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We extend the Spectral Decomposition Theorem for hyperbolic sets to sin-
gular-hyperbolic sets on 3-manifolds. We prove that an attracting singular-
hyperbolic set with dense periodic orbits and a unique equilibrium of a C r

vector field, where r ≥ 1, is a finite union of transitive sets; the union is
disjoint or the set contains finitely many distinct homoclinic classes. If the
vector field is C r -generic, the union is in fact disjoint.

1. Introduction and statement of the results

The Spectral Decomposition Theorem for hyperbolic systems plays a central role
in dynamics [Smale 1967]. In the case of an attracting hyperbolic set in which the
periodic orbits are dense it asserts that the set is a finite disjoint union of homo-
clinic classes. Here we present a version of this result in the context of singular-
hyperbolic systems [Morales et al. 2004], proving that an attracting singular-hyper-
bolic set with dense periodic orbits and a unique equilibrium is a finite union of
transitive sets. Moreover, the union is disjoint or the set contains finitely many
distinct homoclinic classes. If the flow is Cr -generic, the union is in fact disjoint.
Let us state our results in a precise way.

Throughout, M denotes a compact 3-manifold and X denotes a Cr vector field
in M , where r ≥ 1. The flow of X will be denoted by X t , t ∈ R. The omega-limit
set of a point p ∈ M is the set ωX (p) defined by

ωX (p) =
{

x ∈ M : x = lim
n→∞

X tn (p) for some sequence tn → ∞
}
.

A compact invariant set A is transitive if A = ωX (p) for some p ∈ A. We say that
A is attracting if there is a compact neighborhood U of A such that

A =

⋂
t≥0

X t(U ).

MSC2000: primary 37D30; secondary 37D50.
Keywords: transitive set, singular-hyperbolic set, homoclinic class, spectral decomposition.
Partially supported by CNPq, FAPERJ and PRONEX/DYN.SYS from Brazil.

223

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2007.229-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=37D30,(37D50)


224 CARLOS A. MORALES AND MARIA JOSÉ PACÍFICO

An attractor is a transitive attracting set. (Note that many authors, such as Milnor
[1985], define an attractor to be what we call an attracting set.) A homoclinic
class of X is the closure of the transverse homoclinic points associated to a hyper-
bolic periodic orbit [Palis and Takens 1993]. It follows from the Birkhoff–Smale
Theorem that any homoclinic class is a transitive set with dense periodic orbits.

Definition 1. A compact invariant set 3 of X is partially hyperbolic if there are
an invariant splitting T 3 = E s

⊕ Ec and positive constants K , λ such that:

1. E s is contracting:

‖DX t/E s
x‖ ≤ K e−λt for all x ∈ 3 and t > 0.

2. E s dominates Ec; that is, E s
x 6= 0, Ec

x 6= 0 and

‖DX t/E s
x‖ · ‖DX−t/Ec

X t (x)‖ ≤ K e−λt for all x ∈ 3 and t > 0.

We say that the central subbundle Ec of a partially hyperbolic set 3 is volume-
expanding if the constants K , λ above satisfy

|J (DX t/Ec
x)| ≥ K eλt ,

for every x ∈ 3 and t > 0, where J ( · ) is the jacobian.

Definition 2. Let 3 be a compact invariant set of a vector field X on a 3-manifold.
We say that 3 is singular-hyperbolic if all its singularities are hyperbolic, and it
is partially hyperbolic with a volume-expanding central subbundle [Bonatti et al.
2005; Morales et al. 2004].

A singular-hyperbolic attractor is an attractor that is also a singular-hyperbolic
set. The most important examples of singular-hyperbolic attractors are nontrivial
hyperbolic attractors and the geometric Lorenz attractor [Afraı̆movich et al. 1982;
Guckenheimer and Williams 1979]. More examples can be found in [Morales
et al. 2000; 2005; Morales and Pujals 1997]. See [Bonatti et al. 2005, Chapter 9]
for background concerning singular-hyperbolic sets.

