Pacific Journal of Mathematics

HANDLE ADDITIONS PRODUCING ESSENTIAL SURFACES

RUIFENG QIU AND SHICHENG WANG

Volume 229 No. 1

January 2007

HANDLE ADDITIONS PRODUCING ESSENTIAL SURFACES

RUIFENG QIU AND SHICHENG WANG

We construct a small, hyperbolic 3-manifold M with the property that, for any integer $g \ge 2$, there are infinitely many separating slopes r in ∂M such that the 3-manifold M(r) obtained by attaching a 2-handle to M along rcontains an essential separating closed surface of genus g. The resulting manifolds M(r) are still hyperbolic. This contrasts sharply with known finiteness results on Dehn filling and with the known finiteness result on handle addition for the cases g = 0, 1. Our 3-manifold M is the complement of a hyperbolic, small knot in a handlebody of genus 3.

1. Introduction

All manifolds in this paper are orientable and all surfaces F in 3-manifolds M are embedded and proper, unless otherwise specified. A surface $F \subset M$ is proper if $F \cap \partial M = \partial F$.

Let *M* be a compact 3-manifold. An incompressible, ∂ -incompressible surface *F* in *M* is essential if it is not parallel to ∂M . A 3-manifold *M* is simple if *M* is irreducible, ∂ -irreducible, anannular and atoroidal. In this paper, a compact 3-manifold *M* is said to be hyperbolic if *M* with its toroidal boundary components removed admits a complete hyperbolic structure with totally geodesic boundary. By Thurston's theorem, a Haken 3-manifold is hyperbolic if and only if it is simple. A knot *K* in *M* is hyperbolic if *M_K*, the complement of *K* in *M*, is hyperbolic. A 3-manifold *M* is *small* if *M* contains no essential closed surface. A knot *K* in *M* is *small*.

A *slope* r in ∂M is an isotopy class of unoriented essential simple closed curves in F. We denote by M(r) the manifold obtained by attaching a 2-handle to M along a regular neighborhood of r in ∂M and then capping off the possible spherical component with a 3-ball. If r lies in a toroidal component of ∂M , this operation is known as Dehn filling.

MSC2000: primary 57M25; secondary 57M50.

Keywords: Hyperbolic knot, small knot, handle additions.

Both authors are supported by the National Science Foundation of China.

Essential surfaces are a basic tool in the study of 3-manifolds, and handle addition is a basic method to construct 3-manifolds. A central question connecting those two topics is the following:

Question 1. Let *M* be a hyperbolic 3-manifold with nonempty boundary, containing no essential closed surface of genus *g*. How many slopes $r \subset \partial M$ are there such that M(r) contains an essential closed surface of genus *g*? (The question is asked only for hyperbolic 3-manifolds to avoid possibly infinitely many slopes produced by Dehn twists along essential discs or annuli. The mapping class group of a hyperbolic 3-manifold is finite.)

The main result of this paper shows that there can be many such slopes:

Theorem 1. There is a small, hyperbolic knot K in a handlebody H of genus 3 such that, for any given integer $g \ge 2$, there are infinitely many separating slopes r in ∂ H such that $H_K(r)$ contains an essential separating closed surface of genus g. Moreover the resulting manifolds $H_K(r)$ are still hyperbolic.

Remarks. Let *M* be a hyperbolic 3-manifold with nonempty boundary.

(1) Suppose ∂M is a torus. W. Thurston's pioneer result [1982] asserts that there are at most finitely many slopes on ∂M such that M(r) is not hyperbolic; hence the number of slopes in Question 1 is finite when g = 0 or 1. Sharp upper bounds for this number were given by Gordon and Luecke for g = 0, and by Gordon for g = 1; see the survey paper [Gordon 1997]. Hatcher [1982] proved that the number is finite for any g.

(2) Suppose ∂M has genus at least 2. Scharlemann and Wu [1993] have shown that if g = 0 or 1, there are only finitely many separating slopes r such that M(r) contains an essential closed surface of genus g. Recently Lackenby [2002] generalized Thurston's finiteness result to handlebody attaching, proving that, for a hyperbolic 3-manifold M, there is a finite set C of exceptional curves on ∂M such that attaching a handlebody to M yields a hyperbolic-like manifold if none of those curves bounds a meridian disc of the handlebody.

(3) In [Qiu and Wang 2005] we proved Theorem 1 for g even.

Theorem 1 and the finiteness results just cited give a global view about the answer of Question 1.

Outline of the proof of Theorem 1 and organization of the paper. In Section 2 we first construct a knot K in the handlebody H of genus 3 for Theorem 1, then we construct infinitely many surfaces $S_{g,l}$ of genus g for each $g \ge 2$ such that (1) all those surfaces are disjoint from the given K, hence contained in H_K ; and (2) for fixed g, all the $\partial S_{g,l}$ are connected and provide infinitely many slopes in ∂H as l varies. Those $\partial S_{g,l}$ will serve as the slopes r in Theorem 1. We denote

Figure 1

by $\hat{S}_{g,l} \subset H_K(\partial S_{g,l})$ the closed surface of genus g obtained by capping off the boundary of $S_{g,l}$ with a disk. We will prove in Section 3 that $\hat{S}_{g,l}$ is incompressible in $H_K(\partial S_{g,l})$. In Sections 4 and 5 we prove that the knot K is hyperbolic and small.

2. Construction of the knot *K* and the surfaces $S_{g,l}$ in *H*

Let *H* be a handlebody of genus 3. Suppose that B_1 , B_2 and B_3 are basis disks of *H*, and E_1 , E_2 are disks in *H* that separate *H* into three solid tori J_1 , J_2 and J_3 . See Figure 1.

Let *c* be a closed curve in ∂H as in Figure 2. The boundary of $E_1 \cup E_2$ separates *c* into 10 arcs c_1, \ldots, c_{10} , where $c_1, c_3, c_9 \subset J_1$ meet B_1 in two, one, one points respectively; $c_2, c_4, c_6, c_8, c_{10} \subset J_2$ meet B_2 in one, one, two, zero, one points respectively; $c_5, c_7 \subset J_3$ meet B_3 in one, three points respectively.

Let $u_1, \ldots, u_{2g}, v_1, \ldots, v_{2g}$ be 4g points located on ∂E_1 in the cyclic order u_1 , $u_3, \ldots, u_{2i-1}, \ldots, u_{2g-1}, u_{2g}, u_{2g-2}, \ldots, u_4, u_2, v_1, v_3, \ldots, v_{2i-1}, \ldots, v_{2g-1}, v_{2g}, v_{2g-2}, \ldots, v_4, v_2$ as in Figure 3. In view of the order of these points, C can be

Figure 2

Figure 3

isotoped so that $\partial c_1 = \{u_1, v_1\}$, $\partial c_2 = \{u_1, v_2\}$, $\partial c_{10} = \{v_1, u_2\}$, $\partial c_3 = \{v_2, u_3\}$, $\partial c_9 = \{u_2, v_3\}$. Now suppose $u_{2i+1}v_{2i}$ and $v_{2i+1}u_{2i}$, for $1 \le i \le g-1$, are arcs in $\partial J_1 - \mathring{E}_1$ parallel to c_3 and c_9 , and that $u_2v_1 = c_{10}$, $v_2u_1 = c_2$, and $u_{2i}v_{2i-1}$, $v_{2i}u_{2i-1}$, for $2 \le i \le g$, are parallel arcs in $\partial (J_2 \cup J_3) - \mathring{E}_1$, each of which intersects B_2 in one point and B_3 in l points (see Figure 3, where l = 2). Finally define $\alpha_1 = u_1v_1$, and let α_k be the union of $v_{k-1}u_k$, α_{k-1} and $u_{k-1}v_k$, for k = 2, ..., 2g. Then $\alpha_1 \subset \alpha_2 \subset \cdots \subset \alpha_{2g}$ is an increasing sequence of arcs.

