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We deepen the analysis of certain classes Mg,k of hyperbolic 3-manifolds
that were introduced in a previous work by B. Martelli, C. Petronio and the
author. Each element of Mg,k is an oriented complete finite-volume hyper-
bolic 3-manifold with compact connected geodesic boundary of genus g and
k cusps. We prove that several elements in Mg,k admit nonhomeomorphic
hyperbolic Dehn fillings sharing the same volume, homology, cusp volume,
cusp shape, Heegaard genus, complex length of the shortest geodesic, length
of the shortest return path, and Turaev–Viro invariants.

Let N be a complete finite-volume hyperbolic 3-manifold with (possibly
empty) geodesic boundary and cusps C1, . . . , Ch, Ch+1, . . . , Ck. Accord-
ing to Neumann and Reid, the cusps C1, . . . , Ch are said to be geometri-
cally isolated from Ch+1, . . . , Ck if any small deformation of the hyperbolic
structure on N induced by Dehn filling Ch+1, . . . , Ck does not affect the
Euclidean structure at C1, . . . , Ch. We show here that the cusps of any
manifold in Mg,k are geometrically isolated from each other. On the con-
trary, any element in Mg,k admits an infinite family of hyperbolic Dehn
fillings inducing nontrivial deformations of the hyperbolic structure on the
geodesic boundary.

Let N be an oriented complete finite-volume hyperbolic 3-manifold with com-
pact geodesic boundary. Mostow–Prasad’s rigidity Theorem implies that the space
(of homotopy classes) of complete finite-volume structures supported by N reduces
to a single point, so nontrivial deformations of the complete structure can give rise
only to incomplete metrics. It is a well-known fact that such deformations are
closely related to the geometry of manifolds which can be obtained from N via
Dehn filling, as we are now going to explain.

A slope on a torus is an isotopy class of simple unoriented closed curves. Let
X be an oriented 3-manifold with boundary tori T1, . . . , Tk and let V1, . . . , Vh be
solid tori, h 6 k. Let si be a slope on Ti for i = 1, . . . , h and choose an attaching
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homeomorphism ϕi : ∂Vi → Ti taking a meridian of Vi onto a loop representing
si . Set 8 = (ϕ1, . . . , ϕh) and X (s1, . . . , sh) = X ∪8 (V1 ∪ · · · ∪ Vh). We say
that X (s1, . . . , sh) is obtained by Dehn filling X along the si . It is easily seen
that X (s1, . . . , sh) is a 3-manifold whose homeomorphism type depends solely on
the si .

A complete finite-volume hyperbolic N admits a natural compactification ob-
tained by adding some boundary tori (with an abuse, we shall often denote also such
compactification by the same symbol N ). Thus, it does make sense to consider the
Dehn fillings of N . A crucial fact is that the metric completions of many small
deformations of the complete metric of N actually define complete hyperbolic
structures on manifolds obtained by Dehn filling N . This phenomenon is at the
heart of the proof of Thurston’s hyperbolic Dehn filling Theorem [1979], which
states that “almost all” the Dehn fillings of a cusped 3-manifold support a complete
finite-volume hyperbolic metric.

1. Preliminaries and statements

All the manifolds considered in this paper will be connected and oriented. Let 1
denote the standard tetrahedron, and let 1̇ be 1 with its vertices removed. An
ideal triangulation of a compact 3-manifold with boundary M is a realization of
the interior of M as a gluing of a finite number of copies of 1̇, induced by a
simplicial face-pairing of the corresponding 1’s. Let 6g be the closed orientable
surface of genus g. It is proved in [Frigerio et al. 2003] that an ideal triangulation
of a manifold whose boundary is the union of 6g and k tori contains at least g + k
tetrahedra. This motivates the following definition of Mg,k , for all g > k > 1:

Mg,k =
{
compact oriented manifolds M having an ideal triangulation

with g + k tetrahedra, and ∂M =6g t

( k⊔
i=1

Ti

)
with Ti ∼=61

}
.

We also proved there that any element in Mg,k admits a complete finite-volume
hyperbolic structure with geodesic boundary.

We recall that the valence of an edge in a triangulation is the number of tetra-
hedra incident to it (with multiplicity). The following result shows that manifolds
in Mg,k admit combinatorial decompositions with very particular features. As a
consequence, we will see in Theorem 2.3 that the geometry supported by such
manifolds is very “symmetric”.

Proposition 1.1 [Frigerio et al. 2003]. Let M ∈ Mg,k and suppose that T is an
ideal triangulation of M with g + k tetrahedra.

