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HAISHENG LI AND GAYWALEE YAMSKULNA

We continue the work in our earlier paper, “On certain vertex algebras
and their modules associated with vertex algebroids”, J. Algebra 283 (2005),
367–398, to construct and classify graded simple twisted modules for the N-
graded vertex algebras constructed by Gorbounov, Malikov and Schecht-
man from vertex algebroids. In addition, we determine the full automor-
phism groups of those N-graded vertex algebras in terms of the automor-
phism groups of the corresponding vertex algebroids.

1. Introduction

For most of the important examples of vertex operator algebras V =
∐

n∈Z V(n)
graded by the L(0)-weight [Frenkel et al. 1988], the Z-grading satisfies the condi-
tion V(n) = 0 for n < 0 and V(0) = C1, where 1 is the vacuum vector. For a vertex
operator algebra V with this special property, the homogeneous subspace V(1) has
a natural Lie algebra structure with [u, v] = u0v for u, v ∈ V(1) and the product
u1v (∈ V(0)) defines a symmetric invariant bilinear form on V(1).

A series of articles on gerbes of chiral differential operators [Gorbounov et al.
2004] and on chiral de Rham complexes [Malikov et al. 1998; 1999] have in-
vestigated N-graded vertex algebras V =

∐
n∈N V(n) with V(0) not necessarily 1-

dimensional. In this case, the bilinear operations (u, v) 7→ uiv for i ≥ 0 are closed
on V(0) ⊕ V(1):

uiv ∈ V(0) ⊕ V(1) for u, v ∈ V(0) ⊕ V(1), i ≥ 0.

The skew symmetry and the Jacobi identity for the vertex algebra V give rise to
several compatibility relations. Such algebraic structures on V(0)⊕V(1) are summa-
rized in the notion of what became known as a 1-truncated conformal algebra. The
subspace V(0) equipped with the product (a, b) 7→ a−1b is a commutative associa-
tive algebra with the vacuum vector 1 as the identity and V(0) as a nonassociative
algebra acts on V(1) by a · u = a−1u for a ∈ V(0), u ∈ V(1). All these structures on
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V(0) ⊕ V(1) are further summarized in the notion known as a vertex A-algebroid,
where A is a (unital) commutative associative algebra.

Gorbounov, Malikov and Schechtman also constructed in [Gorbounov et al.
2004], starting from any vertex A-algebroid, an N-graded vertex algebra

V =

∐
n∈N

V(n)

such that V(0) = A and the vertex A-algebroid V(1) is isomorphic to the given
one. All the N-graded vertex algebras constructed are generated by V(0) ⊕ V(1)
with a spanning property of PBW type. That work demonstrated that such N-
graded vertex algebras are natural and important to study. For example, the vertex
(operator) algebra associated with a βγ system, which plays a central role in free
field realization of affine Lie algebras (see [Wakimoto 1986; Feı̆gin and Frenkel
1988; 1990a; 1990b, Frenkel and Ben-Zvi 2001]), is such an N-graded vertex
algebra. The vertex (operator) algebras constructed from toroidal Lie algebras are
also of this type [Berman et al. 2002a; 2002b].

In [Li and Yamskulna 2005], we revisited those N-graded vertex algebras and we
classified all the N-graded simple modules in terms of simple modules for certain
Lie algebroids. In the theory of vertex algebras, in addition to the notion of module
we have the notion of twisted module and twisted modules play a very important
role, especially in the study of the so-called orbifold theory. Certainly, twisted
modules also play an important role in other studies. In this paper, we continue to
study the twisted modules for the N-graded vertex algebras associated with vertex
algebroids.

Let B be a vertex A-algebroid and let VB be the associated N-graded vertex
algebra. In this paper, we define a notion of automorphism of the vertex A-
algebroid B and we prove that any automorphism of the vertex A-algebroid B can
be extended uniquely to an automorphism of the N-graded vertex algebra VB and
that the full automorphism group of the N-graded vertex algebra VB is naturally
isomorphic to the full automorphism group of the vertex A-algebroid B. Let g be
an automorphism of the vertex A-algebroid B of order T (finite). Then the g-fixed
point A0 is a subalgebra of A and the g-fixed point B0 is a vertex A0-algebroid.
Furthermore, B0/A0∂A0 is a Lie A0-algebroid. It is proved that the category of
1
T N-graded simple g-twisted VB-modules is equivalent to a subcategory of simple
modules for the Lie A0-algebroid B0/A0∂A0.

This paper is organized as follows: In the next section we review the construction
of vertex algebras associated with vertex algebroids and we identify their automor-
phism groups with the automorphism groups of the vertex algebroids. In Section 3
we classify graded simple twisted modules.
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2. Preliminaries

We recall the notions of 1-truncated conformal algebra, vertex algebroid and Lie
algebroid, and we review the construction of the N-graded vertex algebra VB as-
sociated with a vertex A-algebroid B. We also define notions of (endomorphism)
automorphism of a 1-truncated conformal algebra and of a vertex A-algebroid B.
We then identify the group of grading-preserving automorphisms of VB with the
group of automorphisms of the vertex A-algebroid B.

First, we recall from [Gorbounov et al. 2004] (compare [Bressler 2002; 2003])
the notions of 1-truncated conformal algebra, vertex algebroid and Lie algebroid.

Definition 2.1. A 1-truncated conformal algebra is a graded vector space C =C0⊕

C1 equipped with a linear map ∂ : C0 → C1 and bilinear operations (u, v) 7→ uiv

for i = 0, 1 of degree −i − 1 on C such that the following axioms hold:

1. (Derivation) for a ∈ C0, u ∈ C1,

(∂a)0 = 0; (∂a)1 = −a0; ∂(u0a)= u0∂a

2. (Commutativity) for a ∈ C0, u, v ∈ C1,

u0a = −a0u; u0v = −v0u + ∂(v1u); u1v = v1u

3. (Associativity) for α, β, γ ∈ C0 ⊕ C1,

α0βiγ = βiα0γ + (α0β)iγ.

Remark 2.2. Let C = C0 ⊕ C1 be a 1-truncated conformal algebra and let ` be
any nonzero complex number. Set C[`] = C0 ⊕C1 as a vector space. We retain all
the structures on C except that we change the bilinear operation C1 × C1 → C0 :

u × v 7→ u1v by multiplying 1/` and change the linear operator ∂ by multiplying
`. Then one can show that C[`] is a 1-truncated conformal algebra.

