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We solve a functional version of the problem of twist quantization of a
coboundary Lie bialgebra (g, r, Z). We derive from this that the formal
Poisson manifolds g∗ and G∗ are isomorphic, and we construct an injec-
tive algebra morphism S(g∗)g ↪→ U(g∗). When (g, r, Z) can be quan-
tized, we construct a deformation of this morphism. In the particular case
when g is quasitriangular and nondegenerate, we compare our construction
with Semenov-Tian-Shansky’s construction of a commutative subalgebra of
U(g∗). We also show that the canonical derivation of the function ring of
G∗ is Hamiltonian.

1. Introduction

Let (g, r, Z) be a coboundary Lie bialgebra over a field K of characteristic 0. This
means that g is a Lie bialgebra, the Lie cobracket δ of which is the coboundary of
r ∈

∧2
(g): in symbols, δ(x) = [x ⊗ 1 + 1 ⊗ x, r ] for any x ∈ g. This condition

means that Z := CYB(r) belongs to
∧3
(g)g (here CYB is the left hand side of the

classical Yang–Baxter equation). Quasitriangular and triangular Lie bialgebras are
particular cases of this definition.

It is an open question to construct a twist quantization of (g, r, Z), that is, a
pair (J,8), where J ∈ U (g)⊗2

[[h̄]] and 8 ∈ U (g)⊗3
[[h̄]] are invertible (h̄ is a

formal series), 8 is g-invariant, (J,8) satisfies a cocycle relation and deforms
(r, Z). If (J,8) satisfies these conditions, then8 satisfies the pentagon relation, is
g-invariant and deforms Z . Such a8 is called a quantization of Z . Drinfeld [1989b,
Proposition 3.10] constructed a quantization 8 of Z . Any pair (J,8) can be made
admissible (in the sense of [Enriquez and Halbout 2004]), and the associated formal
functions (ρ, ϕ) then satisfy functional analogues of the pentagon and cocycle
equations (this is explained in Section 6). We call this system of equations the
functional analogue of twist quantization.

We describe the set of solutions of the functional analogue of twist quantization
for (g, r, Z). Namely, we derive from Drinfeld’s result that Z can be lifted to an
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element ϕ ∈ m⊗̂3
g∗ satisfying the functional pentagon relation (Proposition 2.1). We

then prove that r can be lifted to an element ρ ∈ m⊗̂2
g∗ , such that (ρ, ϕ) satisfies

the functional cocycle relation (Theorem 2.3); here mg∗ ⊂ Og∗ is the maximal ideal
of the ring of formal functions on g∗. We show that all solutions are related by
suitable gauge transformations.

The first corollary is that the formal Poisson manifolds g∗ and G∗ are isomorphic
(Corollary 3.1).

In Section 4, we prove another corollary (Theorem 4.3): we construct an injec-
tion of algebras S(g∗)g ↪→ U (g∗) (here g acts on S(g∗) by symmetric powers of
the coadjoint action). This morphism is filtered; its associated graded morphism
is the canonical inclusion S(g∗)g ⊂ S(g∗). This way, we obtain a commutative
subalgebra of U (g∗). The fact that the graded subalgebra S(g∗)g ⊂ S(g∗) is Poisson
commutative can be viewed as a classical limit of this situation. It can either be
viewed as a corollary of the fact that O

g
G ⊂OG is a Poisson commutative subalgebra,

or it can be proved directly (Lemma 4.2); here OG is the ring of formal functions
on G, on which g acts by conjugation.

In Sections 7 and 8, assuming the existence of a twist quantization of g, we
construct formal deformations of the algebra inclusions S(g∗)g ↪→ U (g∗) and
O

g
G ⊂ OG∗ . All these results use the theory of duality of QUE (quantized uni-

versal enveloping) and QFSH (quantized formal series Hopf) algebras; this theory
is recalled in Section 5.

In Section 9, we assume that g is quasitriangular. In that case, we show that
U (g∗) contains a family Cs of commutative subalgebras, indexed by s ∈ K; this
result may be viewed as a classical limit of Drinfeld’s result about commutativ-
ity of twisted traces. We explain why only C0 has an analogue in the general
coboundary case. Semenov-Tian-Shansky [1984] defined an algebra morphism
U (g)g

STS
→ U (g∗); we show that its image coincides with C1, and is therefore in

general different from the image C0 of the morphism in our construction.
Finally, in Section 10, we show that the canonical derivation of OG∗ is Hamil-

tonian. This derivation is equal to h̄−1(S2
− id)|h̄=0, where S is the antipode of any

quantization of OG∗ .

Notation. We use the standard notation for the coproduct-insertion maps: we say
that an ordered set is a pair of a finite set S and a bijection {1, . . . , |S|} → S.
Given I1, . . . , Im disjoint ordered subsets of {1, . . . , n}, a Hopf algebra (U,1),
and a ∈ U⊗m , we define

a I1,...,In = σI1,...,Im ◦ (1|I1| ⊗ · · · ⊗1|In |)(a),

with 1(1) = id, 1(2) =1, 1(n+1)
= (id⊗n−1

⊗1)◦1(n), and σI1,...,Im : U⊗
∑

i |Ii | →

U⊗n is the morphism corresponding to the map {1, . . . ,
∑

i |Ii |} → {1, . . . , n}
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taking (1, . . . , |I1|) to I1, (|I1| + 1, . . . , |I1| + |I2|) to I2, etc. When U is cocom-
mutative, this definition depends only on the sets underlying I1, . . . , Im .

2. Solutions of the functional twist equations

If g is a Lie algebra, we denote by Og∗ = Ŝ(g) the formal series ring of functions
on the formal neighborhood of 0 in g∗. We define by mg∗ ⊂ Og∗ the maximal
ideal of this ring. If k is an integer ≥ 1, we denote by O(g∗)k = Ŝ(g)⊗̂k the
ring of formal functions on (g∗)k , by m(g∗)k its maximal ideal, and by mi

(g∗)k

the i-th power of this ideal. Here, ⊗̂ is the completed tensor product, defined
by V0[[x1, . . . , xn]]⊗̂W0[[y1, . . . , yn]] := V0 ⊗ W0[[x1, . . . , yn]], where V0,W0 are
vector spaces.

When equipped with the Poisson bracket, m2
(g∗)k

is a pronilpotent Lie algebra.
If a is such a Lie algebra, the Campbell–Baker–Hausdorff series x ? y = x + y +
1
2 [x, y] + · · · + Bn(x, y)+ · · · converges and defines a group structure on a. In
particular, if f, g ∈m2

(g∗)k
, the product f ?g = f +g+

1
2{ f, g}+· · ·+Bn( f, g)+· · ·

is convergent and defines a group structure on m2
(g∗)k

.
If f ∈ O⊗̂n

g∗ and P1, . . . , Pm are disjoint subsets of {1, . . . ,m}, one defines
f P1,...,Pn as in the Introduction using the cocommutative coproduct10 of Og∗ (dual
to the addition of g∗).

Let g be a Lie algebra and Z ∈
∧3
(g)g.

Proposition 2.1. There exists ϕ ∈ (m⊗̂3
g∗ )g(⊂ m2

(g∗)3
) satisfying the functional pen-

tagon equation

ϕ1,2,34 ? ϕ12,3,4
= ϕ2,3,4 ? ϕ1,23,4 ? ϕ1,2,3,

whose image under the map m⊗̂3
g∗ → (mg∗/m2

g∗)⊗3
= g⊗3 Alt

→
∧3
(g) equals Z (here

Alt is the total antisymmetrization map). Such a ϕ (we call it a lift of Z ) is unique
up to the action of an element of (m⊗̂2

g∗ )g by σ ·ϕ=σ 2,3?σ 1,23?ϕ?(−σ)12,3?(−σ)1,2.

Proof. Drinfeld [1989b, Proposition 3.10] constructed a solution 8 ∈ U (g)⊗3
[[h̄]]

of the pentagon equation

(2-1) 81,2,34812,3,4
=82,3,481,23,481,2,3

such that ε(2)(8)= 1 and 8= 1⊗3
+ O(h̄)

(
here ε(2) = id ⊗ε⊗ id; applying ε to

the second and third factors of (2-1), we also get ε(1)(8)= ε(3)(8)= 1
)
.

In [Enriquez and Halbout 2004], we stated that 8 can be transformed into an
admissible solution 8′ of the same equations, using an invariant twist. In the
Appendix, we explain why the proof given in [Enriquez and Halbout 2004] is
wrong, and we give a correct proof. The condition that 8′ is admissible means
that it belongs to

(
U(g)[[h̄]]

′
)⊗̂3, where U (g)[[h̄]]

′
= U (h̄g[[h̄]]) ⊂ U (g)[[h̄]] is the
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subalgebra generated by g[[h̄]]. Then U (g)[[h̄]]
′ is a formal deformation of the

Poisson algebra Ŝ(g).
Then the reduction mod h̄ of h̄ log8′ belongs to Ŝ(g)⊗̂3, and in fact to m⊗̂3

g∗ .
Since 8′ satisfies (2-1), this reduction satisfies the functional pentagon equation.
This gives the existence of ϕ. One can also construct ϕ directly using cohomolog-
ical methods, as will be done for ρ later.

