Pacific Journal of Mathematics

A SPECTRAL DECOMPOSITION FOR SINGULAR-HYPERBOLIC SETS

CARLOS A. MORALES AND MARIA JOSÉ PACÍFICO

Volume 229 No. 1

January 2007

A SPECTRAL DECOMPOSITION FOR SINGULAR-HYPERBOLIC SETS

CARLOS A. MORALES AND MARIA JOSÉ PACÍFICO

We extend the Spectral Decomposition Theorem for hyperbolic sets to singular-hyperbolic sets on 3-manifolds. We prove that an attracting singularhyperbolic set with dense periodic orbits and a unique equilibrium of a C^r vector field, where $r \ge 1$, is a finite union of transitive sets; the union is disjoint or the set contains finitely many distinct homoclinic classes. If the vector field is C^r -generic, the union is in fact disjoint.

1. Introduction and statement of the results

The Spectral Decomposition Theorem for hyperbolic systems plays a central role in dynamics [Smale 1967]. In the case of an attracting hyperbolic set in which the periodic orbits are dense it asserts that the set is a finite disjoint union of homoclinic classes. Here we present a version of this result in the context of *singular*hyperbolic systems [Morales et al. 2004], proving that an attracting singular-hyperbolic set with dense periodic orbits and a unique equilibrium is a finite union of transitive sets. Moreover, the union is disjoint or the set contains finitely many distinct homoclinic classes. If the flow is C^r -generic, the union is in fact disjoint. Let us state our results in a precise way.

Throughout, *M* denotes a compact 3-manifold and *X* denotes a C^r vector field in *M*, where $r \ge 1$. The flow of *X* will be denoted by $X_t, t \in \mathbb{R}$. The *omega-limit set* of a point $p \in M$ is the set $\omega_X(p)$ defined by

$$\omega_X(p) = \left\{ x \in M : x = \lim_{n \to \infty} X_{t_n}(p) \text{ for some sequence } t_n \to \infty \right\}.$$

A compact invariant set A is *transitive* if $A = \omega_X(p)$ for some $p \in A$. We say that A is *attracting* if there is a compact neighborhood U of A such that

$$A = \bigcap_{t \ge 0} X_t(U).$$

MSC2000: primary 37D30; secondary 37D50.

Keywords: transitive set, singular-hyperbolic set, homoclinic class, spectral decomposition. Partially supported by CNPq, FAPERJ and PRONEX/DYN.SYS from Brazil.

An *attractor* is a transitive attracting set. (Note that many authors, such as Milnor [1985], define an attractor to be what we call an attracting set.) A *homoclinic class* of X is the closure of the transverse homoclinic points associated to a hyperbolic periodic orbit [Palis and Takens 1993]. It follows from the Birkhoff–Smale Theorem that any homoclinic class is a transitive set with dense periodic orbits.

Definition 1. A compact invariant set Λ of X is *partially hyperbolic* if there are an invariant splitting $T\Lambda = E^s \oplus E^c$ and positive constants K, λ such that:

1. E^s is contracting:

 $||DX_t/E_x^s|| \le Ke^{-\lambda t}$ for all $x \in \Lambda$ and t > 0.

2. E^s dominates E^c ; that is, $E_x^s \neq 0$, $E_x^c \neq 0$ and

 $||DX_t/E_x^s|| \cdot ||DX_{-t}/E_{X_t(x)}^c|| \le Ke^{-\lambda t}$ for all $x \in \Lambda$ and t > 0.

We say that the central subbundle E^c of a partially hyperbolic set Λ is *volume-expanding* if the constants K, λ above satisfy

$$|J(DX_t/E_x^c)| \ge Ke^{\lambda t},$$

for every $x \in \Lambda$ and t > 0, where $J(\cdot)$ is the jacobian.

Definition 2. Let Λ be a compact invariant set of a vector field *X* on a 3-manifold. We say that Λ is *singular-hyperbolic* if all its singularities are hyperbolic, and it is partially hyperbolic with a volume-expanding central subbundle [Bonatti et al. 2005; Morales et al. 2004].

