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POLYNOMIAL GROWTH SOLUTIONS TO HIGHER-ORDER
LINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ROGER CHEN AND JIAPING WANG

For an equation or system of equations Lu = 0, where L is a uniformly el-
liptic operator of order 2m and u is a map from Rn to RN , we prove that the
dimension of the space of polynomial growth solutions of degree at most d
is bounded by Cd2mnN , where C is a constant. If the system is in divergence
form, we prove that this dimension is in fact bounded by CdmnN .

Introduction

We consider an equation or a system of equations of the form

Lu = 0,

where L is a uniformly elliptic operator of order 2m, with m > 1, defined on Rn .
We want to estimate the dimension of the following space of solutions to Lu = 0.

Definition 0.1. For each nonnegative number d we denote by

HL
d (Rn) =

{
u

∣∣ Lu = 0 and |u|(x) = O(rd
p(x))

}
the space of polynomial growth solutions of degree at most d, where rp(x) is the
Euclidean distance from a fixed point p to x in Rn . We denote the dimension of
HL

d (Rn) by
hL

d (Rn) = dim HL
d (Rn).

When L = 1 is the Laplacian, this subject has been studied extensively for a
variety of open manifolds M (meaning noncompact and without boundary). Let
n be the dimension of M . Yau conjectured that h1

d (M) < ∞ for all d ≥ 1. For
M = Rn this is easy to see; in fact h1

d (Rn) equals

(0-1)
(

n+d−1
d

)
+

(
n+d−2

d−1

)
∼

2
(n−1)!

dn−1 as d → ∞.
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Yau’s conjecture was partially confirmed for the case d = 1 by Li and Tam [1989],
who proved that under the same conditions, if the volume growth of M satisfies
Vp(r) = O(r k

p) for some k > 0, then

h1
d (M) ≤ k + 1 = h1

d (Rk).

The conjecture was then proved in full by Colding and Minicozzi [1997], who
showed that for a complete open manifold M of nonnegative Ricci curvature, there
exists C > 0 depending only on the dimension n and such that

h1
d (M) ≤ C dn−1.

In view of the formula (0-1) for h1
d (Rn), this estimate is sharp in the order of d as

d → ∞. The authors also proved that if a complete open manifold M satisfies a
Poincaré inequality and a volume doubling property, then h1

d (M) is finite and can
be estimated in terms of a constant depending on the manifold and d . However, in
this case, the order in d is not sharp.

Soon thereafter, Li [1997] proved a more general estimate with a substantially
simpler proof. Namely, if M (open, complete) satisfies a mean value inequality
and a volume comparison condition, then

h1
d (M) ≤ C dn−1.

Later Li and Wang [1999a] showed that the finiteness of h1
d (M) is actually valid

in a much bigger class of manifolds. In particular, they proved that if M satisfies a
weak mean value inequality and has polynomial volume growth, then h1

d (M) must
be finite for all d ≥ 1. However, in this case, the estimate on h1

d (M) is exponential
in d as d → ∞.

Recently, Li and Wang [1999b] showed that if M is a complete manifold satis-
fying the Sobolev inequality S(B, ν), the space H1

d (M) is finite-dimensional, and
its dimension h1

d satisfies

h1
d (M) ≤ C(B, ν) dν

for all d ≥ 1. They proved that if M is a complete n-dimensional open manifold
with nonnegative sectional curvature, then

lim inf
d→∞

d−(n−1) h1
d (M) ≤

2
(n − 1)!

,

and the equality

lim inf
d→∞

d−(n−1) h1
d (M) =

2
(n − 1)!

holds if and only if M = Rn .
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In this note we extend some of the preceding results to higher-order operators.
To simplify the presentation, we restrict ourselves to Euclidean space. So we as-
sume that L is of higher order 2m with m > 1 and try to estimate hL

d (Rn).
In Section 1 we show that if Lu = 0 is a uniformly elliptic equation or a uni-

formly elliptic system of equations of order 2m in nondivergence form, then

hL
d (Rn) ≤ C d2mnN ,

where N is the number of equations in the system Lu = 0.
In Section 2 we consider the case where Lu = 0 is a uniformly elliptic equation

or a uniformly elliptic system of equations of order 2m in divergence form. Then

hL
d (Rn) ≤ C dmnN ,

where N is the number of equations in the system Lu = 0.

