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In this paper we consider the evolution of a graph-like hypersurface by
anisotropic mean-curvature flow, under some restrictions on the anisotropic
area integrand. We find interior estimates (in both time and space) on the
gradient of such hypersurfaces, depending only on the height of the graph
and the anisotropic area integrand.

1. Introduction

Consider the evolution of a hypersurface by its mean curvature,

(1)
d
dt

x(y, t) = H(y, t), y ∈ M,

where x : Mn
× [0, T ] → Rn+1 is the immersion of a manifold M at each time t ,

and H is the mean curvature vector. The hypersurface M can be written as a graph
when a fixed vector ω ∈ Rn+1 can be found so that, for a choice of unit normal ν,
we have 〈ν, ω〉 > 0 everywhere. Given the image x(y, t) of a point y ∈ M, the
height of M above the hyperplane defined by ω is denoted by u = 〈x, ω〉, and the
gradient function is given by

v = 〈ν, ω〉
−1

=

√
1 + |Du|2.

Ecker and Huisken [1989] established that, when initial data is given by an entire
Lipschitz graph with a linear-growth bound, there is a smooth solution to (1) for
all times. An important step in this proof was showing that the solutions remain
graphs; this was done by showing that v is bounded above, with a constant depend-
ing on the initial Lipschitz bound. In [Ecker and Huisken 1991], it was established
that the Lipschitz bound need only be local; our estimates are intended in the spirit
of the local gradient estimates of Section 2 of this latter paper.

Such gradient estimates may be found even if the initial data is not Lipschitz.
Evans and Spruck [1992] showed that, under mean-curvature flow, surfaces that
may initially be written locally as a continuous graph become smooth for t > 0.
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The level-set method was also used by Barles, Biton and Ley [Barles et al. 2002] to
find similar gradient estimates for a more general class of equations. More recently,
Colding and Minicozzi [2004] found an explicit local estimate in the form∣∣Du(x, t)

∣∣ ≤ exp
(

c
(
1 + t−1/2

‖u‖∞

)2
)

for solutions over a ball BR(x) with R ≥ C
√

t . Here, the constant c depends only
on the dimension. This estimate does not depend on an initial gradient estimate.

We find an analogous result for anisotropic mean-curvature flow, under some
restrictions on the anisotropy. Such estimates are an important step in finding
existence results for a variety of boundary-value problems with non-smooth initial
data, as in [Andrews and Clutterbuck 2005].

We will follow the exposition in [Andrews 2001], in particular Section 8, in
which the evolution equation for graph-like surfaces is derived.

Consider surfaces M with local embeddings

x = yi ei + u(y1, . . . , yn)e0,

and normal
ν = Du − φ0

=

n∑
i=1

uiφ
i
− φ0,

where {φ0, φ1, . . . , φn
} and {e0, e1, . . . , en} are dual bases for the cotangent space

V ∗ ∼= Rn+1 and tangent space V ∼= Rn+1, respectively.
The anisotropic mean-curvature flow for such a surface is given by

(2) ut = F D2 F |Du−φ0(φi , φ j ) D2u(ei , ej )

(the homogeneous degree-zero mobility function m = m(ν) of [Andrews 2001] is
here taken to be identically 1). The anisotropic area integrand F : V ∗

→ R is a
positive, convex function that is C3 on V ∗

\{0}, and homogeneous of degree one,
so that F(λv) = λF(v) for all v ∈ V ∗ and scalars λ > 0. The level sets of F are
denoted by

6λ :=
{
v ∈ V ∗

: F(v) = λ
}
.

We impose the condition that the convex hull of each level set, {v ∈ V ∗
: F(v)≤λ},

must be uniformly convex.

Example. In the isotropic case, we have F(v)2
=

∑n
i=0(vi )

2, and the level sets of
F are spheres. The coefficients are those of mean curvature:

F D2 F |Du−φ0(φi , φ j ) = δi j − ui uj
(
1 + |Du|

2)−1
.

We define two further conditions on F :

Smallness of third derivatives condition. Set

Qν(p, q, r) := F2(ν)D3 F |ν(p, q, r).
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The condition is satisfied when

(3) Qν(p, q, r) ≤ C1
(
F(ν)3 D2 F |ν(p, p)D2 F |ν(q, q)D2 F |ν(r, r)

)1/2

for all p, q, r tangent to the level set 6F(ν) at ν. Here, C1 is a positive constant
dependent on n.

This Q is the Cartan tensor of Bao, Chern and Shen [Bao et al. 2000], or the
tensor Q of [Andrews 2001] restricted to the tangent space of the level set. The
restriction here excludes anisotropic area integrands that deviate too far from the
isotropic case (such as approximations to the crystalline case). Similar restrictions
on the third derivatives of F are made in studies of the elliptic problem (see, for
example, [Winklmann 2005]).