• For any i = 1, . . . , k there are exactly two tetrahedra of T with 3 vertices on
6g and one on Ti ; the remaining g − k tetrahedra have all 4 vertices on 6g;
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• T has k + 1 edges e0, . . . , ek such that e0 has both its endpoints on 6g and
valence 6g, while ei connects 6g to Ti and has valence 6 for i = 1, . . . , k.

However, it turns out that elements in Mg,k , even if far from being generic, are
in a big number. It is proved in [Frigerio et al. 2003] that Mg,k is nonempty for
all g > k > 1, and that for any fixed k there exist constants C > c > 0 such that
nc·n < #Mg,k < nC ·n for n � 0.

Isolation of cusps. Recall that if N is a complete finite-volume hyperbolic 3-
manifold, then every boundary torus of N is naturally endowed with a Euclidean
structure, defined up to similarity. Neumann and Reid [1993] introduced the notion
of geometric isolation for cusps in a hyperbolic manifold:

Definition 1.2. Let N be a complete finite-volume hyperbolic 3-manifold with
(possibly empty) geodesic boundary and cusps C1, . . . ,Ch,Ch+1, . . . ,Ck . We say
that C1, . . . ,Ch are geometrically isolated from Ch+1, . . . ,Ck if any small defor-
mation of the hyperbolic structure on N induced by Dehn filling Ch+1, . . . ,Ck

while keeping C1, . . . ,Ch complete does not affect the Euclidean structure at
C1, . . . ,Ch .

Calegari [2001] described different strategies for constructing manifolds with
isolated cusps, also providing explanations for all the previously known examples
of isolation phenomena. In Section 3 we show that the cusps of any manifold
M ∈ Mg,k are geometrically isolated from each other:

Theorem 1.3. Let M ∈ Mg,k with cusps C1, . . . ,Ck and let h 6 k. Then C1, . . . ,Ch

are geometrically isolated from Ch+1, . . . ,Ck .

Apparently, isolation of cusps in our examples arises for different reasons from
those described in [Calegari 2001].

Nonisolation of the boundary. On page 351 we sketch a proof of this result:

Theorem 1.4. Let M ∈ Mg,k . Then there exists an infinite set {Ni }i∈N of complete
finite-volume hyperbolic 3-manifolds with the property that each Ni is obtained by
Dehn filling M and the hyperbolic surfaces ∂M, ∂N1, . . . , ∂Ni , . . . are pairwise
nonisometric.

Examples of isolation of the geodesic boundary from cusps of hyperbolic 3-
manifolds were provided in [Neumann and Reid 1993; Fujii 1993]. Nonisolation
phenomena were described in [Fujii 1992; Fujii and Kojima 1997; Kent 2005].

Similar fillings. Let N be an oriented complete hyperbolic 3-manifold and take
a closed geodesic ` ⊂ N . There exists a well-defined complex length LC(`) ∈

C/2π iZ, which can be described as follows. The real part of LC(`) is simply the
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usual length of `. Let x0 be a point on `, let v ∈ Tx0(N ) be a tangent vector at
x0 which is perpendicular to `, and fix an auxiliary orientation on `. Let v′ be the
vector obtained by parallel transporting v from x0 back to x0 along `. Together with
the orientation of `, the orientation of N at x0 determines a well-defined signed
angle between v and v′. Such an angle is independent from the choice of x0, v,
and the auxiliary orientation of `, and gives the imaginary part of LC(`).

If N is complete finite-volume with compact geodesic boundary and k cusps,
the cusp shape of N is the set of Euclidean structures (up to scale factors) induced
on the boundary tori of N . A regular horocusp neighbourhood for N is a set
O1t· · ·tOk ⊂ N , where Oi is an open embedded horospherical neighbourhood of
the i-th cusp of N , Oi∩O j =∅ for i 6= j and vol(Oi )=vol(O j ) for i, j ∈{1, . . . , k}.
The cusp volume of N is the volume of a maximal regular horocusp neighbourhood
for N (where this volume is intended to be 0 if N is compact). A return path in N
is a geodesic segment in N intersecting ∂N perpendicularly in its endpoints. Since
the boundary of N is compact, it is easily seen that there exists a (not necessarily
unique) shortest return path in N .

If N is a compact 3-manifold with ∂N =∂0 Nt∂1 N , one can define the Heegaard
genus of (N , ∂0 N , ∂1 N ) as the minimal genus of a surface that splits N as C0 t

C1, where Ci is obtained by attaching 1-handles on one side of a collar of ∂i N .
Moreover, for any integer r > 2, after fixing in C a primitive (2r)-th root of unity,
a real-valued invariant TVr (N ) was defined in [Turaev and Viro 1992].

