod?™
foralld > 1. O

Consider the system of partial differential equations
N
(Fu)i=_ Y af(x) Duj(x),
j=1|a|=2m
wherei:1,...,N,andu=(u1,...,uN):[R”—>[RN.

Condition <. The coefficient matrix af‘j (x) is uniformly continuous and satisfies
the ellipticity condition that there exists a constant A > 0 such that

N
AEP™M P = > > af )&% min; = AEP™Y [nf?
la|=2m i, j=1
forall x, E e R, and n € RV.
Definition 1.5. For each nonnegative number d we denote by
¥y (R") = {u| Lu=0and [u(x)| = 0@i(x))}
the space of polynomial growth £¥-harmonic functions of degree at most d.

By modifying our previous argument, we have the following theorem.

Theorem 1.6. Assume that Condition & holds. Then the space %ZB (R™) is finite-
dimensional, and its dimension h;lyj(lR”) satisfies

hqR") < Cryd®™™N

foralld > 1, where Cy is a constant.

2. Equations in divergence form

In this section, we consider the differential equation
Lu= Y (=" D*(aup(x) DPu(x))
la|=|Bl=m
on R”. We assume that the coefficients of L satisfy the following condition.

Condition L,. The coefficients ayp are measurable, bounded, and there exists a
constant 8o > 0 such that for all u € Hj (R"),

Sl(u,u):/ Z ap(X)DPu(x) D*u(x) dx = 8[| V" ull3.

R |aj=1Bl=m
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It is easy to see that if L satisfies the uniform ellipticity condition (meaning that
ABP™ 2 3y = pl=m Gap(X)EYEP = A~ E|*" for some A >0andall x, E€R"),
then Condition L; holds.

Lemma 2.1. Let V be a k-dimensional subspace of %5 (R™). For any fixed number
0 > 1, let try,, I,(V) denote the trace of the bilinear form I, with respect to the
inner product Iy, on V. Then for any fixed integer m, we have

92m—2

k
try, I, (V) <C )
I'Ig, l’( ) f— 20 ; )\’l (9}")(9 _ 1)2mr2

where Cy is a constant.

Proof. Set 0 = %(1—1—9) and let ¢ € Cjf' (B » (Q_r)) be a nonnegative function defined
on B,(0r) satisfying ¢ = 1 on B,(r),0 <¢ < 1 on B,(0r), ¢ =0 on dB,(Or),
and

Vigl<—C
@ —1)i rJ

for some constant C = C(n,m), and 1 < j < m. Observe that by unique con-
tinuation, V. C H™ (Bp ©Or), dx) NH™ (Bp r), o dx) is a k-dimensional subspace.
Applying Lemma 1.1, with wy, ..., w; the Dirichlet eigenfunctions of B, Or)
corresponding to the eigenvalues A Or), ..., i (0r), we get an orthonormal basis
{v1,..., v} of V with respect to the inner product /3,, and

@ w)= [ uw; 0900 dr =0
B, (6r)
for 0 < j <i <k. Thus, for any 1 <i <k, the variational principle implies that

M(ér)/ ] <¢vi>25f V|
B,(Or)

B, (6r)
Hence,
1 2
Q-1 try, (V)= f V(guv:)
0 Z B,(r) Vi k (91’) B,,(ér)| t \
k 1 )
<C _ V2(¢pv;)|” 6%r?
;M(Q") B (ér)l l |
02m -2 2m 2

m—1 v ; 2
=¢ Z 1 (Or) /Bl,(ﬂ_r)‘ (qﬁv)]

k- m Zom—2 2m—2 0. 12
o-""=r V7|
-1 i
: ri@r)  Jp,@r 0—1) r
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Let € C{'(B,(6r)) be a nonnegative function defined on B, (6r) satisfying n =1
on B,(0r),0<n<1,7=00ndB,(6r), and

Vo= G

for some constant C = C (n,m), and 1 < j < 2m. Note that
m 2
(2-2) / V" (vp)|
B, (6r)

! () DB (o
< aaﬂD (nv;) D" (nv;)
8o JB,0r)

1

=5 aa ((D*(nv))—n D*v;, DP (nvy)) + (nD%v;, DP (nvy)))

Br O aj=|pl=m

1
— [ 3 a0~ nD%, Do)
Bo®r) g |=|pj=m

1

aqs(Dvi, nDP (v;) — DP (n*vy)),
80 Js PO |o|=|8]=

m

where we have used the Garding inequality from the first to the second line, and
inserted the term 9.(v;, n?v;) = 0 into the last equality. For any €; > 0, we have

