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We present a new and very efficient approach to study topology of algebraic
curves in C2. It relies on using the Poincaré–Hopf formula, applied to a
suitable Hamiltonian vector field, to estimate the number of double points
and the Milnor numbers of singular points of the curve and on consider-
ing finite-dimensional spaces of curves with given asymptotics at infinity.
We apply this method to classification of parametric lines with one self-
intersection.

1. Introduction

Everyone is familiar with plane algebraic curves; mathematicians encounter them
in almost every day. Unfortunately there do not exist simple rules to determine the
topology of a curve, whether given in implicit or parametric form.

Among papers devoted to the study of algebraic curves with fixed topology we
highlight the work of S. Abhyankar and T. Moh [1973; 1975], who introduced the
notion of approximate roots and proved the rectification of a smooth affine line.
This approach was continued in [Sathaye and Stenerson 1994; A’Campo and Oka
1996; Nakazawa and Oka 1997].

Modern algebraic geometry tools, including the resolution of singularities, loga-
rithmic Kodaira dimension, the Bogomolov–Miyaoka–Yau inequality, logarithmic
deformations and zero-dimensional schemes, were used in [Miyanishi 2001; Wak-
abayashi 1978; Gurjar and Miyanishi 1996; Matsuoka and Sakai 1989; Zaidenberg
and Orevkov 1996; Flenner and Zaidenberg 1996; Orevkov 2002; Yoshihara 1983;
1987; Greuel et al. 2000; Kleiman and Piene 1999].

Low-dimensional topologists have used some link theory invariants to study the
topology of algebraic curves near singularities and near infinity; see [Eisenbud
and Neumann 1985; Neumann 1989; Neumann and Norbury 2002; Rudolph 1982;
1983].
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In this paper we propose a new approach to the problem. We consider parametric
polynomial curves ξ = (ϕ, ψ) : C → C2 such that ϕ(t)= t p

+lower order terms and
ψ(t)= tq

+ l.o.t., as t → ∞. For fixed p, q such curves form a finite-dimensional
space Curv.

Typical elements ξ ∈ Curv represent curves C = ξ(C) with transversal self-
intersections. The number of these double points is calculated using the Poincaré–
Hopf formula applied to the Hamiltonian vector field X F , where F(x, y) is the
polynomial defining C ; this number is quadratic in p and q. Elements ξ undergo
degenerations along certain bifurcation surfaces in Curv; they acquire additional
singularities or become degenerate at infinity. We prove the estimate µ≤ nν for the
Milnor numberµ of a singularity in a curve given by x = τ n , y = e1τ+e2τ

2
+· · · in

terms of the codimension ν of the singularity (Proposition 2.9). There is a similar
estimate for the number of double points escaping to infinity and for the number of
double points vanishing at the self-intersection point.

We propose in Conjecture 3.7 a probable estimate for the sum of external codi-
mensions of singularities (e.g., n + ν − 2 for a cusp) and of the degeneration at
infinity, in terms of the dimension of the quotient space of Curv by the group of its
natural automorphisms, induced by changes of variables t and (x, y).

Assuming this conjecture we classify rational curves with one place at infinity
and one self-intersection point. This classification contains sixteen series and five
special cases, and is given in Theorem 4.1. We believe that our list of curves is
complete.

Analogous arguments appear in [Orevkov 2002]. The author introduces what
he calls rough M-numbers, M i , corresponding to our external codimensions. He
considers the (3d−9)-dimensional space of rational curves of degree d (modulo
Aut CP2) and proves the estimate

∑
M i ≤ 3d −4, which is not optimal. The same

paper gives some estimates for the Milnor number, slightly weaker than µ≤ nν.
Unfortunately, it seems that our method cannot be applied to the classification

of planar projective rational curves. Their description contains ∼ 3d parameters;
with ν + n ≤ ∼3d one gets the estimate µ ≤ ∼

9
4 d2; since the number of double

points is δ ∼
1
2 d2 and since µ∼ 2d , one cannot deduce a bound for d . In the affine

case we have ν+ n ≤ ∼2d and therefore µ≤ ∼d2.
Our estimate for the sum of external codimensions, Conjecture 3.7, holds true

in all known examples. In particular, for any curve from Theorem 4.1 the sum
of external codimensions of its singularities is as expected. We are working on
this conjecture and we plan to devote a separate paper to it. In [Borodzik and
Żołądek 2005] we studied also immersions of C∗ into C2, among them algebraic
annuli, confirming a conjecture analogous to Conjecture 3.7 in all found cases of
embeddings of C∗. (The problem of algebraic annuli was partly considered in
[Neumann 1989; Kaliman 1996].)
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In the next section we calculate the indices of the Hamiltonian vector field. In
Section 3 we introduce the space Curv and describe its bifurcation set. In Section 4
we prove the main theorem about the classification of curves with given topological
type.

2. The Poincaré–Hopf theorem

If A ⊂ (C2, 0) is a germ of holomorphic curve defined by G(x, y) = 0, then the
(complex) Hamiltonian vector field

XG = G y∂x − Gx∂y

is tangent to A. Below we shall regard XG as a real vector field in R4 (i.e. with
real time). One can check that the real field XG is also Hamiltonian with Re G
as the Hamilton function, but with respect to the symplectic structure given by
d Re x ∧ d Re y − d Im x ∧ d Im y.

We set Y := XG |A. If 0 is an isolated singular point of A, then we consider the
normalization N : Ã → A; thus each topological component Ã j , j = 1, . . . k of Ã
(preimage of an analytic component A j of A) is a disc. The pull-back Ỹ := N ∗Y =

(N∗)
−1Y ◦ N of the vector field Y is a vector field on the smooth manifold Ã with

isolated equilibrium points p j ∈ N−1(0), j = 1, . . . , k. Thus one can define the
indices i p j Ỹ .

Lemma 2.1 [Milnor 1968; Lins Neto 1988]. If A is irreducible, then

i p1 Ỹ = µ0(G),

where µ0(G) is the Milnor number of the function G at the point 0.

Proof. The Milnor number µ0(G) is the first Betti number of the manifold with
boundary Az := Bρ ∩{G = z}, where Bρ is a ball of small radius ρ around 0 and z
is a small noncritical value of G (Milnor’s Theorem). The vector field XG |Az does
not vanish and its index at the boundary ∂Az equals i p1 Ỹ . Consider the manifold
M = Az/∂Az and a vector field Z = f · XG on M , such that f > 0 on Az \∂Az and
f = 0 on ∂Az . We have i[∂Az]Z = 2 − i p1 Ỹ ; (if dz/dt = zα on S1, then dz−1/dt =

z−2+α). The Poincaré–Hopf theorem says that the Euler–Poincaré characteristic
χ(M)= 2 −µ0(G) equals

∑
iq Z . �

Definition 2.2. We call the quantity

δ0 :=
1
2

∑
j

i p j Ỹ

the number of double points of A hidden at 0.
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The next lemma justifies this definition. In [Serre 1959] an algebraic definition
of the number of double points is given. In fact, the both definitions agree. In
the literature δ0 is sometimes called the δ-invariant of the singularity or the virtual
number of double points.

Lemma 2.3 [Milnor 1968]. Let A = A1 ∪ · · · ∪ Ak = A1 + · · ·+ Ak , where the A j

are the irreducible components of A, and let Ã j be the corresponding components
of the normalization Ã. Then

2δ0 =

∑
j

µ0(A j )+ 2
∑
i< j

(Ai · A j )0,

where (Ai · A j )0 is the intersection number at 0 of the components Ai and A j . In
particular, if 0 is a simple double point of A, then

i p1 Ỹ + i p2 Ỹ = 2.

Moreover, the Milnor number of the whole set A equals

(2-1) µ0(A)= 2δ0 − k + 1.

Proof. Let N j : (C, 0) → (A j , 0), z → (x(z), y(z)) be a local parametrization
(normalization) of A j . Assume the coordinates x, y are such that A j does not lie
in the line x = 0. Then we get

ż =

(
dx
dz

)−1
∂G
∂y

∣∣∣∣
A j

and i p j Ỹ = ordz=0

(
dx
dz

)−1
∂G
∂y

∣∣∣∣
A j

.

If G = G1 . . .Gk , where G j defines A j , then

ordz=0

(
dx
dz

)−1
∂G
∂y

∣∣∣∣
A j

= ordz=0

(
∂G j

∂y
/

dz
dx

) ∣∣∣∣
A j

+

∑
i 6= j

ordz=0Gi |A j = µ0(A j )+
∑
i 6= j

(Ai · A j )0.

As to (2-1), the manifold Az = Bρ∩{G = z} is a surface of genus g with k holes
andµ=2g+k−1. After contracting the boundary circles to points and introducing
the vector field Z = f XG , we find that χ(M)= 2−2g =

∑
j (2− i p j Ỹ )= 2k −2δ0.

�

Remark 2.4. Our proofs of Lemmas 2.1 and 2.3 are different (and hopefully sim-
pler) than the ones given in [Lins Neto 1988; Milnor 1968].

Also our definition of the number δ0 is essentially topological. This number can
be defined as the sum of indices of the Hamiltonian vector field XG along the loops
Ki = Ai ∩ ∂Bρ in the components Ai . Milnor [1968, Remark 10.9] asked whether
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δ0 equals the minimal number of double points of a union S =
⋃

Di of immersed
smooth (but maybe not holomorphic) discs Di in Bρ with Ki as their boundaries,
i.e., the gordian number of the link K =

⋃
Ki .

Milnor’s conjecture was eventually proved by P. Kronheimer and T. Mrowka
[1993]. The proof relies upon another theorem of theirs: Let 6 be a smooth (real)
surface of genus g(6) in a K3 complex surface X (meaning that H 1(X) = 0 K X

is trivial), and suppose 6 represents the same 2-dimensional homology class as a
smooth complex curve C ⊂ X. Then 2g(6)− 2 ≥6 ·6 = 2g(C)− 2.

If one could find a vector field X on S such that X |K = XG |K with indices at
the double points equal to the corresponding intersection indices, one would have
another proof of the Milnor’s conjecture. We looked for such a vector field, but
without success.

