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We construct a small, hyperbolic 3-manifold M with the property that, for
any integer g ≥ 2, there are infinitely many separating slopes r in ∂ M such
that the 3-manifold M(r) obtained by attaching a 2-handle to M along r
contains an essential separating closed surface of genus g. The resulting
manifolds M(r) are still hyperbolic. This contrasts sharply with known
finiteness results on Dehn filling and with the known finiteness result on
handle addition for the cases g = 0, 1. Our 3-manifold M is the complement
of a hyperbolic, small knot in a handlebody of genus 3.

1. Introduction

All manifolds in this paper are orientable and all surfaces F in 3-manifolds M are
embedded and proper, unless otherwise specified. A surface F ⊂ M is proper if
F ∩ ∂ M = ∂ F .

Let M be a compact 3-manifold. An incompressible, ∂-incompressible surface
F in M is essential if it is not parallel to ∂ M . A 3-manifold M is simple if M
is irreducible, ∂-irreducible, anannular and atoroidal. In this paper, a compact 3-
manifold M is said to be hyperbolic if M with its toroidal boundary components
removed admits a complete hyperbolic structure with totally geodesic boundary.
By Thurston’s theorem, a Haken 3-manifold is hyperbolic if and only if it is simple.
A knot K in M is hyperbolic if MK , the complement of K in M , is hyperbolic. A
3-manifold M is small if M contains no essential closed surface. A knot K in M
is small if MK is small.

A slope r in ∂ M is an isotopy class of unoriented essential simple closed curves
in F . We denote by M(r) the manifold obtained by attaching a 2-handle to M along
a regular neighborhood of r in ∂ M and then capping off the possible spherical
component with a 3-ball. If r lies in a toroidal component of ∂ M , this operation is
known as Dehn filling.
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Essential surfaces are a basic tool in the study of 3-manifolds, and handle ad-
dition is a basic method to construct 3-manifolds. A central question connecting
those two topics is the following:

Question 1. Let M be a hyperbolic 3-manifold with nonempty boundary, contain-
ing no essential closed surface of genus g. How many slopes r ⊂ ∂ M are there
such that M(r) contains an essential closed surface of genus g? (The question
is asked only for hyperbolic 3-manifolds to avoid possibly infinitely many slopes
produced by Dehn twists along essential discs or annuli. The mapping class group
of a hyperbolic 3-manifold is finite.)

The main result of this paper shows that there can be many such slopes:

Theorem 1. There is a small, hyperbolic knot K in a handlebody H of genus 3
such that, for any given integer g ≥ 2, there are infinitely many separating slopes
r in ∂ H such that HK (r) contains an essential separating closed surface of genus
g. Moreover the resulting manifolds HK (r) are still hyperbolic.

Remarks. Let M be a hyperbolic 3-manifold with nonempty boundary.

(1) Suppose ∂ M is a torus. W. Thurston’s pioneer result [1982] asserts that there
are at most finitely many slopes on ∂ M such that M(r) is not hyperbolic; hence
the number of slopes in Question 1 is finite when g = 0 or 1. Sharp upper bounds
for this number were given by Gordon and Luecke for g = 0, and by Gordon for
g = 1; see the survey paper [Gordon 1997]. Hatcher [1982] proved that the number
is finite for any g.

(2) Suppose ∂ M has genus at least 2. Scharlemann and Wu [1993] have shown
that if g = 0 or 1, there are only finitely many separating slopes r such that M(r)

contains an essential closed surface of genus g. Recently Lackenby [2002] gen-
eralized Thurston’s finiteness result to handlebody attaching, proving that, for a
hyperbolic 3-manifold M , there is a finite set C of exceptional curves on ∂ M such
that attaching a handlebody to M yields a hyperbolic-like manifold if none of those
curves bounds a meridian disc of the handlebody.

(3) In [Qiu and Wang 2005] we proved Theorem 1 for g even.

Theorem 1 and the finiteness results just cited give a global view about the
answer of Question 1.

Outline of the proof of Theorem 1 and organization of the paper. In Section 2
we first construct a knot K in the handlebody H of genus 3 for Theorem 1, then
we construct infinitely many surfaces Sg,l of genus g for each g ≥ 2 such that
(1) all those surfaces are disjoint from the given K , hence contained in HK ; and
(2) for fixed g, all the ∂Sg,l are connected and provide infinitely many slopes in
∂ H as l varies. Those ∂Sg,l will serve as the slopes r in Theorem 1. We denote
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by Ŝg,l ⊂ HK (∂Sg,l) the closed surface of genus g obtained by capping off the
boundary of Sg,l with a disk. We will prove in Section 3 that Ŝg,l is incompressible
in HK (∂Sg,l). In Sections 4 and 5 we prove that the knot K is hyperbolic and
small.

2. Construction of the knot K and the surfaces Sg,l in H

Let H be a handlebody of genus 3. Suppose that B1, B2 and B3 are basis disks of
H , and E1, E2 are disks in H that separate H into three solid tori J1, J2 and J3.
See Figure 1.

Let c be a closed curve in ∂ H as in Figure 2. The boundary of E1∪ E2 separates
c into 10 arcs c1, . . . , c10, where c1, c3, c9 ⊂ J1 meet B1 in two, one, one points
respectively; c2, c4, c6, c8, c10 ⊂ J2 meet B2 in one, one, two, zero, one points
respectively; c5, c7 ⊂ J3 meet B3 in one, three points respectively.

Let u1, . . . , u2g, v1, . . . , v2g be 4g points located on ∂ E1 in the cyclic order u1,
u3, . . . , u2i−1, . . . , u2g−1, u2g, u2g−2, . . . , u4, u2, v1, v3, . . . , v2i−1, . . .v2g−1, v2g,
v2g−2, . . . , v4, v2 as in Figure 3. In view of the order of these points, C can be

c3 c1 c2 c4 c5E2

c9 c8 c6 c10 c7E1

Figure 2
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isotoped so that ∂c1 = {u1, v1}, ∂c2 = {u1, v2}, ∂c10 = {v1, u2}, ∂c3 = {v2, u3},
∂c9 = {u2, v3}. Now suppose u2i+1v2i and v2i+1u2i , for 1 ≤ i ≤ g − 1, are arcs in
∂ J1−E̊1 parallel to c3 and c9, and that u2v1 =c10, v2u1 =c2, and u2iv2i−1, v2i u2i−1,
for 2 ≤ i ≤ g, are parallel arcs in ∂(J2 ∪ J3) − E̊1, each of which intersects B2 in
one point and B3 in l points (see Figure 3, where l = 2). Finally define α1 = u1v1,
and let αk be the union of vk−1uk , αk−1 and uk−1vk , for k = 2, . . . , 2g. Then
α1 ⊂ α2 ⊂ · · · ⊂ α2g is an increasing sequence of arcs.