To prove uniqueness, let ϕ and ϕ′ be lifts of Z . The classes of ϕ and ϕ′ are
the same in m⊗̂3

g∗ /(m
⊗̂3
g∗ ∩ m3

(g∗)3
), as this space is 0. Let N be an integer ≥ 3;

assume that we have found σN ∈ (m⊗̂2
g∗ )g such that σN ·ϕ and ϕ′ are equal modulo

m⊗̂3
g∗ ∩ mN

(g∗)3
. Write ϕ′

= σN ·ϕ+ψ , with ψ ∈ (m⊗̂3
g∗ ∩ mN

(g∗)3
)
g
.

Lemma 2.2 [Enriquez et al. 2003, p. 2477]. For any k ≥ 1, n ≥ 2, f, h ∈ m2
(g∗)k

and g ∈ mn
(g∗)k

, one has

f ? (h + g)= f ? h + g, ( f + g) ? h = f ? h + g modulo mn+1
(g∗)k

.

Let ψ be the class of ψ in (m⊗̂3
g∗ ∩ mN

(g∗)3
)g/(m⊗̂3

g∗ ∩ mN+1
(g∗)3

)g = (S>0(g)⊗3)
g
N .

Then
ψ

1,2,34
+ψ

12,3,4
= ψ

2,3,4
+ψ

1,23,4
+ψ

1,2,3
,

which means thatψ is a cocycle in the subcomplex
(
(S>0(g)⊗·)g, d

)
of the Cartier1

complex
(
S(g)⊗·, d

)
. Using [Drinfeld 1989b, Proposition 3.11], one can prove

that the k-th cohomology group of this complex is
∧k
(g)g and that the antisym-

metrization map coincides with the canonical map from the space of cocycles to
the cohomology. For N = 3, the hypothesis implies that Alt(ψ) = 0, so ψ is a
coboundary of an element τ 3 ∈

(
S>0(g)⊗2

)g

3. For N > 3, ψ is the coboundary of
an element τ N ∈

(
S>0(g)⊗2

)g

N , since the degree N part of the relevant cohomology
group vanishes. We then set σN+1 = σN + τN , where

τN ∈ (m⊗̂2
g∗ ∩ mN

(g∗)2
)g

is a lift of τ N . Then σN+1 ·ϕ and ϕ′ are equal modulo m⊗̂3
g∗ ∩ mN+1

(g∗)3
. The sequence

(σN )N≥3 has a limit σ . Then σ ·ϕ = ϕ′. �

We now construct a lift of r :

Theorem 2.3. There exists ρ ∈ m⊗̂2
g∗ such that

(2-2) ρ1,2 ? ρ12,3
= ρ2,3 ? ρ1,23 ? ϕ,

and whose image in g⊗2 under the square of the projection mg∗ → mg∗/m2
g∗ = g

equals r . Such a ρ (we call it a lift of r ) is unique up to the action of mg∗ by
λ ·ρ = λ1 ?λ2 ?ρ ?(−λ)12. We call Equation (2-2) the functional cocycle equation.

1We denote by S(g) the symmetric algebra of g, and by S>0(g) the positive degree part; the index
N means the part of total degree N .
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Proof. We construct ρ by induction: we will construct a convergent sequence
ρN ∈ m⊗̂2

g∗ (N ≥ 2) satisfying (2-2) in m⊗̂3
g∗ /(m

⊗̂3
g∗ ∩ mN

(g∗)3
). When N = 3, we take

for ρ2 any lift of r to m⊗̂2
g∗ ; then Equation (2-2) is automatically satisfied.

Let N be an integer ≥ 3; assume that we have constructed ρN in m⊗̂2
g∗ satisfying

Equation (2-2) in m⊗̂3
g∗ /(m

⊗̂3
g∗ ∩ mN

(g∗)3
). Set

αN := ρ
1,2
N ? ρ

12,3
N − ρ

2,3
N ? ρ

1,23
N ? ϕ.

Then αN belongs to
m⊗̂3

g∗ ∩ mN
(g∗)3

,

and the following equalities hold in m⊗̂4
g∗ /(m

⊗̂4
g∗ ∩ mN+1

(g∗)4
):

α
12,3,4
N = ρ

1,2
N ?α

12,3,4
N = ρ

1,2
N ?ρ

12,3
N ?ρ

123,4
N −ρ

1,2
N ?ρ

3,4
N ?ρ

12,34
N ?ϕ12,3,4

(using Lemma 2.2)

= (α
1,2,3
N +ρ

2,3
N ?ρ

1,23
N ?ϕ1,2,3)?ρ

123,4
N −ρ

3,4
N ?ρ

1,2
N ?ρ

12,34
N ?ϕ12,3,4

= α
1,2,3
N +ρ

2,3
N ?ρ

1,23
N ?ρ

123,4
N ?ϕ1,2,3

−ρ
3,4
N ?(ρ

2,34
N ?ρ

1,234
N ?ϕ1,2,34

+ α
1,2,34
N )?ϕ12,3,4

(using Lemma 2.2, the invariance of ϕ and the definition of α1,2,34
N )

= α
1,2,3
N +ρ

2,3
N ?(α

1,23,4
N +ρ

23,4
N ?ρ

1,234
N ?ϕ1,23,4)?ϕ1,2,3

− α
1,2,34
N −ρ

3,4
N ?ρ

2,34
N ?ρ

1,234
N ?ϕ1,2,34 ?ϕ12,3,4

(using the definition of α1,23,4
N and Lemma 2.2)

= α
1,2,3
N +α

1,23,4
N +(ρ

3,4
N ?ρ

2,34
N ?ϕ2,3,4

+α
2,3,4
N )?ρ

1,234
N ?ϕ1,23,4 ?ϕ1,2,3

− α
1,2,34
N −ρ

3,4
N ?ρ

2,34
N ?ρ

1,234
N ?ϕ1,2,34 ?ϕ12,3,4

(using the definition of α2,3,4
N and Lemma 2.2)

= α
1,2,3
N +α

1,23,4
N −α

1,2,34
N +α

2,3,4
N

(using Lemma 2.2, the invariance of ϕ and the fact that ϕ satisfies the functional
pentagon equation).

Denote by αN the image of αN in (m⊗̂3
g∗ ∩mN

(g∗)3
)/(m⊗̂3

g∗ ∩mN+1
(g∗)3

)=
(
S>0(g)⊗3

)
N .

Then
α

12,3,4
N +α

1,2,34
N = α

1,2,3
N +α

1,23,4
N +α

2,3,4
N .

Thus αN is a cocycle for the subcomplex
(
S>0(g)⊗·, d

)
of the Cartier complex.

Using [Drinfeld 1989b, Proposition 3.11], one proves that the k-th cohomology
group of this subcomplex is

∧k
(g), and that antisymmetrization coincides with

the canonical projection from the space of cocycles to the cohomology group. For
N = 3, the equation CYB(r)= Z implies Alt(α3)= 0, hence α3 is the coboundary
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of an element β3 ∈
(
S>0(g)⊗2

)
3. For N > 3, αN is the coboundary of an element

βN ∈
(
S>0(g)⊗2

)
N , since the degree N part of the cohomology vanishes. We set

ρN+1 := ρN + βN , where βN ∈m⊗̂2
g∗ ∩ mN

(g∗)2
is a representative of βN . Then ρN+1

satisfies (2-2) in
m⊗̂3

g∗ /(m
⊗̂3
g∗ ∩ mN+1

(g∗)3
).

The sequence (ρN )N≥2 has a limit ρ, which satisfies (2-2).
The second part of the theorem can be proved either by analyzing the choices

for βN in the proof above, or by following the proof of the previous proposition. �

Remark 2.4. If ϕ is replaced by ϕ′
=σ ?ϕ, then a solution of (2-2) is ρ ′

=ρ?(−σ).

3. Isomorphism of formal Poisson manifolds g∗ ' G∗

We assume that g is a finite dimensional coboundary Lie bialgebra. The following
result was proved in [Enriquez et al. 2005] when g is quasitriangular; that result
is itself a generalization of the formal version of the Ginzburg–Weinstein isomor-
phism [Ginzburg and Weinstein 1992; Alekseev 1997; Boalch 2001]. On the other
hand, one knows that linearization does not hold for general Poisson–Lie groups
[Chloup-Arnould 1997].

Corollary 3.1. There exists an isomorphism of formal Poisson manifolds g∗
' G∗.

Proof. Let P :
∧2
(Og∗)→ Og∗ be the Poisson bracket on Og∗ corresponding to the

Lie–Poisson (or Kostant–Kirillov–Souriau, or linear Poisson) structure on g∗. Let
m0 be the product and 10 be the cocommutative coproduct of Og∗ ' Ŝ(g) (recall
that elements of g are primitive for 10). Then (Og∗,m0, P,10) is a Poisson for-
mal series Hopf (PFSH) algebra2; it corresponds to the formal Poisson–Lie group
(g∗,+) equipped with its Lie–Poisson structure.