Symmetry condition. This is satisfied when

(4) F(p + φ0) = F(p − φ0) for all p =

n∑
i=1

piφ
i .

Example. The isotropic case clearly satisfies the second condition, as well as the
first one with C1 = 0.

We impose these conditions singly — to find two time-interior gradient estimates
for periodic solutions — and jointly — to find a gradient estimate interior in both
space and time. In a forthcoming paper with Ben Andrews, such estimates are
found for periodic flows without imposing either condition.

Let u : Rn
× [0, T ] → R be a C3, bounded as |u(x, t)| ≤ M , solution to the

anisotropic mean curvature flow equation (2).

Theorem 1. Let u be periodic, so that u(x, t)=u(x+L , t) for some lattice L ⊂Rn .
If F satisfies condition (3) on smallness of third derivatives with C1

2 <4n−1/2, then

F(Du − φ0) ≤ max
{

tq/2 exp
( Aq(|u| − 2M)2

4t

)
, P

}
for 0 < t ≤ T ′, where T ′ depends on M , and A, P and q > 1 depend on F.

Theorem 2. Let u be periodic, so that u(x, t)=u(x+L , t) for some lattice L ⊂Rn .
If F satisfies the symmetry condition (4), then

F(Du − φ0) ≤ max
{

t exp
( A(|u| − 2M)2

2t

)
, S

}
for 0 < t ≤ T ′, where T ′ depends on M , while A depends on F , and S on F and n.

Theorem 3 (Interior estimate for anisotropic mean curvature flow). Let n > 1. If F
satisfies both condition (3) on smallness of third derivatives with C2

1 < 2/
√

n, and
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the symmetry condition (4), then

F(Du − φ0) ≤ max
{

tq/2 exp
( Aq(|u| − 2M)2

4t

)(
R2

− 2kt − |x |
2)−r

, P
}

for 0 < t ≤ T ′. Here, A, P and k depend only on F , while T ′ > 0, q > 1 and r > 1
depend on F and M.

In Section 2 we derive some technical results on F and its derivatives, while in
Section 3 we prove Theorems 1 and 2. In the final Section 4 we prove Theorem 3.

This work was part of my Ph.D. thesis, written under the supervision of Dr. Ben
Andrews at the Australian National University. I would like to thank him for many
interesting discussions and helpful suggestions.

2. Some results regarding the function F

Uniform convexity implies that F D2 F |ν is positive definite on the tangent space
of the level set 6F(ν). The homogeneity of F leads to the disappearance of some
derivatives of F in radial directions:

DF |ν(ν) = F(ν),(5a)

D2 F |ν(ν, · ) = D2 F |ν( · , ν) = 0,(5b)

D(F D2 F)|ν(ν, · , · ) = 0.(5c)

These properties make it more convenient to work not in the space (T M)∗, but
rather in the tangent space to the level set 6F(ν). Given ν normal to M at x , we
can map v ∈ V ∗ to Tν6F(ν) by setting

v̂ := v − r(v)ν.

The normal is not in the tangent space itself, as DF |ν(ν) 6= 0 by (5a). By choosing
r(v) appropriately, v̂ will be in the tangent space, with

0 = DF |ν(v̂) = DF |ν

(
v − r(v)ν

)
= DF |ν(v) − r(v)F(ν),

where in the last step we have used (5a). With r(v) = DF |ν(v)/F(ν), we then
have

v̂ = v −
DF |ν(v)

F(ν)
ν,

which is nonzero if v is not parallel to ν. Consequently, (5b) implies that, for
nonzero v ∈ (T M)∗,

F D2 F |ν(v, v) = F D2 F |ν(v̂, v̂) > 0.

We consider this as a new metric on (T M)∗, and write

Gν(v, w) := F D2 F |ν(v, w).
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Lemma 4. For all P1 ≥ 0,

F(p − φ0) ≥ P1 + F(−φ0) implies F(p) ≥ P1.

Proof. It is a simple consequence of convexity, as F(p−φ0)≤ F(p)+F(−φ0). �

Lemma 5. Let {φ0, . . . , φn
} be a basis for V ∗. For each P > F(−φ0), there exists

AP > 0 such that
F D2 F |p−φ0(p, p) ≥ AP

for all p =
∑n

i=1 pi φ
i with F(p − φ0) ≥ P.

Proof. Set P1 = P−F(−φ0)> 0. By Lemma 4, if F(p−φ0)≥ P , then F(p)≥ P1.
Define B(p) := F D2 F |p−φ0(p, p). Consider this for a fixed member of the level

set p ∈ 6P1 ∩ span{φ1, . . . , φn
}; as p is not parallel to p − φ0, B(p) is positive.

