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We present a new characterization of dihedral Galois groups of rational
irreducible polynomials. It allows us to reduce the problem of deciding
whether the Galois group of an even degree polynomial is dihedral, and its
computation in the affirmative case, to the case of a quartic or odd degree
polynomial, for which algorithms already exist. The characterization and
algorithm are extended to permutation groups of order 2n containing an
n-cycle.

1. Introduction

Given an irreducible polynomial f € Q[x], we consider the problem of deciding
whether its Galois group is dihedral, and, if so, we compute a minimal set of
generators with its explicit action on the set of roots.

Methods are already known for polynomials of prime degree [Jensen and Yui
1982] and of odd degree [Williamson 1990]. Here we consider the case of even de-
gree polynomials. For it, we provide a characterization of dihedral Galois groups,
based on the behavior of f related to a quadratic subfield K of its splitting field
and a certain prime number. The quadratic subfield must be determined in order
to decide whether the Galois group is dihedral. In the affirmative case, the roots
of f will be expressed as polynomials in a fixed root & and a primitive element of
K over Q. For computing K, we propose to transform f, after certain reductions,
into either a quartic or an odd degree polynomial whose splitting field contains K.
Such reductions are made from the nontrivial central elements of the Galois group.

In Section 2 we state the characterization of dihedral Galois groups, whereas
Section 3 is devoted to the algorithm that decides whether the group is dihedral.
Finally, in Section 4, we extend the results to groups of order 2n containing a cyclic
subgroup of order n, taking advantage of their similarity to dihedral groups.
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Since for every irreducible f € Q[x] there exists a monic and irreducible poly-
nomial in Z[x] with the same Galois group, we will assume throughout this paper
that f is monic and irreducible with integer coefficients.

From now on, we will denote by Gal f the Galois group of f over Q, whereas
Galg f will represent the Galois group over a number field K.

If n is the degree of f, we will consider Gal f as a permutation group of degree
n acting on the set of roots of f. By Ey we will denote the splitting field of f over
Q. If L is a subfield of E¢ and H is a subgroup of Gal f, then L is the subfield
of elements in L fixed by H. We denote by Oy the ring of integers of L and by
Z(H) the center of H.

2. Characterization of dihedral Galois groups

The dihedral group D,,, considered as a transitive subgroup of S,,, is generated by

o, T, where o is an n-cycle, T has order 2 and tot =0 .

Propositions 2.1 and 2.2 provide a characterization of dihedral Galois groups.

Proposition 2.1. Let f € Z[x] be a monic irreducible polynomial of degree n > 2
satisfying the following conditions:

() Ey has a quadratic subfield K = Q(/a ) for some squarefree a € Z.

(ii) f mod p is irreducible for some odd prime p € 7, and x> —a mod p splits:

xz—az(x—i—b)(x—i—c) mod p

with b, ¢ distinct modulo p.
(iii) There exists F € K|[x] such that

F(x) = A(Va+b)x? — A(Va+ox"" mod (p, f(x)),
where A = (b—c¢)~! mod p, and f(F(oz)) = 0 for some root a of f.
Then Gal f = D,,.
Proof. By condition (i) and the Fundamental Theorem of Galois Theory, Galk f
is a normal subgroup of Gal f of index 2.

Since f mod p is irreducible, a Frobenius automorphism o in Gal f over p is
an n-cycle. Let Q be a prime ideal in O, lying over p such that

o(u)=u” mod Q forevery u € Og,.

As x2—a mod p splits, o fixes K pointwise, so o is in Galg f. Therefore, Galy f
is transitive of degree n, and f is irreducible over K.

Also by condition (ii), ( p, »/a +b) and ( p, \/a + ¢) are the prime ideals in Og
lying over p. We assume without loss of generality that Q lies over ( p, /a +c).
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By condition (iii), F(x) =x? mod (p, v/a+c, f(x)). In particular,
F(a) =a” mod Q.