1. Equations in nondivergence form

In Euclidean space Rn with rectangular coordinates x1, . . . , xn , we consider the
differential operator

Lu ≡

∑
|α|=2m

aα(x) Dαu(x),

where α = (α1, . . . , αn) ∈ Nn , |α| = α1 + · · · +αn , and

Dα
=

∂2m

xα1
1 · · · xαn

n
.

Throughout the section, we impose the following condition on the operator L .

Condition L . The coefficients aα in the equation Lu = 0 are uniformly continuous
and satisfy the uniform ellipticity condition; that is, there exists a constant 3 > 0
such that

3|4|
2m

≥

∑
|α|=2m

aα(x)4α
≥ 3−1

|4|
2m

for all x, 4 ∈ Rn .

The assumptions imply that there exists a constant C > 0 such that, for any
function w ∈ C∞

c (Rn),∫
Rn

|∇
2mw|

2(x) dx ≤ C
∫

Rn
|Lw|

2(x) dx

(see [Agmon et al. 1959; 1964]). We establish some preliminary lemmas before
we prove our first main result.
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Lemma 1.1 [Li and Wang 1999b]. Let V be a k-dimensional subspace of a vector
space W . Assume that W is endowed with an inner product I and a bilinear form
8. Then for any given linearly independent set of vectors {w1, . . . , wk−1} ⊂ W ,
there exists an orthonormal basis {v1, . . . , vk} of V with respect to I such that
8(vi , w j ) = 0 for all 1 ≤ j < i ≤ k.

Let φ be a positive function defined on a fixed geodesic ball Bp(r). We introduce
two inner products Ir and 8r on the space W = L2(Bp(r), dx)∩ L2(Bp(r), φ dx):

Ir ( f, g) =

∫
Bp(r)

f (x)g(x) dx, 8r ( f, g) =

∫
Bp(r)

f (x)g(x)φ(x) dx .

For i = 1, 2, . . . , let λi (r) be the i-th Dirichlet eigenvalue of Bp(r) arranged in
nondecreasing order.

Lemma 1.2. Let V be a k-dimensional subspace of HL
d (Rn). For any fixed number

θ > 1, let trIθr Ir (V ) denote the trace of the bilinear form Ir with respect to the
inner product Iθr on V . Then

trIθr Ir (V ) ≤

k∑
i=1

C8θ
4m−2

λi (θr)(θ − 1)4mr2 ,

where C8 is a constant.

Proof. Set θ̄ =
1
2(1+θ) and let φ ∈ C2m

0 (Bp(θ̄r)) be a nonnegative function defined
on Bp(θ̄r) satisfying φ = 1 on Bp(r), 0 ≤ φ ≤ 1 on Bp(θ̄r), φ = 0 on ∂ Bp(θ̄r),
and

|∇
jφ| ≤

C
(θ − 1) j r j

for some constant C = C(n, m), and 1 ≤ j ≤ 2m. By unique continuation,
V ⊂ H 2m(Bp(θ̄r), dx)∩H 2m(Bp(r), φ dx) is a k-dimensional subspace. Applying
Lemma 1.1 with w1, . . . , wk the Dirichlet eigenfunctions of Bp(θ̄r) corresponding
to the eigenvalues λ1(θ̄r), . . . , λk(θ̄r), we get an orthonormal basis {v1, . . . , vk}

of V with respect to the inner product Iθ̄r and

8θ̄r (vi , w j ) =

∫
Bp(θ̄r)

vi (x)w j (x)φ(x) dx = 0

for 0 ≤ j < i ≤ k. Thus, for any 1 ≤ i ≤ k, the variational principle implies that