Also,
lim

s→∞
B(sp) = lim

s→0
F D2 F |sp−φ0(sp, sp)

= lim
s→∞

F D2 F |sp−φ0
(
sp − (sp − φ0), sp − (sp − φ0)

)
= lim

s→∞
F D2 F |p−φ0/s(φ

0, φ0) = F D2 F |p(φ
0, φ0) > 0,

where in the second line the additional terms added vanish according to (5b), while
in the third line the scaling in s is allowed as F D2 F is homogeneous of degree
zero. The final inequality is because φ0 is not parallel to p. Since B(sp) > 0 for
1 ≤ s < ∞, it follows that infs∈[1,∞) B(sp) = Ap > 0, and taking the minimum
over all p in the (compact and closed) level set gives

inf
6P1∩ span{φ1,...,φn}

Ap =: AP > 0. �

Lemma 6. If F satisfies the symmetry condition (4), then homogeneity implies that

(6)
DF |p(φ

0) = 0, D2 F |p(φ
0, φ j ) = 0,

D3 F |p(φ
0, φ j , φk) = 0, D3 F |p(φ

0, φ0, φ0) = 0,

for all p =
∑n

i=1 pi φ
i and all j, k 6= 0.

Proof. The symmetry condition implies that

DF |p(φ
0) = lim

s→0

1
s
(
F(p + sφ0/2) − F(p − sφ0/2)

)
= 0.

The others may be proved similarly. �

In the next lemma, we show that the symmetry condition (4) can be used in a
similar way to condition (3) on smallness of third derivatives. We will use this in
the proof of Theorem 2.
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Lemma 7. Suppose the symmetry condition (4) holds. For all ε > 0, we can find
Sε such that, if p =

∑n
i=1 pi φ

i satisfies F(p − φ0) ≥ Sε, then

(7)
∣∣F D(F D2 F)|p−φ0(p, q̂, q̂)

∣∣ ≤ ε
(
F D2 F |p−φ0(p, p)

)1/2 F D2 F |p−φ0(q, q)

for all q =
∑n

i=1 qi φ
i .

Proof. Let ε > 0 be given. As (7) is unchanged under the mapping q 7→ sq , we
consider only those q on a fixed level set 61.

Our approach is to restrict p to a level set 6P , for P > F(−φ0), and then show
that, under the mapping p 7→ sp, the quotient

(8)

∣∣∣∣∣ F D(F D2 F)|sp−φ0(sp, q̂, q̂)

G(sp, sp)1/2 G(q, q)

∣∣∣∣∣
is less than ε for large-enough s. In the above expression,

q̂ = q −
DF |sp−φ0(q)

F(sp − φ0)
(sp − φ0) = q − s r(q)p + r(q)φ0,

with
lim

s→∞
r(q) = 0 and lim

s→∞
s r(q) = DF |p(q)/F(p).

As s → ∞, the numerator of (8) is

lim
s→∞

F D(F D2 F)|sp−φ0(sp, q̂, q̂)

= lim
s→∞

F D(F D2 F)|p−φ0/s
(
φ0, q − s r(q)p + r(q)φ0, q − s r(q)p + r(q)φ0)

= F D(F D2 F)|p

(
φ0, q −

DF |p(q)

F(p)
p, q −

DF |p(q)

F(p)
p
)

= 0,

by using (6).
If q is not parallel to p, then the denominator is strictly positive:

lim
s→∞

Gsp−φ0(sp, sp)1/2 Gsp−φ0(q, q) ≥
√

AP G p(q, q) > 0,

where AP is the constant given by Lemma 5. It follows that for each such q we
can find an S so that F(sp) ≥ S implies that (8) is less than ε.

In the case that q is parallel to p, without loss of generality we can set q = p.
Multiply both numerator and denominator of (8) by s2, so that the latter is bounded
below: lims→∞ Gsp−φ0(sp, sp)3/2

≥ AP
3/2 > 0. The numerator is then

F D(F D2 F)|sp−φ0
(
sp,

(
s − s2r(p)

)
p + sr(p)φ0,

(
s − s2r(p)

)
p + sr(p)φ0) .
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Since

lim
s→∞

s − s2r(p)

= lim
s→∞

s
(

1 −
DF |sp−φ0(p)

F(p − φ0/s)

)
= lim

s′→0

1
s ′

( DF |p(p)

F(p)
−

DF |p−s′φ0(p)

F(p − s ′φ0)

)
= D

( DF |p

F(p)

)
(φ0, p) =

D2 F |p(φ
0, p)

F(p)
−

DF |p(p)DF |p(φ
0)

F(p)2 = 0,

the numerator approaches F D(F D2 F)|p(φ
0, φ0, φ0) = 0 as s → ∞. That is, for

q = p we can find an S such that, if F(sp) ≥ S, then (8) is less that ε.
Since (8) is continuous in q , the supremum over q ∈ 61 (and hence in V ∗) of

these constants S is finite, and we set this to be S′
ε. Finally, we set Sε = S′

ε+F(−φ0),
so that, whenever F(p − φ0) ≥ Sε, we have F(p) ≥ S′

ε as well. �

The next two technical lemmas are used in the proof of Theorem 3.