A *singular-hyperbolic attractor* is an attractor that is also a singular-hyperbolic set. The most important examples of singular-hyperbolic attractors are nontrivial hyperbolic attractors and the *geometric Lorenz attractor* [Afraĭmovich et al. 1982; Guckenheimer and Williams 1979]. More examples can be found in [Morales et al. 2000; 2005; Morales and Pujals 1997]. See [Bonatti et al. 2005, Chapter 9] for background concerning singular-hyperbolic sets.

As already mentioned, an attracting hyperbolic set with dense periodic orbits is a finite *disjoint* union of homoclinic classes. A natural candidate for a singularhyperbolic version of this result can be obtained replacing hyperbolic by singularhyperbolic in its statement. However, the resulting version is false; we describe a counterexample. Start with the modification of the geometric Lorenz attractor [Guckenheimer and Williams 1979] obtained by adding two singularities to the flow located at $W^u(\sigma)$, as indicated in Figure 1. This modification is done in such a way that the new flow restricted to the cross section *S* has a C^{∞} invariant stable foliation and the quotient map in the leaf space is piecewise expanding with a single discontinuity *c*, as in the Lorenz case [Guckenheimer and Williams 1979, p. 63]. Then the resulting attracting set can be proved to be a homoclinic class, just as

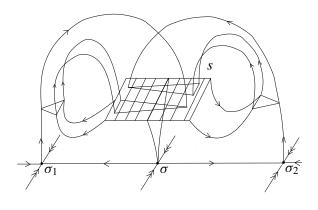


Figure 1

in the Lorenz case recently done in [Bautista 2004]. In particular, such a set is transitive with *dense periodic orbits* and is also singular-hyperbolic by construction. Afterward we glue together in a C^{∞} fashion two copies of this flow along the unstable manifold of the singularity σ , thus obtaining the flow depicted in Figure 2. In this way we obtain an attracting singular-hyperbolic set with dense periodic orbits and three equilibria which is not the *disjoint* union of homoclinic classes (although it is the union of two transitive sets). This completes the construction of the counterexample.

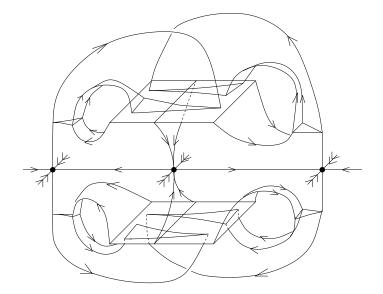


Figure 2

Although this counterexample has *three* equilibria, it is possible to construct one with a *unique* equilibrium. The construction in this case is much more elaborate than the one just described above [Bautista et al. 2005].

These counterexamples illustrate the situations that can appear when we consider the spectral decomposition for singular-hyperbolic sets instead of hyperbolic sets. In particular, it is possible to obtain a *finite union of transitive sets* rather than a finite disjoint union of homoclinic classes. It turns out that the former situation always occurs in the presence of a sole equilibrium. More precisely, we shall prove the following result.

Theorem 3. An attracting singular-hyperbolic set with dense periodic orbits and a unique singularity is a finite union of transitive sets.

The most common example of a transitive set is a homoclinic class. Every known example of a singular-hyperbolic attractor is a homoclinic class [Bautista 2004], and it has been conjectured that this is always the case [Morales 2004; 2005]. If this conjecture were true, we would be able to strengthen Theorem 3, obtaining a finite union of homoclinic classes instead of transitive sets.

It is natural to ask whether the union in Theorem 3 is disjoint. To answer this question we recall that a vector field is *Kupka–Smale* if all its closed orbits are hyperbolic and their associated invariant manifolds are in general position [Smale 1967].

Theorem 4. For a Kupka–Smale vector field, an attracting singular-hyperbolic set with dense periodic orbits and a unique singularity is a finite **disjoint** union of transitive sets.

Theorem 4 implies that the union in Theorem 3 is disjoint for most vector fields on closed 3-manifolds. Indeed, denote by $\chi^r(M)$ the set of all C^r vector fields on a compact 3-manifold M endowed with the C^r -topology, $r \ge 1$. A subset of $\chi^r(M)$ is *residual* if it is a countable intersection of open, dense subsets of $\chi^r(M)$.