As already mentioned, an attracting hyperbolic set with dense periodic orbits is
a finite disjoint union of homoclinic classes. A natural candidate for a singular-
hyperbolic version of this result can be obtained replacing hyperbolic by singular-
hyperbolic in its statement. However, the resulting version is false; we describe
a counterexample. Start with the modification of the geometric Lorenz attractor
[Guckenheimer and Williams 1979] obtained by adding two singularities to the
flow located at W u(σ ), as indicated in Figure 1. This modification is done in such
a way that the new flow restricted to the cross section S has a C∞ invariant stable
foliation and the quotient map in the leaf space is piecewise expanding with a single
discontinuity c, as in the Lorenz case [Guckenheimer and Williams 1979, p. 63].
Then the resulting attracting set can be proved to be a homoclinic class, just as
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σ1 σ σ2

s

Figure 1

in the Lorenz case recently done in [Bautista 2004]. In particular, such a set is
transitive with dense periodic orbits and is also singular-hyperbolic by construc-
tion. Afterward we glue together in a C∞ fashion two copies of this flow along the
unstable manifold of the singularity σ , thus obtaining the flow depicted in Figure
2. In this way we obtain an attracting singular-hyperbolic set with dense periodic
orbits and three equilibria which is not the disjoint union of homoclinic classes
(although it is the union of two transitive sets). This completes the construction of
the counterexample.

Figure 2
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Although this counterexample has three equilibria, it is possible to construct one
with a unique equilibrium. The construction in this case is much more elaborate
than the one just described above [Bautista et al. 2005].

These counterexamples illustrate the situations that can appear when we con-
sider the spectral decomposition for singular-hyperbolic sets instead of hyperbolic
sets. In particular, it is possible to obtain a finite union of transitive sets rather than
a finite disjoint union of homoclinic classes. It turns out that the former situation
always occurs in the presence of a sole equilibrium. More precisely, we shall prove
the following result.

Theorem 3. An attracting singular-hyperbolic set with dense periodic orbits and
a unique singularity is a finite union of transitive sets.

The most common example of a transitive set is a homoclinic class. Every
known example of a singular-hyperbolic attractor is a homoclinic class [Bautista
2004], and it has been conjectured that this is always the case [Morales 2004;
2005]. If this conjecture were true, we would be able to strengthen Theorem 3,
obtaining a finite union of homoclinic classes instead of transitive sets.

It is natural to ask whether the union in Theorem 3 is disjoint. To answer this
question we recall that a vector field is Kupka–Smale if all its closed orbits are
hyperbolic and their associated invariant manifolds are in general position [Smale
1967].

Theorem 4. For a Kupka–Smale vector field, an attracting singular-hyperbolic
set with dense periodic orbits and a unique singularity is a finite disjoint union of
transitive sets.

Theorem 4 implies that the union in Theorem 3 is disjoint for most vector fields
on closed 3-manifolds. Indeed, denote by χr (M) the set of all Cr vector fields on a
compact 3-manifold M endowed with the Cr -topology, r ≥ 1. A subset of χr (M)

is residual if it is a countable intersection of open, dense subsets of χr (M).
Denote by Rr (M) the subset of all vector fields X ∈ χr (M) for which every

attracting singular-hyperbolic set with dense periodic orbits and a unique singular-
ity of X is a finite disjoint union of transitive sets. Standard C1-generic arguments
[Bonatti et al. 2005] imply that Rr (M) is residual in χr (M) when r = 1. The
following corollary proves this assertion for all r ≥1. The proof follows combining
Theorem 4 with the classical Kupka–Smale Theorem [Palis and de Melo 1982].

Corollary 5. Rr (M) is residual in χr (M) for every r ≥ 1.