Lemma 8. Let {φ0, φ1, . . . , φn
} be a basis for V ∗, where n > 1. There are con-

stants k ′, k > 0 such that, for all p =
∑n

i=1 pi φ
i ,

k ′
≤

n∑
i=1

F D2 F |p−φ0(φi , φi ) ≤ k.

Proof. Fix p ∈ 61. Make an orthogonal change of coordinates on {φ1, . . . , φn
}

so that p is parallel to φ1. Note that G|p−φ0(φi , φi ) is strictly positive. Mapping
p 7→ sp, we notice that

lim
s→∞

G|sp−φ0(φi , φi )

= lim
s→∞

G|sp−φ0

(
φi

−
DF |sp−φ0(φi )

F(sp − φ0)
(sp − φ0) φi

−
DF |sp−φ0(φi )

F(sp − φ0)
(sp − φ0)

)
= G|p

(
φi

−
DF |p(φ

i )

F(p)
p, φi

−
DF |p(φ

i )

F(p)
p
)

= G|φ1(φi , φi ),

is strictly positive and finite for i = 2, . . . , n, as is

lim
s→0

G|sp−φ0(φi , φi ) = G|−φ0

(
φi

+
DF |−φ0(φi )

F(−φ0)
φ0, φi

+
DF |−φ0(φi )

F(−φ0)
φ0

)
= G|−φ0(φi , φi ).

It follows that G|sp−φ0(φ1, φ1)+
∑n

i=2 G|sp−φ0(φi , φi ) has strictly positive bounds
for all s ∈ [0, ∞), and taking the minimum and maximum of these bounds over
p ∈ 61 gives the result. �
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Lemma 9. If F satisfies the symmetry condition (4), then there exists a constant
C2 depending only on F such that

F D2 F |p−φ0(p, q) ≤ C2
F(q)

F(p − φ0)

for all p =
∑n

i=1 pi φ
i and q =

∑n
i=1 qi φ

i .

Proof. This property is unchanged under the mapping q 7→ sq, so we may restrict
q to 61. Fix such a q . For any given p ∈ 61, consider

F(p − φ0)

F(q)
F D2 F |p−φ0(p, q).

Under the mapping p 7→ sp as s → ∞, this becomes

lim
s→∞

F(sp − φ0)

F(q)
F D2 F |sp−φ0(sp, q)

= lim
s′→0

1
F(q)

1
s ′

(
F(p − s ′φ0) F D2 F |p−s′φ0(φ0, q) − F2 D2 F |p(φ

0, q)
)

= −
1

F(q)
D

(
F2 D2 F

)
|p(φ

0, φ0, q),

which is bounded, as F is C3. Consequently,

sup
s∈[0,∞)

F(sp − φ0)

F(q)
F D2 F |sp−φ0(sp, q) ≤ C(p, q) < ∞

for some finite C(p, q). Setting C2 = maxp,q∈61
C(p, q) gives the result. �

3. The gradient estimate for periodic flows

Proof of Theorem 1. Define

Z := F(Du − φ0) − f (u, t),

where f is a smooth positive function for t > 0 with

f ( · , 0) ≥ sup
t=0

F(Du − φ0).

Later, we will choose f to be some inverse power of the fundamental solution to
a heat equation (12); for now, we focus on the first part of Z .

Consider the first point where Z is no longer negative, so that F = f . This point
will be a spatial maximum of Z , owing to the periodicity of u. Assume that, at this
point,

F(Du − φ0) ≥ P > F(−φ0).
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The first derivative condition at this point is

0 = Dk Z = DF |ν(φ
m)umk − f ′uk,

where ν = Du − φ0. That is, for all vectors v ∈ span{e1, . . . , en},

(9) D2u
(
DF |ν(φ

m)em, v
)
= f ′Du (v) .

Using (5b), we can rewrite the evolution equation for u in terms of the directions
φ̂i tangent to the level set 6F(ν):

ut = F D2 F |ν(φ
i , φ j )ui j = F D2 F |ν(φ̂

i , φ̂ j )ui j .