Definition 2.3. Let A be a unital commutative associative algebra over C. A vertex
A-algebroid is a C-vector space 0 equipped with

1. a C-bilinear map

A ×0 → 0; (a, v) 7→ a ∗ v

such that 1 ∗ v = v for v ∈ 0,

2. a Leibniz C-algebra structure [ · , · ] : 0⊗C 0 → 0,

3. a homomorphism of Leibniz C-algebras π : 0 → Der(A),

4. a symmetric C-bilinear pairing 〈 · , · 〉 : 0⊗C 0 → A.

5. a C-linear map ∂ : A → 0 such that π ◦ ∂ = 0.
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All the following conditions are assumed to hold, for a, a′
∈ A, u, v, v1, v2 ∈ 0:

a ∗ (a′
∗ v)− (aa′) ∗ v = π(v)(a) ∗ ∂(a′)+π(v)(a′) ∗ ∂(a),

[u, a ∗ v] = π(u)(a) ∗ v+ a ∗ [u, v],

[u, v] + [v, u] = ∂(〈u, v〉),

π(a ∗ v)= aπ(v),

〈a ∗ u, v〉 = a〈u, v〉 −π(u)(π(v)(a)),

π(v)(〈v1, v2〉)= 〈[v, v1], v2〉 + 〈v1, [v, v2]〉,

∂(aa′)= a ∗ ∂(a′)+ a′
∗ ∂(a),

[v, ∂(a)] = ∂(π(v)(a)),

〈v, ∂(a)〉 = π(v)(a),

Proposition 2.4 [Li and Yamskulna 2005]. Let A be a unital commutative asso-
ciative algebra and let B be a module for A as a nonassociative algebra. Then a
vertex A-algebroid structure on B is equivalent to a 1-truncated conformal algebra
structure on C = A ⊕ B with

ai a′
= 0,

u0v = [u, v],

u1v = 〈u, v〉,

u0a = π(u)(a),

a0u = −u0a = −π(u)(a),

for a, a′
∈ A, u, v ∈ B, i = 0, 1, such that

a(a′u)− (aa′)u = (u0a)∂a′
+ (u0a′)∂a,

u0(av)− a(u0v)= (u0a)v,

u0(aa′)= a(u0a′)+ (u0a)a′,

a0(a′v)= a′(a0v),

(au)1v = a(u1v)− u0v0a,

∂(aa′)= a∂(a′)+ a′∂(a).

Definition 2.5. Let A be a unital commutative associative algebra. A Lie A-
algebroid is a Lie algebra g equipped with an A-module structure and a module
action on A by derivation such that

[u, av] = a[u, v] + (ua)v,

a(ub)= (au)b
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for u, v ∈ g and a, b ∈ A. A module for a Lie A-algebroid g is a vector space W
equipped with a g-module structure and an A-module structure such that

u(aw)− a(uw)= (ua)w,

a(uw)= (au)w

for a ∈ A, u ∈ g, w ∈ W .

Lemma 2.6 [Bressler 2003]. Let A be a unital commutative associative algebra
(over C) and let B be a vertex A-algebroid. Then B/A∂A is naturally a Lie A-
algebroid.

Next, we recall the construction of vertex algebras associated with vertex alge-
broids, following the exposition of [Li and Yamskulna 2005].

First, starting with a 1-truncated conformal algebra C = A ⊕ B we construct a
Lie algebra. Set

L(A ⊕ B)= (A ⊕ B)⊗ C[t, t−1
].

In the obvious way we define the subpaces L(A) and L(B). Set

∂̂ = ∂ ⊗ 1 + 1 ⊗ d/dt : L(A)→ L(A ⊕ B).

We define

deg(a ⊗ tn)= −n − 1 for a ∈ A, n ∈ Z,

deg(b ⊗ tn)= −n for b ∈ B, n ∈ Z,

making L(A ⊕ B) a Z-graded vector space. The linear map ∂̂ is homogeneous of
degree 1. Set

L = L(A ⊕ B)/∂̂L(A).

Define a bilinear product [ · , · ] on L(A ⊕ B) such that for a, a′
∈ A, b, b′

∈ B,
m, n ∈ Z,

[a ⊗ tm, a′
⊗ tn

] = 0,(2-1)

[a ⊗ tm, b ⊗ tn
] = a0b ⊗ tm+n,(2-2)

[b ⊗ tn, a ⊗ tm
] = b0a ⊗ tm+n,(2-3)

[b ⊗ tm, b′
⊗ tn

] = b0b′
⊗ tm+n

+ m(b1b′)⊗ tm+n−1.(2-4)

Proposition 2.7 [Li and Yamskulna 2005]. Let C = A⊕B be a 1-truncated confor-
mal algebra. The subspace ∂̂L(A) of the nonassociative algebra

(
L(A⊕B), [ · , · ]

)
is a two-sided ideal. The quotient nonassociative algebra L is a Z-graded Lie
algebra.
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Let ρ be the projection map from L(A ⊕ B) to L. For u ∈ A ⊕ B and n ∈ Z, set

u(n)= ρ(u ⊗ tn)= u ⊗ tn
+ ∂̂L(A) ∈ L.

We have graded Lie subalgebras

L≥0
= ρ((A ⊕ B)⊗ C[t]),

L<0
= ρ((A ⊕ B)⊗ t−1C[t−1

])

and we have L = L≥0
⊕ L<0 as a vector space.

Considering C as a trivial L≥0-module we form the induced module

VL = U (L)⊗U (L≥0) C.

We assign deg C = 0, making VL naturally an N-graded L-module:

VL =

∐
n∈N

(VL)(n).(2-5)

Throughout this paper, N denotes the set of nonnegative integers. Set

1 = 1 ⊗ 1 ∈ VL.

By the P-B-W theorem, we have VL = U (L<0)= S(L<0). In view of this, we can
and we do consider A ⊕ B as a subspace:

A ⊕ B → VL; u 7→ u(−1)1.

Theorem 2.8 ([Li and Yamskulna 2005]; compare [Dong et al. 2002]). There
exists a unique vertex algebra structure on VL with 1 as the vacuum vector and
with Y (u, x)=

∑
n∈Z u(n)x−n−1 for u ∈ A ⊕ B. Moreover, the vertex algebra VL

is naturally an N-graded vertex algebra and is generated by the subspace A ⊕ B
with A of degree 0 and B of degree 1.

Remark 2.9. For n ∈ Z, set

A(n)= {a(n) | a ∈ A}, B(n)= {b(n) | b ∈ B} ⊂ L,

and we set

B(−)=

∞∐
n=1

B(−n)⊂ L.

Both A(−1) and B(−) are Lie subalgebras of L<0 and we have L<0
= A(−1)⊕

B(−) as a vector space. Then

VL = U (L<0)= S(L<0)= S(A(−1)⊕ B(−))= S(B(−))⊗ S(A(−1)).