Then, F(x) —o(x) € Q. If F(a) # o(a), then the discriminant disc f lies in
ONZ = pZ,but f mod p is irreducible. Thus F (o) = o (). As o is an n-cycle,
the equality holds for every root of f, so o € Z(Galg f); see [Fernandez-Ferreirds
and Gomez-Molleda 2004]. Thus, Galg f = (o). Moreover, the order of Gal f is
2n. If 7 is a representative of the nontrivial class of Galg f in Gal f, then Q and
Q' =t Q are the prime ideals in Og ; over p. Then

tlot(u) =u” mod Q' forevery u € Ok,
and
(t 'ot)" N(u)=u”"" mod Q' for every u € O,.
Again by condition (iii), F(a) = a” " 'mod Q. Reasoning as above we have
F(a) = (t"'o1)" () for every root o of f. Thent~lor =0\
Finally, since o is an n-cycle, 7 is easily seen to have order 2. O

We state the converse of Proposition 2.1, strengthening the conditions:

Proposition 2.2. Let f € Z[x] be a monic irreducible polynomial of degree n > 2
such that Galg f = D,,.

(i) There exists a unique quadratic subfield K of Ey such that f is irreducible
over K and Galg f is cyclic.
In fact, K = EﬁfI> for every n-cycle o € D,,.
(i1) The proportion of integer primes p such that f is irreducible modulo p is
¢ (n)/2n, where ¢ is the Euler function.
If a is a squarefree integer such that K = Q(/a ), then for every odd prime
p under this condition, x> — a splits modulo p, that is,

xz—az(x—l—b)(x—i-c) mod p

for some b, ¢ € Z distinct modulo p.

(iii) There exists a unique polynomial F € K|[x] of degree smaller than n such that
F(a) is aroot of f for every root « of f, and

F(x) = A(Wa+b)x? — A(a+c)x?" mod (p, f(x)),
where A = (b —c¢)~! mod p.

Proof. Let o, T be generators of D, as a transitive subgroup of §,, where o is an

n-cycle, v has order 2 and tot =01,
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(i) (o) is the unique normal subgroup of index 2 in D,, that is cyclic and transitive
in S,,. The statement follows from the Fundamental Theorem of Galois Theory.

(ii) By the Chebotarev Density Theorem, the proportion of primes p such that
f mod p is irreducible is the proportion of n-cycles in the Galois group. The
number of n-cycles in D, is exactly ¢ (n).

Since f is irreducible modulo p, the Frobenius automorphisms over p are
n-cycles. Then they fix K pointwise, so x> — a splits modulo p whenever p does
not divide 4a, the discriminant of x> — a. If p is odd and p divides 4a, then p
divides a, so it divides the discriminant of Ok, and therefore p is ramified in Og.
This is a contradiction since p is unramified in Og,.

(iii) As stated above, the Frobenius automorphisms of E ; over p belong to (o). We
can assume without loss of generality that o is the Frobenius automorphism over
the prime ideal (p, «/a+b) in Ok. Thus, for the prime Q in Og, over (p, Ja+b),

o(u)=u’ mod Q forevery u € Of,,

since the norm of (p, «/a+b) is p. Its conjugate, "~ !, satisfies the corresponding
property for the other prime Q' over p:

0" '(u) =u” mod Q' forevery u € Oc,.

Thus,
o(u) = u”"" mod Q" forevery u € Og,.

By the Chinese Remainder Theorem and because pOg, = QQ’,

o) = A(Va+bu? — A(Va+cu”" mod p foreveryu € Og,.

On the other hand, since Galg f is cyclic and f is irreducible over K, the splitting
field of f over K is K («) for any root @ of f. Then o(«) € K[«], so there exists
a unique polynomial F € K[x] of degree smaller than n such that o (0) = F ().
Since Galg f is transitive and abelian, the equality holds for every root of f.

If F also satisfies the same conditions as F, then F(«)— F () e pOE f for every
root o of f. If F(a) # F(@), then disc f € pZ, which is impossible because f
has no multiple root modulo p. Since the degrees of both polynomials are smaller
than n, they must be equal. U

3. An algorithm to decide whether the Galois group is dihedral

We will describe an algorithm, based on the preceding characterization, to decide
whether the Galois group of a given monic irreducible polynomial f € Z[x] of even
degree n > 2 is dihedral, and to determine explicitly the group in the affirmative
case.
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Essentially, the algorithm consists in checking whether or not the polynomial
satisfies conditions (i)—(iii) in Proposition 2.1. In order to discuss condition (i), we
will first determine the center of the Galois group.