Next we investigate what can happen outside the residual subset Rr (M) in
Corollary 5. If 3 is a compact invariant set of a vector field X we define

HX (3) = {H : H is a homoclinic class of X contained in 3}.
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An interesting question is to give sufficient conditions for

#HX (3) < ∞,

where # denotes cardinality. For instance, HX (3) is finite if

• 3 is a homoclinic class and X ∈ χr (M) is C1-generic [Bonatti et al. 2005],
or if

• 3 is hyperbolic.

Problem 9.32 (p. 283) in [Bonatti et al. 2005] asks whether HX (3) is finite for
every singular-hyperbolic set 3. The next result give a partial positive answer for
this question.

Theorem 6. Let 3 be an attracting singular-hyperbolic set with dense periodic
orbits and a unique singularity of X ∈ χr (M). If 3 is not a disjoint union of
transitive sets, then #HX (3) < ∞.

To conclude this section we point out that Theorem 3 applies to the class of
singular-hyperbolic vector fields introduced in [Bautista 2005]. By definition, a
vector field X is singular-hyperbolic if its nonwandering set �(X) is the closure
of its closed orbits and, denoting by S(X) the union of the attracting and repelling
closed orbits, there is a disjoint union

�(X) \ S(X) = �1(X) ∪ �2(X),

where �1(X) is a singular-hyperbolic set for X and �2(X) is a singular-hyperbolic
set for −X .

The class of singular-hyperbolic vector fields contains Axiom A vector fields
and the geometric Lorenz attractor. If the conjecture in [Morales 2004] mentioned
above were true, this class would contain also the singular-Axiom A vector fields
defined in [Morales and Pacifico 2003]. In any case there are many singular-
hyperbolic vector fields which are also Kupka–Smale. An example of a singular-
hyperbolic vector field in S3 which is not Kupka–Smale can be derived from the
example described before. An example of a singular-hyperbolic vector field in
S3 satisfying the hypotheses of the next corollary can be found in [Morales and
Pacifico 2003].

The following is a direct consequence of Theorems 3 and 4.

Corollary 7. Let X be a singular-hyperbolic vector field with a unique singularity
on a compact 3-manifold. If �1(X) is attracting and �2(X) is repelling, then
�(X) is a finite union of transitive sets. If X is Kupka–Smale, then such an union
is disjoint. In particular, the union is disjoint for a residual subset of vector fields
in χr (M), r ≥ 1.
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2. Proofs

We start with some preliminary results from [Morales and Pacifico 2004] to be
used in the proof of the theorems.

Let X be a Cr vector field on a compact boundaryless 3-manifold r ≥ 1. Denote
by Cl(A) the closure of a set A. In the statement of the following two theorems
we let 3 be a compact invariant set of X satisfying the following properties:

(1) 3 is connected.

(2) 3 is an attracting singular-hyperbolic set.

(3) The periodic orbits of X contained in 3 are dense in 3.

(4) 3 has a unique singularity σ .

Combining Lemma 2.1 and Theorem 2.8 in [Morales and Pacifico 2004] we
obtain the following result.

Theorem 8. 3 is the union of transitive sets. More precisely, it is itself transitive
or is the union of two homoclinic classes.

It follows from [Morales et al. 1999] that the singularity σ above has three real
eigenvalues λ1, λ2, λ3 satisfying

λ2 < λ3 < 0 < −λ3 < λ1.

In particular, σ has a two-dimensional stable manifold W s(σ ) and a one-dimen-
sional unstable manifold W u(σ ), each one tangent at σ to the eigenspaces asso-
ciated to the eigenvalue sets {λ2, λ3} and {λ1}, respectively. It turns on also that
σ has a strong stable manifold W ss(σ ) contained in W s(σ ) and tangent at σ to
the set of eigenvalues {λ2}. In particular, W ss(σ ) divides W s(σ ) in two connected
components, denoted by W s,+ and W s,−.

Theorem 9 [Morales and Pacifico 2004, Theorem 2.8]. If 3 is not transitive then
for all a ∈ W u

X (σ ) \ {σ } there is a periodic orbit O of X with a positive expanding
eigenvalue and such that a ∈ W s

X (O).