Set ρ10( f )= ρ ?10( f ) ? (−ρ) for any f ∈ Og∗ . It follows from the fact that ρ
satisfies the functional cocycle equation Equation (2-2) that (Og∗,m0, P, ρ10) is a
PFSH algebra.

Denote by PFSHA and LBA the categories of PSFH algebras and Lie bialgebras.
We have a category equivalence c : PFSHA → LBA, taking (O,m, P,1) to the
Lie bialgebra (c, µ, δ), where c := m/m2 (m ⊂ O is the maximal ideal), the Lie
cobracket of c is induced by 1−12,1

: m →
∧2
(m), and the Lie bracket of c is

induced by the Poisson bracket P :
∧2
(m)→ m. The inverse of the functor c takes

(c, µ, δ) to O = Ŝ(c) equipped with its usual product; 1 depends only on δ, and P
depends on (µ, δ).

2Recall that a PFSH algebra (A,m A, PA,1A) is a quadruple such that (A,m A) is a formal
series algebra, (A,m A,1A) is a topological Hopf algebra, PA is a Poisson structure on A, and 1A:
A → A⊗̂2 is a morphism of Poisson algebras.
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Then c restricts to a category equivalence cfd : PFSHAfd → LBAfd of subcate-
gories of finite-dimensional objects (in the case of PFSH, we say that O is finite-
dimensional if and only if m/m2 is).

Let dual :LBAfd →LBAfd be the duality functor. It is a category antiequivalence;
we have dual(g, µ, δ) = (g∗, δt , µt). Then dual ◦cfd : PFSHAfd → LBAfd is a
category antiequivalence. Its inverse is the usual functor g 7→ U (g)∗. If G is the
formal Poisson–Lie group with Lie bialgebra g, one sets OG = U (g)∗.

We apply the functor c to (Og∗,m0, P, ρ10). We obtain c = m/m2
= g; the Lie

bracket is unchanged with respect to the case ρ = 0, so it is the Lie bracket of g.
The Lie cobracket is given by δ(x) = [r, x ⊗ 1 + 1 ⊗ x], since the reduction of ρ
modulo (mg∗)2⊗̂mg∗ + mg∗⊗̂(mg∗)2 is equal to r .

Then applying dual ◦cfd to (Og∗,m0, P, ρ10), we obtain the Lie bialgebra g∗. So
this PFSH algebra is isomorphic to the PFSH algebra of the formal Poisson–Lie
group G∗. In particular, the Poisson algebras Og∗ and OG∗ are isomorphic. It is easy
to check that the map g = mg∗/m2

g∗ → mG∗/m2
G∗ = g induced by this isomorphism

is the identity (here mG∗ ⊂ OG∗ is the maximal ideal). �

Remark 3.2. When g is infinite dimensional, one can define OG∗ as the image
of g under LBA → PFSHA, and then show that the Poisson algebras OG∗ and
Og∗ =

(
Ŝ(g), linear Poisson structure

)
are isomorphic.

4. The morphism S(g∗)g ↪→ U(g∗)

In this section, g is a finite dimensional coboundary Lie bialgebra.

Lemma 4.1 [Semenov-Tian-Shansky 1985]. O
g
G ⊂ OG is a Poisson commutative

subalgebra.

Here the action of g on OG corresponds to the adjoint action of G. We recall
the proof: if f, g ∈ OG , then { f, g} = m

(
(L − R)(r)( f ⊗ g)

)
, where L,R are the

infinitesimal left and right actions, and m is the product map. If ϕ ∈ O
g
G , then

L(a)(ϕ)= R(a)(ϕ) for any a ∈ g. Therefore if f, g ∈ O
g
G , then (L−R)(r)( f ⊗ g)

vanishes, hence { f, g} = 0.
The inclusion O

g
G ⊂ OG is a morphism of Poisson algebras with a decreasing

filtration. By passing to the associated graded algebras, we obtain:

Lemma 4.2. S(g∗)g ⊂ S(g∗) is a Poisson commutative subalgebra.

Proof. If α, β ∈ g∗, then [α, β] = ad∗
(
R(β)

)
(α)−ad∗

(
R(α)

)
(β), where R : g∗

7→ g

is given by R(ξ)= (id ⊗ξ)(r).
Let f,g ∈ S(g∗)g have degrees k and `. Write

f =

∑
α

aα1 · · · aαk , g =

∑
β

bβ1 · · · bβ` .
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Then

{ f, g} =

∑
β

∑̀
j=1

bβ1 · · · b̌βj · · · bβ` ad∗
(
R(bβj )

)
( f )

−

∑
α

k∑
i=1

aα1 · · · ǎαi · · · aαk ad∗
(
R(aαi )

)
(g).

When f and g are both invariant, this bracket vanishes. �

We now prove that S(g∗)g ⊂ S(g∗) is also the associated graded of an inclusion
of noncommutative algebras with an increasing filtration:

Theorem 4.3. There exists a morphism of filtered algebras:

θ : S(g∗)g → U (g∗),

where the associated graded morphism is the canonical inclusion S(g∗)g ⊂ S(g∗).

Proof. We denote by FSHA the category of formal series Hopf (FSH) algebras
and by FilAlg the category of filtered algebras. There is a contravariant functor
(restricted duality) FSHA → FilAlg, defined by O 7→ O◦, where

O◦
= {` ∈ O∗

| `(mn)= 0 for some n ≥ 0} ⊂ O∗
;

here m ⊂ O is the maximal ideal of O. The algebra structure of O◦ is defined by

(`1 · `2)( f )= (`1 ⊗ `2)
(
1( f )

)
;

its filtration is defined by (O◦)≤n = {` ∈ O∗
|`(mn+1)= 0}.

We have a category equivalence FSHA → LCA, where LCA is the category
of Lie coalgebras, taking O to m/m2, equipped with the cobracket induced by
1−12,1. Then the composed functor LCA → FSHA → FilAlg is c 7→ U (c∗)

(recall that c∗ is a Lie algebra).
(Og∗,10)=

(
Ŝ(g),10

)
is a graded FSH algebra. Its restricted dual is the graded

algebra S(g∗). Recall that Og∗ is also a Poisson algebra. We define the set of
Poisson traces on Og∗ as the subspace of all `∈ O◦

g∗ , such that `({u, v})= 0 for any
u, v ∈ Og∗ . Then {Poisson traces on Og∗} ⊂ O◦

g∗ identifies with S(g∗)g ⊂ S(g∗); this
is a graded subalgebra of O◦

g∗ . This defines a graded algebra structure on {Poisson
traces on Og∗}.

Consider the FSH algebra (Og∗, ρ10). It is isomorphic (as a filtered vector space)
to (Og∗,10), and this isomorphism induces an algebra isomorphism between their
associated graded FSH algebras. It follows that we have an isomorphism of filtered
vector spaces between the filtered algebra (Og∗, ρ10)

◦ and S(g∗), and the associated
graded of this morphism is an algebra isomorphism gr

(
(Og∗, ρ10)

◦
)
→ S(g∗).

Recall that the vector spaces underlying (Og∗,10)
◦ and (Og∗, ρ10)

◦ are the same,
namely, O◦

g∗ . We claim that the canonical inclusion
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{Poisson traces on Og∗} ⊂ (Og∗, ρ10)
◦

is a morphism of filtered algebras. Indeed, denote by ·ρ the product in (Og∗, ρ10)
◦

and by · the product in (Og∗,10)
◦. Let `1, `2 be Poisson traces on Og∗ . Then for

any x ∈ Og∗ , we have (`1 ·ρ `2)(x)= (`1 ⊗ `2)
(
ρ ?10( f ) ? (−ρ)

)
. Now Leibniz’s

rule implies that (`1 ⊗`2)({u, v})= 0 for any u, v ∈ O⊗̂2
g∗ , therefore (`1 ·ρ `2)(x)=

(`1 ⊗ `2)
(
10(x)

)
= (`1 · `2)(x). So {Poisson traces on Og∗} ⊂ (Og∗, ρ10)

◦ is an
algebra morphism. Since the filtrations on the vector spaces underlying (Og∗,10)

◦

and (Og∗, ρ10)
◦ are the same, and since the filtration on {Poisson traces on Og∗} is

induced by that of (Og∗,10)
◦, this morphism is filtered, and its associated graded

is the canonical inclusion S(g∗)g ⊂ S(g∗).
Now the FSH algebra isomorphism OG∗ ' (Og∗, ρ10) (Corollary 3.1) induces a

filtered algebra isomorphism (Og∗, ρ10)
◦
→ O◦

G∗ = U (g∗). The fact that the associ-
ated graded of this morphism is the canonical isomorphism S(g∗) → gr

(
U (g∗)

)
follows from the fact that the completed graded of the FSH algebras OG∗ and
(Og∗, ρ10) are both (Og∗,10).

We now compose the filtered algebra morphism {Poisson traces on Og∗} ⊂

(Og∗, ρ10)
◦ with the filtered algebra isomorphism (Og∗, ρ10)

◦
→ O◦

G∗ , and obtain a
filtered algebra morphism S(g∗)g → U (g∗), whose associated graded is the canon-
ical inclusion S(g∗)g ⊂ S(g∗).