The center of the dihedral Galois group. If n is even, the center of D, has order
2. For determining the center, we use any odd prime p € Z such that f mod p
is irreducible; the proportion of such primes in the dihedral case, according to
Proposition 2.2, is ¢ (1) /2n.

Proposition 3.1. Let p be a prime such that f mod p is irreducible and o, € Gal f
is a Frobenius automorphism over p. Then Z(Gal f) C (o).

Kis central if and only if there exists H € Q[x] such that

Moreover, o »

H(x) = x”" mod (p, f@),

and, given any root o of f, H (&) is a root of f.

When allf is central, the polynomial H describes the action of alljz

H(x) = Gllj () for every root a of f.

Proof. This follows from the characterizations of Z(Gal f) given in [Fernandez-
Ferreirés and Gémez-Molleda 2004]. O

Lifting x”* up to a certain power of (p. f(x)) and checking if the polynomial
obtained permutes the roots of f, we determine the centrality of o*;f.

Construction of the quadratic subfield. We now show a procedure to either pro-
vide a quadratic subfield K of E s such that f is irreducible over K, or to conclude
that the Galois group is not dihedral. When the group is dihedral, K is precisely
the unique subfield in condition (i) of Proposition 2.2.

In [Williamson 1990], assuming that # is odd, it is proved that if the irreducible
factors of the resolvent R(x; — x;, f) are even polynomials of degree dividing 2n,
d is the independent coefficient of any of them and —d is not a square in @, then
Q(+/—d ) is a quadratic subfield of E £ otherwise the Galois group is not dihedral.

The method of C. J. Williamson is not applicable to even degree polynomials.
Next we solve the case of quartic polynomials, and give a procedure for reducing
the problem of even degree to either quartic or odd degree polynomials.

Lemma 3.2. Let f € Z[x] be a monic irreducible polynomial of degree 4.

(1) Gal f equals Dy if and only if the center of Gal f has order 2.
(2) If ((1,3)(2,4)) is the center of Dy, then Dy =((1,2,3,4), (1, 3)).

3) K = Eﬁf(l’z’3’4)> is a quadratic subfield with f irreducible over K.
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The proof is straightforward.

Once it is known that Gal f = D, one can quickly determine a primitive element
of E ¢, since E s is generated by two roots of f, and the number of subfields is only
8. If o =(1,2,3,4) and y is a primitive element of E , not every elementary sym-
metric function of {y, o(y),o(y), o3 (y)} is rational. Any of them not belonging
to Q is a primitive element of K.

If n > 4 is even, we will reduce successively the problem to polynomials of
smaller degree, which we call derived polynomials:

Definition 3.3. Let f € Z[x] be a monic irreducible polynomial of degree n, and
let o be a root of f. If there exists a nontrivial element t € Z(Gal f), let 8 be an
algebraic integer and primitive element of Q(e){" over Q, and let g € Z[x] be its
minimal polynomial. We call g a derived polynomial from f by t.

The degree of g is n/r, where r is the order of t. A proof can be found in
[Ferndndez-Ferreirés and Gémez-Molleda 2004] along with a simple procedure to
construct derived polynomials.

The following proposition provides a method to compute a quadratic subfield
K of E for a given polynomial f, or to conclude that Gal f is not dihedral:

Proposition 3.4. Let f € Z[x] be a monic irreducible polynomial of even degree
n > 4 such that Gal f = D,. If g is a derived polynomial from f by the central
element of order 2, then Galg = D> and Ejf) = E;‘ﬂ, where o and ¢ are an
n-cycle and an n/2-cycle in Gal f and Gal g, respectively.

Proof. Let D, = (o, 1) with O(6) =n, O(r) =2 and to7 = 6~'. The only
nontrivial central element in D,, is p = ¢"/?, whose order is 2.

Galg =D, /S = (0, T), where S = (p1, ..., pu2) N Dy, and py, ..., p,/2 are
the disjoint transpositions of p and &, T the classes of o and t, respectively. Since
0"/ € S and there is no other power of o of order 2, whereas every element of §
has order 2, we get O (o) =n/2.