Denote by $\Re^r(M)$ the subset of all vector fields $X \in \chi^r(M)$ for which every attracting singular-hyperbolic set with dense periodic orbits and a unique singularity of X is a finite *disjoint* union of transitive sets. Standard C^1 -generic arguments [Bonatti et al. 2005] imply that $\Re^r(M)$ is residual in $\chi^r(M)$ when r = 1. The following corollary proves this assertion for all $r \ge 1$. The proof follows combining Theorem 4 with the classical Kupka–Smale Theorem [Palis and de Melo 1982].

Corollary 5. $\Re^r(M)$ is residual in $\chi^r(M)$ for every $r \ge 1$.

Next we investigate what can happen outside the residual subset $\Re^r(M)$ in Corollary 5. If Λ is a compact invariant set of a vector field X we define

 $\mathscr{H}_X(\Lambda) = \{H : H \text{ is a homoclinic class of } X \text{ contained in } \Lambda\}.$

An interesting question is to give sufficient conditions for

$$#\mathscr{H}_X(\Lambda) < \infty,$$

where # denotes cardinality. For instance, $\mathcal{H}_X(\Lambda)$ is finite if

- A is a homoclinic class and $X \in \chi^r(M)$ is C¹-generic [Bonatti et al. 2005], or if
- Λ is hyperbolic.

Problem 9.32 (p. 283) in [Bonatti et al. 2005] asks whether $\mathcal{H}_X(\Lambda)$ is finite for *every* singular-hyperbolic set Λ . The next result give a partial positive answer for this question.

Theorem 6. Let Λ be an attracting singular-hyperbolic set with dense periodic orbits and a unique singularity of $X \in \chi^r(M)$. If Λ is **not** a disjoint union of transitive sets, then $\#\mathcal{H}_X(\Lambda) < \infty$.

To conclude this section we point out that Theorem 3 applies to the class of singular-hyperbolic vector fields introduced in [Bautista 2005]. By definition, a vector field X is *singular-hyperbolic* if its nonwandering set $\Omega(X)$ is the closure of its closed orbits and, denoting by S(X) the union of the attracting and repelling closed orbits, there is a *disjoint* union

$$\Omega(X) \setminus S(X) = \Omega_1(X) \cup \Omega_2(X),$$

where $\Omega_1(X)$ is a singular-hyperbolic set for X and $\Omega_2(X)$ is a singular-hyperbolic set for -X.

The class of singular-hyperbolic vector fields contains Axiom A vector fields and the geometric Lorenz attractor. If the conjecture in [Morales 2004] mentioned above were true, this class would contain also the singular-Axiom A vector fields defined in [Morales and Pacifico 2003]. In any case there are many singularhyperbolic vector fields which are also Kupka–Smale. An example of a singularhyperbolic vector field in S^3 which is not Kupka–Smale can be derived from the example described before. An example of a singular-hyperbolic vector field in S^3 satisfying the hypotheses of the next corollary can be found in [Morales and Pacifico 2003].

The following is a direct consequence of Theorems 3 and 4.

Corollary 7. Let X be a singular-hyperbolic vector field with a unique singularity on a compact 3-manifold. If $\Omega_1(X)$ is attracting and $\Omega_2(X)$ is repelling, then $\Omega(X)$ is a finite union of transitive sets. If X is Kupka–Smale, then such an union is disjoint. In particular, the union is disjoint for a residual subset of vector fields in $\chi^r(M), r \ge 1$.

2. Proofs

We start with some preliminary results from [Morales and Pacifico 2004] to be used in the proof of the theorems.

Let X be a C^r vector field on a compact boundaryless 3-manifold $r \ge 1$. Denote by Cl(A) the closure of a set A. In the statement of the following two theorems we let Λ be a compact invariant set of X satisfying the following properties:

- (1) Λ is connected.
- (2) Λ is an attracting singular-hyperbolic set.
- (3) The periodic orbits of X contained in Λ are dense in Λ .
- (4) Λ has a unique singularity σ .

Combining Lemma 2.1 and Theorem 2.8 in [Morales and Pacifico 2004] we obtain the following result.