The situation may be summarized thus:

(Og∗,10)
◦
= S(g∗)

S(g∗)g = {Poisson traces on Og∗}

(a)
-

(Og∗, ρ10)
◦

(c)

6

(d)-
(b) -

O◦

G∗ = U (g∗)

Here S(g∗)g and S(g∗) are graded algebras, (Og∗, ρ10)
◦ and O◦

G∗ are filtered al-
gebras; (a) is a morphism of graded algebras, (c) is an isomorphism of filtered
vector spaces, and (b) and (d) are morphisms of filtered algebras, (d) being an
isomorphism. The associated graded of (c) is an isomorphism of graded algebras.

�

Remark 4.4. The restricted dual of the isomorphism Og∗ → OG∗ appearing in
the proof above is an isomorphism of filtered vector spaces σ : S(g∗) → U (g∗),
whose associated graded is the canonical isomorphism S(g∗)→ gr

(
U (g∗)

)
. These

properties are also satisfied by the symmetrization map Sym, however σ depends
on ρ, so in general Sym and σ are different.



170 BENJAMIN ENRIQUEZ AND GILLES HALBOUT

Remark 4.5. One can check that the morphism θ is independent of the choice of
(ρ, ϕ) (these choices are described in Remark 2.4 and Theorem 2.3).

5. Duality of QUE and QFSH algebras

We now recall some facts from [Drinfeld 1987]; proofs can be found in [Gavarini
2002]. We denote by QUE the category of quantized universal enveloping algebras
and by QFSH the category of quantized formal series Hopf algebras. We denote
by QUEfd and QFSHfd the subcategories corresponding to finite dimensional Lie
bialgebras.

We have the contravariant functors QUEfd → QFSHfd sending U to U∗ and
QFSHfd → QUEfd sending O to O◦. These functors are inverse to each other. U∗

is the full topological dual of U (the space of all (h̄-adically) continuous K[[h̄]]-
linear maps U → K[[h̄]]), and O◦ is the space of continuous K[[h̄]]-linear forms
O → K[[h̄]], where O is equipped with the m-adic topology (here m ⊂ O is the the
kernel of O → K, that is, the maximal ideal of O).

We also have covariant functors QUE → QFSH, U 7→ U ′ and QFSH → QUE,
O 7→ O∨. These functors are also inverse to each other. U ′ is the subalgebra of U
defined by

U ′
= {x ∈ U | (id −η ◦ ε)⊗k

◦1(k)(x) ∈ h̄kU ⊗̂k for all k ≥ 0},

where ε and η are the counit and unit of U , 1(1) = id, 1(2) = 1 is its coproduct,
and

1(k) = (1⊗ id⊗k−2) ◦ · · · ◦1.

On the other hand, O∨ is the h̄-adic completion of∑
k≥0

h̄−kmk
⊂ O[1/h̄].

We also have canonical isomorphisms (U ′)◦ ' (U∗)∨ and (O∨)∗ ' (O◦)′.
If a is a finite dimensional Lie bialgebra and U = Uh̄(a) is a QUE algebra

quantizing a, then U∗
= OA,h̄ is a QFSH algebra quantizing the Poisson–Lie group

A (with Lie bialgebra a), and U ′
=OA∗,h̄ is a QFSH algebra quantizing the Poisson–

Lie group A∗ (with Lie bialgebra a∗). If now O=OA,h̄ is a QFSH algebra quantizing
A, then O◦

= Uh̄(a) is a QUE algebra quantizing a, and O∨
= Uh̄(a

∗) is a QFSH
algebra quantizing a∗.

We now compute these functors explicitly in the case of cocommutative QUE
and commutative QFSH algebras. If U =U (a)[[h̄]] has a cocommutative coproduct
(where a is a Lie algebra), then U ′ is a completion of U (h̄a[[h̄]]); this is a flat
deformation of Ŝ(a) equipped with its linear Lie–Poisson structure. If G is a formal
group with function ring OG , then O := OG[[h̄]] is a QFSH algebra, and O∨ is a
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commutative QUE algebra; it is a quantization of
(
S(g∗), commutative product,

cocommutative coproduct, co-Poisson structure induced by the Lie bracket of g
)
.

6. Relation between twist quantization and its functional version

We define a twist quantization of the coboundary Lie bialgebra (g, r, Z) as a pair
(J,8), where J ∈ U (g)⊗2

[[h̄]], 8∈ U (g)⊗3
[[h̄]], 8 is invariant, (J,8) satisfies the

twisted cocycle relation
J 1,2 J 12,3

= J 2,3 J 1,238,

and moreover (ε⊗ id)(J ) = (id ⊗ε)(J ) = 1, J = 1⊗2
+ O(h̄), 8 = 1⊗3

+ O(h̄),
Alt

(
(J−1⊗2)/h̄

)
=r+O(h̄), and Alt

(
(8−1⊗3)/h̄2)

= Z+O(h̄). These conditions
imply that8 satisfies the pentagon relation, as well as ε(i)(8)= 1⊗2 for i = 1, 2, 3.
(We know that such a twist quantization always exists when g is triangular or
quasitriangular.) Our purpose is to relate twist quantization with its functional
version.

The first step is to show that (J,8) can be transformed into an admissible pair,
in a sense which we now make precise.

Definition 6.1. An element x in a QUE algebra U is admissible if x ∈ 1 + h̄U and
if h̄ log x is in U ′

⊂ U.

We will use the isomorphism U (g)⊗k
[[h̄]] ' U (g⊕k)[[h̄]] to view U (g)⊗k

[[h̄]] as
a QUE algebra.

Proposition 6.2. Any twist quantization (J,8) of a coboundary Lie bialgebra
(g, r, Z) is gauge equivalent to an admissible twist quantization (J ′,8′) (i.e., such
that J ′ and 8′ are admissible).

Proof. We set U = U (g)[[h̄]]. According to Proposition A.1, one can find an invari-
ant F ∈U ⊗̂2, such that F ∈ 1⊗2

+h̄U ⊗̂2
0 and8′

:=
F8= F2,3 F1,238(F1,2 F12,3)−1

is admissible. In particular, 8′
∈ 1⊗3

+ h̄2U ⊗̂3
0 .

Then if we set J0 := J F , we have J 1,2
0 J 12,3

0 = J 2,3
0 J 1,23

0 8′ and J0 ∈ 1⊗2
+h̄U ⊗̂2

0 .
For any u ∈ 1⊗3

+ h̄U0, define uJ0 := u1u2 J0(u12)−1. Then (uJ0,8
′) is a twist

quantization of (g, r, Z). It remains to find u such that J ′
:=

uJ0 is admissible.
We will construct u as a product · · · u2u1, where un ∈ 1 + h̄nU0, in such a way

that if Jn :=
un ···u1J0, then h̄ log Jn ∈ U ′⊗̂2

0 + h̄n+2U ⊗̂2
0 .

We have already h̄ log J0 ∈ h̄2U ⊗̂2
0 .

Expand J0 = 1⊗2
+ h̄ j1 + · · · ; then Alt( j1)= r . Moreover, the coefficient of h̄

in J 1,2
0 J 12,3

0 = J 2,3
0 J 1,23

0 8 yields d( j1) = 0, where d : U (g)⊗2
0 → U (g)⊗3

0 is the
Cartier differential. It follows that for some a1 ∈ U (g)0, we have j1 = r + d(a1).
Then if we set u1 := exp(h̄a1) and J1 =

u1J0, we get J1 ∈ 1⊗2
+ h̄r + h̄2U ⊗̂2

0 . Then
h̄ log J1 ∈ h̄2r + h̄3U ⊗̂2

0 ⊂ U ′⊗̂2
0 + h̄3U ⊗̂3

0 .
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Assume that for n ≥ 2, we have constructed u1, . . . , un−1 such that αn−1 :=

h̄ log(Jn−1) ∈ U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 .
We denote by ᾱ the image of the class of αn−1 in U (g)⊗2

0 /(U (g)⊗2
0 )≤n+1 under

the isomorphism of this space with (U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 )/(U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 ) (see
Lemma A.2). Let α ∈ U (g)⊗2

0 be a representative of ᾱ, then αn−1 = α′
+ h̄n+1α,

where α′
∈ U ′⊗̂2

0 + h̄n+2U ⊗̂2
0 . We set ϕ′

:= h̄ log8′; then the twist equation gives

(−α′
− h̄n+1α)1,23 ?h̄ (−α

′
− h̄n+1α)2,3 ?h̄ (α

′
+ h̄n+1α)1,2 ?h̄ (α

′
+ h̄n+1α)12,3

= ϕ′,

where ?h̄ is defined as in the Appendix. According to Lemma A.3, the image of
this equality in

(U ⊗̂3
+ h̄n+1U ′⊗̂3)/(U ⊗̂3

+ h̄n+2U ′⊗̂3)' U (g)⊗3/
(
U (g)⊗3)

≤n+1

is d(ᾱ), where d is the Cartier differential on U (g)⊗·

0 /
(
U (g)⊗·

0

)
≤n+1. Since n ≥ 2,

the relevant cohomology group vanishes, so

ᾱ = d(β̄), where β̄ ∈ U (g)0/
(
U (g)0

)
≤n+1.