Now we move to the application of the vector field X F to the curve C ={F = 0},
which is an image of C under the polynomial mapping ξ = (ϕ, ψ), where

(2-2) ϕ(t)= a0t p
+ a1t p−1

+ · · · + ap, ψ(t)= b0tq
+ b1tq−1

+ · · · bq .

Using invertible changes of x, y (tame transformations), we can assume that either

ϕ(t)= t, ψ(t)≡ 0,
or

(2-3) 1< p < q, q/p 6∈ Z, a0 = b0 = 1

in (2-2). Moreover ξ is a local embedding near typical points of C.
The extension ξ̃ : CP1

→ C is the normalization of the closure C = C ∪ p∞ ⊂

CP2. As in [Żołądek 2003] we define a (real) vector field Y on C , or Ỹ on CP1, by
the formula

Ỹ (t)= f (t) ·
(
ξ∗X F

)
(t), t ∈ CP1

\ ∞.

Here f (t) > 0 is a smooth function tending to 0 as t → ∞ in such a way that Ỹ
becomes smooth at ∞. That is, in the variable τ = 1/t the pull-back vector field
ξ∗X F usually has a pole, ξ∗X F = τ−α(c + · · · )(d/dτ) for c 6= 0. Then we put
f (t)= |τ |2α near τ = 0. We find that

(2-4) i∞Ỹ = −α.

Lemma 2.5. If C has only simple double points as singularities, their number
equals 1 −

1
2 i∞Ỹ .

Proof. This follows from the Poincaré–Hopf formula and the equalities (2-4) and
χ(CP1)= 2. �

Definition 2.6. For a parametric line C = ξ(C) of the form (2-2) the number

δ := 1 −
1
2 i∞Ỹ
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is called the number of its (finite) double points.

The same formula defines δ for a germ at t = ∞ of a curve x = t p
+ l.o.t.,

y = tq
+ l.o.t. Here X F and Ỹ are germs of vector fields in (CP2, (0 : 1 : 0)) and

(Ĉ,∞) respectively (with Ĉ = C ∪ ∞).
We calculate the number i∞Ỹ in terms of the Puiseux expansion of the curve C

at infinity:

(2-5) y = xu1/p1
(
d1 + · · · + x−u2/p1 p2(d2 + · · · + x−ur/p1...pr (dr + · · · ) · · · )

)
= (d1xv1/p

+ · · · )+ (d2xv2/p
+ · · · )+ · · · + (dr xvr/p

+ · · · ).

Here p j >1, p = p1 . . . pr , v j = u1 p2 . . . pr −u2 p3 . . . pr −. . .−u j p j+1 . . . pr and
gcd(u j , p j )= gcd(v j , p j )= 1. The coefficients d j 6= 0 and the dots denote power
series in x1/p1...p j in the j-th summand. Moreover, v1 = q and d1 = 1. The pairs
(p1, u1), (p2,−u2), . . . , (pr ,−ur ) are called the characteristic pairs (at infinity).

We call the expansion (2-5) the curve’s topologically arranged Puiseux expan-
sion. The expansion of the form y =c0xq/p

+c1x (q−1)/p
+· · · is called the standard

Puiseux expansion.

Theorem 2.7. The number i∞Ỹ equals

2−
(
(v1 −1)(p1 −1)p2 . . . pr +(v2 −1)(p2 −1)p3 . . . pr +· · ·+(vr −1)(pr −1)

)
.

In particular, the number of double points of C equals

δ =
1
2

∑
(v j − 1)(p j − 1)p j+1 . . . pr .

Sketch of proof. The formula (2-5) gives one branch y = fζ ∗(x) of the multivalued
solution to the equation F(x, y)= 0. All branches of this solution take the form

y = fζ (x)= ζ1
(
d1xv1/p

+ · · · + ζ2(d2xv2/p
+ · · · + ζr (dr xvr/p

+ · · · ) . . .)
)
,

where ζ1 takes p1values, ζ2 takes p2 values, etc. We have ζ ∗
= (1, . . . , 1). The

polynomial F has the form F =
∏
ζ (y− fζ (x)) near infinity. Next, one rewrites the

Hamiltonian differential equation on C in the local variable τ = 1/t and calculates
the order of the pole at τ = 0 of the right-hand side. �

As a corollary of Theorem 2.7 we get:

Proposition 2.8 [Milnor 1968]. Let a germ A ⊂ (C2, 0) be irreducible and have
the standard Puiseux expansion

y = c1xv1/n
+ c2xv2/n

+ · · · ,

(with growing powers and nonzero coefficients), with n is minimal (so the function
y = f (x) has n branches). Set D1 = n, D2 = gcd(n, v1), D3 = gcd(n, v1, v2), . . . ,
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Dr+1 = 1. Then

µ0(A)=

∑
(v j − 1)(D j − D j+1)

= (v1 − 1)(D1 − 1)+ (v2 − v1)(D2 − 1)+ · · · + (vr − vr−1)(Dr − 1).

The latter formula can be used in the estimation of the Milnor number in terms
of the codimension of the singularity.

Fix the integer n > 0 and consider the space X of germs in (C2, 0) of holomor-
phic curves of the form

x = τ n, y = e1τ + e2τ
2
+ · · · ,

where the series defining y represents an analytic function near τ = 0. We split
X as a union

⋃
µ X(µ) of disjoint subsets with constant Milnor number µ. Each

summand X(µ) is a union Xi (µ) of semialgebraic sets (equisingularity strata) de-
fined by equations e j = 0 and inequalities ek 6= 0. The number of equations is the
codimension of the corresponding component: ν := codim Xi (µ). We allow also
germs of the form y = ψ(td), with d dividing n; then µ= ν = ∞.

Proposition 2.9. For any nonempty equisingularity stratum Xi (µ),

µ≤ nν.

Proof. The proposition being true for µ = ν = ∞, we assume that µ < ∞. Each
stratum Xi (µ) consists of curves with topologically arranged Puiseux expansion of
the form

y = xm0(d0 +· · · )+ xm1/n1(d1 +· · · )+· · ·+ xmr/n1...nr (dr +· · · )

= xm0(d0 +· · · )+ xu1/n1
(
d1 +· · ·+ xu2/n1n2(d2 +· · ·+ xur/n1...nr (dr +· · · ) . . .)

)
with n1 . . . nr = n, gcd(m j , n j )= 1, n j > 1 and characteristic pairs (at the singu-
larity) (n1, u1), . . . , (n j , u j ). We have

µ=

∑
(v j − 1)(D j − D j+1)=

( r∑
j=1

m j (n j − 1)(n j+1 . . . nr )
2
)

− (n − 1);

(here v j = m j n j+1 . . . nr , D j − D j+1 = (n j −1)n j+1 . . . nr and
∑
(D j − D j+1)=

n − 1).
The stratum Xi (µ) is defined by:

• the vanishing of the coefficients e jn2...nr for j < m1 and j 6= 0 (mod n1);

• the vanishing of the coefficients e jn3...nr for j < m2 and j 6= 0 (mod n2);

and so on up to

• the vanishing of the coefficients e j for j < mr and j 6= 0 (mod nr ).
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(The first term d0xm0 , which may be absent, is inessential.) We thus conclude that
the codimension of the stratum Xi (µ) equals

ν = ν̃n1(m1)+ · · · + ν̃nr (mr ),

where

(2-6) ν̃k(m) := m − 1 −

[m−1
k

]
,

the brackets denoting the integer part.
We extend the ν̃k(x) to monotone piecewise linear functions on R. Therefore

we have the conditional extremum problem

sup
{
µ(m1, . . . ,mr ) : ν̃n1(m1)+ · · · + ν̃nr (mr )= ν, m j n j+1 ≤ m j+1 − 1

}
.

The extremum of µ is achieved at the boundary, m j n j+1 = m j+1 − 1. Indeed,
we can assume that m j belongs to a closed interval where ν̃ ′

ni
(mi )= 1. Then, after

fixing m j , j 6= i, r , we have mr = −mi + const and ∂µ
∂mi

= (ni − 1)(ni+1 . . . nr )
2
−

(nr − 1) > 0. Therefore

(2-7)

mr−1 =
mr

nr
−

1
nr
,

mr−2 =
mr

nr nr−1
−

1
nr nr−1

−
1

nr−1
,

...

m1 =
mr

nr . . . n2
−

1
nr . . . n2

− . . .−
1
n2
.

Note also that ν̃k(x)≥ (x − 1)(1 − 1/k). Thus

ν ≥ ν̂(m1, . . . ,mr ) := (m1 − 1)
(

1 −
1
n1

)
+ · · · + (mr − 1)

(
1 −

1
nr

)
.

When r = 1 and r = 2 standard calculations show that nν̂ =µ= (m1 −1)(n−1)
and nν̂ =µ= (m2 −1)(n −1)− (n1 −1)n2, respectively. If n ≥ 3 and (2-7) holds,
we can write

nν̂−µ= nr (Anr + B),

where

A = A(n1, . . . , nr−1)= (1+nr−1+nr−1nr−2+· · ·+nr−1 . . . n3)(n1−1)n2 . . . nr−1

+(1+nr−1+nr−1nr−2+· · ·+nr−1 . . . n4)(n2−1)n3 . . . nr−1+· · ·+(nr−2−1)nr−1

> 0

and B = B(n1, . . . , nr−1) is a polynomial. The expression (nν̂ − µ)|nr =1 is the
same as the analogous expression depending on r − 1 variables n1, . . . , nr−1. By
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induction we can assume that nr (Anr + B)|nr =1 is nonnegative. Therefore

nr (Anr + B) > 0 for nr > 1. �

Remark 2.10. The codimension ν has also been computed by Orevkov [2002], but
with slightly different notations. His rough M-number M (see Section 1) turns out
to be equal to M = n − 2 +

∑
ν̃ni (mi ) = n − 2 + ν, when n is the multiplicity of

the singularity. In Section 3 we introduce the external codimension of the singu-
larity, which is the same as M in the irreducible case in most situations. Orevkov
[Orevkov 2002, Lemma 4.1] proves the inequality M −µ/n> n−3, which implies
µ < n(ν+ 1).

Note also that our estimate is optimal (in a sense); for one or two characteristic
pairs it cannot be improved.

Later on we shall need the following variants of Proposition 2.9.