Let $\alpha \subset \partial H$ be an arc which meets ∂S exactly at its two endpoints for a proper separating surface $S \subset H$. The surface resulting from tubing S along α in H, denoted by $S(\alpha)$, is obtained by first attaching a 2-dimensional 1-handle $N(\alpha) \subset$ ∂H to S, then making the surface $S \cup N(\alpha)$ to be proper, that is, pushing its interior into the interior of H. The image of $N(\alpha)$ after the pushing is still denoted by $N(\alpha)$. In fact, $S \cup N(\alpha)$ is a once punctured torus. Since S is orientable and separating, $S(\alpha)$ is still separating and orientable.

Since α_1 meets E_1 exactly in its two endpoints, we do tubing on E_1 along α_1 to get a proper surface $E_1(\alpha_1)$. Now α_2 meets $E_1(\alpha_1)$ exactly in its two endpoints. We do tubing on $E_1(\alpha_1)$ along α_2 to get $E_1(\alpha_1, \alpha_2) = E_1(\alpha_1)(\alpha_2)$, where the tube $N(\alpha_2)$ is thinner and closer to ∂H so that it goes over the tube $N(\alpha_1)$. Hence $E_1(\alpha_1, \alpha_2)$ is a properly embedded surface (indeed, a one-punctured torus). By the same argument, we do tubing along $\alpha_3, \ldots, \alpha_{2g}$ to get a proper embedded surface $E_1(\alpha_1, \ldots, \alpha_{2g})$ in H, denoted by $S_{g,l}$. This surface is orientable and separating.

Since $S_{g,l}$ is obtained from the disc E_1 by attaching 2g 1-handles to E_1 such that the ends of any two handles are alternating, $S_{g,l}$ is a once punctured orientable surface of genus g. We summarize the facts just discussed:

Lemma 2.1. $S_{g,l}$ is a once punctured surface of genus g and is separating in H.

Now let K be a knot in \mathring{H} obtained by first pushing c_6 into \mathring{H} deeply and then pushing $C - c_6$ into \mathring{H} so that it stays between $N(\alpha_3)$ and $N(\alpha_4)$. The following fact is clear:

Lemma 2.2. *K* is disjoint from $S_{g,l}$ for all g, l.

3. Proof of Theorem 1 assuming that K is hyperbolic and small

We denote by $\hat{S}_{g,l} \subset H_K(\partial S_{g,l}) \subset H(\partial S_{g,l})$ the surface obtained by capping off the boundary of $S_{g,l}$ with a disk. Then $\hat{S}_{g,l}$ is a closed surface of genus g.

From the definition of $S_{g,l}$ for a given genus g, the boundary $\partial S_{g,l}$ provides infinitely many boundary slopes as l varies from 1 to infinity. Then Theorem 1 follows from the next two propositions (apart from the last assertion, which follows directly from [Scharlemann and Wu 1993]).

Proposition 3.0. $K \subset H$ is a hyperbolic, small knot.

Proposition 3.1. $\hat{S}_{g,l}$ is incompressible in $H_K(\partial S_{g,l})$.

We postpone the proof of the first of these results and prove the second here. Recall that a surface F in a 3-manifold is *compressible* if either F is a 2-sphere that bounds a 3-ball, or there is an essential simple closed curve in F that bounds a disk in M; otherwise, F is *incompressible*. Hence Proposition 3.1 is a consequence of the following result:

Proposition 3.2. $\hat{S}_{g,l}$ is incompressible in $H(\partial S_{g,l})$.

We choose the center of E_1 as the common base point for the fundamental groups of H and of all surfaces $S_{g,l}$.

Now $\pi_1(S_{g,l})$ is a free group of rank 2n generated by (x_1, \ldots, x_{2n}) , where x_i is the generator given by the centerline of the tube $N(\alpha_i)$; and $\pi_1(H)$ is a free group of rank three generated by curves y_1, y_2, y_3 corresponding to B_1, B_2, B_3 , as in Figure 1. Let $i : S_{g,l} \to H$ be the inclusion. One can read $i_*(x_i)$ directly as words in y_1, y_2, y_3 :

$$i_*(x_1) = y_1^2,$$

$$i_*(x_2) = y_2 y_1^2 y_2,$$

$$i_*(x_3) = y_1 y_2 y_1^2 y_2 y_1,$$

$$i_*(x_4) = y_2 y_3^l y_1 y_2 y_1^2 y_2 y_1 y_2 y_3^l,$$

and in general, for $2 \le i \le g$,

$$i_*(x_{2i-1}) = y_1(y_2y_3^ly_1)^{i-2}y_2y_1^2y_2(y_1y_2y_3^l)^{i-2}y_1,$$

$$i_*(x_{2i}) = (y_2y_3^ly_1)^{i-1}y_2y_1^2y_2(y_1y_2y_3^l)^{i-1}.$$

Lemma 3.3. $S_{g,l}$ is incompressible in H.

The proof is the same as that in [Qiu 2000].

Now $S_{g,l}$ separates H into two components P_1 and P_2 with $\partial P_1 = T_1 \cup S_{g,l}$ and $\partial P_2 = T_2 \cup S_{g,l}$, where $T_1 \cup T_2 = \partial H$ and $\partial T_1 = \partial T_2 = \partial S_{g,l}$.

Lemma 3.4. T_1 and T_2 are incompressible in H.

Proof. We have $H_1(H) = \mathbb{Z} + \mathbb{Z} + \mathbb{Z}$, with the three generators y_1 , y_2 and y_3 . By the preceding argument, $i_*(H_1(S_{g,l}))$ is a subgroup of $H_1(H)$ generated by $2y_1$, $2y_2$ and $2ly_3$. Thus $H_1(H)/i_*(H_1(S_{g,l})) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2l}$ is a finite group.

Suppose T_1 or T_2 is compressible. Then it bounds a compressing disk D_1 in H. Since $\partial D \cap \partial S_{g,l} = \emptyset$ and $S_{g,l}$ is incompressible in H, by a standard argument in 3-manifold topology, we may assume that $D_1 \cap S_{g,l} = \emptyset$. Since H is a handlebody, we may also assume that D_1 is nonseparating in H. Thus there are two properly embedded disks D_2 and D_3 in H such that $\{D_1, D_2, D_3\}$ is a set of basis disks of H. Let z_1, z_2, z_3 be generators of $\pi_1(H)$ corresponding to D_1, D_2, D_3 . Since $S_{g,l}$ misses D_1 , we have $i_*(\pi_1(S_{g,l})) \subset G$, where G is a subgroup of $\pi_1(H)$ generated by z_2 and z_3 . Then $H_1(H)/i_*(H_1(S_{g,l}))$ is an infinite group, a contradiction. \Box *Proof of Proposition 3.2.* Since H is a handlebody and $S_{g,l}$ is incompressible in H, P_1 and P_2 are handlebodies. By Lemmas 3.3, 3.4 and the Handle Addition Lemma [Jaco 1984], $\hat{S}_{g,l}$ is incompressible in $P_i(\partial S_{g,l})$ for i = 1, 2. Since $H(\partial S_{g,l}) =$ $P_1(\partial S_{g,l}) \cup_{\hat{S}_{g,l}} P_2(\partial S_{g,l})$, the surface $\hat{S}_{g,l}$ is incompressible in $H(\partial S_{g,l})$. \Box

4. H_k is irreducible, ∂ -irreducible and an annular

By construction, *K* is cut by $E_1 \cup E_2$ into ten arcs a_1, \ldots, a_{10} , where a_i arises from pushing c_i into \mathring{H} . Now let $N(K) = K \times D$ be a regular neighborhood of *K* in *H*, where the product structure has been adjusted so that $\bigcup_{i=1}^{10} \partial a_i \times D$ is contained in $E_1 \cup E_2$. Let $H_K = H - \mathring{N}(K)$ and $F_i = E_i - \mathring{N}(K)$; also set $M_i = H_K \cap J_i$, for i = 1, 2, 3, and $T = \partial(K \times D)$. Then $F_1 \cup F_2$ separates *T* into ten annuli A_1, \ldots, A_{10} such that $A_i = a_i \times \partial D$.