We know that g is irreducible of degree n/2, so | Gal g| > n/2. Thus, |S| =2 or
4.If |S)=4,then Galg = (T) andToT=0.Buttor=c ',andoS #0o~'S
(otherwise n = 4). Therefore Gal g = D, 5.

As E, CEs,0 =0(p) and p fixes E, pointwise, we conclude that E(é,a - E}(’).
Both fields are quadratic over Q, so they must coincide. U

As a consequence of Proposition 3.4, if the Galois group of the given polynomial
is dihedral, the unique quadratic subfield in condition (i) of Proposition 2.2 is that
of any derived polynomial.

In general, if we get a derived polynomial of odd degree or degree 4 whose
Galois group is dihedral, its quadratic subfield K is also contained in E 'y, and we
have condition (i) in Proposition 2.1. Moreover, f is irreducible over K.
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End of the algorithm. Let p € Z be an odd prime such that f mod p is irreducible
(we have already obtained it for computing the center). If the Galois group is
dihedral, then x2 — a mod p splits by condition (ii) in Proposition 2.2: x> —a =
(x+b)(x+c) mod p. To check condition (iii) in Proposition 2.1, we use quadratic
Newton lifting, which allows the computation of F mod pzk up to any k.

Notice that F(x) = F|(x) + v/aF,(x) with Fy, F, € Q[x]. Thus it is simpler to
work in Q[x], and the Newton lifting in Q(4/a )[x] for the given polynomial is not
much harder than in Q[x].

Bounds are known on the coefficients of F, F; (a straightforward generalization
of the results in [Dixon 1990]). Thus, if the polynomial F in the required conditions
exists, it is easily determined from F mod pzk with k large enough.

Example 3.5. We consider the irreducible polynomial

Fx)=x04+15x2 —20x% +135x%0 —228 x%° + 895 x2* — 1080 x> +2010 x*?
—1870x2' — 2682 x%° — 840" + 6735 x'® — 66690 x'7 + 132855 x'6
—331936 x!° + 637515 x'* — 387270 x> 4 1466250 x'? — 1155870 x !
+ 82710 x'° — 2939470 x° — 129075 x® + 660750 x” + 2836550 x°
+ 1971960 x> + 1124850 x* + 280300 x> 4 42300 x% + 7500 x + 725.

We have checked that f remains irreducible mod 19. We compute the center, of
order 2, and obtain the derived polynomial

gx) =xP —15x% 413513 —755 x12 42550 x ' — 4290 x 10+ 2395 x° — 4875 x®
+39975 x”7 —74750 x0+33090 x° + 15675 x* —6950 x> — 1050 x> — 1500 x —725.

Since the degree of g is congruent to 3 mod 4, its discriminant is not a perfect
square, otherwise the Galois group is not dihedral. Precisely,

K =Q(y/discg) =Q(v/—15)

is a quadratic subfield of the splitting field of g, and therefore a quadratic subfield
of Er. Moreover,
x>+ 15=(x +2)(x + 17) mod 19.

It remains to check whether there exists a polynomial satisfying the third con-
dition in Proposition 2.1. By means of Newton lifting we obtain

F(x) = 78705199522740662980850936383320197413945663132536272567919488639 29+
T 34390727770780900149705596163521595177782209179717772991415373721887

+ 35163553259550871700540691155402908776210583552656812429856449486132

"""""" 4204509037807069297299430251966590006061147830749194817132287069447

+ 459064831991645893453417212014726453400732657762700729312997002459 i /15x29+
1341238383060455105838518250377342211933506158008993146665199575153593 :

+ 1079382284032767925968896625335769l05239400759039398027924136853840l- 15
"""" 783891515523351902886334453756482882485976714207476999804324707863 >

which transforms a root of f into another root.
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Therefore E; = Q(a, +/—15), where « is any root of f and Gal f is dihedral,
generated by o and t such that

o(l@)=F(a), t(@)=a, o-15)=+-15(v—15)=—-+/—15.

Example 3.6. Let f(x) = x'2+10x®+ 5, which is irreducible modulo 7.
A derived polynomial from f by the order 2 central element is

g1(x) =x%—10x3 +5.
The polynomial g; is also irreducible modulo 7, and
g(x) =x> =5

is a derived polynomial from g;. Then K = @(«/ disc g2 ) =Q(+/—3) is aquadratic
subfield of E ¢. Moreover,

x24+3=x+2)(x+5) mod 7.