λi (θ̄r)

∫
Bp(θ̄r)

(φ vi )
2
≤

∫
Bp(θ̄r)

∣∣∇(φ vi )
∣∣2

.
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Hence,

(1-1) trIθr Ir (V ) =

k∑
i=1

∫
Bp(r)

v2
i ≤

k∑
i=1

1
λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇(φvi )
∣∣2

≤ C
k∑

i=1

1
λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇2(φvi )
∣∣2

θ̄2r2

≤ C2m−1
k∑

i=1

1
λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇2m(φvi )
∣∣2

θ̄4m−2r4m−2

≤ C1

k∑
i=1

θ̄4m−2r4m−2

λi (θ̄r)

∫
Bp(θ̄r)

∣∣L(φvi )
∣∣2

≤ C2

k∑
i=1

2m−1∑
j=0

θ̄4m−2r4m−2

λi (θ̄r)

∫
Bp(θ̄r)

|∇
jvi |

2

(θ̄ − 1)4m−2 jr4m−2 j
,

where C1 and C2 are constants.
Let η ∈ C2m

0

(
Bp(θr)

)
be a nonnegative function defined on Bp(θr) satisfying

η = 1 on Bp(θ̄r), 0 ≤ η ≤ 1, η = 0 on ∂ Bp(θr), and

|∇
jη| ≤

C̄
(θ − 1) jr j

for some constant C̄ = C̄(n, m), and 1 ≤ j ≤ 2m. Note that

(1-2)
∫

Bp(θ̄r)

|∇
2mvi |

2
≤

∫
Bp(θr)

∣∣∇2m(ηvi )
∣∣2

≤ C3

∫
Bp(θr)

∣∣L(ηvi )
∣∣2

≤C4

∫
Bp(θr)

2m−1∑
j=0

|∇
jvi |

2

(θ̄ − 1)4m−2 jr4m−2 j
.

Introduce the weighted seminorms

9k = sup
1<θ̄<σ<θ

(σ − 1)2kr2k
∫

Bp(σr)

|∇
kvi |

2

for each 0 ≤ k ≤ 2m. In terms of these seminorms, (1-2) implies that

(1-3) 92m ≤ C5

2m−1∑
k=0

9k .

For each 1 ≤ k ≤ 2m − 1, we apply an interpolation inequality to get

(1-4) 9k ≤ ε92m + C(k)εk/(k−2m)90
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for any ε > 0, where C(k) is a constant. Putting (1-4) into (1-3), and arranging
ε > 0 to be small, we conclude that 92m ≤ C690. In particular, we have∫

Bp(θ̄r)

|∇
2mvi |

2
≤

C6

(θ̄ − 1)4mr4m

∫
Bp(θr)

v2
i .

Therefore,

(1-5)
∫

Bp(θ̄r)

2m−1∑
j=0

|∇
jvi |

2

(θ̄ − 1)4m−2 jr4m−2 j

≤

2m−1∑
j=0

1
(θ̄ − 1)4m−2 jr4m−2 j

×

(
ε j

∫
Bp(θ̄r)

|∇
2mvi |

2
+ C( j)ε j/( j−2m)

j

∫
Bp(θ̄r)

v2
i

)
≤ 2m

∫
Bp(θ̄r)

|∇
2mvi |

2
+

C
(θ̄ − 1)4mr4m

∫
Bp(θ̄r)

v2
i

≤
C7

(θ̄ − 1)4mr4m

∫
Bp(θr)

v2
i ,

where we have set ε j = (θ − 1)4m−2 jr4m−2 j . Substituting (1-5) into (1-1), we get

trIθr Ir (V ) ≤

k∑
i=1

2m−1∑
j=0

C2θ̄
4m−2r4m−2

λi (θ̄r)