Proposition 2.11. Consider the space X′ of germs in (C2, 0) of the form

x = τ n, y = τm(1 + e1τ + e2τ
2
+ · · ·),

where gcd(m, n)= n′ > 1. For any equisingularity stratum in X′ we have

µ≤ µmin + n′ν ′,

where ν ′ is the codimension in X′ of the stratum and

µmin := (m − 1)(n − 1)+ (n′
− 1)

is the minimal Milnor number.

Proof. Set m0 = m/n′, n0 = n/n′. We have

µ= (m0n′
−1)(n0 −1)n′

+

∑
j≥1

(
(v j −m0n′

−1)+m0n′
)
(n j −1)n j+1 . . . nr

=
(
(m0n′

−1)(n0 −1)n′
+n0n′(n′

−1)
)
+

∑
(ṽ j −1)(n j −1)n j+1 . . . nr ,

where ṽ j = v j − m0n′. The expression (m0n′
−1)(n0−1)n′

+ n0n′(n′
−1) equals

µmin and last sum is estimated by n′ν ′ like in Proposition 2.9. �

Proposition 2.12. Consider the space X∞ of germs in (CP2, (0 : 1 : 0)) of the form

x = τ p, y = τ q(1 + e1τ
−1

+ e2τ
−2

+ · · ·), τ → ∞,

where gcd(p, q)= p′ > 1. For any equisingularity stratum in X∞,

2δ ≥ 2δmax − p′ν∞,

where δ is the number defined in Definition 2.6,

δmax =
1
2

(
(p − 1)(q − 1)− (p′

− 1)
)
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is the maximal number of double points and ν∞ is the codimension in X∞ of the
stratum.

We omit the proof.

Now we pass to the expression of the number of double points δ(A+ B) (hidden
at singularity) of a singular curve A+ B consisting of two local components A and
B. We need a formula for the intersection index (A · B)0 in terms of the Puiseux
expansions of the germs A and B.

Assume the following standard expansions:

(2-8)
A : x = ιM , y = d1ι+ d2ι

2
+ · · · ,

B : x = τ N , y = e1τ + e2τ
2
+ · · ·

Moreover, we assume that some initial parts of these expansions are the same. It is
clear that the corresponding exponents l/k (in x l/k) are such that k divides M and
N ; thus M = km, N = kn. We have

(2-9)
A : x = ιkm, y = f1x1/k

+ · · · + fu xu/k
+ du1m′ xu1/km1 + · · ·

B : x = τ kn, y = f1x1/k
+ · · · + fu xu/k

+ ew1n′ xw1/kn1 + · · ·

where m = m1m′, n = n1n′, gcd(u1,m1)= gcd(w1, n1)= 1 (note that m1, n1 may
equal 1) and either

(i) w1/kn1 < u1/km1, or

(ii) w1/kn1 = u1/km1 but du1m′ 6= ew1n′ (here m1 = n1 and u1 = w1).

We assume that the part
∑u

j=1 f j x j/k is the longest common part among analogous
common parts for all Puiseux series for A and B (i.e., those parts that differ by
changing branches of the roots of x). Assume also that k is minimal (e.g., it is
possible that m and n are not relatively prime).

We represent this common initial part
∑u

1 f j x j/k in the topologically arranged
form

(2-10) ( f̃1x l1/k1 + · · · )+ · · · + ( f̃r x lr/k1...kr + · · · ),

with k1 . . . kr = k, gcd(l j , k j )= 1.
The number (A · B)0 = (A, B) is the order at ι = 0 of the function G|A, where

G(x, y) is the function defining B. We represent G as a product
∏
(y − χζ (x))

over kn branches χζ of the multivalued function y(x).
There are n branches with the fixed common part

∑u
1 f j x j/k . In case (ii) it gives

the contribution n · (w1/kn1) ·km = mn ·w1/n1 into (A · B). In the case (i) these n
branches are divided into n′

= n/n1 groups, each containing n1 branches and each
with contribution n1 · (w1/kn1) · km. Generally, the distinguished branches give
mnw1/n1.
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The contribution arising from the other branches is calculated from (2-10), as in
Proposition 2.8. It equals

r∑
j=1

(k j − 1)k j+1 . . . kr n
l j

k1 . . . k j
· km = mn

r∑
j=1

l j (k j − 1)k2
j+1 . . . k

2
r .

Proposition 2.13. Under the preceding assumptions we have

(A · B)= mn
( r∑

j=1

l j (k j − 1)k2
j+1 . . . k

2
r +

w1

n1

)
.

We calculate the codimension of the corresponding singularity of A + B in the
space of pairs of germs of the form (2-8). The codimension of A is ν(A)= ν(A,B)+
ν(A) and that of B is ν(B) = ν(A,B) + ν(B), where (with the notation ν̃k( · ) of
Equation (2-6))

ν(A,B) =

r∑
j=1

ν̃k j (l j ), ν(A) =

rA∑
i=1

ν̃mi (ui ), ν(B) =

rB∑
i=1

ν̃ni (wi ),

according to the topologically arranged expansions y =
∑
( f̃ j x l j/k1...k j + · · · )+∑

(d̃i xui/km1...mi + · · · ) and y =
∑

f̃ j x l j/k1...k j +
∑
(ẽi xwi/kn1...ni + · · · ) (see the

proof of Proposition 2.9). The whole codimension of A + B is ν(A + B)= ν(A)+
ν(B)+νtan, where νtan := u−ν(A,B) is the number of equalities among the nonzero
coefficients before x j/k’s (see (2-9)). We have proved the following:

Lemma 2.14. The codimension of A + B equals

ν(A + B)= ν(A,B) + ν(A) + ν(B) + u,

where u is the length of the common initial part of the Puiseux expansions for A
and B.

Recall that by Definition 2.2 we have δ(A+ B)= δ(A)+δ(B)+2(A · B), where
δ(A) and δ(B) are given via the Puiseux expansions of A and B (Proposition 2.8).
The next result is proved in a similar way as Proposition 2.9.

Lemma 2.15.

(A · B)≤ M(ν(B) + u + 1), (A · B)≤ N (ν(A) + u + 1).

This lemma and Proposition 2.9 lead to the next result:

Proposition 2.16. For the curves A and B given in (2-8) we have

2δ(A + B)≤ (M + N ) ·
(
ν(A + B)+ 1

)
,

where ν(A + B) is given in Lemma 2.14.
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Note that when M = N = 1 this inequality becomes an equality.
We shall need also the following generalizations of Proposition 2.11. Consider

the space of pairs of curves of the form

(2-11)
A : x = ιk1k′m

= ια, y = ιl1k′m(d0 + d1ι+ · · · )= ιγ (d0 + · · · ),

B : x = τ k1k′n
= τβ, y = τ l1k′n(e0 + e1ι+ · · · )= τ δ(e0 + · · · ),

where d0e0 6= 0, gcd(k1, l1) = 1 and k ′
= k2 . . . kr . Also set α′

= gcd(α, γ ) = k ′m
and β ′

= gcd(β, δ)= k ′n.
The next result is rather easy and we omit its proof.

Proposition 2.17. We have

2δ(A + B)≤ 2δmin(A + B)+ (α′
+β ′) ·

(
ν ′(A + B)+ 1

)
,

where 2δmin(A+ B) = (α+β−1)(γ +δ−1)+(α′
+β ′

−1) is twice the minimal
number of double points hidden at the singularity and ν ′(A+B) is the codimension
of the corresponding equisingularity stratum in the space of pairs (2-11).

Consider the space of pairs of curves of the form

A : x = ιkα
′

= ια, y = ιlα
′

(d0 + d1ι+ · · · )= ιγ (d0 + · · · ),

B : x = τ pβ ′

= τβ, y = τ qβ ′

(e0 + e1ι+ · · · )= τ δ(e0 + · · · ),

where d0e0 6= 0, κ := kq − pl > 0, gcd(k, l)= gcd(p, q)= 1.

Proposition 2.18. We have

2δ(A + B)≤ 2δmin(A + B)+α′
· ν ′(A)+β ′

· ν ′(B),

where 2δmin(A+ B) = (α+β−1)(γ +δ−1)+ (α′
+β ′

−1)−α′β ′κ and ν ′(A),
ν ′(B) are the codimensions in the spaces A and B.

Proof. The contributions 2δ(A) and 2δ(B) equal 2δmin(A)+α′ν ′(A) and 2δmin(B)+
β ′ν ′(B). The term 2(A · B) equals

2(A · B)min = 2 · min(αδ, βγ )= αδ+βγ −α′β ′κ. �

3. The space of parametric lines

Recall that a parametric line is a plane curve

ξ : C → C2, ξ(t)= (ϕ(t), ψ(t)),

where ϕ,ψ are polynomials. In (2-2) it was assumed that ξ is typically one-to-one;
here we skip this restriction, but we require that ξ not be constant.

By applying tame transformations of C2 we can assume that either

(3-1) ϕ = t p
+ a1t p−1

+ · · · + ap, ψ ≡ 0,
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or

(3-2) ϕ = t p
+ a1t p−1

+ · · · + ap, ψ = tq
+ b1tq−1

+ · · · + bq ,

where 1< p < q, q/p /∈ Z (see (2-3)) and

(3-3) ap = bq = bq−p = bq−2p = . . .= bq−[q/p]p = 0.

We shall also use the notation ξ = ξa,b, a = (a1, . . . , ap), b = (b1, . . . , bq).

Definition 3.1. Denote by Curvp,q = Curv the space of curves of the form (3-1)
for (p, q) = (p, 0), or (3-2). For 1 < p < q with q/p /∈ Z we define the space of
parametric lines Curv = Curvp,q as the space of curves (3-2) with the restriction
(3-3).

Thus Curv is the quotient space of Curv with respect to a natural action of the
group G p,q of changes of coordinates (ϕ, ψ)→ (ϕ+α,ψ+ P(ϕ)), deg P ≤ [q/p]

of changes stabilizing the form (3-2). We have dim Curv = p + q − [q/p] − 2.

Lemma 3.2. The changes

t → λ−1t +µ, x → λpx, y → λq y

induce an action of the group A f f (C) = C∗ o C (semidirect product) of affine
automorphisms of the complex line on Curv. The quotient space Curv/C can be
identified with the space of curves of the form (3-2) such that a1 =0, and Curv/C=

Curv/C o G p,q is identified with the space of curves (3-2) satisfying (3-3) and
a1 = 0.