Proof of Theorem 3. Let 3 be an attracting singular-hyperbolic set with dense
periodic orbits and a unique singularity. Split 3 into finitely many connected
components. Such components are clearly attracting with dense periodic orbits
and the nonsingular ones are hyperbolic hence transitive by the Spectral Theorem
[Smale 1967]. On the other hand, the singular component satisfies properties (1)–
(4) above, so it is the union of transitive sets, by Theorem 8. Then 3, which is the
union of its components, must be a finite union of transitive sets. �

As already noted, it has been conjectured that every singular-hyperbolic attractor
is a homoclinic class. If this conjecture were true, we would be able to strengthen
Theorem 3, obtaining a finite union of homoclinic classes instead of transitive sets.
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Remark 10. The proof above implies that Theorem 3 holds for an arbitrary number
of singularities as long as they belong to different connected components of 3. It
also implies that the union in Theorem 3 can be chosen to be disjoint or formed by
homoclinic classes.

Proof of Theorem 4. Let X a Kupka–Smale vector field in a compact 3-manifold
and let 3 be an attracting singular-hyperbolic set of X with dense periodic orbits
and a unique singularity σ . It suffices to prove that the component of 3 containing
σ is transitive. Suppose, for a contradiction, that this is not so. Applying Theorem
9 to the (nontransitive) component containing σ , we would obtain a 6= σ in the
unstable manifold W u

X (σ ) such that ωX (a) is a periodic orbit O . But σ has a
one-dimensional unstable manifold W u

X (σ ), so the vector field X would exhibit a
nontransversal intersection between W u(σ ) and W s(O), a contradiction since X
is Kupka–Smale. �

Proof of Theorem 6. Take X ∈χr (M) and let 3 be an attracting singular-hyperbolic
set with dense periodic orbits and a unique singularity of X . If z belongs to a hy-
perbolic periodic orbit of X , denote by HX (z) the homoclinic class of X associated
to z. Clearly one has HX (z)= HX (z′) whenever z, z′ belong to the same hyperbolic
periodic orbit.

Assume that 3 is not a disjoint union of transitive sets. Split 3 into finitely many
connected components as before. It suffices to prove that each such component 30

satisfies
#HX (30) < ∞.

The nonsingular ones are hyperbolic [Morales et al. 1999], so they satisfy this
requirement. In addition, these components are also transitive.

Now consider the singular component 30. It clearly contains the sole equi-
librium σ of 3. As before, σ has a one-dimensional unstable manifold W u

X (σ )

[Morales et al. 1999]. Then W u
X (σ ) \ {σ } consists of two regular orbits. Fix a, a′

in each orbit.
Observe that 30 cannot be transitive, for otherwise 3 would be a disjoint union

of transitive sets, contrary to the hypothesis. Then Theorem 9 applied to 30 implies
that ωX (a) = O0 and ωX (a′) = O ′

0, where O0 and O ′

0 are periodic orbits with
positive eigenvalues of X .

Now assume for a contradiction that #HX (30) = ∞. There is an infinite se-
quence of periodic orbits On ⊂ 30 and a infinite sequence zn ∈ On such that

(1) HX (zn) 6= HX (zm) for n 6= m.

Define A = Cl
(⋃

n HX (zn)
)
. If σ /∈ A then A is hyperbolic, yielding HX (A) < ∞,

which contradicts (1). We conclude that σ ∈ A, that is,

σ ∈ Cl
(⋃

n HX (zn)
)
.



230 CARLOS A. MORALES AND MARIA JOSÉ PACÍFICO

Thus there is a sequence xn ∈ HX (zn) such that xn → σ . The Birkhoff–Smale The-
orem [Palis and Takens 1993] implies that xn is an accumulation point of periodic
orbits homoclinically related to On . Hence, we can assume that xn = zn without
loss of generality.