Definition 1.5. Let N , N ′ be complete finite-volume hyperbolic 3-manifolds with
geodesic boundary and the same number of cusps. We say that N and N ′ are
geometrically similar if the following conditions hold:

• N and N ′ share the same volume, the same cusp volume and the same cusp
shape.

• The shortest return paths of N and N ′ have the same length.

• The shortest closed geodesics of N and N ′ have the same complex length.

• H1(N ; Z)∼= H1(N ′
; Z).

• If 6 (resp. 6′) is the geodesic boundary of N (resp. of N ′) and T1, . . . , Tk

(resp. T ′

1, . . . , T ′

k ) are the boundary tori of N (resp. of N ′), then the Heegaard
genus of (N , 6, T1 t · · · t Tk) is equal to that of (N ′, 6′, T ′

1 t · · · t T ′

k).

• N and N ′ have the same Turaev–Viro invariants.

Geometrically similar hyperbolic 3-manifolds were first studied in [Hodgson
et al. 1992], where it was shown that the Whitehead link complement admits an
infinite sequence of pairs of nonhomeomorphic geometrically similar Dehn fillings
(the definition of geometric similarity introduced in that paper is actually a bit
different from ours, and regards cusped manifolds without geodesic boundary).
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We show here that if M ∈ Mg,k is generic (meaning that it does not admit too many
isometries), we can construct different geometrically similar manifolds by filling
M along slopes on any chosen set of cusps of M . This allows us to prove the
following:

Theorem 1.6. For any k > 0 there exist g > k and an element Xk ∈ Mg,k with
boundary tori T1, . . . , Tk having the following property. For each i = 1, . . . , k
there exists a finite set Si of slopes on Ti such that if h 6 k and si /∈ Si is a slope
on Ti , then Xk(s1, . . . , sh) is hyperbolic and at least

k! 3h

h! (k − h)!

pairwise nonhomeomorphic hyperbolic Dehn fillings of Xk are geometrically sim-
ilar to Xk(s1 . . . , sh).

The elements of any pair of geometrically similar manifolds described in [Hodg-
son et al. 1992] are commensurable with each other. On the contrary, the geometri-
cally similar manifolds we obtain are typically noncommensurable with each other.

2. Triangulations and deformation space

In order to construct a hyperbolic structure on our manifold M ∈ Mg,k we realize
the tetrahedra of an ideal triangulation of M as special geometric blocks in H3 and
then we require that the structures match under the gluings.

Geometric tetrahedra. A partially truncated tetrahedron is a pair (1,I), where
1 is a tetrahedron and either I=∅ or I={v}, where v is a vertex of1. In the latter
case we say that v is the ideal vertex of 1. In the sequel we will always refer to 1
itself as a partially truncated tetrahedron, tacitly implying that I is also fixed. The
topological realization1∗ of1 is obtained by removing from1 the ideal vertex, if
I 6= ∅, and small open stars of the nonideal vertices. We call lateral hexagon and
truncation triangle the intersection of 1∗ respectively with a face of 1 and with
the link in 1 of a nonideal vertex. The edges of the truncation triangles, which
also belong to the lateral hexagons, are called boundary edges, and the other edges
of 1∗ are called internal edges. If 1 has an ideal vertex, three lateral hexagons of
1∗ are in fact pentagons with a vertex removed, and they are called exceptional
lateral hexagons.

A geometric realization of 1 is an embedding of 1∗ in H3 such that the trun-
cation triangles are geodesic triangles, the lateral hexagons are geodesic polygons
with ideal vertices corresponding to missing edges, and truncation triangles and lat-
eral hexagons lie at right angles to each other. The next theorem classifies isometry
classes of geometric partially truncated tetrahedra.
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Theorem 2.1 [Fujii 1990; Frigerio and Petronio 2004]. Let 1 be a partially trun-
cated tetrahedron and let 1(1) be the set of edges of 1. The geometric realiza-
tions of 1 are parameterized up to isometry by the dihedral angle assignments
θ : 1(1) → (0, π) such that for each vertex v of 1, if e1, e2, e3 are the edges that
emanate from v, then θ(e1)+ θ(e2)+ θ(e3) is equal to π for ideal v and less than
π for nonideal v.

Hyperbolicity equations. Let M be an element of Mg,k and T be an ideal trian-
gulation of M with g + k tetrahedra. We try to give M a hyperbolic structure
with geodesic boundary by looking for a geometric realization θ of T such that
the structures of the tetrahedra match under the gluings. In order to define a global
hyperbolic structure on M , the tetrahedra of T must satisfy two obvious necessary
conditions, which in fact are also sufficient [Frigerio 2006]. Namely, we should be
able to glue the lateral hexagons by isometries, and we should have a total dihedral
angle of 2π around each edge of the manifold.