However, the third condition in Proposition 2.1 is not satisfied (the polynomial
we obtain by Newton lifting does not permute the roots of f). Thus, by Proposi-
tions 2.2 and 3.4, Gal f is not dihedral.

Note. We could have stopped earlier, since Z(Gal f) has order 4. Nonetheless, it
is interesting to see that f “almost” satisfies every condition in Proposition 2.1:

F(x) = —%x+%\/—3x— %x7+%\/—3x7 € K|[x]
permutes the roots of f, and
F(x) =5(/=3+5x" —5(v=3+2)x" mod (7, £ ().

It follows from Proposition 4.1 below that Gal f has order 24 and is generated
by two elements o, T, where o is an n-cycle and ot~ = o°>. Moreover, E r=
Q(«, +/—3), where « is any root of f, and

oc@)=F@), t@=a oW=-3)=+v=-3, 1(v/-3)=-+v-3.

4. Groups of order 2r that contain a cyclic subgroup of order n

The characterization of dihedral Galois groups can be generalized to transitive
subgroups of S, of order 2n, containing an n-cycle.

Let G be one of these groups and o € G an n-cycle. Then there exists an integer
m such that 7~ lot = ¢” for every T € G — (o). Since there is no transitive abelian
subgroup of S, having order larger than n, we have m % 1 modulo .

The group G is determined by n and m mod n up to isomorphism, so we write
G = G(n, m). It is simple to prove that (m, n) = 1 and m?> = 1 mod n.
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See [Hwang et al. 2003] for a detailed and more general classification of these
groups, where they are not assumed to be subgroups of §,,.

Proposition 4.1. Let f € Z[x] be a monic irreducible polynomial of degree n > 2
satisfying the following conditions:

() Ef has a quadratic subfield K = Q(\/a) for some a € Z squarefree.

(i) f mod p is irreducible for some odd prime p € Z, and x> — a splits:

xz—az(x—i—b)(x—i—c) mod p

with b, c distinct modulo p.
(iii) There exists F € K|[x] such that

F(x) = A(Wa+b)x" — A(Va+o)x" mod (p, f(x)),
where A = (b —¢)~! mod p, and f(F(a)) = 0 for some root o of f.
Then Gal f = G(n, m).
Proof. The proof is essentially the same as for Proposition 2.1. O

The converse cannot be strengthened as far as for dihedral groups, since the case
8 |nand m = (n/2) + 1 is peculiar:

Proposition 4.2. Let f € Z[x] be a monic irreducible polynomial of degree n > 2
such that Galg f = G(n, m).
If84norm # (n/2)+ 1, then:

(1) There exists a unique quadratic subfield K of Ey such that f is irreducible
over K, and Galk f is cyclic.
In fact, K = E}‘ﬂfor every n-cycle o € G(n, m).

(i1) The proportion of integer primes p such that f is irreducible modulo p is
¢ (n)/2n. If a is a squarefree integer such that K = Q(\/a), then for every
odd prime p under this condition, x> — a splits modulo p, that is, x> —a =

(x +b)(x +¢) mod p for some b, c € Z distinct modulo p.

(iii) There exists a unique polynomial F € K|[x] of degree smaller than n such that
F(a) is aroot of f for every root « of f, and

F(x) = A(Wa+b)x? — A(Va+c)x”" mod (p, f(x)),
where A = (b —c¢)~! mod p.

If8 | nand m = (n/2) + 1, there exists more than one cyclic subgroup of order
n in G(n, m). Therefore the quadratic subfield satisfying conditions (1)—(iii) is not
unique. In such a case ¢ (n)/2n is the proportion of primes p such that f mod p
is irreducible, and x* — a splits modulo p for a given quadratic subfield Q(\/a).
For such primes, condition (iii) holds.
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Proof. It can be proved that a cyclic subgroup of G (n, m) of order n is generated by
an n-cycle. Therefore, it is enough to prove that there exist n-cycles o, T € G(n, m)
such that (o) # (t) if and only if 8 | n and m = (n/2) + 1. The rest is essentially
the same as for Proposition 2.2.

Let T & (o).