We make use of this in finding an evolution equation for F :

∂ F
∂t

= DF |ν(φ
k)ukt

= DF |ν(φ
k)

(
F D2 F |ν(φ̂

i , φ̂ j )ui j
)

k

= DF |ν(φ
k)

(
D

(
F D2 F

)
|ν(Dkν, φ̂i , φ̂ j )ui j + F D2 F |ν(Dk φ̂

i , φ̂ j )ui j

+ F D2 F |ν(φ̂
i , Dk φ̂

j )ui j + F D2 F |ν(φ̂
i , φ̂ j )ui jk

)
+ F D2 F |ν(φ

i , φ j )Di j F

− F D2 F |ν(φ
i , φ j )

(
D2 F |ν(φ

m, φl)umi ul j + DF |ν(φ
m)umi j

)
= DF |ν(φ

k)
(

D
(
F D2 F

)
|ν(Dkν, φ̂i , φ̂ j )ui j + F D2 F |ν(Dk φ̂

i , φ̂ j )ui j

+ F D2 F |ν(φ̂
i , Dk φ̂

j )ui j

)
+ F D2 F |ν(φ

i , φ j )Di j F − F D2 F |ν(φ
i , φ j )D2 F |ν(φ

m, φl)umi ul j .

Here, in the third step we have added and subtracted second derivatives of F . The
derivatives of ν are

Dkν = umk φm,

which we use to simplify those terms with derivatives of φ̂i :

D2 F |ν(Dk φ̂
i , φ̂ j ) = D2 F |ν

(
Dk(−r(φi )ν), φ̂ j)

= D2 F |ν

(
−Dk(r(φi ))ν − r(φi )umk φm, φ̂ j)

= −r(φi )D2 F |ν(umk φm, φ̂ j )

= −
DF |ν(φ

i )

F(ν)
D2 F |ν(umk φm, φ̂ j ).
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The evolution equation is now

(10)
∂ F
∂t

= DF |ν(φ
k) D(F D2 F)|ν(φ

m, φ̂i , φ̂ j )umk ui j

− DF |ν(φ
k)

(
DF |ν(φ

i ) D2 F |ν(φ
m, φ̂ j )

+ DF |ν(φ
j ) D2 F |ν(φ

m, φ̂i )
)

umk ui j

+ F D2 F |ν(φ
i , φ j ) Di j F − F D2 F |ν(φ

i , φ j ) D2 F |ν(φ
m, φl)umi ul j .

At a critical point of Z , we can use the first-derivative condition (9) to simplify
further. The first term of (10) becomes

D2u
(
DF |ν(φ

k)ek, em
)

D(F D2 F)|ν(φ
m, φ̂i , φ̂ j )ui j

= f ′Du(em) D(F D2 F)|ν(φ
m, φ̂i , φ̂ j )ui j

= f ′D(F D2 F)|ν(Du, φ̂i , φ̂ j )ui j ,

while the second becomes

− DF |ν(φ
k)DF |ν(φ

i )D2 F |ν(φ
m, φ̂ j )umk ui j

× D2 F |ν(φ
m, φ̂ j ) D2u

(
DF |ν(φ

k)ek, em
)

D2u
(
DF |ν(φ

i )ei , ej
)

= − f ′2 D2 F |ν

(
Du(em)φm, Du(ej )φ̂

j)
= − f ′2 D2 F |ν(Du, Du),

as does the third. Thus, the evolution equation is

∂ F
∂t

=
f ′

f
F D(F D2 F)|ν(Du, φ̂i , φ̂ j )ui j − 2

f ′2

f
F D2 F |ν(Du, Du)

+ F D2 F |ν(φ
i , φ j ) Di j F −

1
f

F D2 F |ν(φ
i , φ j ) F D2 F |ν(φ

m, φl)umi ul j ,

where we have multiplied some terms through by 1 = F/ f in order that derivatives
of F appear as homogeneous degree-zero terms.

Derivatives of f are given by

D f = f ′Du, Di j f = f ′′ui uj + f ′ui j ,
d f
dt

= f ′ut + ft ,

for i, j 6= 0, so an evolution equation for f is

d f
dt

= f ′ut + ft + F D2 F |ν(φ
i , φ j )

(
Di j f − f ′′ui uj − f ′ui j

)
= ft + F D2 F |ν(φ

i , φ j )
(
Di j f − f ′′ui uj

)
.
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The entire evolution equation for Z , at a local maximum, is

d Z
dt

= F D2 F |ν(φ
i , φ j ) Di j Z +

f ′

f
F D(F D2 F)|ν(Du, φ̂i , φ̂ j )ui j

− 2
f ′2

f
F D2 F |ν(Du, Du) −

1
f

F D2 F |ν(φ
i , φ j ) F D2 F |ν(φ

m, φl)umi ul j

− ft + F D2 F |ν(Du, Du) f ′′.

Notice that all the covectors φi and Du appear in places where replacing them by
their projections in the tangent space of 6F(ν) (that is, by φ̂i or D̂u) has no effect,
thanks to (5b) and (5c). On the tangent space, D2 F is positive definite. Choose the
basis {φ1, . . . , φn

} so that Gν is the identity at the maximum point, Gν
αβ

= δαβ .
The evolution equation for Z is now

(11)
d Z
dt

= Gi j Di j Z +
f ′

f
F D(F D2 F)|ν

(
D̂u, φ̂i , φ̂ j)ui j

− 2
f ′2

f
G(Du, Du) −

1
f

Gi j Gmlumi ul j − ft + G(Du, Du) f ′′.