Let β ∈ U (g)0 be a representative of β̄, and set un := exp(h̄nβ), Jn :=
unJn−1, and

αn := h̄ log Jn . Then

αn = (h̄n+1β)1 ?h̄ (h̄n+1β)2 ?h̄ αn−1 ?h̄ (−h̄n+1β)12.

According to Lemma A.3, the image of αn in

(U ⊗̂2
0 + h̄n+1U ′⊗̂2

0 )/(U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 )' U (g)⊗2
0 /

(
U (g)⊗2

0

)
≤n+1

is ᾱ− d(β̄) = 0. So αn belongs to U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 , as required. This proves the
induction step. �

If now (J ′,8′) is an admissible twist quantization, then ρ := h̄ log J ′

|h̄=0 and
ϕ := h̄ log8′

|h̄=0 are formal functions on m⊗̂2
g∗ and m⊗̂3

g∗ , solutions of the functional
twist equation.

7. Quantization of O
g
G ⊂ OG

Using a (not necessarily admissible) twist quantization, we construct a formal non-
commutative deformation of the inclusion of algebras of Lemma 4.1:

Proposition 7.1. We have an injective algebra morphism O
g
G[[h̄]] ↪→ OG,h̄ deform-

ing O
g
G ⊂ OG , where OG,h̄ is a quantization of the PFSH algebra OG , and O

g
G[[h̄]] is

the trivial deformation of the commutative algebra O
g
G (it is also commutative).

Proof. We first construct the QFSH algebra OG,h̄ . For x ∈ U (g)[[h̄]], set J10(x)=

J10(x)J−1, where 10 is the usual cocommutative coproduct. Then Uh̄(g) =
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U (g)[[h̄]],m0,

J10
)

is a quantization of the Lie bialgebra g
(
here m0 is the prod-

uct on U (g)
)
. The dual OG,h̄ := Uh̄(g)

∗ of this QUE algebra is a QFSH algebra
quantizing the PFSH algebra OG . The product in this QFSH algebra is defined by
( f ? g)(x)= ( f ⊗ g)

(
J10(x)J−1

)
for f, g ∈ Uh̄(g)

∗ and x ∈ Uh̄(g).
On the other hand, the FSH algebra OG is equal to U (g)∗, and its product is

defined by ( f g)(x)= ( f ⊗ g)
(
10(x)

)
for f, g ∈ U (g)∗ and x ∈ U (g).

We say that f ∈U (g)∗ is a trace if and only if f (xy)= f (yx) for any x, y ∈U (g).
Then the inclusion {traces on U (g)} ⊂ U (g)∗ identifies with O

g
G ⊂ OG . In the same

way, we define {traces on U (g)[[h̄]]}; this is a subalgebra of U (g)[[h̄]]
∗

' OG[[h̄]],
which identifies with O

g
G[[h̄]].

The canonical map {traces on U (g)[[h̄]]} → Uh̄(g)
∗ is an algebra morphism.

Indeed, if f1, f2 are traces on U (g)[[h̄]], then f1 ⊗ f2 is a trace on U (g)⊗2
[[h̄]], so

( f1 ? f2)(x) = ( f1 ⊗ f2)
(
J10(x)J−1

)
= ( f1 ⊗ f2)(10(x)) = ( f1 f2)(x) for any

x ∈ U (g)[[h̄]], thus f1 ? f2 = f1 f2. So we have obtained an algebra morphism
O

g
G[[h̄]] → Uh̄(g)

∗
= OG,h̄ . It is clearly a deformation of the canonical inclusion

O
g
G ⊂ OG . �

8. Quantization of S(g∗)g ↪→ U(g∗)

Assume now that (J,8) is an admissible twist quantization. We construct a formal
deformation of the inclusion of algebras of Theorem 4.3.

Theorem 8.1. There is an injective algebra morphism:

θh̄ : S(g∗)g[[h̄]] ↪→ Uh̄(g
∗),

where Uh̄(g
∗) is a quantization of g∗. Its reduction modulo h̄ coincides with the

morphism S(g∗)g ↪→ U (g) from Theorem 4.3.

Proof. Recall that U (g)[[h̄]]
′ is a cocommutative QFSH algebra; we denote by m0,

10 its product and coproduct.
Since

(ε⊗ id)(J )= (id ⊗ε)(J )= 1,

we have h̄ log J ∈m⊗̂2
0 , where m0 ⊂U (g)[[h̄]]

′ is the kernel of the counit. According
to [Enriquez and Halbout 2003, Proposition 3.1], this implies that the inner auto-
morphism z 7→ J z J−1 of U (g)⊗2

[[h̄]] restricts to an automorphism of U (g)⊗2
[[h̄]]

′.
We then equip U (g)[[h̄]]

′ with the coproduct J1 : x 7→ J10(x)J−1. Then(
U (g)[[h̄]]

′,m0,
J10

)
is a QFSH algebra. Its classical limit is the PFSH algebra

(Og∗,m0, P, ρ10). We have seen that this PSFH algebra is isomorphic to OG∗ ,
hence

(
U (g)[[h̄]]

′,m0,
J10

)
is a quantization of OG∗ .

It now follows from Section 5 that
(
U (g)[[h̄]]

′,m0,
J10

)◦ is a quantization of
U (g∗), which we denote by Uh̄(g

∗).
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We say that ϕ∈
(
U (g)[[h̄]]

′
)◦ is a trace if ϕ(xy)=ϕ(yx) for any x, y ∈U (g)[[h̄]]

′.
Then {traces on U (g)[[h̄]]

′
} ⊂

(
U (g)[[h̄]]

′
)◦ is a subalgebra. Indeed, if `1, `2 are

traces, then `1 ⊗ `2 is also a trace, so for x, y ∈ U (g)[[h̄]]
′, we have

(`1`2)(xy)= (`1 ⊗ `2)
(
1(x)1(y)

)
= (`1 ⊗ `2)

(
1(y)1(x)

)
= (`1`2)(yx).

This inclusion identifies with the inclusion (OG[[h̄]]
∨)g ⊂ OG[[h̄]]

∨. Indeed, the
Drinfeld functors have the property that (U ′)◦ = (U∗)∨ for any QUE algebra U .

Now we show that the map {traces on U (g)[[h̄]]
′
} ⊂

(
U (g)[[h̄]]

′, J10
)◦ is also

an algebra morphism. Indeed, let ·J be the product of the latter algebra. If `1, `2

are traces and x, y ∈ U (g)[[h̄]], then (`1 ·J `2)(x) = (`1 ⊗ `2)
(
J10(x)J−1

)
=

(`1 ⊗ `2)
(
10(x)

)
= (`1`2)(x), so `1 ·J `2 = `1`2. So we have constructed an

algebra morphism (OG[[h̄]]
∨)g →Uh̄(g). It is clearly a deformation of the morphism

constructed in Theorem 4.3.
Recall that OG[[h̄]]

∨ is the h̄-adic completion of
∑

k≥0 h̄−kmk
G ⊂ OG((h̄)).3 Then

OG[[h̄]]
∨ is a topologically free K[[h̄]]-commutative algebra; its specialization at

h̄ = 0 is OG[[h̄]]
∨/h̄OG[[h̄]]

∨
' S(g∗).

The action of g on OG induces an action of g on OG[[h̄]]
∨. Then (OG[[h̄]]

∨)g is
the h̄-adic completion of

∑
k≥0 h̄−k(mk

G)
g. We have an inclusion of topologically

free K[[h̄]]-algebras (OG[[h̄]]
∨)g ⊂ OG[[h̄]]

∨.
Now the dual of the symmetrization map induces an algebra isomorphism

Ŝ(g∗)= Og ' OG

(dual to the exponential map g → G). This isomorphism induces a g-equivariant
isomorphism of OG[[h̄]]

∨ with the h̄-adic completion of∑
k≥0

h̄−kmk
g ⊂ Og((h̄)).

So we have an algebra isomorphism OG[[h̄]]
∨

' S(g∗)[[h̄]]. It restricts to an iso-
morphism OG[[h̄]]

∨)g ' S(g∗)g[[h̄]].
Composing its inverse with the morphism (OG[[h̄]]

∨)g → Uh̄(g
∗), we get the

announced morphism S(g∗)g[[h̄]] → Uh̄(g
∗). �

9. The quasitriangular case

A quasitriangular Lie bialgebra (QTLBA) is a pair (g, r ′), where g is a Lie algebra
and r ′

∈ g⊗2 is such that CYB(r ′) = 0 and t := r ′
+ r ′2,1

∈ S2(g)g. Any QTLBA
gives rise to a coboundary Lie bialgebra (g, r, Z), where r = (r ′

− r ′2,1)/2 and

3OG [[h̄]]
∨ may therefore be viewed as the formal Rees algebra associated to the decreasing filtra-

tion OG ⊃ mG ⊃ m2
G · · · .
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Z = [t1,2, t2,3
]/4. We call a QTLBA nondegenerate if g is finite dimensional and

t is nondegenerate.
Let D : g∗

→ g∗ be the composition of the Lie cobracket δ : g∗
→

∧2
(g∗)

with the Lie bracket of g∗. It is a derivation and a coderivation, and it induces a
derivation of U (g∗), which we also denote by D (or sometimes Dg∗).