If t is an n-cycle and n is odd, then (7) = (t2) = (o). Assume then that n is
even,o = (0,1,...,n—1)and t(0) =a €{0, 1, ...,n — 1}. Since ot =o™,
we have t(i) =a+im mod n forevery i € {0,...,n—1}. For 1 <k <n,

1 . .
ska(m+ 1) mod n if k is even,
oy=1?

T(k+Da+3(k—1)am mod n  if k is odd.

If m < (n/2)+1, take k = 2(m — 1) < n. Since m*> = 1 mod n, we have t¥(0) =0,
and then t is not an n-cycle. When m > (n/2) + 1 the same reasoning works for
k =2(n —m+ 1). Suppose then that m = (n/2) 4+ 1 (which implies n = 0 mod 4)
and n # 0 mod 8, then m 4+ 1 = 0 mod 4. Taking k = n/2 we have 7¥(0) =0, and
again T is not an n-cycle.

When 8| n and m = (n/2)+1, we may take a = 1, and then 72 =g+ 1) =g +1,
Since 8 | n, we have ged(m + 1, n) = 2. Thus ¢ *! has order n/2. Since n/2 is
even and 72 has order n/2, we conclude that t has order n. O

The problem again is how to determine the quadratic subfield.

When 41 n or m # (n/2) + 1, we can determine, as in the dihedral case, an irre-
ducible polynomial g of degree smaller than n whose Galois group is the quotient
by the center. The quadratic subfield of E is that of E,.

When 4 | n and m = (n/2) + 1, such a polynomial does not exist. This is a con-
sequence of the following lemma, which provides an important relation between
the center and G (n, (n/2) + 1):

Lemma 4.3. Let G = G(n, m) and let o be any n-cycle in G.
(1) Z(G) equals ('), where i is the least positive integer such that
i(m—1)=0mod n.

(1) Z(G) is trivial if and only if n is odd and G is dihedral.
(iii) G/Z(G) is abelian < o?> € Z(G) < 4 |nand m = (n/2) + 1.
Proof. (1) It can be easily proved that Z(G) is a subgroup of (o) for every n-cycle

o € G. Now o' € Z(G) if and only if ¢/ = " lolt = (o)™ for any 7 & (o), if
and only if i =im mod n.
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(ii) Since m? = 1 mod n, we have 6”*! € Z(G). If Z(G) is trivial, then ¢!
is the identity and therefore m = —1 mod n, so G is dihedral of odd degree. The
converse is well-known.

(iii) The quotient G/Z(G) is abelian if and only if, for any t ¢ (o), tlotZ(G)=
0 Z(G). This is equivalent to o™ 1eZ(G), or yet to o2 € Z(G), because the proof
of (ii) showed that 0™ *! € Z(G)). Further, 6% € Z(G) <= 2(m — 1) = 0 mod n
(from the proof of (i)). Since 1 < m < n, this last condition is the same as m =
(n/2) + 1. This implies that n is even, so m is odd, which implies n/2 is even, so
4| n. O

Proposition 4.4. Let f € Z[x] be a monic irreducible polynomial of degree n >
2 such that Gal f = G(n,m) and Z(Gal f) is not trivial. Let g be a derived
polynomial from f by Z(Gal f). Then

Gal g = Gal f/Z(Gal f) & |Z(Gal f)| <n/2.

If|Z(Gal f)| < n/2, then Galg = G(n', m’), where n’ =n/|Z(Gal f)| and m" =
m mod n'. Moreover, E}(ﬂ = Eég), where o is an n-cycle in Gal f and o its class
in the quotient.

Proof. Assume that | Z(Gal f)| < n/2. Then Gal g = (Gal f)/S, where
S={peGalf:p(B)=p forevery B € E,} 2 Z(Gal f).
Let o be an n-cycle in Gal f. If % € §, then o* fixes
(x — cri(oz))(x — o (oz)) ... (x — o'Z(Galf)li(oz)),

and therefore o* € (o!) = Z(Gal f).

If S # Z(Gal f), then T € S for some 7 ¢ (o). Since T~lor = 0¢™ and S is
normal in Gal f, then 6! € §. Thus ¢! € Z(Gal f).

We refer to the proof of Lemma 4.3 to conclude that 02 € Z(Gal f), a contra-
diction. Therefore S = Z(Gal f).