Since On is periodic and zn lies in On , we have zn /∈ W s
X (σ ). So, On accumulates

on either a0 or a′

0. We shall assume the first case since the proof for the second
case is analogous.

Because the expanding eigenvalue of O is positive, O divides its own unstable
manifold W u

X (O) into two connected components W u,+, W u,− labeled according
to the following rule: Let W s,+, W s,− be the two connected components of W s(σ )\

W ss(σ ). If I ± is an interval with boundary point a and pointing to the side of W s,±,
then the positive orbit of I ± accumulates on W u,±, by the Inclination Lemma [Palis
and de Melo 1982]. For details we refer the reader to [Morales and Pacifico 2004,
Definition 2.9, p. 335]. The main property of W u,± is that if z lies in a periodic
orbit and is sufficiently close to some point in W u,± then

(2) HX (z) = Cl(W u,±).

This property is described in [Morales and Pacifico 2004, Proposition 2.13, p. 336].
Now we obtain the desired contradiction. Since ωX (a0) = O and On accumu-

lates at a0 we can find z′
n ∈ On passing close to O as indicated in Figure 3. In

particular, by the Inclination Lemma [Palis and de Melo 1982], we can assume
that z′

n converges to a point in either W u,+ or W u,−. Again we assume the first
case since the second one is analogous.

σ

Zn

a

W u,+

On

O a′

0

z′
n

Figure 3
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Then, (2) implies

HX (z′

n) = Cl(W u,+) for all n.

But z′
n is in the orbit of zn so

HX (zn) = HX (z′

n).

Then, HX (zn) = Cl(W u,+) and so

HX (zn) = HX (zm), for all n, m.

However, this is a contradiction by (1). �

By Remark 10, the set 3 in Theorem 6 is also a finite union of homoclinic
classes.

References

[Afraı̆movich et al. 1982] V. S. Afraı̆movich, V. V. Bykov, and L. P. Shil’nikov, “On attracting
structurally unstable limit sets of Lorenz attractor type”, Trudy Moskov. Mat. Obshch. 44 (1982),
150–212. MR 84a:58058

[Bautista 2004] S. Bautista, “The geometric Lorenz attractor is a homoclinic class”, Bol. Mat. (N.S.)
11:1 (2004), 69–78. MR 2005m:37069

[Bautista 2005] S. Bautista, Sobre conjuntos hiperbólicos-singulares, Ph.D. thesis, Universidade
Federal do Rio de Janeiro, 2005.

[Bautista et al. 2005] S. Bautista, C. Morales, and M. J. Pacifico, preprint D015/2005, Instituto de
Matemática Pura e Aplicada, Rio de Janeiro, 2005.

[Bonatti et al. 2005] C. Bonatti, L. J. Díaz, and M. Viana, Dynamics beyond uniform hyperbolicity:
A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences 102
Mathematical Physics, III, Springer, Berlin, 2005. MR 2005g:37001 Zbl 1060.37020

[Guckenheimer and Williams 1979] J. Guckenheimer and R. F. Williams, “Structural stability of
Lorenz attractors”, Inst. Hautes Études Scientifiques Publ. Math. 50 (1979), 59–72. MR 82b:58055a
Zbl 0436.58018

[Milnor 1985] J. Milnor, “On the concept of attractor”, Comm. Math. Phys. 99:2 (1985), 177–195.
MR 87i:58109a Zbl 0595.58028

[Morales 2004] C. A. Morales, “A note on periodic orbits for singular-hyperbolic flows”, Discrete
Contin. Dyn. Syst. 11:2-3 (2004), 615–619. MR 2005e:37060 Zbl 1073.37031

[Morales 2005] C. Morales, “Examples of singular-hyperbolic attracting sets”, preprint, 2005. To
appear in Dyn. Syst.