∫
Bp(θ̄r)

|∇
jvi |

2

(θ̄ − 1)4m−2 jr4m−2 j

≤

k∑
i=1

C2C7θ̄
4m−2r4m−2

λi (θ̄r)(θ̄ − 1)4mr4m

∫
Bp(θr)

v2
i =

k∑
i=1

C8θ
4m−2

λi (θr)(θ − 1)4mr2 . �

Lemma 1.3 [Li 1997]. Let K be a k-dimensional linear space of functions defined
on Rn . Suppose that each function u ∈ K is of polynomial growth of at most degree
d. Then for any θ > 1, δ > 0, and r0 > 0, there exists r > r0 such that if {ui }

k
i=1 is

an orthonormal basis of K with respect to the inner product

Iθr (u, v) =

∫
Bp(θr)

u(x) v(x) dx,

then

trθr Ir =

k∑
i=1

∫
Bp(r)

u2
i (x) dx ≥ k θ−(2d+n+δ).

Proof. We reproduce Li’s argument. Let trρ Ir denote the trace of the bilinear form
Ir with respect to Iρ , and let detρ Ir be the determinant of Ir with respect to Iρ .
Assume that the lemma is false. Then, for r > r0, we have

trθr Ir < kθ−(2d+n+δ).
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The arithmetic-geometric mean inequality asserts that

(detθr Ir )
1/k

≤ k−1(trθr Ir ).

This implies that
detθr Ir ≤ θ−k(2d+n+δ)

for all r > r0. Setting r = r0 + 1 and iterating the inequality j times yields

(1-6) detθ j r Ir ≤ θ− jk(2d+n+δ).

However, for a fixed Ir -orthonormal basis {ui }
k
i=1 of K , the assumption on K

implies that there exists a constant C > 0, depending on K , such that∫
Bp(r)

u2
i (x) dx ≤ C(1 + r2d+n)

for all 1 ≤ i ≤ k. In particular, this implies that

detr Iθ j r ≤ kC θ jk(2d+n) r k(2d+n).

This contradicts (1-6) as j → ∞. �

Theorem 1.4. Assume that Condition L holds. Let n > 2. Then the space HL
d (Rn)

is finite-dimensional, and its dimension hL
d (Rn) satisfies the estimate

hL
d (Rn) ≤ C10 d2mn

for all d ≥ 1, where C10 is a constant.

Proof. It is well known that the k-th Dirichlet eigenvalue of Bp(r) ⊂ Rn satisfies

λk(r) ≥ C r−2 k2/n

for all k and r > 0, where C is a constant depending only on n. In particular,

k∑
i=1

λ−1
i (θr) ≤ C θ2 r2 k1−(2/n).

Lemma 1.3 yields that for any k-dimensional subspace V of HL
d (R) and any θ > 1,

there exists R > 0 such that

trIθ R IR(V ) ≥ k θ−(2d+n+1).

Applying Lemma 1.2, we conclude that

k θ−(2d+n+1)
≤ trIθ R IR(V )

≤
C8θ

4m−2

(θ − 1)4m R2

k∑
i=1

λ−1
i (θ R) ≤ C9 θ4m (θ − 1)−4m k1−(2/n).
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Choosing θ = 1+d−1, we obtain k ≤C10 d2mn . This shows that hL
d (Rn)≤C10 d2mn

for all d ≥ 1. �

Consider the system of partial differential equations

(Lu)i ≡

N∑
j=1

∑
|α|=2m

aα
i j (x) Dαu j (x),

where i = 1, . . . , N , and u = (u1, . . . , uN ) : Rn
→ RN .

Condition L. The coefficient matrix aα
i j (x) is uniformly continuous and satisfies

the ellipticity condition that there exists a constant 3 > 0 such that

3|4|
2m N

|η|
2
≥

∑
|α|=2m

N∑
i, j=1

aα
i j (x)4αηiη j ≥ 3−1

|4|
2m N

|η|
2

for all x, 4 ∈ Rn , and η ∈ RN .