K and *C* bound a nonembedded annulus A_* , which is cut by $E_1 \cup E_2$ into ten disk D_{1*}, \ldots, D_{10*} in *H*. Note that $D_* = \bigcup_{i \neq 6} D_{i*}$ is still a disk. Let $D_i = D_{i*} \cap H_K$ for $i \neq 6$. Then D_i is a proper disk in some M_l and $\bigcup_{i \neq 6} D_i$ is still a disk; see Lemma 4.1. Now we number the ∂A_i such that $\partial_1 A_i = \partial_2 A_{i-1}$ and $\partial_2 A_i = \partial_1 A_{i+1}$. For $i \neq 6$, let $W_i = \overline{\partial N(D_i \cup A_i) - \partial M_l}$. Then W_i is a proper separating disk in M_l . Each W_i intersects $F_1 \cup F_2$ in two arcs l_i and l_{i+1} . Note that $W = \bigcup_{i \neq 6} W_i$ is a disk. Thus ∂W is a union of two arcs in ∂H and $l_6 \cup l_7$; see Figure 4. Since c_3, c_9 are parallel in $\partial J_1 - \mathring{E}_1$, there are two arcs parallel to c_3 in $\partial J_1 - \mathring{E}_1$, say l', l'', and two arcs in F_1 , say l^1, l^2 , such that $l' \cup l'' \cup l^1 \cup l^2$ bounds a disk W' that separates M_1 into two handlebodies of genus two H^1, H^2 with $A_1 \subset H^1$ and $A_3, A_9 \subset H^2$.

We list some elementary facts about *K* and a_i :

Figure 4

Lemma 4.0. (1) $K \neq 1$ in $\pi_1(H)$.

- (2) Suppose $a_i \subset J_m$, where $i \neq 4, 8$. Let $b_i \subset E_1 \cup E_2$ be a given arc with $\partial b_i = \partial a_i$ and let $B \subset J_m$ be a nonseparating proper disk. Then $a_i \cup b_i$ intersects ∂B in at least one point for all i, in at least three points when i = 7, and in at least two points when i = 1, 6.
- (3) There is no relative homotopy on $(J_m, E_1 \cup E_2)$ sending a_i to $E_1 \cup E_2$.

Recall that a 3-manifold M is *irreducible* if it contains no essential 2-spheres. M is ∂ -*irreducible* if ∂M is incompressible. M is *atoroidal* if it contains no essential tori. M is *anannular* if it contains no essential annuli.

Lemma 4.1. H_K is irreducible.

Proof. Suppose that H_K is reducible, so there is an essential 2-sphere *S* in H_K . Since *H* is irreducible, *S* bounds a 3-ball B^3 in *H* and $K \subset B^3$, which contradicts Lemma 4.0(1).

Recall that *F* is ∂ -compressible if there is an essential arc *a* in *F* which, together with an arc *b* in ∂M , bounds a disk *D* in *M* such that $D \cap F = a$; otherwise, *F* is ∂ -incompressible.

Lemma 4.2. $F_1 \cup F_2$ is incompressible and ∂ -incompressible in H_K .

Proof. Suppose first that $F_1 \cup F_2$ is compressible in H_K . Then there is a disk B in M such that $B \cap (F_1 \cup F_2) = \partial B$ and ∂B is an essential circle on $F_1 \cup F_2$. Without loss of generality, we assume that $\partial B \subset F_1$ and $B \subset M_2$. Denote by B' the disk bounded by ∂B in E_1 . Then $B \cup B'$ is a 2-sphere $S \subset J_2$, and it follows easily from Lemma 4.1 that S bounds a 3-ball B^3 in J_2 . Since ∂B is essential in F_1 , B' contains at least one component of ∂a_i . Since S is separating and a_i is connected, we must have $(a_i, \partial a_i) \subset (B^3, B')$, which provides a relative homotopy on (J_2, E_1) sending a_i to E_1 . This contradicts Lemma 4.0(2).

Now suppose $F_1 \cup F_2$ is ∂ -compressible in H. There is an essential arc a in $F_1 \cup F_2$ which, with an arc b in ∂H_k , bounds a disk B in H_K with $B \cap (F_1 \cup F_2) = a$. Without loss of generality, we assume that $a \subset F_2$ and $B \subset M_2$. There are two cases:

 $b \subset T$. Then *b* is a proper arc in one of A_4 , A_6 , and A_8 , say A_6 . If *b* is not essential in A_6 , then *a* and an arc *b'* in ∂A_6 form an essential circle in F_2 bounding a disc in M_2 . This contradicts the incompressibility of F_2 we just proved. If *b* is essential in A_6 , the disk *B* provides a relative homotopy on (J_2, E_2) sending a_6 to E_2 , which contradicts Lemma 4.0(2).

 $b \subset \partial H$. If *B* is nonseparating in J_2 , then b_6 can be chosen so that $a_6 \cup b_6$ intersects ∂B in at most one point, where b_6 is an arc in E_2 connecting the endpoints of a_6 ; this contradicts Lemma 4.0(2). If *B* is separating in J_2 , then *B* separates J_2 into a 3-ball B^3 and a solid torus *J*. We denote by D_1 , D_2 the two components of $E_2 - a$. Since *a* is essential in F_2 , each of \mathring{D}_1 and \mathring{D}_2 contains at least one endpoint of a_4 , a_6 and a_8 .

Suppose that $D_1 \subset B^3$ and $D_2 \cup E_1 \subset J$. By construction, $\partial_1 a_4$, $\partial_1 a_8 \subset E_1$, $\partial_2 a_4$, $\partial_2 a_8 \subset E_2$, and $\partial a_6 \subset E_2$. Since a_4 , a_6 and a_8 are disjoint from B, we have a_4 , $a_8 \subset J$ and $a_6 \subset B^3$. This contradicts Lemma 4.0(2).

Suppose that $D_1 \subset J$ and $D_2 \cup E_1 \subset B^3$. Then $a_2, a_{10} \subset B^3$. This contradicts Lemma 4.0(2).

Lemma 4.3. H_K is ∂ -irreducible.

Proof. Suppose H_K is ∂ -reducible. Let B be a compressing disk of ∂H_K . If $\partial B \subset T$, then H_K contains an essential 2-sphere, which contradicts Lemma 4.1. Below we assume that $\partial B \subset \partial H$. Since $F_1 \cup F_2$ is incompressible and ∂ -incompressible in H_K (Lemma 4.2), by a standard cut and paste argument, we may assume that $B \cap (F_1 \cup F_2) = \emptyset$. We assume that $B \subset M_2$. (The other cases are similar.) Then B misses b_6 . If B is nonseparating in J_2 , by Lemma 4.0(2), B intersects a_6 , a contradiction. If B is separating, then B separates a 3-ball B^3 from J_2 . Since ∂B is essential in ∂H_K , there are two cases: Either B^3 contains only one of E_1 and E_2 , say E_1 , in which case $a_8 \cap B \neq \emptyset$, a contradiction; or B^3 contains both E_1 and E_2 , in which case there is a relative homotopy on (J_2, E_2) sending a_6 to E_2 , in contradiction with Lemma 4.0(2).

Lemma 4.4. M is anannular.

Proof. Suppose H_K contains an essential annulus A. We can choose A so that $|A \cap (F_1 \cup F_2)|$ is minimal among all essential annuli in H_K . This condition, together with Lemma 4.2 and the proof of Lemma 4.3, implies that each component of $A \cap (F_1 \cup F_2)$ is essential in both A and $F_1 \cup F_2$. There are three cases:

Case 1: $\partial A \subset T$. Here A is separating in H_k ; otherwise, H contains either a nonseparating 2-sphere or a nonseparating torus. Hence the union of A and an

annulus A' on T makes a separating torus T', cutting off a manifold with boundary $T \cup T'$. Since M is irreducible, T' is incompressible, so by Lemma 5.5 T' is parallel to T, which implies that A is inessential. (The arguments in Section 5 are independent of those in Section 4.)