[Morales and Pacifico 2003] C. A. Morales and M. J. Pacifico, “A dichotomy for three-dimensional
vector fields”, Ergodic Theory Dynam. Systems 23:5 (2003), 1575–1600. MR 2005a:37030 Zbl
1040.37014

[Morales and Pacifico 2004] C. A. Morales and M. J. Pacifico, “Sufficient conditions for robustness
of attractors”, Pacific J. Math. 216:2 (2004), 327–342. MR 2005g:37065 Zbl 1066.37019

[Morales and Pujals 1997] C. A. Morales and E. R. Pujals, “Singular strange attractors on the bound-
ary of Morse–Smale systems”, Ann. Sci. École Norm. Sup. (4) 30 (1997), 693–717. MR 98k:58137
Zbl 0911.58022

http://www.ams.org/mathscinet-getitem?mr=84a:58058
http://www.ams.org/mathscinet-getitem?mr=2005m:37069
http://www.ams.org/mathscinet-getitem?mr=2005g:37001
http://www.emis.de/cgi-bin/MATH-item?1060.37020
http://www.numdam.org/item?id=PMIHES_1979__50__59_0
http://www.numdam.org/item?id=PMIHES_1979__50__59_0
http://www.ams.org/mathscinet-getitem?mr=82b:58055a
http://www.emis.de/cgi-bin/MATH-item?0436.58018
http://projecteuclid.org/getRecord?id=euclid.cmp/1103942677
http://www.ams.org/mathscinet-getitem?mr=87i:58109a
http://www.emis.de/cgi-bin/MATH-item?0595.58028
http://www.ams.org/mathscinet-getitem?mr=2005e:37060
http://www.emis.de/cgi-bin/MATH-item?1073.37031
http://dx.doi.org/10.1017/S0143385702001621
http://dx.doi.org/10.1017/S0143385702001621
http://www.ams.org/mathscinet-getitem?mr=2005a:37030
http://www.emis.de/cgi-bin/MATH-item?1040.37014
http://www.emis.de/cgi-bin/MATH-item?1040.37014
http://www.ams.org/mathscinet-getitem?mr=2005g:37065
http://www.emis.de/cgi-bin/MATH-item?1066.37019
http://dx.doi.org/10.1016/S0012-9593(97)89936-3
http://dx.doi.org/10.1016/S0012-9593(97)89936-3
http://www.ams.org/mathscinet-getitem?mr=98k:58137
http://www.emis.de/cgi-bin/MATH-item?0911.58022


232 CARLOS A. MORALES AND MARIA JOSÉ PACÍFICO

[Morales et al. 1999] C. A. Morales, M. J. Pacifico, and E. R. Pujals, “Singular hyperbolic systems”,
Proc. Amer. Math. Soc. 127:11 (1999), 3393–3401. MR 2000c:37034 Zbl 0924.58068

[Morales et al. 2000] C. A. Morales, M. J. Pacifico, and E. R. Pujals, “Strange attractors across the
boundary of hyperbolic systems”, Comm. Math. Phys. 211:3 (2000), 527–558. MR 2001g:37036
Zbl 0957.37032

[Morales et al. 2004] C. A. Morales, M. J. Pacifico, and E. R. Pujals, “Robust transitive singular
sets for 3-flows are partially hyperbolic attractors or repellers”, Ann. of Math. (2) 160:2 (2004),
375–432. MR 2005k:37054 Zbl 1071.37022

[Palis and de Melo 1982] J. Palis, Jr. and W. de Melo, Geometric theory of dynamical systems: An
introduction, Springer, New York, 1982. MR 84a:58004 Zbl 0491.58001

[Palis and Takens 1993] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at
homoclinic bifurcations: Fractal dimensions and infinitely many attractors, Cambridge Studies
in Advanced Mathematics 35, Cambridge University Press, Cambridge, 1993. MR 94h:58129
Zbl 0790.58014

[Smale 1967] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73 (1967), 747–
817. MR 37 #3598 Zbl 0202.55202

Received June 10, 2005.

CARLOS A. MORALES

INSTITUTO DE MATEMÁTICA
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