Consequently, (VL)(n)= S(B(−))(n)⊗S(A(−1)) for n ∈N. In particular, (VL)(0)=

S(A(−1)).
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Now, we assume that A is a unital commutative associative algebra with identity
e and that B is a vertex A-algebroid. Thus C = A ⊕ B is a 1-truncated conformal
algebra. We set

E = span{e − 1, a(−1)a′
− aa′, a(−1)b − ab | a, a′

∈ A, b ∈ B} ⊂ VL,

IB = U (L)C[D]E .

It was proved in [Li and Yamskulna 2005] that the L-submodule IB of VL is a
two-sided graded ideal of the N-graded vertex algebra VL. The N-graded vertex
algebra VB associated with the vertex A-algebroid B is defined to be the quotient
vertex algebra

VB = VL/IB .(2-6)

Proposition 2.10 [Gorbounov et al. 2004; Li and Yamskulna 2005]. Let A be
a unital commutative associative algebra with identity e and let B be a vertex A-
algebroid. Then VB is an N-graded vertex algebra such that (VB)(0)= A, (VB)(1)=

B and for n ≥ 1,

(VB)(n) = span{b1(−n1) · · · bk(−nk)1 | bi ∈ B, n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,

n1 + · · · + nk = n}.

In particular, VB is generated by the subspace A ⊕ B.

Next, we discuss homomorphisms and automorphisms for 1-truncated confor-
mal algebras, vertex A-algebroids and for the N-graded vertex algebras VB .

Definition 2.11. Let C = A ⊕ B and C ′
= A′

⊕ B ′ be 1-truncated conformal
algebras. A homomorphism from C to C ′ is a linear map f : C → C ′ such that
f (A)⊂ A′, f (B)⊂ B ′, f ∂ = ∂ f , and such that

f (uiv)= f (u)i f (v)

for u, v ∈ C and i = 0, 1.

Lemma 2.12. Let f be an endomorphism of a 1-truncated conformal algebra
C = A ⊕ B. Then the linear endomorphism of L(A ⊕ B) defined by

f̂ (u ⊗ tn)= f (u)⊗ tn(2-7)

for u ∈ A ⊕ B and n ∈ Z gives rise to an endomorphism of L, which we denote by
f̂ again. Furthermore, f̂ preserves the Z-grading of L.

Proof. Using the property that f ∂ = ∂ f , we have f̂ ∂̂ = ∂̂ f̂ . For u, v ∈ C = A⊕ B,
as f (uiv)= f (u)i f (v) for i = 0, 1, from (2-1)–(2-4) we have

f̂
(
[u ⊗ tm, v⊗ tn

]
)
= [ f (u)⊗ tm, f (v)⊗ tn

] = [ f̂ (u ⊗ tm), f̂ (v⊗ tn)].
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Thus f̂ gives rise to an endomorphism of the Lie algebra L. It is clear that f̂
preserves the Z-grading. �

Definition 2.13. Let A and A′ be unital commutative associative algebras and let
B be a vertex A-algebroid, B ′ a vertex A′-algebroid. A vertex algebroid homomor-
phism from B to B ′ is a linear map f : A⊕ B → A′

⊕ B ′ such that f (A)⊂ A′, and
f (B)⊂ B ′ and such that

1. f |A is an associative algebra homomorphism.

2. f |B is a Leibniz algebra homomorphism.

3. f (ab)= f (a) f (b) for a ∈ A and b ∈ B.

4. 〈 f (u), f (v)〉 = f (〈u, v〉) for u, v ∈ B.

5. f ◦ ∂ = ∂ ◦ f .

6. f (b0a)= f (b)0 f (a) for a ∈ A and b ∈ B.

An automorphism of a vertex A-algebroid B is a bijective vertex algebroid endo-
morphism of the vertex A-algebroid B.

Let (V, Y, 1) be a vertex algebra. An endomorphism of V is a linear map g :

V → V such that

g(1)= 1,(2-8)

g(Y (u, x)v)= Y (g(u), x)g(v)(2-9)

for u, v ∈ V . An automorphism of V is a bijective endomorphism of V . The
group of automorphisms of V is denoted by Aut(V ). If V =

∐
m∈Z V(m) is a Z (or

N)-graded vertex algebra, we denote by Aut0(V ) the group of grading-preserving
automorphisms of V .

Lemma 2.14. Let B be a vertex A-algebroid and let g be a grading-preserving
automorphism of the vertex algebra VB . Then g restricted to A⊕ B is an automor-
phism of the vertex A-algebroid B.

Proof. As (VB)(0) = A and (VB)(1) = B, g is a linear bijection on A ⊕ B that
preserves the subspaces A and B. For a, a′

∈ A and b, b′
∈ B, we have

g(aa′)= g(a(−1)a′)= g(a)−1g(a′)= g(a)g(a′),

g(ab)= g(a(−1)b)= g(a)−1g(b)= g(a)g(b),

g([b, b′
])= g(b0b′)= g(b)0g(b′)= [g(b), g(b′)],

g(〈b, b′
〉)= g(b1b′)= g(b)1g(b′)= 〈g(b), g(b′)〉,

g(b0a)= g(b)0g(a),

g(∂(a))= g(a(−2)1)= g(a)−21 = ∂(g(a)).

Thus g is an automorphism of vertex A-algebroid B. �
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On the other hand, we are going to prove that any automorphism of a vertex A-
algebroid B extends uniquely to an automorphism of the N-graded vertex algebra
VB . First we have:

Lemma 2.15. Let C = A ⊕ B be a 1-truncated conformal algebra and let g be an
endomorphism of C. Then g extends uniquely to an endomorphism of the N-graded
vertex algebra VL. Furthermore, if g is an automorphism, then the extension is an
automorphism.

Proof. Since A ⊕ B generates VL as a vertex algebra, the uniqueness is clear. It
remains to prove the existence. By Lemma 2.12, we have a grading-preserving
endomorphism ĝ of the Lie algebra L, hence a grading-preserving endomorphism
of the universal enveloping algebra U (L). Clearly, ĝ preserves the Lie subalgebra
L<0 and its universal enveloping algebra U (L<0). It follows from the construction
of VL that there exists a linear endomorphism ḡ of VL such that ḡ(1)= 1 and

ḡ(unv)= g(u)n ḡ(v)

for u ∈ A ⊕ B, v ∈ VL, n ∈ Z. Since VL is generated by A ⊕ B, it follows form
[Lepowsky and Li 2004] that ḡ is an endomorphism of VL. Clearly ḡ extends g.