Let α ⊂ ∂ H be an arc which meets ∂S exactly at its two endpoints for a proper
separating surface S ⊂ H . The surface resulting from tubing S along α in H ,
denoted by S(α), is obtained by first attaching a 2-dimensional 1-handle N (α) ⊂

∂ H to S, then making the surface S∪N (α) to be proper, that is, pushing its interior
into the interior of H . The image of N (α) after the pushing is still denoted by N (α).
In fact, S ∪ N (α) is a once punctured torus. Since S is orientable and separating,
S(α) is still separating and orientable.

Since α1 meets E1 exactly in its two endpoints, we do tubing on E1 along α1 to
get a proper surface E1(α1). Now α2 meets E1(α1) exactly in its two endpoints.
We do tubing on E1(α1) along α2 to get E1(α1, α2) = E1(α1)(α2), where the tube
N (α2) is thinner and closer to ∂ H so that it goes over the tube N (α1). Hence
E1(α1, α2) is a properly embedded surface (indeed, a one-punctured torus). By the
same argument, we do tubing along α3, . . . , α2g to get a proper embedded surface
E1(α1, . . . , α2g) in H , denoted by Sg,l . This surface is orientable and separating.

Since Sg,l is obtained from the disc E1 by attaching 2g 1-handles to E1 such
that the ends of any two handles are alternating, Sg,l is a once punctured orientable
surface of genus g. We summarize the facts just discussed:

Lemma 2.1. Sg,l is a once punctured surface of genus g and is separating in H.
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Now let K be a knot in H̊ obtained by first pushing c6 into H̊ deeply and then
pushing C − c6 into H̊ so that it stays between N (α3) and N (α4). The following
fact is clear:

Lemma 2.2. K is disjoint from Sg,l for all g, l.

3. Proof of Theorem 1 assuming that K is hyperbolic and small

We denote by Ŝg,l ⊂ HK (∂Sg,l) ⊂ H(∂Sg,l) the surface obtained by capping off
the boundary of Sg,l with a disk. Then Ŝg,l is a closed surface of genus g.

From the definition of Sg,l for a given genus g, the boundary ∂Sg,l provides
infinitely many boundary slopes as l varies from 1 to infinity. Then Theorem 1
follows from the next two propositions (apart from the last assertion, which follows
directly from [Scharlemann and Wu 1993]).

Proposition 3.0. K ⊂ H is a hyperbolic, small knot.

Proposition 3.1. Ŝg,l is incompressible in HK (∂Sg,l).

We postpone the proof of the first of these results and prove the second here.
Recall that a surface F in a 3-manifold is compressible if either F is a 2-sphere that
bounds a 3-ball, or there is an essential simple closed curve in F that bounds a disk
in M ; otherwise, F is incompressible. Hence Proposition 3.1 is a consequence of
the following result:

Proposition 3.2. Ŝg,l is incompressible in H(∂Sg,l).

We choose the center of E1 as the common base point for the fundamental
groups of H and of all surfaces Sg,l .

Now π1(Sg,l) is a free group of rank 2n generated by (x1, . . . , x2n), where xi

is the generator given by the centerline of the tube N (αi ); and π1(H) is a free
group of rank three generated by curves y1, y2, y3 corresponding to B1, B2, B3, as
in Figure 1. Let i : Sg,l → H be the inclusion. One can read i∗(xi ) directly as
words in y1, y2, y3:

i∗(x1) = y2
1 ,

i∗(x2) = y2 y2
1 y2,

i∗(x3) = y1 y2 y2
1 y2 y1,

i∗(x4) = y2 yl
3 y1 y2 y2

1 y2 y1 y2 yl
3,

and in general, for 2 ≤ i ≤ g,

i∗(x2i−1) = y1(y2 yl
3 y1)

i−2 y2 y2
1 y2(y1 y2 yl

3)
i−2 y1,

i∗(x2i ) = (y2 yl
3 y1)

i−1 y2 y2
1 y2(y1 y2 yl

3)
i−1.

Lemma 3.3. Sg,l is incompressible in H.
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The proof is the same as that in [Qiu 2000].
Now Sg,l separates H into two components P1 and P2 with ∂ P1 = T1 ∪ Sg,l and

∂ P2 = T2 ∪ Sg,l , where T1 ∪ T2 = ∂ H and ∂T1 = ∂T2 = ∂Sg,l .

Lemma 3.4. T1 and T2 are incompressible in H.

Proof. We have H1(H) = Z + Z + Z, with the three generators y1, y2 and y3. By
the preceding argument, i∗(H1(Sg,l)) is a subgroup of H1(H) generated by 2y1,
2y2 and 2ly3. Thus H1(H)/ i∗(H1(Sg,l)) = Z2 ⊕ Z2 ⊕ Z2l is a finite group.

Suppose T1 or T2 is compressible. Then it bounds a compressing disk D1 in H .
Since ∂ D ∩ ∂Sg,l = ∅ and Sg,l is incompressible in H , by a standard argument in
3-manifold topology, we may assume that D1∩Sg,l = ∅. Since H is a handlebody,
we may also assume that D1 is nonseparating in H . Thus there are two properly
embedded disks D2 and D3 in H such that {D1, D2, D3} is a set of basis disks of
H . Let z1, z2, z3 be generators of π1(H) corresponding to D1, D2, D3. Since Sg,l

misses D1, we have i∗(π1(Sg,l)) ⊂ G, where G is a subgroup of π1(H) generated
by z2 and z3. Then H1(H)/ i∗(H1(Sg,l)) is an infinite group, a contradiction. �

Proof of Proposition 3.2. Since H is a handlebody and Sg,l is incompressible in H ,
P1 and P2 are handlebodies. By Lemmas 3.3, 3.4 and the Handle Addition Lemma
[Jaco 1984], Ŝg,l is incompressible in Pi (∂Sg,l) for i = 1, 2. Since H(∂Sg,l) =

P1(∂Sg,l) ∪Ŝg,l
P2(∂Sg,l), the surface Ŝg,l is incompressible in H(∂Sg,l). �

4. Hk is irreducible, ∂-irreducible and anannular

By construction, K is cut by E1∪E2 into ten arcs a1, . . . , a10, where ai arises from
pushing ci into H̊ . Now let N (K ) = K × D be a regular neighborhood of K in H ,
where the product structure has been adjusted so that

⋃10
i=1 ∂ai × D is contained

in E1 ∪ E2. Let HK = H − N̊ (K ) and Fi = Ei − N̊ (K ); also set Mi = HK ∩ Ji ,
for i = 1, 2, 3, and T = ∂(K × D). Then F1 ∪ F2 separates T into ten annuli
A1, . . . , A10 such that Ai = ai × ∂ D.