Proposition 9.1. For any scalar s, the algebra Cs := Ker
(
δ− s(D ⊗ id)◦10

)
is a

commutative subalgebra of U (g∗).

Proof. The condition `∈ Cs means that `
(
{u, v}−s D∗(u)v

)
= 0 for any u, v ∈ OG∗

(here D∗ is the derivation of OG∗ dual to the coderivation D).
Let `1, `2 belong to Cs . Then for any u, v ∈ OG∗ ,

(`1`2)
(
{u, v} − s D∗(u)v

)
= (`1 ⊗ `2)

(
{1(u),1(v)} − s1(D∗(u))1(v)

)
= (`1 ⊗ `2)

(
{u(1), v(1)} ⊗ u(2)v(2) + u(1)v(1) ⊗ {u(2), v(2)}

−s D∗(u(1))v(1) ⊗ u(2)v(2) − u(1)v(1) ⊗ s D∗(u(2))v(2)
)

= 0;

hence `1`2 ∈ Cs . Here 1 is the coproduct of OG∗ .
Moreover, we constructed in [Enriquez et al. 2003] an element % ∈ m⊗̂2

G∗ , such
that 1′(u)= % ?1(u) ? (−%) for any u ∈ OG∗ ; if

(
Uh̄(g),R

)
is any quantization of

(g, r ′), then h̄ log R ∈ m⊗̂2
h̄ , where mh̄ ⊂ Uh̄(g)

′ is the augmentation ideal, and the
reduction of h̄ log R mod h̄ equals %. Then it follows from (S2

⊗ S2)(R)= R that
(S2

O ⊗ S2
O)(h̄ log R)= h̄ log R, where S is the antipode of Uh̄(g) and SO = S|Uh̄(g)′ is

the antipode of Uh̄(g)
′
⊂ Uh̄(g); since the specialization for h̄ = 0 of h̄−1(S2

O − id)
is D∗, we get (D∗

⊗ id + id ⊗D∗)(%)= 0.
Then if `1, `2 ∈ Cs , then

(`2`1)(u)= (`1 ⊗ `2)
(
1′(u)

)
= (`1 ⊗ `2)

(
% ?1(u) ? (−%)

)
= (`1 ⊗ `2)

(
1(u)

)
+

∑
n≥1

(1/n!)(`1 ⊗ `2)
(
{%, {%, . . . , {%,1(u)}}}

)
.

Now if f ∈ O⊗̂2
G∗ , then (`1⊗`2)({%, f })= s(`1⊗`2)

(
(D∗

⊗id + id ⊗D∗)(%) f
)
= 0.

It follows that `2`1 = `1`2. �

Remark 9.2. If A is a quasitriangular Hopf algebra with antipode S, set

Cs,A := {` ∈ A∗
| `(ab)= `(bS−2s(a)) for all a, b ∈ A}

for s ∈Z. Then it follows from [Drinfeld 1989a] that Cs,A is a commutative algebra,
and that we have isomorphisms Cs ' Cs+2 for any s ∈ Z. The isomorphism takes
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` ∈ Cs to the element ` ∈ Cs+2 defined by

`(x)= `
(
xu−1S(u)

)
,

where u = m ◦ (id ⊗S)(R); here m, R are the product and R-matrix of A. The
definition of Cs,A can be generalized to s ∈ K when A =

(
Uh̄(g),R

)
is a quasitri-

angular QUE Hopf algebra. Define Uh̄(g
∗) as

(
Uh̄(g)

′
)◦

=
(
Uh̄(g)

∗
)∨

⊃ Uh̄(g)
∗.

Then

Cs,h̄ := {` ∈ (Uh̄(g)
′)◦ | `(ab)= `(b(S2)−s(a)) for all a, b ∈ Uh̄(g)

′
}

is a commutative subalgebra of Uh̄(g
∗), and its reduction modulo h̄ is contained

in Cs . In this case, u−1S(u) does not necessarily belong to Uh̄(g)
′, therefore Cs,h̄

and Cs+2,h̄ are not necessarily isomorphic.

Remark 9.3. If (g, r, Z) is a coboundary Lie bialgebra, then r is D-invariant if
and only if (µ⊗ id)(Z) is symmetric (where µ is the Lie bracket of g). If this is
not the case, if we set % := ρ2,1 ?(−ρ), then (D∗

⊗ id + id ⊗D∗)(%) 6= 0, so unless
s = 0, one cannot prove that Cs is commutative.

For each nondegenerate QTLBA (g, r ′), Semenov-Tian-Shansky [1984] defined
an algebra morphism 2 : Z

(
U (g)

)
→ U (g∗), where Z(A) denotes the center of

an algebra A. We recall the construction of 2. There are unique Lie algebra
morphisms L , R : g∗

→ g, defined by L(`)= (`⊗ id)(r ′), R(`)= −(id ⊗`)(r ′) for
any ` ∈ g∗. We denote by α : U (g∗)→ U (g) the composed map

U (g∗)
10
→ U (g∗)⊗2 L⊗(S0◦R)

→ U (g)⊗2 m0
→ U (g).

Here m0,10 are the standard product and coproduct maps. We still denote by L , R
the algebra morphisms induced by L , R, and S0 denotes the antipode of U (g). The
associated graded of the map α is the isomorphism S(g∗) → S(g) induced by t ,
hence α is an isomorphism. Then2 : Z

(
U (g)

)
→U (g∗) is defined as the restriction

of α−1 to Z
(
U (g)

)
; one can prove that it is an algebra morphism.

We will show, together with Proposition 9.8:

Proposition 9.4. Im(2)= C1 ⊂ U (g∗). The associated graded algebra of C1
(
for

the degree filtration of U (g∗)
)

is S(g∗)g.

Remark 9.5. Let θ be as in Theorem 4.3. The image of θ : S(g∗)g → U (g∗) is
{Poisson traces on OG∗}, that is, C0 = Ker(δ), where δ : U (g∗)→

∧2U (g∗) is the
co-Poisson map of U (g∗). So the images of 2 and θ do not necessarily coincide.

Notice that C1 is also the image of a morphism S(g∗)g → U (g∗), since

Z
(
U (g)

)
= U (g)g ' S(g)g ' S(g∗)g,
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where the second equality is Duflo’s isomorphism [1969], and the third equality
uses the nondegenerate pairing of g dual to t . Hence C0 and C1 are images of
morphisms S(g∗)g → U (g∗), whose associated graded is the canonical injection,
but which do not necessarily coincide.

We now construct a deformation 2h̄ of 2.

Lemma 9.6 [Drinfeld 1989a]. Let (A,1, R) be a quasitriangular Hopf algebra
with antipode S. Define a linear map αA : A∗

→ A by αA(`) = (`⊗ id)(R21 R).
Then αA induces an algebra morphism C1,A → Z(A).

Lemma 9.7. Assume moreover that A is finite dimensional and R2,1 R is nonde-
generate. Then the map C1 → Z(A) is a linear isomorphism. Its inverse induces
an algebra morphism 2A : Z(A)→ A∗.

Proof. We have to check that if ` ∈ A∗ is such that αA(`) ∈ Z(A), then ` is a trace.
The condition αA(`) ∈ Z(A) means that for any a ∈ A, we have

(`⊗ id)([R2,1 R, 1 ⊗ a])= 0.

It follows that

S−1(a(4))(`⊗ id)
(
[R2,1 R, a(2)S−1(a(1))⊗ a(3)]

)
= 0

for any a ∈ A. Since R2,1 R commutes with the image of 1A, we have

(`⊗ id)
(
(a(2) ⊗ S−1(a(4))a(3))[R2,1 R, S−1(a(1))⊗ 1]

)
= 0.

Therefore (`⊗ id)
(
(a(2) ⊗ 1)R2,1 R(S−1(a(1))⊗ id)

)
= ε(a)(`⊗ id)(R2,1 R).

Since R2,1 R is nondegenerate, this means that `
(
a(2)bS−1(a(1))

)
= ε(a)`(b) for

any b ∈ A. Replacing a ⊗b by a(1)⊗ S(a(2))b, we get `
(
bS−1(a)

)
= `

(
S(a)b

)
, so

` ∈ C1. �

The QUE algebra version of these lemmas is parts (i) and (ii) of the following
proposition. Let (g, r ′) be a QTLBA and let

(
Uh̄(g),1,R

)
be a quantization of

(g, r ′).

Proposition 9.8. (i) The linear map Uh̄(g)
∗

→ Uh̄(g), ` 7→ (` ⊗ id)(RR2,1)

extends to a map αh̄ : Uh̄(g
∗)→ Uh̄(g).

(ii) If (g, r ′) is nondegenerate, then αh̄ is a linear isomorphism, and it restricts to
an algebra isomorphism C1,h̄ → Z

(
Uh̄(g)

)
.

(iii) Proposition 9.4 is true.