Definition 1.5. For each nonnegative number d we denote by

HL
d (Rn) =

{
u | Lu = 0 and |u(x)| = O(rd

p(x))
}

the space of polynomial growth L-harmonic functions of degree at most d.

By modifying our previous argument, we have the following theorem.

Theorem 1.6. Assume that Condition L holds. Then the space HL
d (Rn) is finite-

dimensional, and its dimension hL
d (Rn) satisfies

hL
d (Rn) ≤ C11 d2mnN

for all d ≥ 1, where C11 is a constant.

2. Equations in divergence form

In this section, we consider the differential equation

Lu ≡

∑
|α|=|β|=m

(−1)|α| Dα
(
aαβ(x) Dβu(x)

)
on Rn . We assume that the coefficients of L satisfy the following condition.

Condition Ld . The coefficients aαβ are measurable, bounded, and there exists a
constant δ0 > 0 such that for all u ∈ Hm

0 (Rn),

Q(u, u) =

∫
Rn

∑
|α|=|β|=m

aαβ(x)Dβu(x) Dαu(x) dx ≥ δ0‖∇
mu‖

2
2.
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It is easy to see that if L satisfies the uniform ellipticity condition (meaning that
3|4|

2m
≥

∑
|α|=|β|=m aαβ(x)4α4β

≥3−1
|4|

2m for some 3>0 and all x, 4∈Rn),
then Condition Ld holds.

Lemma 2.1. Let V be a k-dimensional subspace of HL
d (Rn). For any fixed number

θ > 1, let trIθr Ir (V ) denote the trace of the bilinear form Ir with respect to the
inner product Iθr on V . Then for any fixed integer m, we have

trIθr Ir (V ) ≤ C20

k∑
i=1

θ2m−2

λi (θr)(θ − 1)2mr2 ,

where C20 is a constant.

Proof. Set θ̄ =
1
2(1+θ) and let φ ∈ Cm

0

(
Bp(θ̄r)

)
be a nonnegative function defined

on Bp(θ̄r) satisfying φ = 1 on Bp(r), 0 ≤ φ ≤ 1 on Bp(θ̄r), φ = 0 on ∂ Bp(θ̄r),
and

|∇
jφ| ≤

C
(θ − 1) j r j

for some constant C = C(n, m), and 1 ≤ j ≤ m. Observe that by unique con-
tinuation, V ⊂ H m

(
Bp(θ̄r), dx

)
∩ H m

(
Bp(r), φ dx

)
is a k-dimensional subspace.

Applying Lemma 1.1, with w1, . . . , wk the Dirichlet eigenfunctions of Bp(θ̄r)

corresponding to the eigenvalues λ1(θ̄r), . . . , λk(θ̄r), we get an orthonormal basis
{v1, . . . , vk} of V with respect to the inner product Iθ̄r , and

8θ̄r (vi , w j ) =

∫
Bp(θ̄r)

vi (x)w j (x)φ(x) dx = 0

for 0 ≤ j < i ≤ k. Thus, for any 1 ≤ i ≤ k, the variational principle implies that

λi (θ̄r)

∫
Bp(θ̄r)

(φ vi )
2
≤

∫
Bp(θ̄r)

∣∣∇(φ vi )
∣∣2

.