K and C bound a nonembedded annulus A∗, which is cut by E1∪E2 into ten disk
D1∗, . . . , D10∗ in H . Note that D∗ =

⋃
i 6=6 Di∗ is still a disk. Let Di = Di∗ ∩ HK

for i 6= 6. Then Di is a proper disk in some Ml and
⋃

i 6=6 Di is still a disk; see
Lemma 4.1. Now we number the ∂ Ai such that ∂1 Ai = ∂2 Ai−1 and ∂2 Ai = ∂1 Ai+1.
For i 6= 6, let Wi = ∂ N (Di ∪ Ai ) − ∂ Ml . Then Wi is a proper separating disk in
Ml . Each Wi intersects F1 ∪ F2 in two arcs li and li+1. Note that W =

⋃
i 6=6 Wi is

a disk. Thus ∂W is a union of two arcs in ∂ H and l6 ∪ l7; see Figure 4. Since c3, c9

are parallel in ∂ J1 − E̊1, there are two arcs parallel to c3 in ∂ J1 − E̊1, say l ′, l ′′, and
two arcs in F1, say l1, l2, such that l ′ ∪ l ′′ ∪ l1

∪ l2 bounds a disk W ′ that separates
M1 into two handlebodies of genus two H 1, H 2 with A1 ⊂ H 1 and A3, A9 ⊂ H 2.
We denote by µ the meridian slope on T and by τ the longitude slope on T .

We list some elementary facts about K and ai :
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Lemma 4.0. (1) K 6= 1 in π1(H).

(2) Suppose ai ⊂ Jm , where i 6=4, 8. Let bi ⊂ E1∪E2 be a given arc with ∂bi =∂ai

and let B ⊂ Jm be a nonseparating proper disk. Then ai ∪ bi intersects ∂ B in
at least one point for all i , in at least three points when i = 7, and in at least
two points when i = 1, 6.

(3) There is no relative homotopy on (Jm, E1 ∪ E2) sending ai to E1 ∪ E2.

Recall that a 3-manifold M is irreducible if it contains no essential 2-spheres. M
is ∂-irreducible if ∂ M is incompressible. M is atoroidal if it contains no essential
tori. M is anannular if it contains no essential annuli.

Lemma 4.1. HK is irreducible.

Proof. Suppose that HK is reducible, so there is an essential 2-sphere S in HK .
Since H is irreducible, S bounds a 3-ball B3 in H and K ⊂ B3, which contradicts
Lemma 4.0(1). �

Recall that F is ∂-compressible if there is an essential arc a in F which, together
with an arc b in ∂ M , bounds a disk D in M such that D ∩ F = a; otherwise, F is
∂-incompressible.

Lemma 4.2. F1 ∪ F2 is incompressible and ∂-incompressible in HK .

Proof. Suppose first that F1 ∪ F2 is compressible in HK . Then there is a disk B in
M such that B ∩ (F1 ∪ F2) = ∂ B and ∂ B is an essential circle on F1 ∪ F2. Without
loss of generality, we assume that ∂ B ⊂ F1 and B ⊂ M2. Denote by B ′ the disk
bounded by ∂ B in E1. Then B ∪ B ′ is a 2-sphere S ⊂ J2, and it follows easily
from Lemma 4.1 that S bounds a 3-ball B3 in J2. Since ∂ B is essential in F1, B ′

contains at least one component of ∂ai . Since S is separating and ai is connected,
we must have (ai , ∂ai )⊂ (B3, B ′), which provides a relative homotopy on (J2, E1)

sending ai to E1. This contradicts Lemma 4.0(2).
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Now suppose F1 ∪ F2 is ∂-compressible in H . There is an essential arc a in
F1∪F2 which, with an arc b in ∂ Hk , bounds a disk B in HK with B∩(F1∪F2)= a.
Without loss of generality, we assume that a ⊂ F2 and B ⊂ M2. There are two cases:

b ⊂ T . Then b is a proper arc in one of A4, A6, and A8, say A6. If b is not essential
in A6, then a and an arc b′ in ∂ A6 form an essential circle in F2 bounding a disc in
M2. This contradicts the incompressibility of F2 we just proved. If b is essential in
A6, the disk B provides a relative homotopy on (J2, E2) sending a6 to E2, which
contradicts Lemma 4.0(2).

b ⊂ ∂ H . If B is nonseparating in J2, then b6 can be chosen so that a6∪b6 intersects
∂ B in at most one point, where b6 is an arc in E2 connecting the endpoints of a6;
this contradicts Lemma 4.0(2). If B is separating in J2, then B separates J2 into a
3-ball B3 and a solid torus J . We denote by D1, D2 the two components of E2−a.
Since a is essential in F2, each of D̊1 and D̊2 contains at least one endpoint of a4,
a6 and a8.

Suppose that D1 ⊂ B3 and D2 ∪ E1 ⊂ J . By construction, ∂1a4, ∂1a8 ⊂ E1,
∂2a4, ∂2a8 ⊂ E2, and ∂a6 ⊂ E2. Since a4, a6 and a8 are disjoint from B, we have
a4, a8 ⊂ J and a6 ⊂ B3. This contradicts Lemma 4.0(2).

Suppose that D1 ⊂ J and D2 ∪ E1 ⊂ B3. Then a2, a10 ⊂ B3. This contradicts
Lemma 4.0(2). �

Lemma 4.3. HK is ∂-irreducible.

Proof. Suppose HK is ∂-reducible. Let B be a compressing disk of ∂ HK . If ∂ B ⊂

T , then HK contains an essential 2-sphere, which contradicts Lemma 4.1. Below
we assume that ∂ B ⊂ ∂ H . Since F1 ∪ F2 is incompressible and ∂-incompressible
in HK (Lemma 4.2), by a standard cut and paste argument, we may assume that
B ∩ (F1 ∪ F2) = ∅. We assume that B ⊂ M2. (The other cases are similar.) Then
B misses b6. If B is nonseparating in J2, by Lemma 4.0(2), B intersects a6, a
contradiction. If B is separating, then B separates a 3-ball B3 from J2. Since ∂ B
is essential in ∂ HK , there are two cases: Either B3 contains only one of E1 and
E2, say E1, in which case a8 ∩ B 6= ∅, a contradiction; or B3 contains both E1

and E2, in which case there is a relative homotopy on (J2, E2) sending a6 to E2,
in contradiction with Lemma 4.0(2). �

Lemma 4.4. M is anannular.

Proof. Suppose HK contains an essential annulus A. We can choose A so that∣∣A ∩ (F1 ∪ F2)
∣∣ is minimal among all essential annuli in HK . This condition,

together with Lemma 4.2 and the proof of Lemma 4.3, implies that each component
of A ∩ (F1 ∪ F2) is essential in both A and F1 ∪ F2. There are three cases:

Case 1: ∂ A ⊂ T . Here A is separating in Hk ; otherwise, H contains either a
nonseparating 2-sphere or a nonseparating torus. Hence the union of A and an
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annulus A′ on T makes a separating torus T ′, cutting off a manifold with boundary
T ∪ T ′. Since M is irreducible, T ′ is incompressible, so by Lemma 5.5 T ′ is
parallel to T , which implies that A is inessential. (The arguments in Section 5 are
independent of those in Section 4.)