Theorem 8. Λ is the union of transitive sets. More precisely, it is itself transitive or is the union of two homoclinic classes.

It follows from [Morales et al. 1999] that the singularity σ above has three real eigenvalues $\lambda_1, \lambda_2, \lambda_3$ satisfying

$$\lambda_2 < \lambda_3 < 0 < -\lambda_3 < \lambda_1.$$

In particular, σ has a two-dimensional *stable manifold* $W^{s}(\sigma)$ and a one-dimensional *unstable manifold* $W^{u}(\sigma)$, each one tangent at σ to the eigenspaces associated to the eigenvalue sets $\{\lambda_{2}, \lambda_{3}\}$ and $\{\lambda_{1}\}$, respectively. It turns on also that σ has a *strong stable manifold* $W^{ss}(\sigma)$ contained in $W^{s}(\sigma)$ and tangent at σ to the set of eigenvalues $\{\lambda_{2}\}$. In particular, $W^{ss}(\sigma)$ divides $W^{s}(\sigma)$ in two connected components, denoted by $W^{s,+}$ and $W^{s,-}$.

Theorem 9 [Morales and Pacifico 2004, Theorem 2.8]. If Λ is not transitive then for all $a \in W_X^u(\sigma) \setminus \{\sigma\}$ there is a periodic orbit O of X with a **positive** expanding eigenvalue and such that $a \in W_X^v(O)$.

Proof of Theorem 3. Let Λ be an attracting singular-hyperbolic set with dense periodic orbits and a unique singularity. Split Λ into finitely many connected components. Such components are clearly attracting with dense periodic orbits and the nonsingular ones are hyperbolic hence transitive by the Spectral Theorem [Smale 1967]. On the other hand, the singular component satisfies properties (1)–(4) above, so it is the union of transitive sets, by Theorem 8. Then Λ , which is the union of its components, must be a finite union of transitive sets.

As already noted, it has been conjectured that every singular-hyperbolic attractor is a homoclinic class. If this conjecture were true, we would be able to strengthen Theorem 3, obtaining a finite union of homoclinic classes instead of transitive sets. **Remark 10.** The proof above implies that Theorem 3 holds for an arbitrary number of singularities as long as they belong to different connected components of Λ . It also implies that the union in Theorem 3 can be chosen to be disjoint or formed by homoclinic classes.

Proof of Theorem 4. Let X a Kupka–Smale vector field in a compact 3-manifold and let Λ be an attracting singular-hyperbolic set of X with dense periodic orbits and a unique singularity σ . It suffices to prove that the component of Λ containing σ is transitive. Suppose, for a contradiction, that this is not so. Applying Theorem 9 to the (nontransitive) component containing σ , we would obtain $a \neq \sigma$ in the unstable manifold $W_X^u(\sigma)$ such that $\omega_X(a)$ is a periodic orbit O. But σ has a one-dimensional unstable manifold $W_X^u(\sigma)$, so the vector field X would exhibit a nontransversal intersection between $W^u(\sigma)$ and $W^s(O)$, a contradiction since X is Kupka–Smale.

Proof of Theorem 6. Take $X \in \chi^r(M)$ and let Λ be an attracting singular-hyperbolic set with dense periodic orbits and a unique singularity of X. If z belongs to a hyperbolic periodic orbit of X, denote by $H_X(z)$ the homoclinic class of X associated to z. Clearly one has $H_X(z) = H_X(z')$ whenever z, z' belong to the same hyperbolic periodic orbit.

Assume that Λ is *not* a disjoint union of transitive sets. Split Λ into finitely many connected components as before. It suffices to prove that each such component Λ_0 satisfies

$$#\mathcal{H}_X(\Lambda_0) < \infty.$$

The nonsingular ones are hyperbolic [Morales et al. 1999], so they satisfy this requirement. In addition, these components are also transitive.

Now consider the singular component Λ_0 . It clearly contains the sole equilibrium σ of Λ . As before, σ has a one-dimensional unstable manifold $W_X^u(\sigma)$ [Morales et al. 1999]. Then $W_X^u(\sigma) \setminus \{\sigma\}$ consists of two regular orbits. Fix a, a' in each orbit.