Case 2: $\partial_1 A \subset T$ and $\partial_2 A \subset \partial H$. By Lemma 4.3, both ∂H and *T* are incompressible in H_K . Clearly H_K is not homeomorphic to $T \times I$. Since Dehn fillings along μ and ∂A_1 both compress ∂H , by an important theorem in Dehn filling, $\Delta(\partial_1 A, \mu) \leq 1$. See [Culler et al. 1987, 2.4.3].

We first suppose that $\partial_1 A$ is the meridian slope μ . Then $\partial_1 A$ is disjoint from $F_1 \cup F_2$. We claim that A is disjoint from $F_1 \cup F_2$.

Suppose, to the contrary, that $A \cap (F_1 \cup F_2) \neq \emptyset$. Since $F_1 \cup F_2$ is incompressible and ∂ -incompressible in H_K (Lemma 4.2), by a standard cut and paste argument, we may assume that $\partial_2 A \cap (F_1 \cup F_2) = \emptyset$. Now each component of $A \cap (F_1 \cup F_2)$ is an essential simple closed curve in A. Let a be an outermost circle in $A \cap (F_1 \cup F_2)$. Then a and $\partial_1 A$ bound an annulus A^* in A such that \mathring{A}^* is disjoint from $F_1 \cup F_2$. We may assume that $a \subset F_1$ and $\partial_1 A \subset A_i$ for some i. Let B^* be the disk bounded by a on E_1 and let D be the meridian disk of N(K) bounded by $\partial_1 A$. Since a is essential on F_1 , B^* contains at least one component of ∂F_1 . In H, $B^* \cup A^* \cup D$ is a separating 2-sphere S^2 that bounds a 3-ball B^3 . For $j \neq i$, if $\partial_1 a_j \subset B^*$, then $\partial_2 a_j \subset B^*$ and $a_j \subset B^3$. This possibility is ruled out by Lemma 4.0(2). Note also that $\partial_1 a_i \subset B^*$ and that $\partial_2 a_i$ is not contained in B^* . Now let A' be the annulus bounded by a and $\partial_1 a_i \times \partial D = \partial_1 A_i$ in F_1 . Then $A^* \cup A'$ is isotopic to an annulus disjoint from $F_1 \cup F_2$. By the preceding argument, $A^* \cup A'$ is inessential. Thus we can properly isotope A by pushing the annulus A^* to the other side of F_1 to reduce $|A \cap (F_1 \cup F_2)|$, contradicting our choice of A at the beginning of the proof.

We may assume that A is contained in M_2 . Let D be the meridian disk of N(K) bounded by $\partial_1 A$ and set $B = A \cup_{\partial_1 A} D$. Then B is a proper disk in J_2 , meeting K in exactly one point; hence B is a meridian disk of J_2 . Let b_6 be an arc on E_2 connecting the two endpoints of c_6 . Then $c_6 \cup b_6$ would be a closed curve of winding number 2 in the solid torus J_2 intersecting B at most once, which is absurd.

Next we suppose that $\Delta(\partial_1 A, \mu) = 1$. Then *A* is cut by $(F_1 \cup F_2)$ into ten squares S_i , i = 1, ..., 10, each of which has two opposite sides in $F_1 \cup F_2$, the other two sides being the longitude arc a_i in A_i and $a_i^* \subset \partial H$. Let b_2^* be the arc connecting the two endpoints of a_2^* in E_1 and let b_6^* be the arc connecting the two endpoints of a_6^* in E_2 . The two simple closed curves $b_2^* \cup a_2^*$ and $b_6^* \cup a_6^*$ on ∂J_2 are disjoint. But in $\pi_1(J_2)$, we have $b_2^* \cup a_2^* = y_2$ and $b_6^* \cup a_6^* = y_2^2$, a contradiction.

Case 3: $\partial A \subset \partial H$. Suppose first that $A \cap (F_1 \cup F_2) = \emptyset$. Then A is contained in one of M_1 , M_2 and M_3 . Since A is essential and H_K is ∂ -irreducible, A is disjoint from

 D_i for $i \neq 6$. Since each component of $\partial H \cap J_1 - c_1 \cup c_3$ and $\partial H \cap J_3 - c_5 \cup c_7$ is a disc, $A \subset M_2$. Since A is disjoint from c_2, c_4, c_8, c_{10} , each component of ∂A intersects B_2 in only one point in J_2 (see Figure 2). Thus A is isotopic to each component of $\partial J_2 - \partial A$ in J_2 . This means that A is not essential in M_2 , a contradiction.

Now suppose that $A \cap (F_1 \cup F_2) \neq \emptyset$. There are two subcases:

Case 3a: Each component of $A \cap (F_1 \cup F_2)$ *is an essential circle.* Let *a* be an outermost component of $A \cap (F_1 \cup F_2)$. That means that $\partial_1 A$, together with *a*, bounds an annulus A^* in *A* such that $A^* \cap (F_1 \cup F_2) = a$. Then $A^* \subset M_i$. We denote by B^* the disk bounded by *a* in $E_1 \cup E_2$. Let $D^* = A^* \cup B^*$. Then D^* is a disk. Let *D* be the disk obtained from D^* by pushing B^* slightly into J_l . Then *D* is a properly embedding disk in J_l such that *D* intersects each a_i in at most two points. Furthermore, if *D* intersects a_i in two points for some *i*, the two endpoints of a_i lie in B^* . Thus, in this case, the algebraic intersection number of a_i and *D* is 0. By Lemma 4.0, A^* is separating in J_l .

Suppose that A^* is contained in one of J_1 and J_3 , say J_1 . Then $\partial_1 A$ is parallel to ∂E_1 . We denote by A' the annulus bounded by $\partial_1 A$ and a in ∂J_1 . Since ais essential in F_1 , B_* contains at least one endpoint of a_1, a_3, a_9 . Furthermore, $\partial_1 a_i \subset B^*$ if and only if $\partial_2 a_i \subset B^*$. Now if $\partial_1 a_j \subset A'$ for some j, then $\partial_2 a_j \subset A'$. This means that a_j is disjoint from B_1 as in Figure 1, a contradiction. Thus for each i, j, we have $\partial_j a_i \subset B^*$, which means that a is parallel to ∂E_1 in F_1 . Now ∂D_i , for i = 1, 3, 9, intersects each component of ∂A^* in two points, which means that D_i intersects A^* in two arcs each of which has its two endpoints in distinct components of ∂A^* . (Otherwise, since $\partial_1 A$ is isotopic to ∂E_1 , we would have $a_i \cup b_i = 1$ in $\pi_1(J_1)$, where b_i is an arc in ∂E_1 connecting the two endpoints of a_i , a contradiction.) Thus we can push $\partial_1 A$ into M_2 to reduce $|A \cap (F_1 \cup F_2)|$, contradicting our assumption on A.

Suppose instead that $A^* \subset M_2$. Without loss of generality, we assume that $a \subset F_1$. We denote by A' the annulus bounded by ∂E_1 and a in E_1 . Then A' and B^* lie on distinct sides of $J_2 - A^*$. If $\partial_1 A$ is isotopic to ∂E_2 , then $a_6 \cup b_6 = 1$ in $\pi_1(J_2)$ where b_6 is an arc in E_2 connecting the two endpoints of a_6 , a contradiction. If $\partial_1 A$ bounds a disk D in ∂J_2 such that $E_1, E_2 \subset D$, then $a_4 \cup a_8 \cup b^1 \cup b^2 = 1$ in $\pi_1(J_2)$, where b^i is an arc in E_i connecting the endpoints of a_{4i} and a_8 , a contradiction. Now $\partial_1 A$ is isotopic to ∂E_1 . Then D_4 intersects A^* in an arc. By the preceding argument, we can push $\partial_1 A$ into M_1 to reduce $|A \cap (F_1 \cup F_2)|$.