Assume that Gal g = Gal f/Z(Gal f). If | Z(Gal f)| > n/2, then by Lemma 4.3
Gal f/Z(Gal f) is abelian. But then its order is

n
degg=
812Gl )|

a contradiction.
For the rest we refer to the proof of Proposition 3.4. O

Let f € Z[x] be a monic irreducible polynomial of degree n > 2. In order to
determine whether its Galois group is G (n, m) for some m, we propose to construct
a chain of derived polynomials up to a polynomial g whose Galois group has a
trivial center or |Z(Gal g)| = % degg.
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If Z(Gal g) is trivial, then either Gal f is not G(n, m) or, by Lemma 4.3, the
degree of g is odd and Gal g is dihedral. In this case, its unique quadratic subfield
K is computable [Williamson 1990] and, by Proposition 4.4, K is a quadratic
subfield of E .

If |Z(Gal g)| = % deg g, we assume that 4 | deg g, otherwise Gal f is not G (n, m)
by Lemma 4.3(c). Let p € Z(Gal g) be the order 2 element, and compute / a derived
polynomial from g by p. Since Galh is cyclic, all the roots of / are expressible
as polynomials in a fixed root y. Now, y € Q(B) for some root § of g. Since
| Gal g| > deg g, there must exist another root 8; of g such that

(x = Bi)(x — ppi) € Q(y)[x] C Q(B)[x]

is irreducible over Q(8), so Q(S, B;) has degree 2 deg g over Q.

We consider g the minimal polynomial of a primitive element of Q(8, B;) over
@, which is easily constructible from the p-adic expressions of 8 and S;, where
p is a prime such that g mod p has at least one linear factor, but does not split
completely. Notice that g and g have the same splitting field over Q.

Then compute a derived polynomial h from g by the whole center. It has degree
4 with Galois group Gal g/Z(Gal g), which is known to be abelian. If Gal f =
G(n, m), then Gal g = G(deg g, % degg+ 1). In these conditions, it is not difficult
to prove that Galh = Cy x Cy.

Now let p be a prime such that f is irreducible modp. Let 0, € Galh be
the Frobenius automorphism over p, which is the class of a certain n-cycle o in
Gal f. The derived polynomial from h by o), has degree 2. Its splitting field is

20” ' = E;(T), the quadratic subfield we are looking for.

It is important to choose p such that f mod p is irreducible, in order to avoid

problems with the nonuniqueness of the required quadratic subfields.

Example 4.5. We consider the irreducible polynomial

F)=xP4+16x" —28x8 — 1472 x17 — 2632 x'° + 51140 x
+151148 x4 — 782420 x'3 — 2812591 x'? + 4620332 x ! + 21703286 x'°
— 1147220 x° — 48329142 x® — 1527032 x " 4116408438 x° 480220212 x°
—3606076 x* — 7107004 x> + 150730188 x2 + 152657360 x + 149376809.

We have checked that Z(Gal f) has order 10, so m must be 11.

Since there is a central element of order 5 prime to 2, we can compute a derived
polynomial of degree 4 whose Galois group is of the same type and such that its
quadratic subfield is that of f. Such a polynomial is

g(x) = x* —16x% 4+ 96x% — 256x + 1506.
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Using its central element of order 2, we have computed a polynomial of degree
8 with the same splitting field:

h(x) = x® — 96 x7 4-4032 x® — 96768 x° + 1434020 x* — 13094592 x*
+ 68487552 x% — 165694464 x + 1043664196.
Constructing a derived polynomial by the center we obtain a quartic polynomial

and then a quadratic one whose splitting field is precisely the quadratic subfield
sought, Q(7). The polynomial

F(x)= —203657846929166631640254369287606596139803767697204 x19+
T 23760715438552464057848719335711299203856363538332256307507
_ 133191442385620997771967483976193957704236471999394299511252
"""""""""" 23760715438552464057848719335711299203856363538332256307507
+ 6152086964541718808900648055367126359050484928 ix]9+
1782098210346693471675445836324255546677894212730237479
_ 268301349420812722971881680384918728929034563047278584 -
""""""""""" 1782098210346693471675445836324255546677894212730237479

satisfies the third condition in Proposition 4.1.
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