Hence,

(2-1) trIθr Ir (V ) =

k∑
i=1

∫
Bp(r)

v2
i ≤

k∑
i=1

1
λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇(φvi )
∣∣2

≤ C
k∑

i=1

1
λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇2(φvi )
∣∣2

θ̄2r2

≤ Cm−1
k∑

i=1

θ̄2m−2r2m−2

λi (θ̄r)

∫
Bp(θ̄r)

∣∣∇m(φvi )
∣∣2

≤ Cm−12m
k∑

i=1

m∑
j=0

θ̄2m−2r2m−2

λi (θ̄r)

∫
Bp(θ̄r)

|∇
jvi |

2

(θ − 1)2m−2 jr2m−2 j .
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Let η ∈ Cm
0

(
Bp(θr)

)
be a nonnegative function defined on Bp(θr) satisfying η = 1

on Bp(θ̄r), 0 ≤ η ≤ 1, η = 0 on ∂ Bp(θr), and

|∇
jη| ≤

C̄
(θ − 1) jr j

for some constant C̄ = C̄(n, m), and 1 ≤ j ≤ 2m. Note that

(2-2)
∫

Bp(θr)

∣∣∇m(ηvi )
∣∣2

≤
1
δ0

∫
Bp(θr)

aαβ Dα(ηvi ) Dβ(ηvi )

=
1
δ0

∫
Bp(θr)

∑
|α|=|β|=m

aαβ

(
〈Dα(ηvi)−ηDαvi , Dβ(ηvi)〉 + 〈ηDαvi , Dβ(ηvi)〉

)
=

1
δ0

∫
Bp(θr)

∑
|α|=|β|=m

aαβ

〈
Dα(ηvi ) − ηDαvi , Dβ(ηvi )

〉
+

1
δ0

∫
Bp(θr)

∑
|α|=|β|=m

aαβ

〈
Dαvi , ηDβ(ηvi ) − Dβ(η2vi )

〉
,

where we have used the Gårding inequality from the first to the second line, and
inserted the term Q(vi , η

2vi ) = 0 into the last equality. For any ε1 > 0, we have

(2-3)
1
δ0

∫
Bp(θr)

∑
|α|=|β|=m

aαβ

〈
Dα(ηvi ) − ηDαvi , Dβ(ηvi )

〉
≤

C12

δ0

(
1

2ε1

∫
Bp(θr)

∣∣∇m(ηvi ) − η∇
mvi

∣∣2
+

ε1

2

∫
Bp(θr)

∣∣∇m(ηvi )
∣∣2

)

≤ C13

(
ε1

2

∫
Bp(θr)

∣∣∇m(ηvi )
∣∣2

+
1

2ε1

∫
Bp(θr)

m−1∑
j=0

|∇
jvi |

2

(θ − 1)2m−2 jr2m−2 j

)
.

Also,

1
δ0

∫
Bp(θr)

∑
|α|=|β|=m

aαβ

〈
Dαvi , ηDβ(ηvi ) − Dβ(η2vi )

〉
≤ C14

∫
Bp(θr)

m−1∑
j=0

|∇
mvi | |∇

m− jη2
| |∇

jvi |

≤ C15

∫
Bp(θr)

m−1∑
j=0

|∇
mvi | η |∇

jvi |

(θ − 1)m− jrm− j = C15

∫
Bp(θr)

m−1∑
j=0

|η∇
mvi | |∇

jvi |

(θ − 1)m− jrm− j
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≤
ε1

2

∫
Bp(θr)

|η∇
mvi |

2
+

C2
15

2ε1

∫
Bp(θr)

m−1∑
j=0

|∇
jvi |

2

(θ − 1)2m−2 jr2m−2 j

≤
ε1

2

∫
Bp(θr)

∣∣∇m(ηvi )
∣∣2

+
C16

2ε1

∫
Bp(θr)

m−1∑
j=0

|∇
jvi |

2

(θ − 1)2m−2 jr2m−2 j .

Choosing ε1 to be sufficiently small and substituting this estimate and (2-3) into
(2-2), we get

(2-4)
∫

Bp(θ̄r)

|∇
mvi |

2
≤

∫
Bp(θr)

∣∣∇m(ηvi )
∣∣2

≤ C17

∫
Bp(θr)

m−1∑
j=0

|∇
jvi |

2

(θ−1)2m−2 jr2m−2 j .