The action of C∗ on Curv (and on Curv, Curv/C) results in the changes

a j → λ j a j , b j → λ j b j .

The quotient space ((Curv/C) \ 0)/C∗ is the quasihomogeneous projective space,
denoted PCurv, of dimension

σ := p + q − [q/p] − 4.

(Here the point 0 ∈ Curv/C corresponds to the quasihomogeneous curve x =

t p, y = tq).

Let C = ξ(C) ⊂ C2 be the image of a ξ ∈ Curv. The curve C can have self-
intersections (multiple points). The parametrization ξ : C → C can be primitive or
nonprimitive. In the primitive case the map ξ is one-to-one above the set of simple
points of C . In the nonprimitive case we have this result of Lüroth:

Theorem 3.3. If the geometrical degree d of ξ : C → C is greater than one, there
exists a polynomial ω(t) of degree d such that ξ(t) = ξ̃ ◦ ω(t) for a polynomial
map ξ̃ : C → C2 (of geometrical degree 1). In particular, d divides p and q.
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In the sequel we shall investigate the class Curvp,q with 1< p< q and q/p /∈ Z.
The images C = ξ(C) of maps ξ ∈ Curvp,q have singularities, typically double
points. However, there are reasons to regard them as not that singular.

Definition 3.4. An element ξ ∈ Curv is called singular at t0 if ξ ′(t0)= 0. The curve
ξ is singular if it is singular at some point.

Thus nonprimitive curves are singular and primitive curves whose images have
only double points are nonsingular.

The subset6sin
⊂ Curv of singular curves is an algebraic hypersurface, stratified

by the Milnor number µξ(t0)(C j ) of the singular point of C . The typical singularity
is the cusp singularity A2 with µ= 2. We have the filtration 6sin

=6sin
2 ⊃6sin

4 ⊃

. . . ⊃ 6sin
∞

. Here µ is always even and 6sin
∞

consists of nonprimitive curves; if
gcd(p, q) = 1 then 6sin

∞
is empty. Moreover, the hypersurface 6sin can have self-

intersection points, which correspond to curves with several singular points.
Another degeneration corresponds to the situation when intersection of some

local components A, B of the curve ceases to be transversal. It occurs along an
algebraic hypersurface 6tan, which can be defined in an implicit form:

ϕ(s)−ϕ(t)
s − t

= 0,
ψ(s)−ψ(t)

s − t
= 0,

ϕ′(s)ψ ′(t)−ϕ′(t)ψ ′(s)
s − t

= 0.

The nontransversality can be caused by tangency of two local smooth components
or by singularity of one (or both) component.

One type of degeneration corresponds to intersection of three (or more) local
branches. This occurs along a hypersurface 6tri, which is also algebraic.

The last type of degeneration corresponds to some double point(s) escaping to
infinity. It occurs along a hypersurface 6inf. The corresponding bifurcation is
governed by the standard Puiseux expansion of C near infinity

y = xq/p
+ c1 y(q−1)/p

+ · · · .

This expansion is obtained by elimination of t with the agreement that

x1/p
= t (1 + a1t−1

+ · · · + apt−p)1/p
= t +

1
p

a1t−1
+ · · ·

as t → ∞. Thus the coefficients c j = c j (a, b) are uniquely defined. They are
quasihomogeneous polynomials of degree j with respect to the C∗-action.

Lemma 3.5. If gcd(p, q)= 1, then 6inf
= ∅. If gcd(p, q)= p′ > 1, then

6inf
= {c1 = 0} ,
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where c1 = b1 −(q/p)a1. Any ξ ∈ Curv\6inf defines a curve with total δ-invariant
equal to

δmax =
1
2
(
(p − 1)(q − 1)− (p′

− 1)
)
.

For ξ ∈ Curv we define the number of double points hidden at infinity as

δ∞ := δmax − δ.

We define
6 =6sin

∪6tan
∪6tri

∪6inf

as the bifurcation set of the space Curv. Note that there are intersections (and
self-intersections) among these components.

The four types of bifurcations are local in nature. Therefore they are character-
ized by their codimension in the spaces of germs of analytic curves. We shall call
this codimension as the external codimension.

Definition 3.6. For a cuspidal singularity x = τ n , y = e1τ + · · · we define the
external codimension as

ext ν = (n − 2)+ ν,

where ν is the codimension of the corresponding equisingularity stratum. Here the
summand n − 2 arises from the vanishing of n − 1 terms in the expansion of ϕ̇(t)
at the singular point, which may vary for ξ = (ϕ, ψ) ∈ Curv.

For a self-intersection of two local branches A and B (as in (2-8)) we define the
external codimension as

ext ν = (M − 1)+ (N − 1)+ ν(A + B),

where M −1 and N −1 are the orders of ẋ and ν(A+ B) is the codimension of the
corresponding equisingularity stratum (defined in Section 2).

Generally, for the intersection of k local branches A1, . . . , Ak with the orders
of ẋ equal to n(1) − 1, . . . , n(k) − 1 and the codimension of the corresponding
equisingularity stratum ν(A1 + · · · + Ak), the external codimension equals

ext ν = (n(1) + · · · + n(k) − 2)+ ν(A1 + · · · + Ak).

Finally,
ext ν∞ = ν∞

is the external codimension of the degeneration at t = ∞; here ν∞ is defined in
Proposition 2.12.

Note that our definition of the external codimension of a singularity of ξ ∈

Curvp,q is tied with the fixed choice of the coordinate system (x, y) in the target
complex plane. This is related to the fact that we always assume p < q .
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(Here lies a difference with Orevkov’s definition of the M-number of a cuspidal
singularity (see Remark 2.10). In his formula, M = n − 2 + ν, the integer n is
the multiplicity of the singularity, that is, the minimum of the orders of ẋ and ẏ.
Therefore when n − 1 = ord ẋ ≤ ord ẏ, we have M = ext ν; otherwise M < ext ν.)

Now we can formulate the promised conjecture about codimensions.

Conjecture 3.7. Any fixed collection of degenerations (singularities) in 6sin, 6tan,
6tri and 6inf in Curvp,q , where 1 < p < q and q/p /∈ Z, such that their external
codimensions are finite, either does not occur or occurs along an algebraic sub-
variety of the space Curv \6sin

∞
(of primitive curves) whose codimension equals to

the sum of external codimensions of the local degenerations.
In particular, when the curve is not equivalent to a quasihomogeneous curve,

the sum of external codimensions does not exceed σ = dim PCurv.

Conjecture 3.7 can be interpreted as the property of regularity of some sequences
of essential Puiseux quantities defining the equisingularity strata of the singulari-
ties. Recall that a sequence f1, f2, . . . ∈ C[X ] of regular functions on a normal
quasiprojective complex variety X is regular at x0 ∈ X if any f j is not a zero
divisor in the local ring Ox0/( f1, . . . , f j−1) (see [Griffiths and Harris 1978]). In
our situation X = Curv \6sin

∞
is the space of primitive curves.

Examples 3.8. (a) Let p = 4, q = 6. Thus σ = p + q − 4 − [q/p] = 5.
One can calculate the first topologically essential Puiseux quantities at infinity
( f1, . . . , f5)= (c1, c3, c5, c7, c9). It turns out that the equalities f1 = . . .= f5 = 0
hold only on the subspace 6sin

∞
of nonprimitive curves; here dim P6sin

∞
= 1. More-

over, PV4 = { f1 = . . .= f4 = 0} consists of two components: P6sin
∞

and a 1-
dimensional variety PV ′

4, such that f5|V ′

4 6≡ 0. It follows that already σ (not
σ + 1) essential Puiseux coefficients form maximal (in a sense) regular sequence
in PCurv \ P6sin

∞
.

(b) The curve x = t6
+2µt2, y = t9

+3µt5
+

3
2µ

2t , µ 6=0 has the Puiseux expansion
y = x3/2

+
1
2µ

3x−1/2
−µ4x−7/6

+· · · . It suggests that the sequence ( f1, . . . , f11)=

(c1, c2, c4, c5, c7, c8, c10, c11, c13, c14, c16) of the first σ + 1 = 11 topologically
essential Puiseux quantities is regular in PCurv \ P6sin

∞
. Here codim Vi = i for

i = 1, . . . , 10, and dim P6sin
∞

= 3.

(c) If gcd(p, q) = 1, the quasihomogeneous curve x = t p, y = tq has ext ν0 =

p + q − [q/p] − 3 = σ + 1. This explains the last statement in Conjecture 3.7.

Conjecture 3.7 may be regarded as an affine analogue of the following:

Conjecture [Orevkov 2002, Conjecture 2.3]. If C ⊂ CP2 is a rational (not nec-
essarily cuspidal) curve then

∑
M i ≤ 3d − 9 where the sum is taken over all

irreducible analytical branches of C.
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One could expect that in other natural spaces of parametric curves an analogue
of the our conjecture and Orevkov’s holds true. However this is not the case.

In the next section we shall consider curves of the form
(3-4)
ϕ(t)= tα(1 − t)β P(t), ψ(t)= tγ (1 − t)δQ(t), P(0)P(1)Q(0)Q(1) 6= 0.

These curves form a semialgebraic space of dimension deg P + deg Q − ε, where
ε counts the changes ψ → ψ + const · ϕ j , which preserve the form (3-4). We still
denote this space by Curv.

We use the notations

(3-5)
α = α1α

′,

β = β1β
′,

γ = γ1α
′,

δ = δ1β
′,

α′
= gcd(α, γ ),

β ′
= gcd(β, δ),

and

(3-6) κ = α1δ1 −β1γ1.

Note that α1 = β1 and γ1 = δ1 when κ = 0.
The singularity x = y =0 is characterized by its external codimension ext ν0, that

means the codimension in the space of pairs of germs A : x = ια, y = ιγ (1 + · · · ),
B : x = τβ , y = τ δ(1 + · · · ). ext ν0 is the same as ν ′(A + B) from Propo-
sition 2.17. Introducing ext ν(A,B) = ν ′(A,B), ext ν(A) = ν ′(A), ext ν(B) = ν ′(B),
ext u = u′, we have ext ν0 = ext u + ext ν(A,B) + ext ν(A) + ext ν(B). Moreover,
ext ν(A)= ext ν(A,B)+ext ν(A) and ext ν(B)= ext ν(A,B)+ext ν(B) are the external
codimensions of the components A and B. Recall that ext u is the number of initial
common terms in the Puiseux expansions of A and B.