@3 [ Y anlptau —nDt. Do)
By®r) 1a)1=181=m

C
< 12( / |Vm(nvi)—nvmvi|2+€—1f IV’”(nvi)|2>
So \2¢€1 Jp,r) 2 JB,on

m—1

€] 1 |V v, |2
<C — AVAL . Y
< 13< > /Bm )‘ (ﬂvl)‘ e 2¢1 5,00 jg() (6 — 1)2m—2] 2m=2]

Also,

1

— >~ awg(D*vi, nDP (qui) — DP (nvy)
By®r) \a=181=m

<Cu /
B,(6r)

/ va,|n|VJvl| _C15/ ni:l InV"™ ;| V7
B,(0r) O —1ym=irm=i Byor) i 0 — Lym=iym=j

IV i [V 7] [V v

M |

S

3&.‘
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—1 ,
€1 e |Vjvi|2

> V" 4+ -2 / | .
2 B, (0r) ' 261 B, (6r) 0 (9 — 1)2m*2jr2m72j

= 2 Vi
5 v+ 5 [
2 Bp(ar)} ’ ‘ 2¢1 Jp pOr) 4 Z (0 — 1)2m=2jy2m=2j"

Choosing € to be sufficiently small and substituting this estimate and (2-3) into
(2-2), we get

IA

mo 2 m |VJv;)?
e [ vl S/BWW (o = iy Z(g e

B, (0r)

In terms of the weighted seminorms
W= s @-p* [ vt
l1<6<o <6 By (or)
Equation (2-4) can be written into

m—1

(2-5) W, <Ci7 Yy W
k=0

For each 1 <k <2m — 1, we have the interpolation inequality
(2-6) Wy < €Wy + C (k)M 2y,

for any € > 0. Thus, by substituting (2-6) into (2-5), with a properly chosen €, we
get W, < C13¥y. In particular, we conclude that

C
f V< %/ V2,
B, (@r) O —1)>"r=" Jp,or)

Hence,
-1 .
/ 3 V7|2
B, (r) = (@ — 1)2m=2jy2m=2j

m—1 1
J

<y — (e [ vruP el / ”'2)
go (0 — 1)2m=2jy2m=2] < ’ /B,,(ér) l ! B,@r)
C(m
§m82/ |v'"u,-|2+%f v?
B, (6r) O — 1)7"r=™ Jp,@r)

<G / ?
T O—=Dr Jper
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where €; = (6 — 1)>"~2/r2m=2J_ Substituting this inequality into (2-1), we get

k m = j
§2m=2,2m=2 |v]v.|2
try,, L(V)<Crlamy "N / al .
Iy, ( )_ p = )»,-(91’) B,(@r) (9 1)2m—2]r2m—2/

k g2m—2 )
<C .
=00 — 1) /B,,(er> ’

=~

92m—2

<cC : O
= ; 2 (6r) (6 — 122

Now the next theorem may be proved in a similar fashion to Theorem 1.4 by
using Lemmas 1.3 and 2.1.

Theorem 2.2. Assume that Condition L, holds. Then the space %5 (R™) is finite-
dimensional, and its dimension hﬁ (R™) satisfies the estimate

hy(R") < Cd™
foralld > 1.

Theorem 2.2 can be generalized to the case of systems of partial differential
equations. More specifically, for the system

N
ENEDY (—1)’"D“(Z Y agy(x) Dﬂuj(x)>,

la|=m j=1 |Bl=m

where 1 <i,j<Nandu= (uy,...,uy):R"— RV, assume that the coefficients
of & satisfy the following condition.

Condition &,;. The coefficient matrix (a;]k (x)) is measurable, bounded, and there
exists a constant 8o > 0 such that for all u € Hy (R", RNY),

/ > Z S0 DPu; (x)D“u,(x)dx>aoz||V'"u,||2

la|=|Bl=m i, j=1

It is easy to see that if L satisfies the uniform ellipticity condition, that is, there
exists a constant A > 0 such that

AP P = > Z L efnm; = ATNEPY |y

la|=|Bl=mi,j=1

for all x, E € R", and n € R", then Condition %, holds.
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Theorem 2.3. Assume that Condition £, holds. Then the space %g (R™) is finite
dimensional, and its dimension hflg([R{”) satisfies the estimate

hy (R*) < Ca™"
foralld > 1.
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