Proof. We prove part (i). Define L h̄, R′

h̄ : Uh̄(g)
∗
→ Uh̄(g) by

L h̄(ξ)= (ξ ⊗ id)(R), R′

h̄(ξ)= (id ⊗ξ)(R).
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According to [Enriquez and Halbout 2003],

h̄ log R ⊂
(
Uh̄(g)

′

0
)⊗̂2

⊂ Uh̄(g)
′

0⊗̂h̄Uh̄(g)0,

so that log R ∈ Uh̄(g)
′

0⊗̂Uh̄(g)0. According to [Enriquez et al. 2003, Appendix],
the image of log R in (mG∗/m2

G∗)⊗̂U (g)0 (by reduction mod h̄ followed by pro-
jection) is r ′. It follows that R ∈ Uh̄(g)

′
⊗̂Uh̄(g), therefore L h̄ extends to a map

Uh̄(g
∗)→ Uh̄(g); this map is necessarily a QUE algebra morphism. The quasitri-

angularity identities imply that the image of R in OG∗⊗̂U (g) has the form exp(ρ),
where ρ ∈ mG∗ ⊗ g is a lift of r . It follows that the reduction mod h̄ of L h̄ is the
morphism induced by g∗

→ g, ` 7→ (`⊗ id)(r). In the same way, R′

h̄ extends to a
(anti)morphism Uh̄(g

∗)→ Uh̄(g).
Define αh̄ : Uh̄(g

∗)→ Uh̄(g) by

x 7→ m ◦ (L h̄ ⊗ R′

h̄) ◦1.

Then αh̄ extends ` 7→ (`⊗ id)(RR2,1).
We prove part (ii). The reduction mod h̄ of αh̄ is α, which is a linear isomor-

phism; hence αh̄ is a linear isomorphism. The second part is proved as Lemma 9.6.
We prove Proposition 9.4. Assume that Uh̄(g) is as in [Etingof and Kazhdan

1996], hence Uh̄(g) ' U (g)[[h̄]] as algebras. Then Z
(
Uh̄(g)

)
' Z

(
U (g)

)
[[h̄]].

Statement (ii) implies that α induces an isomorphism (mod h̄)(C1,h̄)→ Z
(
U (g)

)
;

here (mod h̄) is the reduction modulo h̄. On the other hand, (mod h̄)(C1,h̄)⊂ C1,
therefore 2

(
Z(U (g))

)
⊂ C1.

The map
δ− (D ⊗ id) ◦10 : U (g∗)→ U (g∗)⊗2

is filtered, and its associated graded is the dual δ : S(g∗) →
∧2(S(g∗)

)
of the

Poisson bracket of S(g). We have a surjective morphism

S(g)g = S(g)/{g, S(g)} � S(g)/{S(g), S(g)}

to the cokernel of this Poisson bracket, hence Ker(δ) ↪→
(
S(g)g

)∗
= S(g∗)g. We

have gr(C1) ⊂ Ker(δ), hence gr(C1) ⊂ S(g∗)g. Now since 2 is filtered and its
associated graded takes gr

(
Z(U (g))

)
' S(g)g to S(g∗)g, we get gr(C1) = S(g∗)g

and 2
(
Z(U (g))

)
= C1. �

We denote by 2h̄ : Z
(
Uh̄(g)

)
→ Uh̄(g

∗) the algebra morphism inverse to αh̄ ,
which is to say the QUE algebra version of 2A defined above.

The image of 2h̄ is C1,h̄ . When the quantization is as in [Etingof and Kazhdan
1996], Uh̄(g) ' U (g)[[h̄]], so this image is not the same as that of θh̄ , which is
{traces on Uh̄(g)

′
} = C0,h̄ . Therefore in this case, the images of θh̄ and 2h̄ do not

coincide.
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10. On the canonical derivation of OG∗

Let (a, µa, δa) be a finite dimensional Lie bialgebra. Then OA is a Poisson–Lie
group, dual to U (a). Set Da := µa ◦ δa, then Da is a derivation of U (a), such that
if Uh̄(a) is any quantization of U (a) with antipode S, then Da = h̄−1(S2

− id)|h̄=0;
see [Drinfeld 1989a]. It follows that the dual derivation D∗

a of OA has the same
property.

When a= (g, r ′) is a quasitriangular Lie bialgebra, Da is inner, given by Da(x)=
−[µ(r ′), x] for any x ∈ U (g); here µ is the Lie bracket of g [Drinfeld 1989a].

Proposition 10.1. If g is a nondegenerate quasitriangular Lie bialgebra, then the
derivation D∗

g∗ of OG∗ is inner, that is, there exists a function h ∈ OG∗ such that
D∗

g∗( f )= {h, f } for any f ∈ OG∗ .

Proof. We assume that g is the double a+⊕a− of a Lie bialgebra a+ (here a− =a∗
+

);
the general case is similar. Then g∗ is (as a Lie algebra) the direct sum a+ ⊕ a−.
Let A± be the formal groups corresponding to a±. The morphism α : U (g∗) →

U (g) is now U (a+)⊗ U (a−)→ U (g), x+ ⊗ x− 7→ x−S(x+). The dual morphism
α∗

: OG → OG∗ takes F ∈ OG to f ∈ OG∗ given by f (g+, g−) := F(g−g−1
+ ).

Lemma 10.2. Let D∗
g , D∗

g∗ be the canonical derivations of OG and OG∗ . Then
α∗

◦ D∗
g = D∗

g∗ ◦α∗. Moreover, D∗
g = Lµ(r ′)− Rµ(r ′), where µ is the Lie bracket of

g and La f (g)= (d/dε)|ε=0 F(eεag), Ra f (g)= (d/dε)|ε=0 F(geεa).

Proof. Dg∗ is a coderivation, so 10 : U (g∗) → U (g∗)⊗2 intertwines Dg∗ and
Dg∗ ⊗ id + id ⊗Dg∗ ; L and R are Lie bialgebra morphisms, so they intertwine
Dg∗ and Dg; S commutes with Dg; and Dg is a derivation, so m0 intertwines
Dg ⊗ id + id ⊗Dg with Dg. Hence α ◦ Dg∗ = Dg ◦α. The first part follows.

According to [Drinfeld 1989a], Dg(x)= −[µ(r ′), x], which implies the second
part. �

In [Semenov-Tian-Shansky 1985], the image of the Poisson bracket on G∗ under
the formal isomorphism α : G∗

→ G dual to α∗ was computed. Let f, h ∈ OG∗ ,
and F = (α∗)−1( f ), H = (α∗)−1(h); then

(α∗)−1({ f, h})(g)

=
〈
(dR − dL)F(g)⊗ dL H(g), r ′

〉
+

〈
(dR − dL)F(g)⊗ dR H(g), (r ′)2,1

〉
=

〈
(dL − dR)F(g), L(dR H(g))− R(dL H(g))

〉
,

where g ∈ G and dL F(g), dR F(g) ∈ g∗ are the left and right differentials defined
by 〈dL F(g), a〉 = (La F)(g), 〈dR F(g), a〉 = (Ra F)(g) for any a ∈ g.

Lemma 10.3. There exists a function H(g) ∈ OG such that

L
(
dR H(g)

)
− R

(
dL H(g)

)
= µ(r ′).
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Proof. We prove this when g is the double a+ ⊕ a− of a Lie bialgebra a+. Then
set a = (a+, a−), where a± ∈ a±. We have g∗

= a+ ⊕ a−, and we should solve:
dR Ha(g)=µ(r ′)−+u+(g), dL Ha(g)=µ(r ′)++u−(g), where u±(g) are functions
G → a±. Now dL H(g)= Ad(g)

(
dR H(g)

)
, hence

µ(r ′)+ + u−(g)= Ad(g)
(
µ(r ′)− + u+(g)

)
.

We decompose g = g−g−1
+ , where g± ∈ A± = exp(a±); we get

Ad(g−1
+
)
(
u+(g)

)
− Ad(g−1

−
)
(
u−(g)

)
= Ad(g−1

−
)
(
µ(r ′)+

)
− Ad(g−1

+
)
(
µ(r ′)−

)
.

Therefore

u+(g)= Ad(g+)
(
Ad(g−1

−
)(µ(r ′)+)− Ad(g−1

+
)(µ(r ′)−)

)
+
,

and the condition is

dR H(g)= Ad(g+)
(
Ad(g−1

+
)(µ(r ′)−)

)
−

+ Ad(g+)
(
Ad(g−1

−
)(µ(r ′)+)

)
+
,

that is,

(10-1) RαHa(g)=
〈
µ(r ′)−,Ad(g+)((Ad(g−1

+
)(α))+)

〉
+

〈
µ(r ′)+,Ad(g−)((Ad(g−1

+
)(α))−)

〉
for any α ∈ g. We denote by Aα(g) the right hand side of (10-1).

We compute RαAβ − Rβ Aα for α, β ∈ g. Recall that g = g−g−1
+ ; then we have

Rα(g)= gα, so Rα(g−1
± )= ±

(
Ad(g−1

± )(α)
)
±

g−1
± . After computations, we find

RαAβ − Rβ Aα = A[β,α] + Bα,β,

where

Bα,β(g)= −
〈
[(Ad∗(g−1

+
)(β))+, (Ad∗(g−1

+
)(α))+], (Ad(g−1

+
)(µ(r ′)−))−

〉
+

〈
[(Ad∗(g−1

+
)(β))−, (Ad∗(g−1

+
)(α))−], (Ad(g−1

−
)(µ(r ′)+))+

〉
.