The Cauchy–Schwarz inequality for a positive-definite matrix B implies that
vT w ≤ εvT Bv+(4ε)−1wT B−1w. We use this to estimate the second term of (11):

f ′

f
F D(F D2 F)|ν

(
D̂u, φ̂i , φ̂ j)ui j

=
f ′

f

(
DF |ν(D̂u) F D2 F |ν(φ̂

i , φ̂ j ) + F2 D3 F |ν(D̂u, φ̂i , φ̂ j )
)
ui j

=
f ′

f
uk Qki j ui j ≤ ε

f ′2

f
G(Du, Du) +

1
4ε f

Gαβ Qαi j ui j Qβklukl,

where the first term of the second line is zero because D̂u is tangent to the unit
ball, so DF |ν(D̂u) = 0. In the last line, we have used the notation Gαβ = (G−1)αβ

for the inverse.
We can use condition (3), on the smallness of third derivatives, to estimate the

second term in this inequality:

1
4ε f

Gαβ Qαi j ui j Qβklukl

=
1

4ε f
Q

(
Gαβ φ̂α, ui j φ̂

i , φ̂ j) Q
(
φ̂β, ukl φ̂

k, φ̂l)
≤

C1
2

4ε f

(
G(Gαβ φ̂α, Gγβ φ̂γ )G(ui j φ̂

i , umj φ̂
m)G(φ̂ j , φ̂ j )

× G(φ̂β, φ̂β)G(ukl φ̂
k, u pl φ̂

p)G(φ̂l, φ̂l)
)1/2
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=
C1

2

4ε f

(
Gββui j ui j G j j Gββukl ukl Gll)1/2

=
C1

2

4ε f
√

n
(
Gi j Gkluik ujl

)
.

Now we can estimate (11) from above:

d Z
dt

≤ Gi j Di j Z +
1
f

(C1
2

4ε

√
n − 1

)
Gi j Gkluik ujl

+
f ′2

f
(ε − 2) G(Du, Du) − ft + f ′′G(Du, Du).

The second term is zero if we choose ε = C1
2√n/4 < 1.

Choose f = 8−q for some q > 1 and with

(12) 8(u, t) =
1

√
t

exp
(
−A

(u − 2M)2

4t

)
,

which satisfies the heat equation 8t = A8′′, where A = AP is the constant given
by Lemma 5. Since

f ′
= −q8−q−18′,

f ′′
= q(q + 1)8−q−2(8′)2

− q8−q−18′′,

ft = −q8−q−18t ,

the equation satisfied by f is

ft = A f ′′
− A

(
1 + q−1) f ′2/ f.

If we substitute 8 and its derivatives for f and its derivatives, we find that
f ′2

f
(ε − 2)G(Du, Du) − ft + f ′′G(Du, Du)

= q28−q−28′2(ε − 2)G(Du, Du)

+
(
q(q + 1)8−q−28′2

− q8−q−18′′
)

G(Du, Du) + Aq8−q−18′′

= q8−q−28′2(q(ε − 1) + 1
)

G(Du, Du) + q8−q−18′′
(

A − G(Du, Du)
)
.

The first term is zero if we choose q−1
= 1 − ε = 1 − C1

2√n/4.

As we assumed at the beginning that F(Du − φ0) ≥ P , Lemma 5 implies that
G(Du, Du)≥ AP . As 8′′ is positive for small times, for t < T ′ we have ∂ Z/∂t ≤ 0.

On the other hand, if we consider the possibility that F(Du − φ0) = f < P at
this local maximum, we could replace f by sup{ f, P} in the definition of Z . In
that case, the first maximum of Z occurs at a point where the barrier is flat, and so
the first variation is

0 = Dk Z = DF |z(φ
k)umk,



INTERIOR GRADIENT ESTIMATES FOR ANISOTROPIC MEAN-CURVATURE FLOW 131

and the evolution equation for Z at the local maximum is

d Z
dt

= F D2 F |ν(φ
i , φ j ) Di j Z − D2 F |ν(φ

i , φ j ) F D2 F |ν(φ
m, φl)umi ul j ≤ 0.

Since Z t ≤ 0 at the first point where Z = 0, we have Z ≤ 0 for all t < T ′. The
same argument works if, in the definition (12) of 8, the term u − 2M is replaced
by u + 2M . The conclusion (with |u| − 2M) follows. �

Proof of Theorem 2. We begin by defining Z as in Theorem 1, and assume that the
first non-negative value of Z occurs when F(Du −φ0) ≥ Sε, for some ε > 0 to be
chosen later and with the corresponding Sε given by Lemma 7. We then follow the
earlier proof up to equation (11), the evolution equation for Z at a local maximum.