If g is an automorphism of the 1-truncated conformal algebra C = A ⊕ B,
from the first assertion we have vertex algebra endomorphisms ḡ and g−1 of VL,
extending g and g−1, respectively. Since gg−1

= g−1g = 1 on A ⊕ B and since
A ⊕ B generates VL as a vertex algebra, we have ḡg−1 = g−1ḡ = 1. Thus, ḡ is an
automorphism of VL. �

Proposition 2.16. Let g be an endomorphism of a vertex A-algebroid B. Then
g extends uniquely to an endomorphism of VB as an N-graded vertex algebra.
Furthermore, if g is an automorphism, then the extension is an automorphism.

Proof. The uniqueness is clear, as A ⊕ B generates VB as a vertex algebra. For
the existence, first by Lemma 2.15, we have a grading-preserving endomorphism
ḡ of the vertex algebra VL, extending g. Now we show that ḡ reduces to an endo-
morphism of VB . Recall that VB = VL/IB , where IB is the two-sided ideal of VL,
generated by

E = span{e − 1, a(−1)a′
− aa′, a(−1)b − ab | a, a′

∈ A, b ∈ B}.

Now, we must prove ḡ(IB)⊂ IB . As E generates IB as a two-sided ideal, it suffices
to prove that ḡ(E)⊂ E . Let a, a′

∈ A, b ∈ B. We have

ḡ(e − 1)= e − 1 ∈ E,

ḡ(a(−1)a′
− aa′)= g(a)(−1)g(a′)− g(a)g(a′) ∈ E,

ḡ(a(−1)b − ab)= g(a)(−1)g(b)− g(a)g(b) ∈ E .
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This proves ḡ(E)⊂ E . Therefore, ḡ reduces to an endomorphism of the N-graded
vertex algebra VB . The second assertion follows immediately from the proof of
the second assertion of Lemma 2.15. �

Combining Lemma 2.14 with Proposition 2.16, we have:

Theorem 2.17. Let A be a unital commutative associative algebra and let B be a
vertex A-algebroid. The group Aut0(VB) of grading-preserving automorphisms of
the N-graded vertex algebra VB is isomorphic to the group of automorphisms of
vertex A-algebroid B with the restriction map as an isomorphism.

3. Classification of graded simple twisted VB-modules

In this section we construct and classify graded simple twisted VB-modules by
exploiting a twisted analogue of the Lie algebra L. First, we recall the definition of
the notion of twisted module for a vertex algebra and we discuss several properties
of twisted modules.

Let V be a vertex algebra and let g be an automorphism of V of order T <∞.
Decompose V into eigenspaces of g:

V =

T −1∐
r=0

V r , where V r
= {v ∈ V | g(v)= e2rπ

√
−1/T v}.

A g-twisted V -module [Lepowsky 1985; Frenkel et al. 1988; Feingold et al.
1991; Dong 1994] is a vector space M equipped with a linear map

YM : V → (End M)[[x1/T , x−1/T
]],

u 7→ YM(u, x)=

∑
n∈(1/T )Z

unx−n−1

satisfying the following conditions:

1. For u ∈ V , w ∈ M , we have unw = 0 for n ∈
1
T Z sufficiently large.

2. YM(1, x)= 1M (the identity operator on M).

3. For u ∈ V r with 0 ≤ r ≤ T − 1,

YM(u, x)=

∑
n∈(r/T )+Z

unx−n−1
∈ x−r/T (End M)[[x, x−1

]].(3-1)

4. For u ∈ V r with 0 ≤ r ≤ T − 1, v ∈ V ,

(3-2) x−1
0 δ

( x1−x2
x0

)
YM(u, x1)YM(v, x2)− x−1

0 δ
( x2−x1

−x0

)
YM(v, x2)YM(u, x1)

= x−1
2

( x1−x0
x2

)−r/T
δ
( x1−x0

x2

)
YM(Y (u, x0)v, x2)

(the twisted Jacobi identity).
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Remark 3.1. Let (M, YM) be a g-twisted V -module and let U be any vertex
subalgebra of V 0. Then M is a U -module. Thus, if g is taken to be the identity
map, the notion of g-twisted V -module reduces to that of V -module while the
twisted Jacobi identity reduces to the ordinary (untwisted) Jacobi identity.

Lemma 3.2 ([Dong et al. 1998]; compare [Dong et al. 1997]). Let (M, YM) be a
g-twisted V -module. Then

YM(Dv, x)=
d

dx
YM(v, x)(3-3)

for v ∈ V , where Dv = v−21.

Remark 3.3. For v ∈ V , u ∈ V r , p ∈ Z and s, t ∈ Q, extracting the coefficients of
z−p−1

0 z−s−1
1 z−t−1

2 from the twisted Jacobi identity (3-2) we get

(3-4)
∑
m≥0

(
s
m

)
(u p+mv)s+t−m

=

∑
m≥0

(−1)m
(

p
m

)
{u p+s−mvt+m − (−1)pvp+t−mus+m}.

By taking Resx0 of (3-2), we obtain the twisted commutator formula:

(3-5) [YM(u, x1), YM(v, x2)]

= Resx0 x−1
2

(
x1 − x0

x2

)−r/T

δ

(
x1 − x0

x2

)
YM(Y (u, x0)v, x2).

Multiplying (3-2) by
( x1−x0

x2

)r/T
and then taking Resx1 , we obtain the twisted

iterate formula:

YM(Y (u, x0)v, x2)= Resx1

(
x1 − x0

x2

)r/T

· X,

where

X = x−1
0 δ

(
x1 − x2

x0

)
YM(u, x1)YM(v, x2)−x−1

0 δ

(
x2 − x1

−x0

)
YM(v, x2)YM(u, x1).

From the twisted Jacobi identity one has the following twisted weak associativity:
For u ∈ V r with 0 ≤ r ≤ T − 1 and for v ∈ V , w ∈ W ,

(x0 + x2)
k+(r/T )YM(u, x0 + x2)YM(v, x2)w= (x2 + x0)

k+(r/T )YM(Y (u, x0)v, x2)w

where k is a nonnegative integer such that xk+(r/T )YM(u, x)w ∈ M[[x]]. One can
prove, as in [Li 1996, Lemma 2.8] that the twisted Jacobi identity is equivalent to
the twisted commutator formula and the twisted weak associativity.
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Let M be a g-twisted V -module. For a subset U of M , denote the smallest
g-twisted V -submodule containing U by 〈U 〉, which is called the g-twisted V -
submodule generated by U . Just as with untwisted modules, from the twisted
weak associativity, we have

〈U 〉 = span{vnw | v ∈ V, n ∈
1
T Z, w ∈ U }.