Case 3b: Each component of $A \cap (F_1 \cup F_2)$ *is an essential arc.* Then $F_1 \cup F_2$ cuts A into proper squares S_i in $M_l \subset J_l$, each S_i having two opposite sides in $F_1 \cup F_2$ and the remaining two sides in ∂H . If $S_i \subset J_l$ for l = 2 or 3, then S_i is a separating disc in J_l . Otherwise, say S_i is a nonseparating disc in J_2 . By the same reason as that at the end of the proof of Lemma 4.3, the fact that $S \cap (F_1 \cup F_2)$ consists of

Figure 5

two proper arcs in $E_1 \cup E_2$ implies that b_6 can be chosen so as to intersect ∂S_i in at most two points; furthermore, if b_6 intersects ∂S_i in two points then $S_i \cap F_1 = \emptyset$ and $S_i \cap b_2 = \emptyset$, where b_i is an arc in $E_1 \cup E_2$ connecting the two endpoints of a_i . This means that S_i meets a_2 or a_6 by Lemma 4.0(1), a contradiction. Now each S_i cuts off a 3-ball B_i^3 from J_l for l = 2 or 3 as in Figure 5. Let S_i^1 and S_i^2 be the two disks of $B_i^3 \cap (E_1 \cup E_2)$ and $S_i \subset J_l$ where l = 2 or 3. By Lemma 4.0(2), we have:

(i) $\partial_1 a_j \subset S_i^1$ if and only if $\partial_2 a_j \subset S_i^2$.

(ii) If a_j is contained in B_i^3 , then a_l is not contained in B_i^3 .

This means that for each *i*, there is only one boundary component of $F_1 \cup F_2$ lying in each of S_i^1 and S_i^2 . Thus if S_i lies in M_1 for some *i*, then S_i is also separating in J_1 . Otherwise, say S_i is nonseparating in J_1 . By (i) and (ii), the three circles $a_1 \cup b_1$, $a_3 \cup b_3$, $a_9 \cup b_9$ intersect S_i in two points, a contradiction. It follows that S_i is also as in Figure 5 and A cuts off a solid torus P from H. Thus D_{i*} can be chosen to be disjoint from A even if i = 6. This means that K and a component of ∂A bound an annulus, which has been ruled out in Case 2.

5. H_K contains no closed essential surface

Suppose H_K contains essential closed surfaces. Let W, W' and W_i be the disks defined in Section 4. Denote by X(F) the union of the components of $F \cap M_1$ isotopic to $\partial H \cap M_1$. We define the complexity on the essential closed surfaces F in H_K by the quadruple

$$C(F) = (|F \cap W|, |F \cap F_2|, |(F \cap M_1 - X(F)) \cap W'|, |F \cap F_1|).$$

We rank complexities in lexicographic order. Suppose F minimizes C(F). By a standard argument in 3-manifold topology, we derive the following facts:

Lemma 5.0. (1) Each component of $F \cap (F_1 \cup F_2)$ is an essential circle in both F and $F_1 \cup F_2$.

- (2) Each component of $F \cap W$ is an arc in W one of whose endpoints lies in l_6 and the other in l_7 . Similarly each component of $F \cap W'$ is an arc in W' one of whose endpoints lies in l^1 and the other in l^2 . Hence $|F \cap l_i| = |F \cap l_j|$ for all i, j and $|F \cap l^1| = |F \cap l^2|$ as in Figure 6.
- (3) Each component of $F \cap (F_1 \cup F_2)$ isotopic to ∂A_i is disjoint from $W \cup W'$.

For two surfaces P_1 and P_2 in a 3-manifold, a pattern of $P_1 \cap P_2$ is a set of disjoint arcs and circles representing isotopy classes of $P_1 \cap P_2$. For each isotopy class *s*, we denote by v(s) the number of components of $P_1 \cap P_2$ in the isotopy class *s*.

The proof of the next lemma is similar to that of [Qiu and Wang 2004, Lemma 4.3].

Lemma 5.1. Each component of $F \cap M_3$ is isotopic to one of $\partial H \cap M_3$, A_5 and A_7 .

Proof. The four arcs l_5 , l_6 , l_7 , l_8 separate F_2 into four annuli A^5 , A^6 , A^7 , A^8 and a disk D. By the minimality of $|F \cap W|$, the pattern of $F \cap A^j$ is as in Figure 7, left, and the pattern of $F \cap D$ is as in Figure 7, right. Since $|F \cap l_i|$ is a constant, $\nu(d_5) = 0$. If $\nu(d_i) \neq 0$ for $1 \le i \le 4$, then $F \cap F_2$ contains $\min(\nu(d_1), \ldots, \nu(d_4))$

Figure 7

components parallel to a disk on ∂E_2 . Now if $\nu(d_1) = 0$, then $\nu(d_3) = 0$. Similarly, if $\nu(d_2) = 0$, then $\nu(d_4) = 0$. Thus according to the order of l_5 , l_6 , l_7 , l_8 in F_2 , the pattern of $F \cap F_2$ is as in one of the diagrams in Figure 8, with $\nu(m_2) = \nu(m_3)$. Note that W_5 and W_7 separate M_3 into three solid tori J^1 , J^2 , J^3 . Without loss of generality, we assume that $A_5 \subset J^1$, $A_7 \subset J^2$. Let $S = F \cap M_3$ and S' be a component of S.

Now we claim that if one of component of $\partial S'$ is isotopic to ∂E_2 , then S' is isotopic to $\partial H \cap M_3$.

Let $\partial_1 S$ be the outermost component of ∂S isotopic to ∂E_2 . Now $\partial_1 S$ intersects l_i as in Figure 8. Without loss of generality, we assume that $\partial_1 S \subset \partial S'$. We denote by e_i the arc $\partial_1 S \cap A^i$. Now let $S_l = S' \cap J^l$, then S_l is an incompressible surface in J^l . Note that $\partial S_1 = e_5 \cup e_6 \cup (S \cap W_5)$ bounds a disk in J^1 parallel to a disk on ∂M_3 . Similarly S_2 is a disk in J^2 parallel to a disk on ∂M_3 bounded by $e_7 \cup e_8 \cup (S \cap W_7)$. ∂S_3 also has one component which is trivial in ∂M_3 , as in Figure 9, left. Hence one component of S_3 is a disk in J^3 parallel to ∂J^3 , Thus $S' = S_1 \cup_{S \cap W_5} S_3 \cup_{S \cap W_7} S_2$ is isotopic to $M_3 \cap \partial H$.

Now we claim that $v(m_2) = v(m_3) = 0$ in both parts of Figure 8.

Let $S_0 = S - X'$, where X' is a subset of S each of whose components is isotopic to $\partial H \cap M_3$. Then no component of ∂S_0 is isotopic to ∂E_2 . Let $P_3 = S_0 \cap J^3$. If

Figure 9

Figure 10

 $\nu(m_2) \neq 0$, then P_3 is incompressible in J^3 and ∂P_3 contains $2\nu(m_2) = 2\nu(m_3)$ components c, as in Figure 9, right. Since a_7 intersects a basis disk B_3 of J_3 in three points and a_5 intersects B_3 in one point, c does not bound a disk in J^3 . Since J^3 is a solid torus, each component of P_3 is a ∂ -compressible annulus. Let D^* be a ∂ -compressing disk of an outermost component of P_3 . This disk can be isotoped so that $D^* \cap \partial J^3 \subset E_2 \cap J^3$. Then, back in J_3 , D^* is isotopic to one of D^1 , D^2 , D^3 as in Figure 10. In the case of D^1 or D^2 , one can push F along the disc to reduce $|F \cap F_2|$, without increasing $|F \cap W|$. Either way, the minimality of C(F) is contradicted.

Now let *P* be a component of $S = F \cap M_3$. If one component of ∂P is isotopic to ∂E_2 , then *P* is isotopic to $M_3 \cap \partial H$. If not, each component of ∂P is isotopic to one component of $\partial A_5 \cup \partial A_7$. By the minimality of C(F), *P* is contained in J^1 or J^2 . It is easy to see that *P* is isotopic to one of A_5 and A_7 .