Case 2: ∂1 A ⊂ T and ∂2 A ⊂ ∂ H. By Lemma 4.3, both ∂ H and T are incom-
pressible in HK . Clearly HK is not homeomorphic to T × I . Since Dehn fillings
along µ and ∂ A1 both compress ∂ H , by an important theorem in Dehn filling,
1(∂1 A, µ) ≤ 1. See [Culler et al. 1987, 2.4.3].

We first suppose that ∂1 A is the meridian slope µ. Then ∂1 A is disjoint from
F1 ∪ F2. We claim that A is disjoint from F1 ∪ F2.

Suppose, to the contrary, that A∩(F1∪F2) 6=∅. Since F1∪F2 is incompressible
and ∂-incompressible in HK (Lemma 4.2), by a standard cut and paste argument,
we may assume that ∂2 A∩(F1 ∪ F2) = ∅. Now each component of A∩(F1 ∪ F2) is
an essential simple closed curve in A. Let a be an outermost circle in A∩(F1∪F2).
Then a and ∂1 A bound an annulus A∗ in A such that Å∗ is disjoint from F1 ∪ F2.
We may assume that a ⊂ F1 and ∂1 A ⊂ Ai for some i . Let B∗ be the disk bounded
by a on E1 and let D be the meridian disk of N (K ) bounded by ∂1 A. Since a is
essential on F1, B∗ contains at least one component of ∂ F1. In H , B∗

∪ A∗
∪ D

is a separating 2-sphere S2 that bounds a 3-ball B3. For j 6= i , if ∂1a j ⊂ B∗, then
∂2a j ⊂ B∗ and a j ⊂ B3. This possibility is ruled out by Lemma 4.0(2). Note also
that ∂1ai ⊂ B∗ and that ∂2ai is not contained in B∗. Now let A′ be the annulus
bounded by a and ∂1ai ×∂ D = ∂1 Ai in F1. Then A∗

∪ A′ is isotopic to an annulus
disjoint from F1 ∪ F2. By the preceding argument, A∗

∪ A′ is inessential. Thus we
can properly isotope A by pushing the annulus A∗ to the other side of F1 to reduce
|A ∩ (F1 ∪ F2)|, contradicting our choice of A at the beginning of the proof.

We may assume that A is contained in M2. Let D be the meridian disk of N (K )

bounded by ∂1 A and set B = A ∪∂1 A D. Then B is a proper disk in J2, meeting
K in exactly one point; hence B is a meridian disk of J2. Let b6 be an arc on
E2 connecting the two endpoints of c6. Then c6 ∪ b6 would be a closed curve
of winding number 2 in the solid torus J2 intersecting B at most once, which is
absurd.

Next we suppose that 1(∂1 A, µ)=1. Then A is cut by (F1∪F2) into ten squares
Si , i = 1, . . . , 10, each of which has two opposite sides in F1 ∪ F2, the other two
sides being the longitude arc ai in Ai and a∗

i ⊂ ∂ H . Let b∗

2 be the arc connecting
the two endpoints of a∗

2 in E1 and let b∗

6 be the arc connecting the two endpoints
of a∗

6 in E2. The two simple closed curves b∗

2 ∪a∗

2 and b∗

6 ∪a∗

6 on ∂ J2 are disjoint.
But in π1(J2), we have b∗

2 ∪ a∗

2 = y2 and b∗

6 ∪ a∗

6 = y2
2 , a contradiction.

Case 3: ∂ A ⊂∂ H. Suppose first that A∩(F1∪F2)=∅. Then A is contained in one
of M1, M2 and M3. Since A is essential and HK is ∂-irreducible, A is disjoint from
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Di for i 6= 6. Since each component of ∂ H ∩ J1 − c1 ∪ c3 and ∂ H ∩ J3 − c5 ∪ c7

is a disc, A ⊂ M2. Since A is disjoint from c2, c4, c8, c10, each component of
∂ A intersects B2 in only one point in J2 (see Figure 2). Thus A is isotopic to
each component of ∂ J2 − ∂ A in J2. This means that A is not essential in M2, a
contradiction.

Now suppose that A ∩ (F1 ∪ F2) 6= ∅. There are two subcases:
Case 3a: Each component of A ∩ (F1 ∪ F2) is an essential circle. Let a be an

outermost component of A ∩ (F1 ∪ F2). That means that ∂1 A, together with a,
bounds an annulus A∗ in A such that A∗

∩ (F1 ∪ F2) = a. Then A∗
⊂ Mi . We

denote by B∗ the disk bounded by a in E1 ∪ E2. Let D∗
= A∗

∪ B∗. Then D∗ is
a disk. Let D be the disk obtained from D∗ by pushing B∗ slightly into Jl . Then
D is a properly embedding disk in Jl such that D intersects each ai in at most two
points. Furthermore, if D intersects ai in two points for some i , the two endpoints
of ai lie in B∗. Thus, in this case, the algebraic intersection number of ai and D
is 0. By Lemma 4.0, A∗ is separating in Jl .

Suppose that A∗ is contained in one of J1 and J3, say J1. Then ∂1 A is parallel
to ∂ E1. We denote by A′ the annulus bounded by ∂1 A and a in ∂ J1. Since a
is essential in F1, B∗ contains at least one endpoint of a1, a3, a9. Furthermore,
∂1ai ⊂ B∗ if and only if ∂2ai ⊂ B∗. Now if ∂1a j ⊂ A′ for some j , then ∂2a j ⊂ A′.
This means that a j is disjoint from B1 as in Figure 1, a contradiction. Thus for
each i, j , we have ∂ j ai ⊂ B∗, which means that a is parallel to ∂ E1 in F1. Now
∂ Di , for i = 1, 3, 9, intersects each component of ∂ A∗ in two points, which means
that Di intersects A∗ in two arcs each of which has its two endpoints in distinct
components of ∂ A∗. (Otherwise, since ∂1 A is isotopic to ∂ E1, we would have
ai ∪ bi = 1 in π1(J1), where bi is an arc in ∂ E1 connecting the two endpoints of
ai , a contradiction.) Thus we can push ∂1 A into M2 to reduce |A ∩ (F1 ∪ F2)|,
contradicting our assumption on A.

Suppose instead that A∗
⊂ M2. Without loss of generality, we assume that

a ⊂ F1. We denote by A′ the annulus bounded by ∂ E1 and a in E1. Then A′ and B∗

lie on distinct sides of J2− A∗. If ∂1 A is isotopic to ∂ E2, then a6∪ b6 = 1 in π1(J2)

where b6 is an arc in E2 connecting the two endpoints of a6 , a contradiction. If ∂1 A
bounds a disk D in ∂ J2 such that E1, E2 ⊂ D, then a4 ∪a8 ∪ b1

∪ b2
= 1 in π1(J2),

where bi is an arc in Ei connecting the endpoints of a4i and a8, a contradiction.
Now ∂1 A is isotopic to ∂ E1. Then D4 intersects A∗ in an arc. By the preceding
argument, we can push ∂1 A into M1 to reduce |A ∩ (F1 ∪ F2)|.