In terms of the weighted seminorms

9k = sup
1<θ̄<σ<θ

(σ − 1)2kr2k
∫

Bp(σr)

|∇
kvi |

2,

Equation (2-4) can be written into

(2-5) 9m ≤ C17

m−1∑
k=0

9k .

For each 1 ≤ k ≤ 2m − 1, we have the interpolation inequality

(2-6) 9k ≤ ε92m + C(k)εk/(k−2m)90

for any ε > 0. Thus, by substituting (2-6) into (2-5), with a properly chosen ε, we
get 9m ≤ C1890. In particular, we conclude that∫

Bp(θ̄r)

|∇
mvi |

2
≤

C18

(θ̄ − 1)2mr2m

∫
Bp(θr)

v2
i .

Hence,∫
Bp(θ̄r)

m−1∑
j=0

|∇
jvi |

2

(θ̄ − 1)2m−2 jr2m−2 j

≤

m−1∑
j=0

1
(θ̄ − 1)2m−2 jr2m−2 j

(
ε j

∫
Bp(θ̄r)

|∇
mvi |

2
+ C( j)ε j/( j−m)

j

∫
Bp(θ̄r)

v2
i

)

≤ mδ2
∫

Bp(θ̄r)

|∇
mvi |

2
+

C(m)

(θ̄ − 1)2mr2m

∫
Bp(θ̄r)

v2
i

≤
C19

(θ̄ − 1)2mr2m

∫
Bp(θr)

v2
i ,
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where ε j = (θ − 1)2m−2 jr2m−2 j . Substituting this inequality into (2-1), we get

trIθr Ir (V ) ≤ Cm−1
p 2m

k∑
i=1

m∑
j=0

θ̄2m−2r2m−2

λi (θ̄r)

∫
Bp(θ̄r)

|∇
jvi |

2

(θ − 1)2m−2 jr2m−2 j

≤ C20

k∑
i=1

θ2m−2

λi (θr)(θ − 1)2mr2

∫
Bp(θr)

v2
i

≤ C20

k∑
i=1

θ2m−2

λi (θr)(θ − 1)2mr2 . �

Now the next theorem may be proved in a similar fashion to Theorem 1.4 by
using Lemmas 1.3 and 2.1.

Theorem 2.2. Assume that Condition Ld holds. Then the space HL
d (Rn) is finite-

dimensional, and its dimension hL
d (Rn) satisfies the estimate

hL
d (Rn) ≤ C dmn

for all d ≥ 1.

Theorem 2.2 can be generalized to the case of systems of partial differential
equations. More specifically, for the system

(Lu)i ≡

∑
|α|=m

(−1)m Dα

( N∑
j=1

∑
|β|=m

ai j
αβ(x) Dβu j (x)

)
,

where 1 ≤ i, j ≤ N and u = (u1, . . . , uN ) : Rn
→ RN , assume that the coefficients

of L satisfy the following condition.

Condition Ld . The coefficient matrix
(
ai j

αβ(x)
)

is measurable, bounded, and there
exists a constant δ0 > 0 such that for all u ∈ Hm

0 (Rn, RN ),∫
Rn

∑
|α|=|β|=m

N∑
i, j=1

ai j
αβ(x)Dβui (x) Dαu j (x) dx ≥ δ0

N∑
j=1

‖∇
mu j‖

2
2.

It is easy to see that if L satisfies the uniform ellipticity condition, that is, there
exists a constant 3 > 0 such that

3|4|
2m N

|η|
2
≥

∑
|α|=|β|=m

N∑
i, j=1

aαβ

i j (x)4α4βηiη j ≥ 3−1
|4|

2m N
|η|

2

for all x, 4 ∈ Rn , and η ∈ RN , then Condition Ld holds.
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Theorem 2.3. Assume that Condition Ld holds. Then the space HL
d (Rn) is finite

dimensional, and its dimension hL
d (Rn) satisfies the estimate

hL
d (Rn) ≤ C dmnN

for all d ≥ 1.
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