Now we consider $S = F \cap M_1$. Note that W_1 and W' separate M_1 into two solid tori J^1 , J^2 and a handlebody of genus two H' such that $A_1 \subset J^1$ and A_3 , $A_9 \subset H'$; moreover l_1 , l_2 , l^1 , l^2 separate F_1 into two annuli and two planar surfaces with three boundary components and a disk D such that $\partial J^2 \cap F_1 = D$. See Figure 11. Let k_1 be a component of $F \cap W_1$, k_2 a component of $F \cap W'$, and k'_i , for i = 1, 2, an arc in D connecting the two endpoints of k_i . Let $\alpha = k_1 \cup k'_1$ and $\beta = k_2 \cup k'_2$. Note that k'_1 and k'_2 can be chosen so that β intersects α in one point. Furthermore, by construction, α intersects a basis disk of J^2 in two points and β so that $\alpha = y^2$ and $\beta = y$, where y is a generator of $\pi_1(J^2)$. Then $\alpha\beta^{-2}$ is an essential circle in ∂J^2 and null homotopic in J^2 .

The next lemma follows immediately from the proof of Lemma 5.1.

Figure 11

Lemma 5.2. Let P be a component of $S = F \cap M_1$. If one component of ∂P is isotopic to ∂E_1 . Then P is isotopic to $M_1 \cap \partial H$.

By the construction and Lemma 5.0, the pattern of $\partial S \cap (F_1 \cap (J^1 \cup H'))$ is as in one of the diagrams in Figure 11, and moreover

- (1) in Figure 11, left, we have $\nu(f_1) = \nu(f_2)$, $\nu(f_3) = \nu(f_5)$, $\nu(f_4) = \nu(f_6)$ and $\nu(f_3) + \nu(f_4) = \nu(f_1)$;
- (2) in Figure 11, right, we have $\nu(f_1) = \nu(f_2) = \nu(f_3) + \nu(f_4)$, $\nu(f_3) = \nu(f_6)$ and $\nu(f_4) = \nu(f_5) = \nu(f_7) = \nu(f_8) \neq 0$.

Lemma 5.3. If the pattern of $S \cap (F_1 \cap (J^1 \cup H'))$ is as in Figure 11, left, the pattern of $S \cap F_1$ is as in Figure 12 with $v(n_2) = v(n_3) = v(n_4)$.

Figure 12

Figure 13

Proof. If $v(f_3) = 0$, the pattern of $S \cap F_1$ is as in Figure 12 with $v(n_2) = v(n_3) = v(n_4)$ and $v(n_1) = 0$.

Suppose instead that $v(f_3) \neq 0$. Since $v(f_3) = v(f_5) \leq v(f_1) = v(f_2)$, the pattern of $S \cap D$ is as in Figure 13, where $v(d_1) = v(d_3)$ and $v(d_2) = v(d_4)$. If $v(d_1)$, $v(d_2) \neq 0$, then $S \cap F_1$ contains $\min(v(d_1), v(d_2))$ components isotopic to ∂E_1 . Thus if $v(d_1) = v(d_2)$, then $S \cap F_1$ is as in Figure 12 with $v(n_2) = v(n_3) = v(n_4)$. Now without loss of generality, we assume that $v(d_1) < v(d_2)$. Let $k = v(d_2) - v(d_1)$. By Lemmas 5.0(2) and 5.2, $\partial(S \cap J^2)$ contains $n = \gcd(k, k + v(d_5))$ components *c* isotopic to $\alpha^p \beta^q$, where $|p| = (k + v(d_5))/n$ and |q| = k/n. Since $y + v(d_5) \geq y$, *c* is not null homotopic in J^2 . Moreover, *c* intersects both d_2 and d_4 ; if $v(d_5) \neq 0$, then *c* also intersects d_5 . Thus these curves separate ∂J^2 into *m* annuli A^1, \ldots, A^m such that, for each *j*, there is an arc in $D \cap A^j$ connecting the two boundary components of A^j . Since J^2 is a solid torus, each component of $(S - X(F)) \cap J^2$ is an annulus. Let D^* be a ∂ -compressing disk of $(S - X(F)) \cap J^2$. Then D^* can be moved so that $D^* \cap \partial J^2 = D^* \cap D = a$. Thus there are three possibilities:

1. The two endpoints of *a* lie in one of d_2 , d_4 , d_5 . Then D^* is one of D^1 , D^3 as in Figure 14, left. In each case, one can push *F* along the disc to reduce $|F \cap W|$, a contradiction.

2. One endpoint of a lies in $d_2 \cup d_4$ and the other lies in d_5 . Then D^* is D^2 as in Figure 14, left. This case is similar to the previous case.

3. One endpoint of *a* lies in d_2 and the other lies in d_4 . In this case, $\nu(d_5) = 0$. By Lemma 5.0(2), we have $\nu(f_4) = \nu(f_6) = 0$ in Figure 11, left. Now the pattern of $S \cap F_1$ is as in Figure 14, right, and D^* is also as in the same figure. By doing a surgery on *F* along D^* , we obtain a surface *F'* isotopic to *F* such that $|F' \cap W| = |F \cap W|$, $|F' \cap F_2| = |F \cap F_2|$ and $|(F' \cap M_1 - X(F')) \cap W'| < |(F \cap M_1 - X(F)) \cap W'|$ (by Lemma 5.2), contradicting minimality.

Lemma 5.4. If the pattern of $S \cap (F_1 \cap (J_1 \cup H'))$ is as in Figure 11, right, then the pattern of $S \cap F_1$ is as in Figure 15.

Proof. We have $v(f_1) = v(f_2) = v(f_3) + v(f_4) = v(f_6) + v(f_7)$. Thus the pattern of $S \cap D$ is as in Figure 16, where $v(d_1) = v(d_3)$, $v(d_2) = v(d_4)$, and $v(d_5) = 2v(f_5)$. Therefore $v(d_5) \neq 0$. Referring to Figure 11, right, we distinguish two cases: $v(f_3) = v(f_6) = 0$ and $v(f_3) = v(f_6) = 0$.

If $v(f_3) = v(f_6) = 0$, we have $v(d_5) = v(d_1) + v(d_2)$. There are three subcases:

Suppose first that $\nu(d_1) = \nu(d_2)$. Since $\nu(d_5) \neq 0$, $\partial(S \cap J^2)$ contains $\nu(d_1)$ trivial components in ∂J^2 bounding some disks in *S* as in Figure 9, left, and $\nu(d_5)$ components isotopic to β . Since β intersects a basis disk of J^2 in one point, each nontrivial component of $S \cap J^2$, say A^* , is an annulus parallel to each component

Figure 15

Figure 16

of $\partial J^2 - \partial A^*$. Thus there is a ∂ -compressing disk D^* of $S \cap J^2$ as in Figure 16. By doing a surgery on F along D^* , we can obtain a surface F' isotopic to F such that $|F' \cap W| = |F \cap W|$, $|F' \cap F_2| = |F \cap F_2|$, and $|(F' \cap M_1 - X(F')) \cap W'| < |(F \cap M_1 - X(F)) \cap W'|$, a contradiction.

Suppose instead that $\nu(d_1) < \nu(d_2)$. Set $k = |\nu(d_2) - \nu(d_1)|$ and $n = \gcd(k, k + \nu(d_5))$. Then $\partial(S \cap J^2)$ contains $\nu(d_1)$ trivial components and *n* components *c* isotopic to $\alpha^p \beta^q$, where $|q| = (k + \nu(d_5))/n$ and |p| = k/n. By construction, p > 0 if and only if q > 0. (See Figure 2.) That means that *c* is not null homotopic in J^2 . By the proof of Lemma 5.3, we can obtain a surface *F'* isotopic to *F* such that C(F') < C(F), a contradiction.