The next result shows that only when γ < α and β < δ is ext ν0 bounded by
the dimension of the space of curves (3-4) (modulo changes of (x, y)). In general,
ext ν0 can be greater than this dimension.

Lemma 3.9. Assume that Conjecture 3.7 holds.

(a)

ext ν∞ +

N∑
i=0

ext νi ≤ deg P + deg Q +

[
γ−1
α

]
+

[
δ−1
β

]
−

[q
p

]
.

(b) If deg P = 0, deg Q = 1 and κ 6= 0, then ext ν(A) + ext ν(B) ≤ 2 and equality
is possible only in three situations:

• ext ν(A)= ext ν(B)= 1, when α′, β ′ > 1 and β/α = (δ+ 1)/(γ + 1);
• ext ν(A)= 2 and ext ν(B)= 0, when α′ is even and β/α= (δ−1)/(γ+3);
• ext ν(A)= 0 and ext ν(A)= 2, when β ′ is even and β/α= (δ+3)/(γ−1).

Analogous statements hold when deg P = 1, deg Q = 0.
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(c) Suppose deg P = deg Q = 1 and κ = 0. Then assertion (a) gives ext ν0 ≤ 3.
Assume also that α1 + γ1 ≤ 5 (recall that gcd(α1, γ1)= 1 and α1 < γ1 ≤ 2α1,
since p < q < 2p). Then ext ν0 = 3 may occur only when either ext ν(A)= 3
and ext u = ext ν(B) = 0, or ext ν(B) = 3 and ext u = ext ν(A) = 0, or
ext u = 3, ext ν(A)= ext ν(B)= 0, α1 = 2, γ1 = 3, and α′

= β ′.

Proof. (a) From Conjecture 3.7 one obtains that the essential Puiseux quantities at
t = 0, t = 1 and t = t j and the self-intersection quantities form regular sequences
in the space ((Curvp,q/C)\0)/C∗, normalized in such a way that ξ(0)= ξ(1)= 0.
Next, we restrict the space of curves to the form

(3-7) ϕ(t)= tα(1 − t)β P(t), ψ(t)= t (1 − t)Q(t).

Here we get the estimate
∑

ext. codim. ≤ essential dim. = deg P +deg Q −[q/p].
The space of curves considered in Lemma 3.9 is a subspace of the space of curves
of the form (3-7). It is defined by the vanishing of the first γ −1 Puiseux quantities
at t = 0 and of the first δ− 1 Puiseux quantities at t = t0. Among these quantities
there are γ − 1 − [(γ−1)/α] and δ− 1 − [(δ−1)/β] essential Puiseux quantities.
Therefore the external codimension of the singularity (0, 0) in the space of curves
(3-7) equals ext ν0 + γ − 1 − [(γ−1)/α] + δ− 1 − [(δ−1)/β]. Now the previous
inequality gives the desired estimate for ext ν∞ +

∑
ext ν j .

(b) We have ϕ = tα(1− t)β , ψ = tγ (1− t)δ(1−bt). Here one calculates explicitly
the successive Puiseux quantities, and in this way the statement of this point is
obtained. We omit the details.

Part (c) is proved in the same way. �

Examples 3.10. (a) Consider curves of the form ϕ = [tα
′

(1 − t)β
′

]
α1 , ψ = [tα

′

(1 −

t)β
′

]
γ1(1 − bt), b 6= 0, 1. It is clear that the vanishing of c(A)1 (if α′ > 1) means

b = 0. Similarly, c(B)1 ∼ b/(1−b). The first intersection quantity c(A,B)0 equals
χ(1)− χ(0), where χ(t) = ψα1/ϕγ1 = (1 − bt)α1 ; thus c(A,B)0 = 0 if and only if
1 − b is a root of unity of degree α1. Here c(A,B)1 6= 0.

(b) Consider the case ϕ = tα(1 − t)β , ψ = tγ (1 − t)δ(1 + b1t + b2t2)with α′ > 2,
β ′> 1. Calculations show that vanishing of c(A)1 , c(A)2 and of c(B)1 leads to b1 = κ̃/α,
b2 = κ̃(κ̃+α)/2α2 and (2β−α− κ̃)(2α+ κ̃)= 0. The possibility 2α+ κ̃ = 0 leads
to Q(1)= 0, but the case 2β −α− κ̃ = 0 is admissible.

If we additionally require that c(B)2 = 0 (when β ′> 2), we arrive at the condition
2β= (κ̃−β)(2α+κ̃). Eliminating α from the latter two equations we get the equa-
tion κ̃2

−5βκ̃+4β2
−2β= 0 with the discriminant1= 9β2

+8β. The requirement
that1 is a square, say ρ2, leads to the Diophantine equation (3ρ)2+42

= (9β+4)2

without solutions in positive integers. Therefore the maximal possible external
codimension is 3.
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These examples are in agreement with Lemma 3.9.

4. One-connected lines

In this section we consider curves ξ ∈ Curvp,q (where 1 < p < q and q/p /∈ Z)
that are primitive and have exactly one self-intersection. Simply connected curves
were classified in [Abhyankar and Moh 1975; Suzuki 1974] (smooth case) and in
[Zaidenberg and Lin 1983] (singular case).

The next theorem is the main result of this paper.

Theorem 4.1. Any plane rational curve with one place at infinity and first Betti
number equal to 1, obeying Conjecture 3.7, is equivalent (via an automorphism of
C2) to one of the following (with αδ−βγ = 1 and αβγ δ 6= 0):

(a) x = t2, y = t2l+1(t2
− 1)k , k = 1, 2, . . . , l = 0, 1, . . . ;

(b) x = t3, y = t3k+1(t − 1), k = 1, 2, . . . ;

(c) x = t4, y = t4k+1(t − 1), k = 1, 2, . . . ;

(d) x = t4, y = t4k+2(t − 1), k = 0, 1, . . . ;

(e) x = t6, y = t6k+2(t − 1), k = 1, 2, . . . ;

(f) x = t6, y = t6k+3(t − 1), k = 0, 1, . . . ;

(g) x = tα(t − 1)kβ , y = tγ (t − 1)kδ, k = 1, 2, . . . , 2< α+ kβ < γ + kδ;

(h) x = t2α(t − 1)2β , y = t2γ (t − 1)2δ, α+β < γ + δ;

(i) x = tα(t − 1)kβ−α, y = tγ (t − 1)kδ−γ , k = 1, 2, . . . , 2< kβ < kδ;

(j) x = t2(t − 1), y = xk t (t −
4
3), k = 1, 2, . . . ;

(k) x = t3(t − 1), y = xk t (t −
3
2), k = 1, 2, . . . ;

(l) x =
(
t (t − 1)

)2k , y = x l
(
t (t − 1)

)k
(t −

1
2), k = 1, 2, . . . , l = 0, 1, . . . ;

(m) x =
(
t (t − 1)

)2k+1, y = x l
(
t (t − 1)

)k
(t −

1
2), k = 0, 1, . . . , l = 1, 2, . . . ;

(n) x =
(
tk(t − 1)k+1

)2, y = x l tk(t − 1)k+1(t −
1
2), k = 1, 2, . . . , l = 0, 1, . . . ;

(o) x = t2k+1(t − 1)2k+3, y = x l tk(t − 1)k+1(t −
1
2), k = 0, 1, . . . , l = 1, 2, . . . ;

(p) x =
(
t (t − 1)

)3, y = xk t (t − 1)(t −
1
2 −

1
6

√
−3), k = 1, 2, . . . ;

(q) x = t3
− 3t , y = t4

− 2t2,

(r) x = t3
− 3t , y = t5

− 2
√

−2t4
+ 11

√
−2t2

−
37
4 t ;

(s) x = t3
− 3t , y = t5

+ 10t4
+ 80t2

− 205t ;

(t) x = t3
− 3t , y = t5

−
5
2 t4

+ 5t2
− 5t ;

(u) x = t3
− 3t , y = t5

−
7
2 t4

− 43t2
+ 11t .

All these curves are nonequivalent.
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Commentary. We give here the singularities (degenerations) of the curves above.

(a) This curve has a cusp A2l at t1 = 0 with n1 = 2 and ν1 = l and a tangency of
two smooth branches at t = ±1 of codimension ν0 = k − 1. Here ext ν0 + ext ν1 =

σ = k + l − 1.

(b) The only singular point is at t1 = 0, with one characteristic pair (3, 3k + 1) and
ν1 = 2k. Here ext ν1 = σ = 2k + 1.

(c) The only singular point is at t1 = 0, with one characteristic pair (4, 4k + 1) and
ν1 = 3k. Here ext ν1 = σ = 3k + 2.

(d) The only singular point is at t1 = 0, with two characteristic pairs (2, 2k + 1),
(2, 1) and with ν1 = 3k + 1. Here ext ν1 = σ = 2k + 2.

(e) The only singular point is at t1 = 0, with two characteristic pairs (3, 3k + 1),
(2, 1) with ν1 = 5k + 1. Here ext ν1 = σ = 5k + 5.

(f) The only singular point is at t1 = 0, with two characteristic pairs (2, 2k + 1),
(3, 1) and with ν1 = 5k + 2. Here ext ν1 = σ = 5k + 6.

(g) There are two (possible) singular points: at t = 0 (with one characteristic pair
(α, γ )) and at t = 1 (with two characteristic pairs (β, δ), (k, 1)). Here ext ν0 =

α+ kβ + γ + kδ− 4 − [γ /α] − [δ/β] ≤ σ .

(h) There are two singular points at t = 0 and t = 1, both with two characteristic
pairs (α, γ ), (2, 1) and (β, δ) and (2, 1) respectively. Also at infinity there are two
characteristic pairs (α+ β, γ + δ), (2,−1) but ν∞ = 0. Here ext ν0 = 2α+ 2β +

2γ + 2δ− 4 − [γ /α] − [δ/β] ≤ σ .