Case 3b: Each component of A∩(F1∪F2) is an essential arc. Then F1∪F2 cuts
A into proper squares Si in Ml ⊂ Jl , each Si having two opposite sides in F1 ∪ F2

and the remaining two sides in ∂ H . If Si ⊂ Jl for l = 2 or 3, then Si is a separating
disc in Jl . Otherwise, say Si is a nonseparating disc in J2. By the same reason as
that at the end of the proof of Lemma 4.3, the fact that S ∩ (F1 ∪ F2) consists of
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S1
i

Si

S2
i

Figure 5

two proper arcs in E1 ∪ E2 implies that b6 can be chosen so as to intersect ∂Si in
at most two points; furthermore, if b6 intersects ∂Si in two points then Si ∩ F1 = ∅
and Si ∩b2 = ∅, where bi is an arc in E1 ∪ E2 connecting the two endpoints of ai .
This means that Si meets a2 or a6 by Lemma 4.0(1), a contradiction. Now each Si

cuts off a 3-ball B3
i from Jl for l = 2 or 3 as in Figure 5. Let S1

i and S2
i be the two

disks of B3
i ∩ (E1 ∪ E2) and Si ⊂ Jl where l = 2 or 3. By Lemma 4.0(2), we have:

(i) ∂1a j ⊂ S1
i if and only if ∂2a j ⊂ S2

i .

(ii) If a j is contained in B3
i , then al is not contained in B3

i .

This means that for each i , there is only one boundary component of F1 ∪ F2

lying in each of S1
i and S2

i . Thus if Si lies in M1 for some i , then Si is also
separating in J1. Otherwise, say Si is nonseparating in J1. By (i) and (ii), the three
circles a1∪ b1, a3∪ b3, a9∪ b9 intersect Si in two points, a contradiction. It follows
that Si is also as in Figure 5 and A cuts off a solid torus P from H . Thus Di∗ can
be chosen to be disjoint from A even if i = 6. This means that K and a component
of ∂ A bound an annulus, which has been ruled out in Case 2. �

5. HK contains no closed essential surface

Suppose HK contains essential closed surfaces. Let W, W ′ and Wi be the disks
defined in Section 4. Denote by X (F) the union of the components of F ∩ M1

isotopic to ∂ H ∩ M1. We define the complexity on the essential closed surfaces F
in HK by the quadruple

C(F) =
(
|F ∩ W |, |F ∩ F2|, |(F ∩ M1 − X (F)) ∩ W ′

|, |F ∩ F1|
)
.

We rank complexities in lexicographic order. Suppose F minimizes C(F). By a
standard argument in 3-manifold topology, we derive the following facts:

Lemma 5.0. (1) Each component of F ∩ (F1 ∪ F2) is an essential circle in both
F and F1 ∪ F2.
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l7 li li+1 l6

F ∩ W W F ∩ W ′

l1 l2

Figure 6

(2) Each component of F ∩ W is an arc in W one of whose endpoints lies in l6

and the other in l7. Similarly each component of F ∩ W ′ is an arc in W ′ one
of whose endpoints lies in l1 and the other in l2. Hence |F ∩ li | = |F ∩ l j | for
all i, j and |F ∩ l1

| = |F ∩ l2
| as in Figure 6.

(3) Each component of F ∩ (F1 ∪ F2) isotopic to ∂ Ai is disjoint from W ∪ W ′.

For two surfaces P1 and P2 in a 3-manifold, a pattern of P1 ∩ P2 is a set of
disjoint arcs and circles representing isotopy classes of P1 ∩ P2. For each isotopy
class s, we denote by ν(s) the number of components of P1 ∩ P2 in the isotopy
class s.

The proof of the next lemma is similar to that of [Qiu and Wang 2004, Lemma
4.3].

Lemma 5.1. Each component of F ∩ M3 is isotopic to one of ∂ H ∩ M3, A5 and A7.

Proof. The four arcs l5, l6, l7, l8 separate F2 into four annuli A5, A6, A7, A8 and
a disk D. By the minimality of |F ∩ W |, the pattern of F ∩ A j is as in Figure 7,
left, and the pattern of F ∩ D is as in Figure 7, right. Since |F ∩ li | is a constant,
ν(d5) = 0. If ν(di ) 6= 0 for 1 ≤ i ≤ 4, then F ∩ F2 contains min(ν(d1), . . . , ν(d4))

li

l7 l8

l6

l5

d5

d1 d2

d3d4

Figure 7
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l6l6

l7 l7

l5 l5

Figure 8

components parallel to a disk on ∂ E2. Now if ν(d1) = 0, then ν(d3) = 0. Similarly,
if ν(d2) = 0, then ν(d4) = 0. Thus according to the order of l5, l6, l7, l8 in F2, the
pattern of F ∩ F2 is as in one of the diagrams in Figure 8, with ν(m2) = ν(m3).
Note that W5 and W7 separate M3 into three solid tori J 1, J 2, J 3. Without loss
of generality, we assume that A5 ⊂ J 1, A7 ⊂ J 2. Let S = F ∩ M3 and S′ be a
component of S.

Now we claim that if one of component of ∂S′ is isotopic to ∂ E2, then S′ is
isotopic to ∂ H ∩ M3.

Let ∂1S be the outermost component of ∂S isotopic to ∂ E2. Now ∂1S intersects
li as in Figure 8. Without loss of generality, we assume that ∂1S ⊂ ∂S′. We denote
by ei the arc ∂1S∩ Ai . Now let Sl = S′

∩ J l , then Sl is an incompressible surface in
J l . Note that ∂S1 = e5∪e6∪(S∩W5) bounds a disk in J 1 parallel to a disk on ∂ M3.
Similarly S2 is a disk in J 2 parallel to a disk on ∂ M3 bounded by e7∪e8∪(S∩W7).
∂S3 also has one component which is trivial in ∂ M3, as in Figure 9, left. Hence one
component of S3 is a disk in J 3 parallel to ∂ J 3, Thus S′

= S1 ∪S∩W5 S3 ∪S∩W7 S2 is
isotopic to M3 ∩ ∂ H .

Now we claim that ν(m2) = ν(m3) = 0 in both parts of Figure 8.
Let S0 = S− X ′, where X ′ is a subset of S each of whose components is isotopic

to ∂ H ∩ M3. Then no component of ∂S0 is isotopic to ∂ E2. Let P3 = S0 ∩ J 3. If

Figure 9
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m3

D2D1
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Figure 10

ν(m2) 6= 0, then P3 is incompressible in J 3 and ∂ P3 contains 2ν(m2) = 2ν(m3)

components c, as in Figure 9, right. Since a7 intersects a basis disk B3 of J3 in
three points and a5 intersects B3 in one point, c does not bound a disk in J 3. Since
J 3 is a solid torus, each component of P3 is a ∂-compressible annulus. Let D∗ be
a ∂-compressing disk of an outermost component of P3. This disk can be isotoped
so that D∗

∩∂ J 3
⊂ E2 ∩ J 3. Then, back in J3, D∗ is isotopic to one of D1, D2, D3

as in Figure 10. In the case of D1 or D2, one can push F along the disc to reduce
|F ∩ W |; in the case of D3, one can push F along the disc to reduce |F ∩ F2|,
without increasing |F ∩ W |. Either way, the minimality of C(F) is contradicted.