We define

(3-6) AnnV (U )= {v ∈ V | Y (v, x)w = 0 for w ∈ U },

the annihilator of U in V .

Proposition 3.4. For any subset U of a g-twisted V -module M , the annihilator
AnnV (U ) is an ideal of V . Moreover,

AnnV (U )= AnnV (〈U 〉).

Proof. This follows from the proof of [Lepowsky and Li 2004, Proposition 4.5.11],
with weak associativity and weak commutativity replaced by twisted associativity
and twisted commutativity. �

Let S be a subset of V . Define

AnnM(S)= {w ∈ M | YM(v, x)w = 0 for v ∈ S},

the annihilator of S in M . We follow [Lepowsky and Li 2004]. By suitably modify-
ing the proof of Proposition 4.5.14 of that reference, replacing weak commutativity
by twisted commutativity and replacing Proposition 4.5.11 by Proposition 3.4 of
the present work, we have:

Proposition 3.5. For a subset S of V , the annihilator AnnM(S) is a g-twisted
V -submodule of M. Furthermore,

AnnM(S)= AnnM(〈S〉).

Here 〈S〉 is the ideal of V generated by S.

Lemma 3.6 [Li 1996, Lemma 2.11]. Let V be a vertex algebra with an automor-
phism g of order T and let a ∈ V k and b, u0, . . . , ur

∈ V with 0 ≤ k ≤ T − 1.
If

[Y (a, x1), Y (b, x2)] =

r∑
j=0

1
j !

Y (u j , x2)

(
∂

∂x2

) j

x−1
1 δ

(
x2

x1

)
acting on V , then for any g-twisted V -module (M, YM) we have

[YM(a, x1), YM(b, x2)] =

r∑
j=0

1
j !

YM(u j , x2)

(
∂

∂x2

) j

x−1
1 δ

(
x2

x1

) (
x2

x1

)k/T
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acting on M. On the other hand, the converse is also true for any faithful g-twisted
V -module (M, YM).

Definition 3.7. Let V =
∐

m∈Z V(m) be a Z-graded vertex algebra. A 1
T N-graded

g-twisted V -module is a g-twisted V -module M equipped with a 1
T N-grading

M =

∐
n∈(1/T )N

M(n)

such that
vm M(n)⊂ M(n + p − m − 1)

for v ∈ V(p) and m, n ∈
1
T Z with p ∈ Z.

Next, we study 1
T N-graded g-twisted modules for the N-graded vertex algebra

VB associated to a vertex A-algebroid B, where g is an automorphism of order T <
∞ of the N-graded vertex algebra VB and of the vertex A-algebroid B (compare
Theorem 2.17).

Noticing that A ⊕ B is a 1-truncated conformal algebra, we start with a general
1-truncated conformal algebra C = C0 ⊕C1 with an automorphism g of C of order
T <∞. Associated with the 1-truncated conformal algebra C = C0 ⊕C1 we have
the Lie algebra L(C) and the vertex algebra VL(C) with C as a generating subspace.
In view of Lemma 2.15 g is an order-T automorphism of the vertex algebra VL(C).

Lemma 3.8 ([Dong et al. 1998]; compare [Borcherds 1986]). Let V be a vertex
algebra and let T be a positive integer. Set

LT (V )= V ⊗ C[t1/T , t−1/T
],(3-7)

a vector space, and set

∂̂ = D ⊗ 1 + 1 ⊗
d
dt
,

a linear operator on LT (V ). The bilinear (multiplicative) operation on LT (V ),
defined by

[u ⊗ tm, v⊗ tn
] =

∑
i≥0

(
m
i

)
(uiv⊗ tm+n−i )(3-8)

for u, v ∈ V , m, n ∈
1
T Z, gives rise to a Lie algebra structure on LT (V )/∂̂LT (V ),

which is denoted by L(V, T ). Furthermore, any order-T automorphism g of C
gives rise to an order-T automorphism, also denoted by g, of L(V, T ), where

g(v⊗ tn)= e−2nπ
√

−1(gv⊗ tn)(3-9)

for v ∈ V and n ∈
1
T Z.
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Specializing Lemma 3.8 with V = VL(C), we have a Lie algebra L(VL(C), T )
and an automorphism g. For u ∈ C and m ∈

1
T Z, denote by u(m) the canonical

image of u ⊗ tm in L(VL(C), T ). We have

(∂a)(m)= −ma(m − 1),

[u(m), v(n)] =

1∑
i=0

(
m
i

)
(uiv)(m + n − i)

for a ∈ C0, u, v ∈ C and m, n ∈
1
T Z. Because uiv ∈ C for u, v ∈ C and i ≥ 0,

we see that the u(m), for u ∈ C and m ∈
1
T Z, span a Lie subalgebra L(C, T ) of

L(VL(C), T ). Denote by L(C, g) the g-fixed point Lie subalgebra:

L(C, g)= L(C, T )g.

Using Lemma 3.8 we immediately have:

Proposition 3.9. Let C = C0 ⊕ C1 be a 1-truncated conformal algebra and let g
be an order-T automorphism of C. Then

L(C, g)= L(C, g)/∂̂L(C0, g),

as a vector space, where

L(C, g)=

T −1∐
r=0

Cr
⊗ tr/T C[t, t−1

],

L(C0, g) is a subspace defined in the obvious way, and ∂̂ is given by

∂̂ = ∂ ⊗ 1 + 1 ⊗ d/dt : L(C0, g)→ L(C, g).

For u ∈ Cr with 0 ≤ r ≤ T − 1 and for n ∈ Z, denote by u(n + r/T ) the canonical
image of u ⊗ tn+r/T in L(C, g). Then the following relations hold for a ∈ Cr

0 ,
a′

∈ Cr ′

0 , b ∈ C s
1, b′

∈ C s′

1 , m, n ∈ Z:

(∂a)
(

m +
r
T

)
= −

(
m +

r
T

)
a
(

m − 1 +
r
T

)
,[

a
(

m +
r
T

)
, a′

(
n +

r ′

T

)]
= 0,(3-10) [

a
(

m +
r
T

)
, b

(
n +

s
T

)]
= (a0b)

(
m + n +

r +s
T

)
,(3-11) [

b
(

m +
s
T

)
, b′

(
n +

s ′

T

)]
= (b0b′)

(
m + n +

s+s ′

T

)
(3-12)

+

(
m +

s
T

)
(b1b′)