(i) There are two (possible) singular points at t = 0 and at t = 1, both with one
characteristic pair. At infinity there are two characteristic pairs (α, γ ), (k,−1)
but ν∞ = 0. Here ext ν0 = kβ + kδ − 4 − [γ /α] − [(kδ − γ )/(kβ − α)] ≤ σ =

kβ + kδ− 4 − [δ/β].

(j) Besides the self-intersection of a smooth and a singular (A2k) branches at x =

y = 0 with ext ν0 = 2k (n0 = 3, u = k − 1, ν(A,B) = k, ν(A) = ν(B) = 0) there is a
cusp A2 at t1 =

2
3 . Here ext ν0 + ext ν1 = σ = 2k + 1.

(k) Besides the self-intersection of a smooth and a singular ((t3, t3k+1)) branches
at x = y = 0 with ext ν0 = 3k +1 (n0 = 4, u = k −1, ν(A,B) = ν(B) = 0, ν(A) = 2k)
there is a cusp A2 at t1 =

3
4 . Here ext ν0 + ext ν1 = σ = 3k + 2.

(l) The only singular point is x = y = 0 with ext ν0 = σ = 4kl +6k −l −3 (n0 = 4k,
u = (2l + 1)k, ν(A,B) = 2kl + k − l − 1, ν(A) = ν(B) = 0).

(m) The only singular points is x = y = 0 with ext ν0 = σ = 4kl + 6k + l − 2
(n0 = 4k + 2, u = l, ν(A,B) = 0, ν(A) = ν(B) = 2kl + k − 1).
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(n) The only singular point is x = y = 0 with ext ν0 = σ = 4kl +6k+l (n0 = 4k+2,
u = 2l + 1, ν(A,B) = l, ν(A) = (2l + 1)(k − 1), ν(B) = (2l + 1)k).

(o) The only singular point is x = y = 0 with ext ν0 = 4kl+6k+3l+1 (n0 = 4k+4,
u = l, ν(A,B) = 0, ν(A) = 2kl + k − 1, ν(B) = 2(k + 1)l + k). At infinity there
are three characteristic pairs (2, 2l + 1), (k + 1,−1), (2,−1) and ν∞ = 1. Here
ext ν0 + ext ν∞ = σ .

(p) The only singular points is x = y = 0 with ext ν0 = σ = 4k + 5 (n0 = 6,
u = 3k + 1, ν(A,B) = 2k, ν(A) = ν(B) = 0). At infinity there are two characteristic
pairs (2, 2k + 1), (3,−1) but ν∞ = 0.

(q) The curve is a section of the swallowtail with two simple cusps A2 away from
the transversal self-intersection. Here ext ν1 + ext ν2 = σ = 2.

(r) The curve is nonsingular, but there is a tangency of third order A7 at the self-
intersection. Here ext ν0 = σ = 3.

(s) There is a cusp A4 and a tangency A3 at the self-intersection. Here ext ν0 +

ext ν1 = σ = 3.

(t) There is an ordinary cusp A2 and a cusp A4 away from the transversal self-
intersection. Here ext ν1 + ext ν2 = σ = 3.

(u) There is a cusp A6 away from the transversal self-intersection. Here ext ν1 =

σ = 3.

We see that there are at most three finite singular points, the self-intersection
included. We have also checked that each of these curves is rectifiable by means of
a birational automorphism of CP2.

All the cases above are discrete; the formulas do not contain moduli (parame-
ters). This means that these curves represent isolated points in the space PCurv =(
(Curv/C) \ 0

)
/C∗. On the other hand, the contractible curve corresponds to the

point 0 ∈ Curv/C.
The remaining part of this section is devoted to the proof of Theorem 4.1. This

proof relies on reductions to some special cases, which are treated separately. We
begin with the special cases.

Lemma 4.2. If ϕ = t p or if ψ = tq , we have one of the cases (a)–(f) of Theorem
4.1.

Proof. We shall assume ϕ = t p.

Case p = 2. We can assumeψ= tψ̃(t2). The conditions ξ(t ′)= ξ(t) for the double
point read as t ′

= −t , tψ̃(t2) = 0. The latter equation can have only two nonzero
solutions t0,−t0. Assuming t0 = 1 we get the case (a).
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Case p = 3. The preimages t0, t ′

0 of the double point satisfy t ′

0 =ζ t0, ζ =e2π i/3; (by
rescaling t we can assume that t0 =−ζ and t ′

0 = t̄0). The equation ψ(ζ t)−ψ(t)= 0
can have t = t0 and t = 0 as the solutions. Therefore

ψ(ζ t)−ψ(t)= (ζ q
− 1)(t − t0)αtβ .

If α > 1, then ψ(ζ t)− ψ(t) would be a polynomial with at least three nonzero
consecutive monomials. But ψ ◦ ζ −ψ does not contain the terms t3l . It follows
that ψ contains only tq and tq−1 with q(q − 1) 6= 0 (mod 3); i.e. the case (b) of
Theorem 4.1. (Here ψ(ζ t)−ψ(t)= (ζ−1

−1)t3k+2
− (ζ −1)t3k+1 and t0 = −ζ , as

we supposed. Also the equation ψ(ζ−1t)−ψ(t) = 0 has the unique nonzero root
t = −ζ−1.)

Case p = 4. The polynomial ψ must contain at least one odd power of t (by the
nonprimitivity). For the preimages t0, t ′

0, t0 6= t ′

0 of the double point we have two
excluding one another possibilities: t ′

0 = i t0, or t ′

0 = −t0. In the second case the
polynomial ψ(−t)−ψ(t) is as in the case p = 2, with at least two terms; but then
ψ(i t)−ψ(t) would contain at least two terms too. The same argument shows also
that there is at most one odd power of t inψ . Consider the polynomialψ(i t)−ψ(t).
It contains as many monomials as ψ.Moreover, it is of the form (iq

−1)(t − t0)αtβ

where α = 1 or α = 2 (because there are no terms t4l). If q = 4k + 2, there can be
only two terms t4k+2 and t4k+1 (the case (c) of Theorem 4.1). The case q = 4k + 1
does not occur, because the term t4k is absent. If q = 4k +3 and α= 2, there would
be two odd powers. So q = 4k+3 and α= 1, i.e. the case (d) of Theorem 4.1. Note
that the case (d) with k = 0 corresponds to x = t3

− t2, y = t4 (when we require
p < q).

Case p = 6. Here we have three possibilities: t ′

0 = eiπ/3t0, t ′

0 = e2π i/3t0, or t ′

0 =

−t0. As in the case p = 4 we show that the equations ψ(e2iπ/3t)−ψ(t) = 0 and
ψ(−t) − ψ(t) = 0 (related to the last two of these possibilities) have only one
solution t = 0. It follows that ψ contains exactly one term of the type t2l+1 and
exactly one term of the type t3m±1. Thusψ(eiπ/3t)−ψ(t) has only two consecutive
terms, with powers divisible by 2 and by 3 respectively. These are the cases (e) and
(f) of Theorem 4.1. Note that case (f) with k = 0 corresponds to x = t4

− t3, y = t6

(when we keep p < q).

Cases p = 5 and p > 6. There are at least four primitive roots of unity of order p,
say ζ1, ζ

−1
1 , ζ2, ζ

−1
2 . Repeating the preceding analysis, we find that the equations

ψ(ζ1t)−ψ(t)= 0 and ψ(ζ2t)−ψ(t) have nonzero solutions corresponding to two
different double points. �

Lemma 4.3. If ϕ = tα(t −1)β , ψ = tγ (t −1)δ, αβγ δ 6= 0, then we have one of the
cases (g)–(i) (modulo the changes t → 1 − t , x → const · y).
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Proof. The equations for a double point different from (0, 0) are( t ′

t

)α( t ′
−1

t−1

)β
= 1,

( t ′

t

)γ( t ′
−1

t−1

)δ
= 1.

We assume that this system does not admit solutions such that t t ′(t −1)(t ′
−1) 6= 0.

Let α=α1α
′, β=β1β

′, γ =γ1α
′, δ=δ1β

′ where α′
=gcd(α, γ ) and β ′

=gcd(β, δ).
We arrive at the equations( t ′

t

)α′κ

= 1,
( t ′

−1
t−1

)β ′κ

= 1, κ := α1δ1 −β1γ1.

If κ = 0, the parametrization is nonprimitive. We assume then that κ > 0.
We find that

t ′

t
= ζ := e2π i j/α′κ ,

t ′
− 1

t − 1
= η = e2π ik/β ′κ ,

where j ∈ Z/α′κZ and k ∈ Z/β ′κZ satisfy

(4-1) α1 j +β1k = 0 (mod κ);

(the other equation γ1 j + δ1k = 0 (mod κ) follows automatically).
There are no additional double points if and only if we have only one of the

three possibilities: 1. ζ = 1, or 2. η = 1, or 3. ζ = η.
The case 1 occurs when α′κ = 1 and the case 2 occurs when β ′κ = 1. We find

case (g) of Theorem 4.1.
If α′κ = β ′κ = 2, then one of the cases 1–3 necessarily occurs; if ζ 6= 1, η 6= 1,

then ζ = η = −1. Here we have either case (h) or case (i) with κ = 2.
If α′

≥ 2, β ′
≥ 3 (or α′

≥ 3, β ′
≥ 2), then one can find an additional double

point. Indeed, there exists a solution ( j, k) to the equation (4-1) such that j 6= 0
and k 6= 0. If this solution is such that ζ = η, we can replace η by ηe2π im/β ′

6= 1, ζ
for some m ∈ Z/β ′Z; (then k → k + mκ).

If κ > 1 and α′
= 1, β ′

≥ 2 (or α′
≥ 2, β ′

= 1), then also there is a new
double point. Indeed, if β1 6= 0 (mod κ), we can (if necessary) replace η = ζ

by ηe2π im/β ′κ
6= 1, ζ (see (4-1)). Otherwise we get α1 6= 0 (mod κ) (because

gcd(α1, γ1) = 1 and κ = α1δ1 − β1γ1), j 6= 0 (mod κ) and k 6= 0 (mod κ). So we
have freedom in replacing η by ηe2πm/β ′

6= 1, ζ .
Let α′

= β ′
= 1 and κ > 1. Then Equation (4-1) admits only solutions j = k

(mod κ) (for j, k 6= 0 (mod κ)); that is, the equation α j + βk = 0 (mod κ) should
take the form α( j − k) = 0 (mod κ) with α relatively prime to κ . We can rewrite
this case as follows: β = mκ−α, δ= nκ−γ , where αn −γm = 1 and gcd(α, κ)=
gcd(γ, κ) = 1, κ > 1. So we get case (i) of Theorem 4.1 with κ = k, m = β and
n = δ.