Finally, suppose that $v(d_1) > v(d_2)$, and define *k* as in the previous case. By the preceding argument, $\partial(S \cap J^2)$ contains $v(d_2)$ trivial components and *n* components *c* isotopic to $\alpha^p \beta^q$, where $|q| = (k + v(d_5))/n$ and |p| = k/n. If *c* is not null-homotopic in J_2 , then by the preceding argument, we can obtain a surface F' isotopic to *F* so that C(F') < C(F), a contradiction. Assume that q = -2p. Then $v(d_5) = v(d_1) - v(d_2)$. Since $v(d_5) = v(d_1) + v(d_2)$, $v(d_2) = 0$ and $v(d_5) = v(d_1)$. Thus $F_1 \cap F$ is as in Figure 15 with $v(n_2) = v(n_3) = v(n_4)$ and $v(n_1) = 0$. This completes the analysis when $v(f_3) = v(f_6) = 0$.

If $v(f_3) = v(f_6) \neq 0$ in Figure 11, right, there are two subcases:

Suppose first that $v(d_1) \le v(d_2)$. Then $S \cap F_1$ contains $\min(v(d_1), v(f_3))$ components isotopic to ∂E_1 . If $v(d_1) \ge v(f_3)$, we can obtain, by the same argument as in the preceding case, a surface F' isotopic to F such that C(F') < C(F), a contradiction. Assume that $v(d_1) < v(f_3)$, then $S \cap F_1$ contains $v(d_1)$ components isotopic to ∂E_1 . Now $2v(f_1) = v(d_1) + v(d_2)$. By assumption, $v(f_1) = v(f_3) + v(f_4)$. Thus $v(d_1) < v(d_2)$. Then, by the proof of Lemma 5.3, $\partial(S \cap J^2)$ contains $gcd(k, k + v(d_5))$ components each of which is isotopic to $\alpha^p \beta^q$, where

 $|q| = (k + \nu(d_5))/n$ and |p| = k/n (here again we have set $k = |\nu(d_2) - \nu(d_1)|$ and $n = \gcd(k, k + \nu(d_5))$). If $q \neq -2p$, then by the proof of Lemma 5.3, there is in H_K an essential closed surface F' isotopic to F such that C(F') < C(F), a contradiction. Since $y = \nu(d_2) - \nu(d_1) = 2(\nu(f_1) - \nu(d_1)) > 2(\nu(f_1) - \nu(f_3)) = 2\nu(f_5)$, we conclude that $\nu(d_5) = 2\nu(f_5)$. Thus $q \neq -2p$.

If, on the other hand, $\nu(d_1) > \nu(d_2)$, then $S \cap F_1$ contains $\min(\nu(d_2), \nu(f_3))$ components isotopic to ∂E_1 . If $\nu(d_2) \ge \nu(f_3)$, then by the same argument as before the pattern of $F \cap F_1$ is as in Figure 15, with $\nu(n_1) = \nu(f_3)$ and $\nu(n_2) = \nu(n_3) = \nu(n_4)$. But then we see that it is impossible to have $\nu(d_1) < \nu(f_3)$. \Box

Lemma 5.5. H_K contains no closed essential surface.

Proof. Suppose, to the contrary, that H_K contains an essential closed surface F such that the complexity C(F) is minimal among all surfaces isotopic to F. By Lemma 5.1, the pattern of $F \cap F_2$ is as in one of the diagrams of Figure 8. Furthermore, $v(m_2) = v(m_3) = 0$ for any case. By Lemmas 5.3 and 5.4, the pattern of $F \cap F_1$ is as in one of Figures 12 and 15. Furthermore, $v(n_2) = v(n_3) = v(n_4)$ for any case. By Lemma 5.0, $v(n_1) + v(n_2) = v(m_1)$.

In M_2 , the pattern of $F \cap F_1$ can be labeled as in one of the diagrams on the top row of Figure 17, and the pattern of $F \cap F_2$ can be labeled as in Figure 17, bottom.

Figure 17

Figure 18

Note that W_2 , W_4 , W_8 , W_{10} separate M_2 into four solid tori J^1 , J^2 , J^4 , J^5 and a handlebody of genus two H' such that $A_{2i} \subset J^i$ for i = 1, 2, 4, 5 and $A_6 \subset H'$. Let $S = F \cap H'$.

Now we claim that $v(n_2) = v(n_3) = v(n_4) = 0$. There are two cases:

Case 1. The pattern of $F \cap F_1$ is as in Figure 17, top left. Now each component of ∂S is contained in one of the eight families x_1, \ldots, x_8 as in Figures 18 and 19, where the boundary components of ∂S contained in $\bigcup_{i=1}^4 x_i$ are produced by cutting along the arcs in $F \cap (W_2 \cup W_4 \cup W_8 \cup W_{10})$ whose endpoints lie in $m_1 \cup n_1$ and the components of ∂S contained in $x_7 \cup x_8$ are produced by cutting along the arcs whose endpoints lie in $n_2 \cup n_3 \cup n_4 \cup m_1$, and each component in $x_5 \cup x_6$ is isotopic to one component of ∂A_6 . Each component lying in $x_3 \cup x_4$ is trivial in $\partial H'$. By observation, there are two disks D^1 and D^2 in $\partial H'$ such that $\partial D^i = b_i \cup b'_i$, where $b_i \subset F_1$ and $b'_i \subset S$ as in Figure 19. Back to M_2 , D^1 and D^2 are as in Figure 12. Thus by doing surgeries on F along D^1 and D^2 , we can obtain a surface F' isotopic to F such that $|F' \cap W| = |F \cap W|$, $|F' \cap F_2| = |F \cap F_2|$ and $|(F' \cap M_1 - X(F')) \cap W'| < |(F \cap M_1 - X(F)) \cap W'|$, contradicting minimality.

Case 2. The pattern of $F \cap F_1$ is as in Figure 17, top right. This is similar to Case 1.

Now $v(n_2) = v(n_3) = v(n_4) = 0$ and ∂S is as in Figure 18. By construction, there is a disk $B^* = H' \cap D_{6*}$ in H' such that ∂B^* intersects each component in $x_1 \cup x_2 \cup x_5 \cup x_6$ in only one point as in Figure 18. Thus $S \cap B^*$ offers a ∂ -compressing disk D^* of S such that D^* is disjoint from \mathring{A}_6 . We denote by A the annulus bounded by an outermost component of x_1 , say e_1 , and an outermost component of x_2 , say e_2 , in $\partial H'$, and T_1 the punctured torus bounded by an outermost component of x_1 in $\partial H'$ as in Figure 18. Now if $\partial D^* \cap \partial H' = a \subset A$, then $e_1 \cup e_2$ bounds an annulus in S parallel to A. This means that one component of $F \cap M_2$ is parallel to $\partial H \cap M_2$.

Let $X_0(F)$ be a union of components in $F \cap M_2$ parallel to $\partial H \cap M_2$ or A_6 , and set $S = (F \cap M_2 - X_0(F)) \cap H'$. Then $(F \cap M_2 - X_0(F)) \cap H' \cap B^*$ offers a ∂ -compressing disk, also denoted by D^* , of S such that $\partial D^* \cap \partial H' = a$.

We claim each component of *S* is isotopic to one component of ∂A_6 . There are five possibilities:

(1) The two endpoints of a lies in $x_5(x_6)$. Then D^* can be moved to be D^1 as in Figure 20(a), Thus by doing a surgery on F along D^1 , we can obtain a surface F' isotopic to F such that $|F' \cap W| = |F \cap W|, |F' \cap F_2| < |F \cap F_2|$, a contradiction.

(2) The two endpoints of a lies in $x_1(x_2)$. Then D^* can be moved to be D^2 as in Figure 20(b), contradicting the minimality of $|F \cap W|$.