(
m + n +

s+s ′

T
− 1

)
.
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We define

deg a(n + r/T )= −n − 1 for a ∈ Cr
0, n ∈ Z,

deg b(n + r/T )= −n for b ∈ Cr
1, n ∈ Z,

making L(C, g) a 1
T Z-graded Lie algebra. For n ∈

1
T Z, denote by L(C, g)(n) the

degree-n subspace. We have the following triangular decomposition

L(C, g)= L(C, g)+ ⊕ L(C, g)(0) ⊕ L(C, g)−,

where L(C, g)± =
∐

0<n∈
1
T Z L(C, g)(±n). Notice that L(C, g)(0) is spanned by the

elements a(−1), b(0) for a ∈ C0
0 and b ∈ C0

1 .
For u ∈ Cr with 0 ≤ r ≤ T − 1, form the generating function

u(x)=

∑
n∈

r
T +Z

u(n)x−n−1
∈ L(C, g)[[x1/T , x−1/T

]].(3-13)

For any L(C, g)-module W, consider u(x) as an element of (End W )[[x1/T, x−1/T
]],

which we denote by uW (x):

uW (x)= u(x)=

∑
n∈(1/T )Z

u(n)x−n−1
∈ (End W )[[x1/T , x−1/T

]].(3-14)

Lemma 3.10. The commutation relations (3-10)–(3-12) amount to the following
relations in terms of generating functions:

[a(x1), a′(x2)] = 0,(3-15)

[a(x1), b′(x2)] = x−1
2

(
x1

x2

)−r/T

δ

(
x1

x2

)
(a0b′)(x2),(3-16)

[b(x1), b′(x2)] = x−1
2

(
x1

x2

)−r/T

δ

(
x1

x2

)
(b0b′)(x2)(3-17)

+(b1b′)(x2)
∂

∂x2
x−1

2

(
x1

x2

)−r/T

δ

(
x1

x2

)
for a ∈ Cr

0 , b ∈ Cr
1 , a′

∈ C0, and b′
∈ C1. Moreover, we have

(∂a)(x)=
d

dx
a(x) for a ∈ C0.

From these relations we immediately have:

Corollary 3.11. For a, a′
∈ C0 and b, b′

∈ C1,

[a(x1), a′(x2)] = 0,

(x1 − x2)[a(x1), b(x2)] = 0,

(x1 − x2)
2
[b(x1), b′(x2)] = 0.
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Definition 3.12. An L(C, g)-module W is said to be restricted if for any w ∈ W
and u ∈ Cr with 0 ≤ r ≤ T − 1, u(n + r/T )w = 0 for n ∈ Z sufficiently large, that
is, uW (x) ∈ Hom(W,W ((x1/T ))) for u ∈ C .

The following result is analogous to a result of [Li 1996] for twisted affine Lie
algebras:

Proposition 3.13. Let C =C0⊕C1 be a 1-truncated conformal algebra and let g be
an automorphism of VL(C) of order T , which is extended from an automorphism of
C. Every g-twisted VL(C)-module W is naturally a restricted L(C, g)-module with
uW (x) = YW (u, x) for u ∈ C. Moreover, the set of g-twisted VL(C)-submodules
of W is precisely the set of L(C, g)-submodules of W . On the other hand, for
any restricted L(C, g)-module W , there exists a unique g-twisted VL(C)-module
structure YW on W such that

YW (u, x)= uW (x) for u ∈ C = C0 ⊕ C1 ⊂ VL(C).(3-18)

Proof. On the vertex algebra VL(C), the following relations hold for a, a′
∈ C0 and

b, b′
∈ C1:

[Y (a, x1), Y (a′, x2)] = 0,

[Y (a, x1), Y (b′, x2)] = x−1
2 δ

(
x1

x2

)
Y (a0b′, x2),

[Y (b, x1), Y (b′, x2)] = x−1
2 δ

(
x1

x2

)
Y (b0b′, x2)+ Y (b1b′, x2)

∂

∂x2
x−1

2 δ

(
x1

x2

)
.

From Lemmas 3.6 and 3.10, every g-twisted VL(C)-module W is naturally a re-
stricted L(C, g)-module with uW (x)= YW (u, x) for u ∈ C . As C generates VL(C)

as a vertex algebra, the set of g-twisted VL(C)-submodules of W is precisely the
set of L(C, g)-submodules of W .

Let S = span{uW (x) | u ∈ C}. In view of Corollary 3.11, S is a local subspace of
Hom(W,W ((x1/T ))). Note that Hom(W,W ((x1/T ))) is naturally Z/T Z-graded:

Hom(W,W ((x1/T )))=

T −1∐
r=0

xr/T Hom(W,W ((x))),

and that S is a graded subspace.
Let σT be the linear automorphism of Hom(W,W ((x1/T ))) defined by

σT (α(x))= e−2rπ
√

−1/Tα(x)

for α(x) ∈ xr/T Hom(W,W ((x))) with 0 ≤ r ≤ T − 1; compare (3-1).
S generates a vertex algebra 〈S〉 inside Hom(W,W ((x1/T ))) [Li 1996] with the

identity operator 1W as the vacuum vector and with σT as an automorphism. W is
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naturally a faithful σT -twisted 〈S〉-module with YW (α(x), x0) = α(x0). With the
relations (3-15)-(3-17), by Lemma 3.6, we have

[Y (aW (x), x1), Y (a′

W (x), x2)] = 0,

[Y (aW (x), x1), Y (b′

W (x), x2)] = x−1
2 δ

(
x1
x2

)
Y ((a0b′)W (x), x2),

[Y (bW (x), x1), Y (b′

W (x), x2)] = x−1
2 δ

(
x1
x2

)
Y ((b0b′)W (x), x2)

+ Y ((b1b′)W (x), x2)
∂

∂x2
x−1

2 δ

(
x1

x2

)
for a ∈ Cr

0 , b ∈ Cr
1 , a′

∈ C0, and b′
∈ C1. We also have

Y ((∂a)W (x), x1)= Y
(

d
dx

aW (x), x1

)
=

∂

∂x1
Y (aW (x), x1)

for a ∈ A. By Lemmas 3.6 and 3.10, 〈S〉 is naturally an L(C)-module with
u〈S〉(x1) = Y (uW (x), x1) for u ∈ C . Furthermore, 〈S〉 as an L(C)-module is gen-
erated by 1W and we have uW (x)n1W = 0 for u ∈ C , n ≥ 0. From the construction
of VL(C) as an L(C)-module, there exists a unique L(C)-module homomorphism
ψ from VL(C) to 〈S〉, sending 1 to 1W . As VL(C) as a vertex algebra is generated
by C , ψ is a vertex algebra homomorphism. We have

ψ(u)= ψ(u(−1)1)= uW (x)−11W = uW (x)

for u ∈ C . It is clear that ψ(Cr )⊂ Sr for 0 ≤ r ≤ T − 1. As C generates VL(C) as
a vertex algebra, ψ preserves the Z/T Z-gradings, i.e., σTψ = ψg. Consequently,
W is a g-twisted VL(C)-module. �

For the rest of this paper, we assume that A is a unital commutative associative
algebra whose identity is denoted by e and B is a vertex A-algebroid and we as-
sume that g ∈ Aut0(VB) with o(g)= T <∞. Recall that C = A ⊕ B is naturally a
1-truncated conformal algebra. An L(C, g)-module of level k ∈ C is an L(C, g)-
module on which e(−1) acts as scalar k.