Observe that Λ_0 cannot be transitive, for otherwise Λ would be a disjoint union of transitive sets, contrary to the hypothesis. Then Theorem 9 applied to Λ_0 implies that $\omega_X(a) = O_0$ and $\omega_X(a') = O'_0$, where O_0 and O'_0 are periodic orbits with positive eigenvalues of X.

Now assume for a contradiction that $#\mathscr{H}_X(\Lambda_0) = \infty$. There is an infinite sequence of periodic orbits $O_n \subset \Lambda_0$ and a infinite sequence $z_n \in O_n$ such that

(1)
$$H_X(z_n) \neq H_X(z_m)$$
 for $n \neq m$

Define $A = Cl(\bigcup_n H_X(z_n))$. If $\sigma \notin A$ then A is hyperbolic, yielding $\mathcal{H}_X(A) < \infty$, which contradicts (1). We conclude that $\sigma \in A$, that is,

$$\sigma \in Cl(\bigcup_n H_X(z_n)).$$

Thus there is a sequence $x_n \in H_X(z_n)$ such that $x_n \to \sigma$. The Birkhoff–Smale Theorem [Palis and Takens 1993] implies that x_n is an accumulation point of periodic orbits homoclinically related to O_n . Hence, we can assume that $x_n = z_n$ without loss of generality.

Since O_n is periodic and z_n lies in O_n , we have $z_n \notin W_X^s(\sigma)$. So, O_n accumulates on either a_0 or a'_0 . We shall assume the first case since the proof for the second case is analogous.

Because the expanding eigenvalue of O is positive, O divides its own unstable manifold $W_X^u(O)$ into two connected components $W^{u,+}$, $W^{u,-}$ labeled according to the following rule: Let $W^{s,+}$, $W^{s,-}$ be the two connected components of $W^s(\sigma) \setminus$ $W^{ss}(\sigma)$. If I^{\pm} is an interval with boundary point a and pointing to the side of $W^{s,\pm}$, then the positive orbit of I^{\pm} accumulates on $W^{u,\pm}$, by the Inclination Lemma [Palis and de Melo 1982]. For details we refer the reader to [Morales and Pacifico 2004, Definition 2.9, p. 335]. The main property of $W^{u,\pm}$ is that if z lies in a periodic orbit and is sufficiently close to some point in $W^{u,\pm}$ then

(2)
$$H_X(z) = Cl(W^{u,\pm}).$$

This property is described in [Morales and Pacifico 2004, Proposition 2.13, p. 336].

Now we obtain the desired contradiction. Since $\omega_X(a_0) = O$ and O_n accumulates at a_0 we can find $z'_n \in O_n$ passing close to O as indicated in Figure 3. In particular, by the Inclination Lemma [Palis and de Melo 1982], we can assume that z'_n converges to a point in either $W^{u,+}$ or $W^{u,-}$. Again we assume the first case since the second one is analogous.

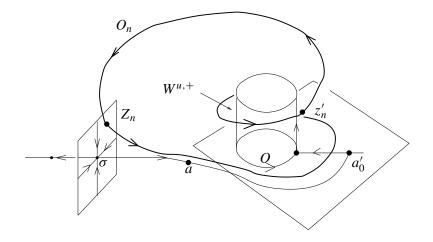


Figure 3

Then, (2) implies

$$H_X(z'_n) = Cl(W^{u,+})$$
 for all n .

But z'_n is in the orbit of z_n so

$$H_X(z_n) = H_X(z'_n).$$

Then, $H_X(z_n) = Cl(W^{u,+})$ and so

$$H_X(z_n) = H_X(z_m)$$
, for all n, m .

However, this is a contradiction by (1).

By Remark 10, the set Λ in Theorem 6 is also a finite union of homoclinic classes.