Now let P be a component of S = F ∩ M3. If one component of ∂ P is isotopic
to ∂ E2, then P is isotopic to M3 ∩ ∂ H . If not, each component of ∂ P is isotopic
to one component of ∂ A5 ∪∂ A7. By the minimality of C(F), P is contained in J 1

or J 2. It is easy to see that P is isotopic to one of A5 and A7. �

Now we consider S = F ∩ M1. Note that W1 and W ′ separate M1 into two solid
tori J 1, J 2 and a handlebody of genus two H ′ such that A1 ⊂ J 1 and A3, A9 ⊂ H ′;
moreover l1, l2, l1, l2 separate F1 into two annuli and two planar surfaces with three
boundary components and a disk D such that ∂ J 2

∩ F1 = D. See Figure 11. Let
k1 be a component of F ∩ W1, k2 a component of F ∩ W ′, and k ′

i , for i = 1, 2, an
arc in D connecting the two endpoints of ki . Let α = k1 ∪k ′

1 and β = k2 ∪k ′

2. Note
that k ′

1 and k ′

2 can be chosen so that β intersects α in one point. Furthermore, by
construction, α intersects a basis disk of J 2 in two points and β intersects a basis
disk of J 2 in one point. Now we fix the orientations of α and β so that α = y2 and
β = y, where y is a generator of π1(J 2). Then αβ−2 is an essential circle in ∂ J 2

and null homotopic in J 2.
The next lemma follows immediately from the proof of Lemma 5.1.



HANDLE ADDITIONS PRODUCING ESSENTIAL SURFACES 247

l4 f3 f4 l10 f3f4 f5

l2

l2

D

f1 f1f2 f2

l1

l1

l3 l9f5 f6 f6 f8f7

Figure 11

Lemma 5.2. Let P be a component of S = F ∩ M1. If one component of ∂ P is
isotopic to ∂ E1. Then P is isotopic to M1 ∩ ∂ H.

By the construction and Lemma 5.0, the pattern of ∂S ∩ (F1 ∩ (J 1
∪ H ′)) is as

in one of the diagrams in Figure 11, and moreover

(1) in Figure 11, left, we have ν( f1) = ν( f2), ν( f3) = ν( f5), ν( f4) = ν( f6) and
ν( f3) + ν( f4) = ν( f1);

(2) in Figure 11, right, we have ν( f1) = ν( f2) = ν( f3) + ν( f4), ν( f3) = ν( f6)

and ν( f4) = ν( f5) = ν( f7) = ν( f8) 6= 0.

Lemma 5.3. If the pattern of S ∩ (F1 ∩ (J 1
∪ H ′)) is as in Figure 11, left, the

pattern of S ∩ F1 is as in Figure 12 with ν(n2) = ν(n3) = ν(n4).

D1

D2

l4 l10

n2

l2

l1

n1 n3

l3 l9
n4

Figure 12
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l2 l1

l2

l1

d5

d1 d2

d3d4

Figure 13

Proof. If ν( f3) = 0, the pattern of S ∩ F1 is as in Figure 12 with ν(n2) = ν(n3) =

ν(n4) and ν(n1) = 0.
Suppose instead that ν( f3) 6=0. Since ν( f3)=ν( f5)≤ν( f1)=ν( f2), the pattern

of S∩D is as in Figure 13, where ν(d1)=ν(d3) and ν(d2)=ν(d4). If ν(d1), ν(d2) 6=

0, then S ∩ F1 contains min(ν(d1), ν(d2)) components isotopic to ∂ E1. Thus if
ν(d1) = ν(d2), then S ∩ F1 is as in Figure 12 with ν(n2) = ν(n3) = ν(n4). Now
without loss of generality, we assume that ν(d1) < ν(d2). Let k = ν(d2) − ν(d1).
By Lemmas 5.0(2) and 5.2, ∂(S∩ J 2) contains n = gcd(k, k+ν(d5)) components c
isotopic to α pβ q , where |p|= (k+ν(d5))/n and |q|= k/n. Since y+ν(d5)≥ y, c is
not null homotopic in J 2. Moreover, c intersects both d2 and d4; if ν(d5) 6= 0, then
c also intersects d5. Thus these curves separate ∂ J 2 into m annuli A1, . . . , Am such
that, for each j , there is an arc in D∩ A j connecting the two boundary components
of A j . Since J 2 is a solid torus, each component of (S− X (F))∩ J 2 is an annulus.
Let D∗ be a ∂-compressing disk of (S − X (F)) ∩ J 2. Then D∗ can be moved so
that D∗

∩ ∂ J 2
= D∗

∩ D = a. Thus there are three possibilities:
1. The two endpoints of a lie in one of d2, d4, d5. Then D∗ is one of D1, D3 as

in Figure 14, left. In each case, one can push F along the disc to reduce |F ∩ W |,
a contradiction.

2. One endpoint of a lies in d2 ∪ d4 and the other lies in d5. Then D∗ is D2 as
in Figure 14, left. This case is similar to the previous case.

3. One endpoint of a lies in d2 and the other lies in d4. In this case, ν(d5) = 0.
By Lemma 5.0(2), we have ν( f4) = ν( f6) = 0 in Figure 11, left. Now the pattern
of S ∩ F1 is as in Figure 14, right, and D∗ is also as in the same figure. By doing a
surgery on F along D∗, we obtain a surface F ′ isotopic to F such that |F ′

∩ W | =

|F∩W |, |F ′
∩F2|=|F∩F2| and

∣∣(F ′
∩M1−X (F ′))∩W ′

∣∣< ∣∣(F∩M1−X (F))∩W ′
∣∣

(by Lemma 5.2), contradicting minimality. �
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Lemma 5.4. If the pattern of S ∩ (F1 ∩ (J1 ∪ H ′)) is as in Figure 11, right, then the
pattern of S ∩ F1 is as in Figure 15.

Proof. We have ν( f1)= ν( f2)= ν( f3)+ν( f4)= ν( f6)+ν( f7). Thus the pattern of
S ∩ D is as in Figure 16, where ν(d1) = ν(d3), ν(d2) = ν(d4), and ν(d5) = 2ν( f5).
Therefore ν(d5) 6= 0. Referring to Figure 11, right, we distinguish two cases:
ν( f3) = ν( f6) = 0 and ν( f3) = ν( f6) = 0.