Immediately from Proposition 3.13 we have:

Proposition 3.14. Every g-twisted VB-module is naturally a restricted L(C, g)-
module of level 1. Moreover, the set of g-twisted VB-submodules is precisely the
set of L(C, g)-submodules.

We have the following decompositions into g-eigenspaces:

VB =

T −1∐
r=0

V r
B, A =

T −1∐
r=0

Ar , B =

T −1∐
r=0

Br .
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Clearly, A0 is a subalgebra of A, containing the identity, and B0 is a vertex A0-
algebroid. Furthermore, by Lemma 2.6, B0/A0∂A0 is a Lie A0-algebroid. Set

I =

T −1∑
r=1

Ar
· AT −r

⊂ A0.

It is clear that I is a two-sided ideal of A0, so that A0/I is a unital commutative
associative algebra. Furthermore, B0/(I · B0

+ A0∂A0) is a Lie A0/I -algebroid.

Proposition 3.15. Let M=
∐

n∈(1/T )N M(n) be a 1
T N-graded g-twisted VB-module.

Then M(0) is a module for the Lie A0-algebroid B0/A0∂A0 with

a ·w = a−1w for a ∈ A0, w ∈ M(0),

b ·w = b0w for b ∈ B0, w ∈ M(0).

Furthermore, for a ∈ Ar , a′
∈ AT −r , b ∈ BT −r with 0< r ≤ T −1 and forw∈ M(0),

we have (aa′) ·w = 0 and (ab) ·w = (1 −
r
T )(a0b) ·w.

Proof. Let U be the vertex subalgebra of VB generated by A0
⊕ B0. As A0

⊕ B0
⊂

V 0
B , U is actually a vertex subalgebra of V 0

B . From Remark 3.1, M is a U -module.
With (VB)(0) = A and (VB)(1) = B, we have (V 0

B)(0) = A0 and (V 0
B)(1) = B0.

Consequently, we have U(0) = A0 and U(1) = B0. It follows from the construction
of VB0 that U is a homomorphic image of the vertex algebra VB0 , so that W is
naturally a VB0-module. By [Li and Yamskulna 2005, Proposition 4.8], W (0) is
naturally a module for the Lie A0-algebroid B0/A0∂A0.

Let a ∈ Ar , a′
∈ AT −r , b ∈ BT −r , w ∈ M(0) with 0< r ≤ T −1. By substituting

u = a, v = a′, p = −1, s = −1 +
r
T , t = −

r
T in (3-4), we get

(aa′) ·w = (aa′)−1w = (a(−1)a′)−1w

=

∑
m≥0

a−2+(r/T )−ma′

−(r/T )+mw+ a′

−1−(r/T )−ma−1+(r/T )+mw = 0.

Similarly, by substituting u = a, v = b, p = −1, s = −1 +
r
T and t = 1 −

r
T in

(3-4), we have

(ab) ·w = (ab)0w = (a(−1)b)0w

=

(
1 −

r
T

)
(a0b)−1w

+

∑
m≥0

{a−2+(r/T )−mb1−(r/T )+m + b−(r/T )−ma−1+(r/T )+m}w

=

(
1 −

r
T

)
(a0b) ·w,

completing the proof. �
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Let U be a module for the Lie A0-algebroid B0/A0∂A0 such that

(aa′) · u = 0 and (ab) · u =

(
1 −

r
T

)
(a0b) · u

for a ∈ Ar , a′
∈ AT −r , b ∈ BT −r , u ∈ U , and 0< r ≤ T − 1. We construct a 1

T N-
graded g-twisted VB-module M =

∐
n∈(n/T )N M(n) with M(0) = U as a module

for the Lie A0-algebroid B0/A0∂A0.
First, U is a module for the Lie algebra A0

⊕ B0/∂A0. Recall that L(C, g)(0) =
A0

⊕ B0/∂A0. For convenience, we set L(C, g)≤0 = L(C, g)(0)⊕L(g)−. Then U
is an L(C, g)≤0-module under the actions

a
(

n +
r
T

− 1
)

· u = δn+r/(T ),0au,

b
(

n +
r
T

)
· u = δn+r/(T ),0bu

for a ∈ Ar , b ∈ Br , and n ≥ 0. Next, we form the induced L(C, g)-module

Mg(U )= IndL(C,g)
L(C,g)≤0

U = U (L(C, g))⊗U (L(C,g)≤0) U.(3-19)

We endow U with degree 0, making Mg(U ) a 1
T N-graded restricted L(C, g)-

module. By Proposition 3.13, Mg(U ) is naturally a g-twisted VL(C)-module. In
view of the P-B-W theorem, we may and we should consider U as the degree-zero
subspace of Mg(U ).

We set

Wg(U )= span{vnu | v ∈ E, n ∈
1
T Z, u ∈ U } ⊂ Mg(U )(3-20)

and define

MB(U )= Mg(U )/U (L(C, g))Wg(U ).(3-21)

Since U (L(C, g))Wg(U ) is an L(C, g)-submodule of Mg(U ), by Proposition 3.13
U (L(C, g))Wg(U ) is a g-twisted VL(C)-submodule. Then MB(U ) is a g-twisted
VL(C)-module. Clearly, MB(U ) is generated by Ū the image of U in MB(U ). In
fact, MB(U ) is a g-twisted VB-module by the following:

Lemma 3.16. Let (M, YM) be a g-twisted VL-module. Suppose that for a ∈ Ar ,
a′

∈ A, b ∈ B with 0 ≤ r ≤ T − 1, we have

YM(e, x)w = w,

YM(a(−1)a′, x)w = YM(aa′, x)w,

YM(a(−1)b, x)w = YM(ab, x)w

for all w ∈ K , where K is a generating subspace of M. Then M is naturally a
g-twisted VB-module.
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Proof. Recall that

E = span{e − 1, a(−1)a′
− aa′, a(−1)b − ab | a, a′

∈ A, b ∈ B} ⊂ VL(C).