References

- [Afraĭmovich et al. 1982] V. S. Afraĭmovich, V. V. Bykov, and L. P. Shil'nikov, "On attracting structurally unstable limit sets of Lorenz attractor type", *Trudy Moskov. Mat. Obshch.* 44 (1982), 150–212. MR 84a:58058
- [Bautista 2004] S. Bautista, "The geometric Lorenz attractor is a homoclinic class", *Bol. Mat. (N.S.)* **11**:1 (2004), 69–78. MR 2005m:37069
- [Bautista 2005] S. Bautista, *Sobre conjuntos hiperbólicos-singulares*, Ph.D. thesis, Universidade Federal do Rio de Janeiro, 2005.
- [Bautista et al. 2005] S. Bautista, C. Morales, and M. J. Pacifico, preprint D015/2005, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2005.
- [Bonatti et al. 2005] C. Bonatti, L. J. Díaz, and M. Viana, *Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective*, Encyclopaedia of Mathematical Sciences **102** Mathematical Physics, III, Springer, Berlin, 2005. MR 2005g:37001 Zbl 1060.37020
- [Guckenheimer and Williams 1979] J. Guckenheimer and R. F. Williams, "Structural stability of Lorenz attractors", *Inst. Hautes Études Scientifiques Publ. Math.* 50 (1979), 59–72. MR 82b:58055a Zbl 0436.58018
- [Milnor 1985] J. Milnor, "On the concept of attractor", *Comm. Math. Phys.* **99**:2 (1985), 177–195. MR 87i:58109a Zbl 0595.58028
- [Morales 2004] C. A. Morales, "A note on periodic orbits for singular-hyperbolic flows", *Discrete Contin. Dyn. Syst.* **11**:2-3 (2004), 615–619. MR 2005e:37060 Zbl 1073.37031
- [Morales 2005] C. Morales, "Examples of singular-hyperbolic attracting sets", preprint, 2005. To appear in *Dyn. Syst.*
- [Morales and Pacifico 2003] C. A. Morales and M. J. Pacifico, "A dichotomy for three-dimensional vector fields", *Ergodic Theory Dynam. Systems* **23**:5 (2003), 1575–1600. MR 2005a:37030 Zbl 1040.37014
- [Morales and Pacifico 2004] C. A. Morales and M. J. Pacifico, "Sufficient conditions for robustness of attractors", *Pacific J. Math.* **216**:2 (2004), 327–342. MR 2005g:37065 Zbl 1066.37019
- [Morales and Pujals 1997] C. A. Morales and E. R. Pujals, "Singular strange attractors on the boundary of Morse–Smale systems", *Ann. Sci. École Norm. Sup.* (4) **30** (1997), 693–717. MR 98k:58137 Zbl 0911.58022

- [Morales et al. 1999] C. A. Morales, M. J. Pacifico, and E. R. Pujals, "Singular hyperbolic systems", *Proc. Amer. Math. Soc.* **127**:11 (1999), 3393–3401. MR 2000c:37034 Zbl 0924.58068
- [Morales et al. 2000] C. A. Morales, M. J. Pacifico, and E. R. Pujals, "Strange attractors across the boundary of hyperbolic systems", *Comm. Math. Phys.* **211**:3 (2000), 527–558. MR 2001g:37036 Zbl 0957.37032
- [Morales et al. 2004] C. A. Morales, M. J. Pacifico, and E. R. Pujals, "Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers", *Ann. of Math.* (2) **160**:2 (2004), 375–432. MR 2005k:37054 Zbl 1071.37022
- [Palis and de Melo 1982] J. Palis, Jr. and W. de Melo, *Geometric theory of dynamical systems: An introduction*, Springer, New York, 1982. MR 84a:58004 Zbl 0491.58001
- [Palis and Takens 1993] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: Fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics 35, Cambridge University Press, Cambridge, 1993. MR 94h:58129 Zbl 0790.58014
- [Smale 1967] S. Smale, "Differentiable dynamical systems", *Bull. Amer. Math. Soc.* **73** (1967), 747–817. MR 37 #3598 Zbl 0202.55202

Received June 10, 2005.

Carlos A. Morales Instituto de Matemática Universidade Federal do Rio de Janeiro P. O. Box 68530 21945-970 Rio de Janeiro Brazil

morales@impa.br

MARIA JOSÉ PACÍFICO INSTITUTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO P. O. BOX 68530 21945-970 RIO DE JANEIRO BRAZIL

pacifico@impa.br