If ν( f3) = ν( f6) = 0, we have ν(d5) = ν(d1)+ν(d2). There are three subcases:
Suppose first that ν(d1) = ν(d2). Since ν(d5) 6= 0, ∂(S ∩ J 2) contains ν(d1)

trivial components in ∂ J 2 bounding some disks in S as in Figure 9, left, and ν(d5)

components isotopic to β. Since β intersects a basis disk of J 2 in one point, each
nontrivial component of S ∩ J 2, say A∗, is an annulus parallel to each component

n1
l4 l10

n4

l2

l1

l3 l9n3

n2

Figure 15



250 RUIFENG QIU AND SHICHENG WANG

l2 l1

l2

l1

d1 d2

d3d4

D∗

d5

d5

Figure 16

of ∂ J 2
− ∂ A∗. Thus there is a ∂-compressing disk D∗ of S ∩ J 2 as in Figure 16.

By doing a surgery on F along D∗, we can obtain a surface F ′ isotopic to F such
that |F ′

∩ W | = |F ∩ W |, |F ′
∩ F2| = |F ∩ F2|, and

∣∣(F ′
∩ M1 − X (F ′)) ∩ W ′

∣∣ <∣∣(F ∩ M1 − X (F)) ∩ W ′
∣∣, a contradiction.

Suppose instead that ν(d1) < ν(d2). Set k = |ν(d2) − ν(d1| and n = gcd(k, k +

ν(d5). Then ∂(S ∩ J 2) contains ν(d1) trivial components and n components c
isotopic to α pβ q , where |q| = (k + ν(d5))/n and |p| = k/n. By construction,
p > 0 if and only if q > 0. (See Figure 2.) That means that c is not null homotopic
in J 2. By the proof of Lemma 5.3, we can obtain a surface F ′ isotopic to F such
that C(F ′) < C(F), a contradiction.

Finally, suppose that ν(d1) > ν(d2), and define k as in the previous case. By the
preceding argument, ∂(S∩J 2) contains ν(d2) trivial components and n components
c isotopic to α pβ q , where |q| = (k + ν(d5))/n and |p| = k/n. If c is not null-
homotopic in J2, then by the preceding argument, we can obtain a surface F ′

isotopic to F so that C(F ′) < C(F), a contradiction. Assume that q = −2p. Then
ν(d5) = ν(d1)−ν(d2). Since ν(d5) = ν(d1)+ν(d2), ν(d2) = 0 and ν(d5) = ν(d1).
Thus F1 ∩ F is as in Figure 15 with ν(n2) = ν(n3) = ν(n4) and ν(n1) = 0. This
completes the analysis when ν( f3) = ν( f6) = 0.

If ν( f3) = ν( f6) 6= 0 in Figure 11, right, there are two subcases:
Suppose first that ν(d1) ≤ ν(d2). Then S ∩ F1 contains min(ν(d1), ν( f3)) com-

ponents isotopic to ∂ E1. If ν(d1) ≥ ν( f3), we can obtain, by the same argument
as in the preceding case, a surface F ′ isotopic to F such that C(F ′) < C(F), a
contradiction. Assume that ν(d1) < ν( f3), then S ∩ F1 contains ν(d1) compo-
nents isotopic to ∂ E1. Now 2ν( f1) = ν(d1) + ν(d2). By assumption, ν( f1) =

ν( f3) + ν( f4). Thus ν(d1) < ν(d2). Then, by the proof of Lemma 5.3, ∂(S ∩ J 2)

contains gcd(k, k + ν(d5)) components each of which is isotopic to α pβq , where
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|q| = (k + ν(d5))/n and |p| = k/n (here again we have set k = |ν(d2)− ν(d1| and
n = gcd(k, k +ν(d5)). If q 6= −2p, then by the proof of Lemma 5.3, there is in HK

an essential closed surface F ′ isotopic to F such that C(F ′) < C(F), a contradic-
tion. Since y = ν(d2) − ν(d1) = 2(ν( f1) − ν(d1)) > 2(ν( f1) − ν( f3)) = 2ν( f5),
we conclude that ν(d5) = 2ν( f5). Thus q 6= −2p.

If, on the other hand, ν(d1) > ν(d2), then S ∩ F1 contains min(ν(d2), ν( f3))

components isotopic to ∂ E1. If ν(d2) ≥ ν( f3), then by the same argument as
before the pattern of F ∩ F1 is as in Figure 15, with ν(n1) = ν( f3) and ν(n2) =

ν(n3) = ν(n4). But then we see that it is impossible to have ν(d1) < ν( f3). �

Lemma 5.5. HK contains no closed essential surface.

Proof. Suppose, to the contrary, that HK contains an essential closed surface F such
that the complexity C(F) is minimal among all surfaces isotopic to F . By Lemma
5.1, the pattern of F ∩ F2 is as in one of the diagrams of Figure 8. Furthermore,
ν(m2) = ν(m3) = 0 for any case. By Lemmas 5.3 and 5.4, the pattern of F ∩ F1 is
as in one of Figures 12 and 15. Furthermore, ν(n2) = ν(n3) = ν(n4) for any case.
By Lemma 5.0, ν(n1) + ν(n2) = ν(m1).

In M2, the pattern of F ∩ F1 can be labeled as in one of the diagrams on the top
row of Figure 17, and the pattern of F ∩ F2 can be labeled as in Figure 17, bottom.

∂1 A2

∂1 A4 ∂1 A10

∂2 A2

∂2 A4

∂2 A6

∂2 A8

∂2 A10

n1

n2

n4

n3

∂1 A2

∂1 A4

∂2 A2

∂2 A8

n1

n2

n3

n4

∂1 A10
∂2 A10

∂1 A6

∂2 A4

∂2 A6

∂1 A8

m1

Figure 17
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x2 x1
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∂ B∗T1 A

Figure 18

Note that W2, W4, W8, W10 separate M2 into four solid tori J 1, J 2, J 4, J 5 and
a handlebody of genus two H ′ such that A2i ⊂ J i for i = 1, 2, 4, 5 and A6 ⊂ H ′.
Let S = F ∩ H ′.

Now we claim that ν(n2) = ν(n3) = ν(n4) = 0. There are two cases:

Case 1. The pattern of F ∩ F1 is as in Figure 17, top left. Now each component
of ∂S is contained in one of the eight families x1, . . . , x8 as in Figures 18 and
19, where the boundary components of ∂S contained in

⋃4
i=1 xi are produced

by cutting along the arcs in F ∩ (W2 ∪ W4 ∪ W8 ∪ W10) whose endpoints lie in
m1 ∪ n1 and the components of ∂S contained in x7 ∪ x8 are produced by cutting
along the arcs whose endpoints lie in n2 ∪ n3 ∪ n4 ∪ m1, and each component in
x5 ∪ x6 is isotopic to one component of ∂ A6. Each component lying in x3 ∪ x4 is
trivial in ∂ H ′. By observation, there are two disks D1 and D2 in ∂ H ′ such that
∂ Di

= bi ∪ b′

i , where bi ⊂ F1 and b′

i ⊂ S as in Figure 19. Back to M2, D1 and D2

are as in Figure 12. Thus by doing surgeries on F along D1 and D2, we can obtain
a surface F ′ isotopic to F such that |F ′

∩ W | = |F ∩ W |, |F ′
∩ F2| = |F ∩ F2| and∣∣(F ′

∩ M1 − X (F ′)) ∩ W ′
∣∣ <

∣∣(F ∩ M1 − X (F)) ∩ W ′
∣∣, contradicting minimality.