This time, we choose the local coordinates {φ1, . . . , φn
} so that at this point D2u

is diagonal. This puts the second term of (11) in a suitable form to be estimated
using Lemma 7.

f ′

f
F D

(
F D2 F

)
|ν(Du, φ̂ j , φ̂ j )uj j

≤

∣∣∣ε f ′

f

√
G(Du, Du)G(φ̂ j , φ̂ j )uj j

∣∣∣ ≤
f ′2

2 f
G(Du, Du) +

ε2

2 f

∣∣G(φ̂ j , φ̂ j )ui j
∣∣2

≤
f ′2

2 f
G(Du, Du) +

ε2

2 f
n Gi j ujk Gkluli ,

where in the last line we used the trace inequality (trace A)2
≤ n trace(A2).

If we now choose ε =
√

2/n, the second term of this inequality is cancelled by
the fourth term of (11). The evolution equation becomes

d Z
dt

≤ Gi j Di j Z −
3
2

f ′2

f
G(Du, Du) − ft + G(Du, Du) f ′′.

This is negative at a local maximum if we make the same choice of barrier as
before, f = 8−q for q = 2, 8 given by (12), and A = ASε

given by Lemma 5.
If our assumption that F(Du − φ0) ≥ Sε does not hold, then we can replace f

by max{Sε, f }. At the local maximum, Z t ≤ 0. The conclusion follows. �

Remark. In the last theorem, we have chosen q = 2 somewhat arbitrarily; in fact
q needs only be strictly greater than 1, since we can set q = (1 − nε2/4)−1, for
ε given by Lemma 7. However, a smaller ε may force a larger Sε, so the optimal
choice would depend on the exact form of F .
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4. Interior estimate for anisotropic mean curvature flow

Proof of Theorem 3. We introduce a localizing term η into our definition of Z ,

Z := F(Du − φ0) −
f
η

,

which is now restricted to the shrinking ball

(x, t) ∈ B√
R2−2kt

× [0, T ],

where k is the constant given by Lemma 8.
The smooth strictly positive function f = f (u, t) is chosen so that Z < 0 at

the initial time, while η is a smooth positive function chosen so that η → 0 on the
boundary of the shrinking ball.

Assume that, at the first interior point where Z = 0,

F(Du − φ0) ≥ P > F(−φ0).

Then F(Du)= f/η and, as this is a spatial maximum (since the choice of η ensures
that there are no boundary maxima), we have a first derivative condition

(13) 0 = Dk Z = DF |ν(φ
m)umk − Dk ( f/η) .

An evolution equation for f/η, with second derivatives Gi j Di j ( f/η) added and
subtracted, follows:

d
dt

( f
η

)
=

1
η
( f ′ut + ft) −

f
η2

dη

dt
+ F D2 F |ν(φ

i , φ j ) Di j

( f
η

)
− F D2 F |ν(φ

i , φ j )
( 1

η

(
f ′′ui uj + f ′ui j

)
−

f ′

η2

(
uj Diη + ui D jη

)
+2

f
η3 Diη D jη −

f
η2 Di jη

)
= Gi j Di j

( f
η

)
+

1
η

(
ft − G(Du, Du) f ′′

)
−

f
η2

( d
dt

− Gi j Di j

)
η

+2
f ′

η2 G(Du, Dη) − 2
f

η3 G(Dη, Dη).

We can incorporate the first derivative condition (13) into (10), the evolution equa-
tion for F :

d F
dt

= Gi j Di j F + Dm ( f/η) D
(
F D2 F

)
|ν(φ

m, φ̂i , φ̂ j )ui j

− 2F D2 F |ν

(
D( f/η), D( f/η)

)
− F D2 F |ν(φ

i , φ j ) D2 F |ν(φ
m, φl)umi ul j
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= Gi j Di j F +
η

f
F D

(
F D2 F

)
|ν

(
D( f/η), φ̂i , φ̂ j)ui j

− 2
η

f

( f ′2

η2 G(Du, Du) − 2
f f ′

η3 G(Du, Dη) +
f 2

η4 G (Dη, Dη)
)

−
η

f
Gi j Gmlumi ul j .

Putting the last two steps together gives an evolution equation for Z at a local
maximum:

(14)
d Z
dt

= Gi j Di j Z +
η

f
F D(F D2 F)|ν

(
D( f/η), φ̂i , φ̂ j)ui j

−
η

f
Gi j Gmlumi ul j −

1
η

(
ft − G(Du, Du) f ′′

+ 2
f ′2

f
G(Du, Du)

)
+

f
η2

( d
dt

− Gi j Di j

)
η + 2

f ′

η2 G(Du, Dη).

The second term here may be split into a part with D f and a part with Dη:

η

f
F D(F D2 F)|ν

( f ′

η
Du −

f
η2 Dη, φ̂i , φ̂ j

)
ui j

=
f ′

f
F D(F D2 F)|ν

(
Du, φ̂i , φ̂ j)ui j −

1
η

F D(F D2 F)|ν
(
Dη, φ̂i , φ̂ j)ui j .