Since there are no other possibilities, the lemma is complete. �
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(Note that, when κ = 1, the invertible rational change (x, y)→ (x1, y1) gives the
curve x1 = tα

′

, y1 = (t − 1)β
′

with the number of double points given by 2δmax =

(α′
− 1)(β ′

− 1)− (gcd(α′, β ′)− 1). One can check that 2δmax = 0 if and only if
either α′

= 1, or β ′
= 1, which is case (g), or α′

= β ′
= 2, which is case (h).)

Lemma 4.4. In cases (j) and (k) of Theorem 4.1 the curve has only one self-
intersection point x = y = 0 (where a smooth and singular local curves meet) and
a simple cusp A2.

Proof. Consider case (j). The change x1 = x , y1 = y/xk
= t (t −

4
3) gives a curve

without self-intersection corresponding to t = 0 and t = 1. But ẋ1 = 3t2
− 2t and

ẏ1 = 2t −
4
3 vanish at t1 =

2
3 (the cusp point). This means that the curve (x1, y2)(C)

is contractible.
In case (k) the curve x1 = x(t), y1 = y/xk

= t (t −
3
2) also has simple cusp at

t1 =
3
4 and no other singularities. �

Lemma 4.5. Suppose a curve ϕ = (tα
′

(t − 1)β
′

)α1 = tα(t − 1)β , ψ = (tα
′

(t −

1)β
′

)γ1(t −b)= tγ (t −1)δ(t −b), where b 6= 0, 1, gcd(α1, γ1)= 1 and γ1 <α1, has
only one self-intersection point. Then we have one of the following possibilities:

• α1 = 2, γ1 = 1, b =
1
2 and α′

= β ′;

• α1 = 2γ1 + 1, b =
1
2 and α′

= β ′
= 1;

• α1 = 2, γ1 = 1, b =
1
2 and |α′

−β ′
| = 1;

• α1 = 3, γ1 = 1, b =
1
2 +

1
6

√
−3 and α′

= β ′
= 1.

This gives the cases (l), (m), (n) and (p) of Theorem 4.1.

Proof. The condition for a double point implies that

(4-2) (t ′)α
′

(t ′
− 1)β

′

= ηtα
′

(t − 1)β
′

, t ′
− b = ζ(t − b), ζ = η−γ1

for some roots ζ, η of unity of order α1 (if gcd(α′, β ′) > 1, then (4-2) can be
replaced by several analogous systems). We can assume that ζ 6= 1. This system
can have only (t, t ′) = (b, b), (0, 1) and (1, 0) as solutions, but it can have no
solutions.

If (b, b) is a solution, then η = 1 (we reject this possibility). If (0, 1) (respec-
tively (1, 0)) is a solution, then b = 1/(1 − ζ ) (respectively b = ζ/(ζ − 1)). If the
both are solutions, then ζ = −1 and b =

1
2 .

Suppose that (4-2) does not have solutions. We use the variables τ = t − b,
τ ′

= t ′
−b and the transformation σ(τ)= ζ τ . Then (4-2) takes the form φ◦σ(τ)=

ηφ(τ), where
φ(τ)= (τ + b)α

′

(τ − 1 + b)β
′

.

This equation does not have solutions if and only if φ ◦σ ≡ ηφ+d , d = const 6= 0.
Differentiating it we find that φ′

◦σ ≡ λφ′, λ= η/ζ , i.e. φ′ is a semiinvariant with



COMPLEX ALGEBRAIC CURVES AND THE POINCARÉ–HOPF FORMULA, I 331

the weight λ. It follows that φ′(τ )= τ εχ(tθ ) and φ(τ)= τ ε+1χ̃(τ θ )+ e, where θ
is the order of the root ζ , ε is an integer, χ, χ̃ are some polynomials and e 6= 0. It
is easy to see that it should be α′

= β ′
= 1 and b =

1
2 . Therefore the case b =

1
2

must be treated separately.
Assume that b =

1
2 and α′

= β ′. Then we get the curve

(ϕ, ψ2)= (zα, z2γ+1
+

1
4 z2γ ),

for z = t (t − 1). If α = 2γ + 1 or α = 2γ , then the latter curve does not have
self-intersections (since we have assumed γ < α, the possibilities that 2γ + 1 or
2γ are multiples of α are excluded). Otherwise, we have the equations (ζ τ )2 −
1
4 = η′(τ 2

−
1
4), η

′ being a root of 1 of order α such that ζ = (η′)−γ . There
are two self-intersection points (τ, τ ′) = (±τ0,±ζ τ0), with τ 2

0 6= 0, 1
4 given by(

(η′)2γ+1
− 1

)
τ 2

0 =
1
4(η

′)2γ (η′
− 1).

If b =
1
2 and α′ <β ′ (the case β ′ <α′ is reduced to the previous one), then (4-2)

must have a solution (for any η). So any ζ = −1 (i.e. α1 = 2, γ1 = 1) and we get
the equation

tα
′

(t − 1)α
′(
(−1)α

′
+β ′

tβ
′
−α′

− η(t − 1)β
′
−α′)

= 0

We see that it should be β ′
−α′

= 1.
Let b 6=

1
2 . We can assume that (0, 1) is the only solution to (4-2) (there is at

least one). Then t ′
= ζ t + 1, t ′

− 1 = ζ t . It should be α′
= β ′

= 1 and we get the
equation

(ζ 2
− η)t + ζ + η = 0.

Thus either η= ζ 2, or η=−ζ (here 1 =ηα1 = (−1)α1). If (1, 0) is the only solution
to (4-2), we also get the same possibilities.

If α1 is odd, we have only the case η = ζ 2, and so η2γ1+1
= 1, since ζ = η−γ1 .

Since for any ζ either b = 1/(1 − ζ ) or b = ζ/(ζ − 1), it should be α1 = 3, γ1 = 1.
Putting ζ = e2π i/3 we get b =

1
2 +

1
6

√
−3.

If α1 even, an analogous argument shows that α1 = 2 and b =
1
2 , a contradiction.

�

Lemma 4.6. The curves from the item (o) of Theorem 4.1 have only one self-
intersection point.

Proof. Let y1 = y/x l
= tk−1(t − 1)k(t −

1
2). Then x/y2

1 = t (t − 1)/(t −
1
2)

−2. We

get t ′
= 1 − t when ξ(t ′)= ξ(t). Finally, x(t ′)/x(t)=

(
(t − 1)/t

)2
= 1 if and only

if t = t ′
=

1
2 .

Note that the curve (o) for l = 0 is obtained from the curve (n) for l = 0 by
applying the transformation x1 = y2

−
1
4 x (and vice versa). Similarly, the curve

(m) for l = 0 is obtained from the curve (l) for l = 0 via the same transformation
(and vice versa). �
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Lemma 4.7. If p = 3, q = 4 and ϕ 6= t p, we have one of the cases (q), (d) with
k = 0, (l) with k = 1, l = 0, or (g) with k = 0. These cases correspond to four
possible degenerations of the δmax − 1 = 2 double points (of curves from Curv3,4):
two cusps A1+2A2, or a cusp of order four A1+A4, or a tangency of order two
A5, or a cusp at the self-intersection point D5.

Proof. We first transform the double point condition. We can assume that

ϕ = t3
− 3t, ψ = t4

− 2at2
− 4bt;

note that the change t → −t, x → −x allows one to make the change b → −b. We
put t + t ′

= u, t t ′
= v and get (u2

−v)−3 = 0, (u3
−2uv)−2au −4b = 0, that is,

(4-3) f (u) := u3
+ (2a − 6)u + 4b = 0.

If there is a cusp, which can occur at t = 1 or at t = −1 (since ϕ′
= 3(t2

−1)), then
t ′

= t = 1 (or t ′
= t = −1 respectively) represents a “degenerate” double point.

In this case u = 2 (respectively u = −2) is a solution to (4-3). If u = −1 is a
solution to (4-3), we have t = 1, t ′

= −2; if, additionally, u = 2 is another solution
to (4-3), then the cusp lies at the self-intersection point; this may cause that the
“order of tangency” grows. All other solutions correspond to intersection points of
local smooth branches.

Suppose we have two cusps. Then f should take the form f = (u−u0)(u2
−4)=

u3
− u0u2

− 4u + 4u0. Therefore u0 = 0, a = 1 and b = 0, which is case (q) of
Theorem 4.1.

Suppose we have the cusp of multiplicity four A4. Then f = (u −u0)(u −2)2 =

u3
−(4+u0)u2

+(4+4u0)u −4u0, and hence u0 = −4 and y = t4
+6t2

−16t . But
further calculations show that y−4x+1= (t−1)4 and x+2= (t−1)3+3(t−1)2 —
that is, case (d) with k = 0.

Suppose two local components have a tangency of order two. Then f = (u −

u0)
3. One finds u0 = 0 (which is different from ±2), b = 0 and a = 3, x = (t2

−3)t ,
y+9 = (t2

−3)2. After the change t → (t +
√

3)/2
√

3 one gets case (l) of Theorem
4.1 with k = 1, l = 0.

Suppose the tangency occurs and that there is a cusp, which we may assume to
occur for t = t ′

= 1. Then we have f = (u − u0)
2(u − 2) = u3

− (2 + 2u0)u2
+

(u2
0 + 4u0)u − 2u2

0. Thus u0 = −1, a =
3
2 and b = −

1
2 . Here y = t4

− 3t2
+ 2t

and one checks that x + 2 = (t − 1)2(t + 2) and y + 2x + 4 = (t − 1)2(t + 2)2 — a
subcase of (g). �

Lemma 4.8. If p = 3, q = 5 and ϕ 6= t p, we have cases (r)–(u), (g) or (j).