By the assumptions on a, a′, b, we have K ⊂ AnnM(E). Using Proposition 3.5, we
obtain AnnM(IB) = AnnM(E). Since AnnM(IB) is a g-twisted VL(C) submodule
of M and M is generated by K , we have AnnM(IB) = M . This implies that M is
a g-twisted VB-module. �

One can see that Lemma 3.16 indeed implies that MB(U ) is naturally a g-twisted
VB-module. Furthermore we have:

Theorem 3.17. Let U be a module for the Lie A0-algebroid B0/A0∂A0 such that

(aa′) · u = 0 and (ab) · u = (1 −
r
T
)(a0b) · u

for a ∈ Ar , a′
∈ AT −r , b ∈ BT −r , u ∈ U , r 6= 0. Then MB(U ) is naturally a

g-twisted VB-module such that MB(U )(0)= U.

Proof. To show that MB(U )(0)= U , we must prove that (U (L(g))Wg(U ))(0)= 0.
First we show that Wg(U )(0) = 0. Notice that for v ∈ (VL(C))

r
(m) with m ∈ Z, we

have deg vk+r/T = m −k −r/T −1 for k ∈ Z. Then from the definition of Wg(U ),
Wg(U )(0) is spanned by the vectors

(e − 1)−1u, (a(−1)a′)−1u − (aa′)−1u, (a(−1)b)0u − (ab)0u

for u ∈ U , a ∈ Ar , a′
∈ AT −r , b ∈ BT −r with 0 ≤ r ≤ T − 1. Since e−1 acts as e

(the identity of A0) on U , we have (e − 1)−1u = 0 for u ∈ U . If r = 0, by (3-4),

(a−1a′)−1u = a(−1)a′(−1)u = a(a′u)= (aa′)u = (aa′)−1u,

and

(a(−1)b)0u = a(−1)b(0)u = a(bu)= (ab)u = (ab)0u.

Next, we assume that r > 0. By (3-4), we have

(a(−1)a′)−1u

=

∞∑
i=0

a
(
−1 − i +

r
T

)
a′

(
i − 1 −

r
T

)
u +

∞∑
i=0

a′

(
−2 − i −

r
T

)
a
(

i +
r
T

)
u

= a
(
−1 +

r
T

)
a′

(
−1 −

r
T

)
u = a′

(
−1 −

r
T

)
a
(
−1 −

r
T

)
u

= 0

= (aa′)−1u
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and

(a(−1)b)0u

=

∞∑
i=0

a
(
−1−i + r

T

)
b
(

i − r
T

)
u+

∞∑
i=0

b
(
−i −1−

r
T

)
a
(

i + r
T

)
u−

r
T
(a0b)−1u

= a
(
−1 +

r
T

)
b
(
−

r
T

)
u −

r
T
(a0b) · u

= b
(
−

r
T

)
a
(
−1 +

r
T

)
u + (a0b)−1u −

r
T
(a0b)−1u

=

(
1 −

r
T

)
(a0b) · u

= (ab) · u.

Hence, Wg(U )(0)= 0.
We now show that

L(C, g)≤0Wg(U )⊂ Wg(U ).

Recall from [Li and Yamskulna 2005, Lemma 4.2] that

vi E ⊂ E for v ∈ C = A ⊕ B, i ≥ 0.

Since Mg(U ) is a 1
T N-graded L(C, g)-module with U as the degree-zero subspace,

we have L(C, g)≤0U ⊂ U . For v ∈ C = A ⊕ B, c ∈ E , m, t ∈
1
T Z, u ∈ U , from

the twisted commutator formula (3-5) (cf. (3-8)), we have

vmct u = ctvmu +

∑
i≥0

(
m
i

)
(vi c)m−t−i u.

These immediately imply that L(C, g)≤0Wg(U )⊂ Wg(U ). Then

U (L(C, g))Wg(U )= U (L(C, g)+)U (L(C, g)≤0)Wg(U )

= U (L(C, g)+)Wg(U )

= Wg(U )+ L(C, g)+U (L(C, g)+)Wg(U ),

which implies that (U (L(C, g))Wg(U ))(0)= 0. This completes the proof. �

Next, we continue with Theorem 3.17 to construct and classify 1
T N-graded sim-

ple g-twisted VB-modules. Let U be a module for the Lie A0-algebroid B0/A0∂A0

as in Theorem 3.17. Let J (U ) be the sum of all graded L(C, g)-submodules of
Mg(U ) with trivial degree-zero subspaces. Then J (U ) is the unique maximal
graded L(C, g)-submodule of Mg(U ) with the property that J (U )∩ U = 0. Set

Lg(U )= Mg(U )/J (U ),(3-22)

a 1
T N-graded g-twisted VB-module.
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Lemma 3.18. Let U be a module for the Lie A0-algebroid B0/A0∂A0 as in Theo-
rem 3.17. Then Lg(U ) is a 1

T N-graded g-twisted VB-module such that Lg(U )(0)=
U as a module for the Lie A0-algebroid B0/A0∂A0 and such that for any nonzero
graded submodule W of Lg(U ), we have W (0) 6= 0. Furthermore, if U is a simple
B0/A0∂A0-module, Lg(U ) is a 1

T N-graded simple g-twisted VB-module.

Proof. Similar to the proof of Theorem 4.12 in [Li and Yamskulna 2005]. �

Lemma 3.19. Let W =
∐

n∈(1/T )Z W (n) be a 1
T N-graded simple g-twisted VB-

module with W (0) 6= 0. Then W ∼= Lg(W (0)).

Proof. Similar to the proof of Lemma 4.13 in [Li and Yamskulna 2005]. �

To summarize we have:

Theorem 3.20. Let H be a complete set of equivalence class representatives of
simple modules for the Lie A0-algebroid B0/A0∂A0 satisfying the condition that

(aa′)U = 0,
(
(ab)−

(
1 −

r
T

)
(a0b)

)
U = 0

for a ∈ Ar , a′
∈ AT −r , b ∈ BT −r with 0 < r < T . Then {Lg(U ) | U ∈ H} is a

complete set of equivalence class representatives of 1
T N-graded simple g-twisted

VB-modules.

Proof. Similar to the proof of Theorem 4.14 in [Li and Yamskulna 2005]. �

Finally, we remark that by taking g = 1, the identity map of VB , we recover
Theorem 4.14 of [Li and Yamskulna 2005]:

Corollary 3.21. If H is a complete set of equivalence class representatives of sim-
ple modules for the Lie A-algebroid B/A∂A, then {L1(U ) | U ∈ H} is a complete
set of equivalence class representatives of N-graded simple VB-modules.
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