These may be individually estimated using the Cauchy–Schwarz inequality and the
condition on smallness of third derivatives, as described in the proof of Theorem 1:

(15)
f ′

f
F D(F D2 F)|ν

(
Du, φ̂i , φ̂ j)ui j

≤ µ1
f ′2

f η
G(Du, Du) +

1
4µ1

η

f
C2

1
√

n
(
Gi j Gmlumi ul j

)
,

−
1
η

F D(F D2 F)|ν
(
Dη, φ̂i , φ̂ j)ui j

≤ µ2
f

η3 G(Dη, Dη) +
1

4µ2

η

f
C2

1
√

n
(
Gi j Gkluik ujl

)
,

for some 0 < µ1, µ2 < 1.
We choose the localising term η := η̃r for some r > 1 and η̃ = R2

− 2kt −|x |
2.

Then
Diη = r η̃r−1 Di η̃,

Di jη = r η̃r−1 Di j η̃ + r(r − 1)η̃r−2 Di η̃ Dj η̃,
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and the second-to-last term of the evolution equation (14) is

f
η2

( d
dt

− Gi j Di j

)
η =

f
η2 r η̃r−1(

−2k + 2 trace G − (r − 1)η̃−1G(Dη̃, Dη̃)
)

≤
f

η2 r η̃r−2(1 − r)G(Dη̃, Dη̃).

As F satisfies the symmetry condition (4), we may use Lemma 9 to estimate
the final term of the evolution equation:

2
f ′

η2 G(Du, Dη) = 2
f ′

η2 F D2 F |Du−φ0(Du, Dη)

≤ 2
f ′

η2

C2 F(Dη)

F(Du − φ0)
= 2C2 F(Dη)

f ′

f η
≤ 2C2C3r R2r−1 f ′

f η
,

where we have used that F(Dη) = r η̃r−1 F(Dη̃) ≤ C3r R2r−1, for a C3 > 0 de-
pending only on F .

The evolution equation can now be estimated from above:

(16)
d Z
dt

≤ Gi j Di j Z +
η

f

( 1
4µ1

C2
1
√

n +
1

4µ2
C2

1
√

n − 1
)

Gi j Gmlumi ul j

−
1
η

(
ft − G(Du, Du) f ′′

+ (2 − µ1)
f ′2

f
G(Du, Du) − 2C2 F(Dη)

f ′

f

)
+

f
η2 r η̃r−2 (1 − r + rµ2) G(Dη̃, Dη̃).

Since C2
1
√

n/4 < 1/2, we can choose µ1 < 1 and µ2 < 1 such that

C2
1
√

n
4

( 1
µ1

+
1
µ2

)
≤ 1.

With such choices, the second term of the evolution inequality (16) will be negative.
We can also set r = (1 − µ2)

−1 > 1, so the coefficient of η̃−1G(Dη̃, Dη̃) is zero.
As in the previous cases, we set f = 8−q with 8 given by (12) for A = AP

given by Lemma 5. The part in parentheses of the second line of (16) is then

−
1
η

(
ft − G(Du, Du) f ′′

+ (2 − µ1)
f ′2

f
G(Du, Du) − 2C2 F(Dη)

f ′

f

)
=

1
η

(
q8−q−18t + G(Du, Du)

(
q(q + 1)8−q−28′2

− q8−q−18′′
)

−(2 − µ1)G(Du, Du)q28−q−28′2
+ 2C1C2r R2r−18−1

|8′
|

)



INTERIOR GRADIENT ESTIMATES FOR ANISOTROPIC MEAN-CURVATURE FLOW 135

=
q8−q−1

η

(
8t − G(Du, Du)8′′

)
+

q|8′
|

η8

(
G(Du, Du)|8′

|8−q−1 (1 − q + qµ1) + 2C1C2r R2r−1).
If we choose T ′ small enough that 8′′

≥ 0, then the term

8t − G(Du, Du)8′′
=

(
A − G(Du, Du)

)
8′′

is negative. Additionally, if we choose T ′ small enough that 8 ≤ 1, then

G(Du, Du)|8′
|8−q−1

≥
A2

t
M8−q

≥
A2 M

T ′
,

and so, for the last term to be negative, we need only choose q large enough that

q ≥
1

1 − µ1

(
1 +

2C1C2r R2r−1T ′

A2 M

)
.

So, at such maxima, Z t ≤ 0.
At local maxima where F(Du − φ0) < P , we replace f/η in the definition of

Z by max{ f/η, P}, in which case the barrier is flat at the local maxima, and we
again find that Z t ≤ 0.

In either case, the maximum principle ensures that Z is never greater than zero,
and the conclusion follows. �
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