Now for u, v ∈ a+, we have〈
[u, v], (Ad(g−1

+
)(µ(r ′)−))−

〉
=

〈
[u, v],Ad(g−1

+
)(µ(r ′)−)

〉
=

〈
[Ad∗(g+)(u),Ad∗(g+)(v)], µ(r ′)−

〉
=

〈
[Ad∗(g+)(u),Ad∗(g+)(v)], µ(r ′)

〉
=

〈
Ad∗(g+)(u)⊗ Ad∗(g+)(v), δ(µ(r ′))

〉
= 0,

since δ
(
µ(r ′)

)
= 0 [Drinfeld 1989a]. In the same way, the second term of Bα,β(g)

vanishes. Hence the system (10-1) has a solution (it is unique if we impose that H
vanishes at the origin). �
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We continue the proof of the proposition. If h = −α∗(H) with H as in Lemma
10.3, and for any f ∈ OG∗ , we have

Dg∗( f )= α∗
(
D∗

g(F)
)
= α∗

(
(Lµ(r ′) − Rµ(r ′))(F)

)
= α∗

(
〈(dL − dR)(F)(g), R(dL H(g))− L(dR H(g))〉

)
= {h, f }. �

Appendix. Proof that associators can be made admissible

In [Enriquez and Halbout 2004], Proposition 3.2, statement (2) should read “As-
sume that x ∈ U ′ and for any trees R. . . ”. This affects Proposition 4.5 of the
same paper, because the proof implicitly relies on the statement of Proposition 3.2
without the assumption x ∈U ′. Below we prove a particular case of Proposition 4.5
(the general case is similar).

Proposition A.1. Let g be a Lie algebra and let 8 ∈ U (g)⊗3
[[h̄]] be an invariant

solution of the pentagon equation (2-1), such that ε(i)(8) = 1⊗2 for i = 1, 2, 3,
8 = 1⊗3

+ O(h̄) and Alt(8) = O(h̄2). Then there exists an invariant twist F in
U (g)⊗2

[[h̄]] such that ε(i)(F)= 1 for i = 1, 2, F = 1⊗2
+ O(h̄), and

F8= F2,3 F1,238(F1,2 F12,3)−1

is admissible, that is, h̄ log F8 ∈
(
U (g)[[h̄]]

′
)⊗̂3.

Proof. We will construct F as a product · · · F2 F1, where Fn belongs to 1⊗2
+h̄iU ⊗̂2

0
and is such that if 8n :=

Fn ···F18, then h̄ log8n ∈ (U ′

0)
⊗̂2

+ h̄n+2U ⊗̂3
0 . Here U =

U (g)[[h̄]] and the index 0 denotes the augmentation ideals.
We first construct F1. Expand 8 = 1⊗3

+ h̄φ1 + · · · , then d(φ1) and Alt(φ1)

vanish, hence φ1 = d(ψ1), where ψ1 ∈ (U ⊗̂2
0 )g

(
here d is the Cartier differential

of (U⊗·

0 )g
)
. We then set F1 = 1⊗2

+ h̄ψ1; we get 81 = 1⊗3
+ h̄2φ′

2 + · · · . Then
h̄ log81 ∈ h̄3U ⊗̂3

0 .
Now d(φ′

2) = 0, so there exists ψ2 ∈ (U ⊗̂2
0 )g such that φ′

2 = Z + d(ψ2), where
Z ∈

∧3
(g)[[h̄]]. Set F2 := 1⊗2

+ h̄2ψ2; we get

h̄ log82 ∈ h̄3 Z + h̄4U ⊗̂3
0 ⊂ (U ′

0)
⊗̂3

+ h̄4U ⊗̂3
0 .

Let n ≥3. Assume that we have constructed F1, . . . , Fn−1, and we now construct
Fn . By assumption, 8n−1 ∈ 1⊗3

+ h̄U ⊗̂3
0 is such that

ϕn−1 := h̄ log8n−1 ∈ (U ′

0)
⊗̂3

+ h̄n+1U ⊗̂3
0 .

Lemma A.2. The quotient (U ′
+h̄nU )/(U ′

+h̄n+1U ) identifies with U (g)/U (g)≤n .
In the same way, the quotient (U ′⊗̂k

0 + h̄nU ⊗̂k
0 )/(U ′⊗̂k

0 + h̄n+1U ⊗̂k
0 ) identifies with

U (g)⊗k
0 /

(
U (g)⊗k

0

)
≤n and the quotient of g-invariant subspaces

(U ′⊗̂k
0 + h̄nU ⊗̂k

0 )g/(U ′⊗̂k
0 + h̄n+1U ⊗̂k

0 )g
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identifies with
(
U (g)⊗k

0

)g
/
(
U (g)⊗k

0

)g

≤n .

The inverse of the first isomorphism takes the class of β ∈ U (g) to the class of
h̄nβ ∈ U ′

+ h̄nU . Let ᾱ ∈
(
U (g)⊗3

0

)g
/
(
(U (g)⊗3

0 )≤n+1
)g be the image of the class

of ϕn−1 under the isomorphism above. Let α ∈
(
U (g)⊗3

0

)g be a representative of
ᾱ. Then we have ϕn−1 = ϕ+ h̄n+1α, where

ϕ ∈ (U ′

0)
⊗̂3

+ h̄n+2U ⊗̂3
0 .

Now ϕn−1 satisfies the pentagon equation, so

(A-2) (−ϕ− h̄n+1α)1,2,34 ?h̄ (ϕ+ h̄n+1α)2,3,4 ?h̄ (ϕ+ h̄n+1α)1,23,4

?h̄ (ϕ+ h̄n+1α)1,2,3 ?h̄ (−ϕ− h̄n+1α)12,3,4
= 0,

where a ?h̄ b is the CBH product for the Lie bracket [a, b]h̄ = [a, b]/h̄.

Lemma A.3. Assume that n ≥ 2. If f1, f2 ∈ (U ′

0)
2
+ h̄n+1U0 and g, h ∈ h̄nU0, then

( f1 + g) ?h̄ ( f2 + h)= g + h modulo (U ′

0)
2
+ h̄n+1U0.

Proof. The contribution of the degree 1 part of the CBH series is f1 + g + f2 + h,
which gives g + h modulo (U ′

0)
2
+ h̄n+1U0.

We now prove that [(U ′

0)
2
+h̄nU0, (U ′

0)
2
+h̄nU0]h̄ ⊂ (U ′

0)
2
+h̄n+1U0. Indeed, we

have [U ′

0,U
′

0]h̄ ⊂ U ′

0, hence [(U ′

0)
2, (U ′

0)
2
]h̄ ⊂ (U ′

0)
2; [h̄nU0, h̄nU0]h̄ ⊂ h̄2n−1U0 ⊂

h̄n+1U0; and [U ′

0, h̄nU0]h̄ ⊂ h̄nU0, since U ′

0 ⊂ h̄U0, so that

[(U ′

0)
2, h̄nU0]h̄ ⊂ h̄n(U0U ′

0 + U ′

0U0)⊂ h̄n+1(U0)
2,

again because U ′

0 ⊂ h̄U0.
It follows that the contributions of all the higher degree parts of the CBH series

belong to (U ′

0)
2
+ h̄n+1U0. This implies the lemma. �

We continue the proof of the proposition. Lemma A.3 implies that the image
of (A-2) in (U ′⊗̂4

+ h̄n+1U ⊗̂4)/(U ′⊗̂4
+ h̄n+2U ⊗̂4)= U (g)⊗4/

(
U (g)⊗4

)
≤n+2 gives

d(ᾱ)= 0, where

d : U (g)⊗3/
(
U (g)⊗3)

≤n+2 → U (g)⊗4/
(
U (g)⊗4)

≤n+2

is the map induced by the Cartier differential.
According to [Drinfeld 1989b], the cohomology of the complex C2

→ C3
→ C4

vanishes, where Ck
=

(
U (g)⊗k

0

)g
/
(
U (g)⊗k

0

)g

≤n+2.
It follows that there exists β̄ ∈ C2, such that ᾱ = d(β̄). Let β ∈

(
U (g)⊗2

0

)g be a
representative of β̄. Set Fn := exp(h̄nβ) and 8n =

Fn8n−1.
We get

ϕn = f 2,3
n ?h̄ f 1,23

n ?h̄ ϕn−1 ?h̄ (− f 12,3
n ) ?h̄ (− f 1,2

n ),
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where fn = h̄n+1β. According to Lemma A.3, the class of ϕn in(
(U ′

0)
⊗̂3

+ h̄n+1U ⊗̂3
0

)
/
(
(U ′

0)
⊗̂3

+ h̄n+2U ⊗̂3
0

)
is ᾱ−d(β̄)= 0, hence ϕn ∈ (U ′

0)
⊗̂3

+ h̄n+2U ⊗̂3
0 . This proves the induction step. �
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