Proof. We have ϕ = t3
− 3t , ψ = t5

− at4
− bt2

− ct , with possible symmetry
a → −a, b → −b (induced by t → −t , x → −x , y → −y). The analogue of
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equation (4-3) is f (u)= u4
−au3

−3u2
+(b+6a)u +(c−9)= 0. Further analysis

goes as in the proof of Lemma 4.7. �

Now we turn to the bounds. This is the most complicated (and boring) part of
the proof of Theorem 4.1. So we do not provide all the details and we present only
main steps of the estimates.

Assume that ξ ∈Curvp,q (where p<q and q/p /∈Z) is such that ξ(t (A)0 )=ξ(t (B)0 )

(where t (A)0 6= t (B)0 ) is an intersection of local branches A and B of the curve and
that there are singular points t j , j = 1, . . . N . Each of these singular points is
characterized by the number δt j = δξ(t j )(C) of its double points, i.e. the number
of double points vanishing at ξ(t j ) (or the δ-invariants). Moreover, δ∞ = δ∞(C)
double points has escaped to infinity. We have

(4-4) δ∞ +

∑
δt j = δmax.

The irreducible singularities are known; they have their external codimensions
ext ν j = n j + ν j − 2 and the bounds 2δt j ≤ n jν j , j = 1, . . . , N . The degeneration
at infinity has the external codimension ext ν∞ = ν∞ and the bound 2δ∞ ≤ n∞ν∞,
where n∞ = 0 if p′

= gcd(p, q)= 1 and = p′ otherwise.
Near the self-intersection we have the expansions

x = x0 + (t − t (A)0 )n
(A)
0 (a(A)0 + · · · ), y = y0 + b(A)1 (t − t (A)0 )+ · · · ,

x = x0 + (t − t (B)0 )n
(B)
0 (a(B)0 + · · · ), y = y0 + b(B)1 (t − t (B)0 )+ · · · ,

with n(A)0 , n(B)0 ≥ 1. The external codimension equals ext ν0 = n(A)0 +n(B)0 −2+ν0,
where ν0 =ν(A+B) is defined in Lemma 2.14. We have the bound 2δ0 ≤n0(ν0+1),
where n0 = n(A)0 + n(B)0 (see Proposition 2.16).

Assuming Conjecture 3.7 we have the bound

N∑
j=0

extν j + ext ν∞ ≤ σ = p + q − 4 − [q/p].

By the lemmas above we can assume that

(4-5)



2 ≤ n0 ≤ p;

2 ≤ n j ≤ p − 1, ν j ≥ 1 for j ≥ 1;∑N
0 n j ≤ p + N + 1;

p ≥ 3;

[q/p] ≥ 2 if p = 3.
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The extremum problem. Define

4 := n0(1 + ν0)+

N∑
1

niνi + n∞ν∞,

where we assume the condition

N∑
0

(ni + νi − 2)+ ν∞ ≤ σ

and also the restrictions (4-5) are imposed. The following lemma is rather easy.

Lemma 4.9. (a) Suppose n∞ = p′
≥ ni , for i = 0, . . . , N. Then 4 is maximal

when N = 0, n0 = 2, ν0 = 0 and ν∞ = σ is maximal; thus

4= 2 + p′σ, p′ > 2.

(b) If n := max{n0, . . . , nN } > n∞ and at least two of the ni ’s are equal n, then
4 is maximal when ν∞ = 0, N = 1, n0 = n1 = n and ν0 +ν1 is maximal; here

4= n(σ + 5 − 2n), n ≤ min{p − 1, (p + 3)/2}

(see (4-5)).

(c) If n := max{n0, . . . , nN }> n∞, then 4 is maximal when ν∞ = 0, only one of
the ni ’s equals n (if n > 2) with νi maximal, and all other n j = 2 with ν j = 1.
Moreover,

4= n(σ + 2 − n − N )+ 2N

when n0 6= n.

Estimates for 1 := 2δmax − 4. We focus attention on some exemplary calcula-
tions.

Recall that 2δmax = (p − 1)(q − 1) − (p′
− 1) = pq − p − q − p′

+ 2 and
σ = p + q − 4 − [q/p] ≤ p + q − 5.

In case (a) of Lemma 4.9 we have

1≥ (p′)2(p1q1−p1−q1)−p′(p1+q1−4)> p′ [2(p1 − 3/2)(q1 − 3/2)− 1/2]>0.

In case (b) the quadratic function 4 = 4(n) takes its maximal value at n∗ :=
1
4(σ + 5) and 4|n=n∗

=
1
8(σ + 5)≤

1
8(p + q). Therefore

1≥
(

p −
9
8

) (
q −

17
8

)
+

(
p − p′

−
25
64

)
> 0.

In case (c) of Lemma 4.9 similar (but more involved) calculations lead to the
following result:
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Lemma 4.10. To complete the proof of Theorem 4.1 it is enough to consider curves
of the form

ϕ(t)= tα(1 − t)β P(t), ψ(t)= tγ (1 − t)δQ(t);

that is, (3-4) with deg P =0, 1, deg P+deg Q>0, with at most two singular points:
self-intersection (0, 0) and a simple cusp ξ(t1) (n1 = 2, ν1 = 1), with ν∞ = 0, 1,
ν1 + ν∞ ≤ 1 and satisfying (4-5). Moreover, when deg P = 1 one can assume
[q/p] = 1 and only one singular point (0, 0).

Recall the notations introduced in (3-5) and (3-6). The external codimensions
ext ν0, ext ν1 (for t1) and ext ν∞ are defined as in Section 3. We recall from Lemma
3.9 the bound

(4-6) ext ν0 +ext ν1 +ext ν∞ ≤ deg P +deg Q + [γ−1/(α)]+ [(δ−1)/β]− [q/p] .

The case κ = 0. We have

ϕ = [tα
′

(1 − t)β
′

]
α1 P(t), ψ =

(
tα

′

(1 − t)β
′)γ1 Q(t)

and we estimate the quantity 4= 2δ0 + 2δt1 + 2δ∞.
By Proposition 2.17, twice the number of double points at (0, 0) is estimated by

(4-7) 2δ0 ≤ (α+β − 1)(γ + δ− 1)+ (α′
+β ′

− 1)+ (α′
+β ′)(1 + ext ν0).

If the system of equations defining a corresponding stratum in Curv consists only
of equations for vanishing of Puiseux quantities (not self-intersection quantities),
that is, if ext u = ext ν(A,B) = 0, we have
(4-8)
2δ0 ≤ (α+β−1)(γ +δ−1)+(α′

+β ′
−1)−α′β ′

|κ|+α′
·ext ν(A)+β ′

·ext ν(B),

following from Proposition 2.18.

Case deg P = 1. The subcase γ1<α1, after calculations, leads to1=2δmax−4>0
(a contradiction). When γ1 = α1 a change y → y + const · x leads to another case:
either κ 6= 0 or κ = 0 and γ1/α1 > 1.

If γ1/α1 > 1 and deg Q = 0, we use Lemma 4.5. If γ1/α1 > 1 and deg Q ≥ 1
then one proves that 1> 0; here the point (c) of Lemma 3.9 is essentially used.

Case deg P = 0. If γ1 < α1, then one shows that 1> 0. The subcase γ1/α1 = 1 is
destroyed by the change y → y + const · x .

When γ1/α1 > 1 we can make the change y → y1 = y/x [γ1/α1] which leads us
to another cases (with lower degrees). These are the cases (l) and (m) and (p) of
Theorem 4.1.

Note however that it may happen (and happens) that deg y1 divides deg x . Then
one must apply additional elementary transformation x → x1 = x + R(y1); (maybe
several elementary transformations should be applied). Anyway, this should lead
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to one of the cases from Theorem 4.1 (see also analogous conclusion in the end of
the next point). Analysis of the list in Theorem 4.1 shows the only possible such
changes are the following: (l) for l = 1 → (m) for l = 0, (m) for l = 0 → (l) for
l = 0, (n) for l = 0 → (o) for l = 0 (see also the proof of Lemma 4.6).

The case |κ| > 0. Here the intersection index of two local components A and B
at (0, 0) is fixed and equal min(αδ, βγ ) =

1
2(αδ + βγ − α′β ′

|κ|). The two local
branches, at t = 0 and at t = 1, are characterized by their external codimensions
ext ν(A) and ext ν(B) in the spaces of germs of curves with fixed leading terms.
The singularity at t1 has external codimension ν1 = 0, 1.

By (4-6) we have the general estimate ext ν(A)+ext ν(B)+ν1 +ν∞ ≤ deg P +

deg Q + [(γ − 1)/α] + [(δ− 1)/β] − [q/p]. The numbers of double points at
x = y = 0 (i.e. δ0) and at t1 6= 0, 1 (i.e. δt1) and at ∞ (i.e. δ∞) are estimated in
(4-8), by 2δt1 ≤ 2ν1 and by 2δ∞ ≤ p′ν∞ respectively.

If α′
= β ′

= 1, then estimates leave only three possibilities the inequality 1 ≤ 0.
These are the cases (j), (k) and (o) of Theorem 4.1.

If max(α′, β ′)≥ 2 and deg P = 1, then one shows that always 1 > 0. Here the
point (b) of Lemma 3.9 is essentially used.

If max(α′, β ′)≥ 2 and deg P = 0, the estimates lead either to the cases considered
in Lemma 4.3, or to the case (o) of Theorem 4.1, or to the following situation.

We have α1 < γ1 and β1 < δ1 and the change (x, y)→ (x, y/x)= (x, y1) leads
to a curve of analogous form, but with lower degrees (possibly after interchanging
x and y). We use induction and obtain cases (j), (k) and (o) of Theorem 4.1.

As in the case with κ = 0 and deg P = 0 (see page 335) it can (and does) happen
that deg y1 divides deg x . Then an additional change should be done in order to
remove the divisibility of the degrees. Inverse to such change should start from
one of the cases from Theorem 4.1 and should lead to a product of powers of t and
of t −1. It is not difficult to check that the only possible reductions are (o) for l = 0
and (n) for l = 0. No new cases are obtained in this way.

Conclusion. Theorem 4.1 follows from Lemmas 4.2–4.10 and the subsequent case
analysis. �
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