Case 2. The pattern of F ∩F1 is as in Figure 17, top right. This is similar to Case 1.

b2

b1 x7 x8

Figure 19
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Figure 20

Now ν(n2) = ν(n3) = ν(n4) = 0 and ∂S is as in Figure 18. By construction,
there is a disk B∗

= H ′
∩ D6∗ in H ′ such that ∂ B∗ intersects each component in

x1∪x2∪x5∪x6 in only one point as in Figure 18. Thus S∩B∗ offers a ∂-compressing
disk D∗ of S such that D∗ is disjoint from Å6. We denote by A the annulus bounded
by an outermost component of x1, say e1, and an outermost component of x2, say
e2, in ∂ H ′, and T1 the punctured torus bounded by an outermost component of x1

and an outermost component of x2 in ∂ H ′as in Figure 18. Now if ∂ D∗
∩ ∂ H ′

=

a ⊂ A, then e1 ∪ e2 bounds an annulus in S parallel to A. This means that one
component of F ∩ M2 is parallel to ∂ H ∩ M2.

Let X0(F) be a union of components in F ∩ M2 parallel to ∂ H ∩ M2 or A6,
and set S = (F ∩ M2 − X0(F))∩ H ′. Then (F ∩ M2 − X0(F))∩ H ′

∩ B∗ offers a
∂-compressing disk, also denoted by D∗, of S such that ∂ D∗

∩ ∂ H ′
= a.

We claim each component of S is isotopic to one component of ∂ A6. There are
five possibilities:

(1) The two endpoints of a lies in x5(x6). Then D∗ can be moved to be D1 as in
Figure 20(a), Thus by doing a surgery on F along D1, we can obtain a surface F ′

isotopic to F such that |F ′
∩ W | = |F ∩ W |, |F ′

∩ F2| < |F ∩ F2|, a contradiction.

(2) The two endpoints of a lies in x1(x2). Then D∗ can be moved to be D2 as in
Figure 20(b), contradicting the minimality of |F ∩ W |.

(3) One endpoint of a lies in x5 and the other lies in x6. Since ∂ B∗ intersects⋃6
i=1 xi in the order x6, x3, x1, x2, x4, x5, there is by the argument in (1) an

outermost component of S ∩ B∗ in B∗, say b, which, together with an arc b∗ in
∂ H ′, bounds an outermost disk D such that ∂1b is contained in x5, ∂2b is contained
in x6 and b∗ intersects A6 in an arc. Since S is incompressible, by the standard
argument, the component of S containing b is parallel to A6, a contradiction.

(4) One endpoint of a lies in x1 and the other lies in x2. Then ∂1a ⊂c1 and ∂2a ⊂c2,
where c1 is a component of x1 and c2 is a component of x2. We denote again by A
the annulus bounded by c1, c2 in ∂ H ′ and by T1 the punctured torus bounded by
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c1, c2 in ∂ H ′. Note that a is disjoint from Å6 and A6 ⊂ T1. Hence a ⊂ A. By the
preceding argument, the component of F ∩ M2 consisting of c1 and c2 is parallel
to ∂ H ∩ M2. By the definition of S, this is impossible.

(5) One endpoint of a lies in x1 ∪ x2 and the other lies in x5 ∪ x6. Since S is
incompressible, each component c of x3 ∪ x4 bounds a disk Dc in S parallel to a
disk D∗

c on ∂ H ′; see Figure 18. Let S∗
= S −∪c∈x3∪x4Dc. Note that ∂ B∗ intersects⋃6

i=1 xi in the order x6, x3, x1, x2, x4, x5. Hence each component of S ∩ B∗ is
an arc b such that ∂1b ⊂ x1 ∪ x2 and ∂2b ⊂ x5 ∪ x6. Otherwise there would be an
outermost component b∗ of S∗

∩ B∗ in B∗ such that ∂b∗ is as in one of the above
four cases, a contradiction.

Each component of S ∩ B∗ is an arc b such that ∂1b ⊂ x1 ∪ x2 and ∂2 ⊂ x5 ∪ x6.
Set H∗

= H ′
− B∗

× (0, 1) and S∗∗
= S∗

− B∗
× (0, 1), where B∗

× I is a regular
neighborhood of B∗ in H ′. Then H∗ is a solid torus. Since each component
of x1 ∪ x2 ∪ x5 ∪ x6 intersects ∂ B∗ in one point, each component h of ∂S∗∗ is
obtained by doing a band sum of one component h1 of x5 ∪ x6 and one component
h2 of x1 ∪ x2 along a component of S∗

∩ B∗. Since h1 = 1 ∈ π1(H), we have
h2 6= 1 ∈ π1(H), so h 6= 1 ∈ π1(H∗). Recall the disk B2 in H defined in Section 2.
The intersection B2 ∩ H ′ is a planar surface P such that one component of ∂ P , say
∂1 P , is disjoint from A6, and the other components of ∂ P lie in Å6. Furthermore,
∂1 P intersects each component in x1 ∪ x2 in one point. Hence P − B∗

× (0, 1) is a
properly embedded disk in H∗ intersecting each component of ∂S∗∗ in one point.
This means that each component of S∗∗ is an annulus A parallel to each component
of ∂ H∗

− ∂ A.
Suppose that D is a ∂-compressing disk of A in H∗ such that the arc α= D∩∂ H∗

lies on the annulus A∗ on ∂ H∗ which contains the disk A6 − B∗
× (0, 1). Then

D is disjoint from x3 ∪ x4. Since the disk D∗
= B∗

×
{
0, 1

}
∪ (A6 − B∗

× (0, 1))

intersects ∂ A∗ in two arcs, D can be moved to have the arc α lying on A∗
− D∗.

Furthermore, since each component h of ∂S∗∗ is obtained by doing a band sum of
one component h1 of x5∪x6 and one component h2 of x1∪x2, we may assume that
∂α ⊂ x1 ∪ x2. Hence D is also a ∂-compressing disk of S∗ in H ′. By the preceding
argument, this is impossible.

Also by the preceding argument, if one component of F ∩(F1∪F2) is parallel to
∂ E1 or ∂ E2 then it is parallel to ∂ H . Suppose that each component of F ∩(F1∪F2)

is isotopic to one component of ∂ Ai . By the minimality of C(F), F is disjoint from
Wi for i 6= 6 and F is also disjoint from ∂ N (B∗ ∪ A6) − ∂ H ′ in H ′. Thus each
component of F ∩ M j is an annulus parallel to Ai for some i . That means that F
is isotopic to T , a contradiction. �

Proof of Proposition 3.0. The proposition follows immediately from Lemmas 4.1,
4.3, 4.4 and 5.5 and [Scharlemann and Wu 1993, Theorem 1]. �
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