(3) One endpoint of a lies in x_5 and the other lies in x_6 . Since ∂B^* intersects $\bigcup_{i=1}^{6} x_i$ in the order x_6 , x_3 , x_1 , x_2 , x_4 , x_5 , there is by the argument in (1) an outermost component of $S \cap B^*$ in B^* , say *b*, which, together with an arc b^* in $\partial H'$, bounds an outermost disk *D* such that $\partial_1 b$ is contained in x_5 , $\partial_2 b$ is contained in x_6 and b^* intersects A_6 in an arc. Since *S* is incompressible, by the standard argument, the component of *S* containing *b* is parallel to A_6 , a contradiction.

(4) One endpoint of a lies in x_1 and the other lies in x_2 . Then $\partial_1 a \subset c_1$ and $\partial_2 a \subset c_2$, where c_1 is a component of x_1 and c_2 is a component of x_2 . We denote again by *A* the annulus bounded by c_1, c_2 in $\partial H'$ and by T_1 the punctured torus bounded by

 c_1, c_2 in $\partial H'$. Note that *a* is disjoint from \mathring{A}_6 and $A_6 \subset T_1$. Hence $a \subset A$. By the preceding argument, the component of $F \cap M_2$ consisting of c_1 and c_2 is parallel to $\partial H \cap M_2$. By the definition of *S*, this is impossible.

(5) One endpoint of a lies in $x_1 \cup x_2$ and the other lies in $x_5 \cup x_6$. Since *S* is incompressible, each component *c* of $x_3 \cup x_4$ bounds a disk D_c in *S* parallel to a disk D_c^* on $\partial H'$; see Figure 18. Let $S^* = S - \bigcup_{c \in x_3 \cup x_4} D_c$. Note that ∂B^* intersects $\bigcup_{i=1}^6 x_i$ in the order $x_6, x_3, x_1, x_2, x_4, x_5$. Hence each component of $S \cap B^*$ is an arc *b* such that $\partial_1 b \subset x_1 \cup x_2$ and $\partial_2 b \subset x_5 \cup x_6$. Otherwise there would be an outermost component b^* of $S^* \cap B^*$ in B^* such that ∂b^* is as in one of the above four cases, a contradiction.

Each component of $S \cap B^*$ is an arc *b* such that $\partial_1 b \subset x_1 \cup x_2$ and $\partial_2 \subset x_5 \cup x_6$. Set $H^* = H' - B^* \times (0, 1)$ and $S^{**} = S^* - B^* \times (0, 1)$, where $B^* \times I$ is a regular neighborhood of B^* in H'. Then H^* is a solid torus. Since each component of $x_1 \cup x_2 \cup x_5 \cup x_6$ intersects ∂B^* in one point, each component *h* of ∂S^{**} is obtained by doing a band sum of one component h_1 of $x_5 \cup x_6$ and one component h_2 of $x_1 \cup x_2$ along a component of $S^* \cap B^*$. Since $h_1 = 1 \in \pi_1(H)$, we have $h_2 \neq 1 \in \pi_1(H)$, so $h \neq 1 \in \pi_1(H^*)$. Recall the disk B_2 in *H* defined in Section 2. The intersection $B_2 \cap H'$ is a planar surface *P* such that one component of ∂P , say $\partial_1 P$, is disjoint from A_6 , and the other components of ∂P lie in \mathring{A}_6 . Furthermore, $\partial_1 P$ intersects each component in $x_1 \cup x_2$ in one point. Hence $P - B^* \times (0, 1)$ is a properly embedded disk in H^* intersecting each component of ∂S^{**} in one point. This means that each component of S^{**} is an annulus *A* parallel to each component of $\partial H^* - \partial A$.

Suppose that *D* is a ∂ -compressing disk of *A* in H^* such that the arc $\alpha = D \cap \partial H^*$ lies on the annulus A^* on ∂H^* which contains the disk $A_6 - B^* \times (0, 1)$. Then *D* is disjoint from $x_3 \cup x_4$. Since the disk $D^* = B^* \times \{0, 1\} \cup (A_6 - B^* \times (0, 1))$ intersects ∂A^* in two arcs, *D* can be moved to have the arc α lying on $A^* - D^*$. Furthermore, since each component *h* of ∂S^{**} is obtained by doing a band sum of one component h_1 of $x_5 \cup x_6$ and one component h_2 of $x_1 \cup x_2$, we may assume that $\partial \alpha \subset x_1 \cup x_2$. Hence *D* is also a ∂ -compressing disk of S^* in *H'*. By the preceding argument, this is impossible.

Also by the preceding argument, if one component of $F \cap (F_1 \cup F_2)$ is parallel to ∂E_1 or ∂E_2 then it is parallel to ∂H . Suppose that each component of $F \cap (F_1 \cup F_2)$ is isotopic to one component of ∂A_i . By the minimality of C(F), F is disjoint from W_i for $i \neq 6$ and F is also disjoint from $\overline{\partial N(B^* \cup A_6) - \partial H'}$ in H'. Thus each component of $F \cap M_j$ is an annulus parallel to A_i for some i. That means that F is isotopic to T, a contradiction.

Proof of Proposition 3.0. The proposition follows immediately from Lemmas 4.1, 4.3, 4.4 and 5.5 and [Scharlemann and Wu 1993, Theorem 1].

Acknowledgment

We thank Professor Fengchun Lei for helpful discussions, and the referee for a careful reading of the paper and for pointing out a mistake in an earlier version.

References

- [Culler et al. 1987] M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, "Dehn surgery on knots", *Ann. of Math.* (2) **125**:2 (1987), 237–300. MR 88a:57026 Zbl 0633.57006
- [Gordon 1997] C. M. Gordon, "Combinatorial methods in Dehn surgery", pp. 263–290 in *Lectures at KNOTS '96* (Tokyo 1996), Ser. Knots Everything **15**, World Sci. Publ., River Edge, NJ, 1997. MR 98m:57020 Zbl 0940.57022
- [Hatcher 1982] A. E. Hatcher, "On the boundary curves of incompressible surfaces", *Pacific J. Math.* **99**:2 (1982), 373–377. MR 83h:57016 Zbl 0502.57005
- [Jaco 1984] W. Jaco, "Adding a 2-handle to a 3-manifold: an application to property *R*", *Proc. Amer. Math. Soc.* **92**:2 (1984), 288–292. MR 86b:57006 Zbl 0564.57009
- [Lackenby 2002] M. Lackenby, "Attaching handlebodies to 3-manifolds", *Geom. Topol.* **6** (2002), 889–904. MR 2003h:57027 Zbl 1021.57010
- [Qiu 2000] R. Qiu, "Incompressible surfaces in handlebodies and closed 3-manifolds of Heegaard genus 2", *Proc. Amer. Math. Soc.* **128**:10 (2000), 3091–3097. MR 2000m:57026 Zbl 0965.57014
- [Qiu and Wang 2004] R. Qiu and S. Wang, "Simple, small knots in handlebodies", *Topology Appl.* **144**:1-3 (2004), 211–227. MR 2006a:57008 Zbl 1055.57009
- [Qiu and Wang 2005] R. Qiu and S. Wang, "Small knots and large handle additions", *Comm. Anal. Geom.* **13**:5 (2005), 939–961. MR 2216147
- [Scharlemann and Wu 1993] M. Scharlemann and Y. Q. Wu, "Hyperbolic manifolds and degenerating handle additions", *J. Austral. Math. Soc. Ser. A* 55:1 (1993), 72–89. MR 94e:57019 Zbl 0802. 57005
- [Thurston 1982] W. P. Thurston, "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry", *Bull. Amer. Math. Soc.* (*N.S.*) **6**:3 (1982), 357–381. MR 83h:57019 Zbl 0496.57005

Received June 13, 2005. Revised January 14, 2006.

RUIFENG QIU DEPARTMENT OF MATHEMATICS DALIAN UNIVERSITY OF TECHNOLOGY DALIAN 116022 CHINA

qiurf@dlut.edu.cn

SHICHENG WANG DEPARTMENT OF MATHEMATICS PEKING UNIVERSITY BEIJING 100871 CHINA

wangsc@math.pku.edu.cn