By Proposition 1.1, if we suppose M to be hyperbolic and T to be geometric
(i. e. to define a hyperbolic structure on the whole of M), than the edges of the
tetrahedra with all the vertices on 6g should have all the same length. This would
force the realizations of the compact tetrahedra in T to be regular and isometric to
each other.

On each tetrahedron of T we fix the orientation compatible with the global ori-
entation of M . As a result also the lateral hexagons have a fixed orientation, which
is reversed by the gluing maps. We now fix some notation to be used extensively
later on. Let T1, . . . , Tk be the boundary tori of M . We denote by 12i−1,12i the
tetrahedra of T incident to Ti and by

F1
2i−1, F2

2i−1, F3
2i−1, F1

2i , F2
2i , F3

2i

the exceptional hexagons of 12i−1,12i , in such a way that F j
2i−1 is glued to F j

2i
for j = 1, 2, 3. For l = 1, . . . , 2k we also suppose that F1

l , F2
l , F3

l are positively
arranged around the ideal vertex of 1l , and we call e j

l the only finite internal
edge of F j

l , and f j
l the edge of 1l opposite to e j

l . We now consider a geometric
realization θ of the tetrahedra of T such that compact tetrahedra are regular and
isometric to each other, and for l = 1, . . . , 2k, j = 1, 2, 3 we set α j

l = θ(e j
l ), and

γ
j

l = θ( f j
l ) (see Figure 1). We set β to be the dihedral angle along the edges of

the g − k compact tetrahedra of T.

Consistency along the faces. We first determine the conditions on dihedral angles
under which all the compact lateral hexagons of the tetrahedra in T are regular
and isometric to each other. This is equivalent to asking that the lengths of all the
boundary edges of all the compact lateral hexagons are equal to each other, and
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e2
l

f 1
l

α3
l

α1
l

γ 2
l

γ 3
l

e3
l

e1
l

f 2
l

f 3
l

γ 1
l

α2
l

Figure 1. Dihedral angles along the edges of a noncompact tetra-
hedron of T.

by the well-known hyperbolic cosine rule, this condition translates into the set of
equations

(2-1)
cosα j

l cosα j+1
l + cos γ j+2

l

sinα j
l sinα j+1

l

=
cos2 β + cosβ

sin2 β
, l =1, . . . , 2k, j =1, 2, 3.

The conditions ensuring that the matching exceptional lateral hexagons could be
glued by isometries are more involved, and we direct the reader to [Frigerio 2006]
for a full discussion of this issue. Under the assumption that equations (2-1) are
in force, using the hyperbolic sine rule and [Frigerio 2006, Propositions 1.9, 1.10]
one can easily check that these conditions translate into the set of equations

(2-2) sinα1
2i sinα1

2i−1 sin γ 1
2i sin γ 1

2i−1 = sinα2
2i sinα2

2i−1 sin γ 2
2i sin γ 2

2i−1

= sinα3
2i sinα3

2i−1 sin γ 3
2i sin γ 3

2i−1,

i = 1, . . . , k.

Consistency around the edges. Since γ 1
l +γ 2

l +γ 3
l =π for l = 1, . . . , 2k, the total

angle along any half-infinite edge of T is automatically forced to be equal to 2π ,
so consistency around the edges translate into a single equation:

(2-3) 6 · (g − k) ·β +

2k∑
l=1

(α1
l +α2

l +α3
l )= 2π.

Any solution of the consistency equations equations (2-1), (2-2), (2-3) defines a
nonsingular hyperbolic structure with geodesic boundary on M .

Completeness equations. Let {µi , λi }, for i = 1, . . . , k, be the basis of H1(Ti ; Z)

defined as follows: µi is the projection on Ti of the edge in the link of the ideal
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vertex of 12i−1 that joins f 1
2i−1 to f 2

2i−1; λi is the projection on Ti of the edge in
the link of the ideal vertex of 12i that joins f 3

2i to f 2
2i . A solution

(2-4) x = (α1
1, α

2
1, α

3
1, γ

1
1 , γ

2
1 , γ

3
1 , . . . , α

1
2k, α

2
2k, α

3
2k, γ

1
2k, γ

2
2k, γ

3
2k, β) ∈ R12k+1

of consistency equations naturally defines an Aff(C)-structure on Ti (see [Benedetti
and Petronio 1992; Frigerio 2005], for example). We denote by ai (x)∈ C (resp. by
bi (x)∈C) the dilation component of the holonomy ofµi (resp. of λi ) corresponding
to the Aff(C)-structure defined by x on Ti . It is well-known that the hyperbolic
structure defined by x on M induces a complete metric on the i-th end of M if and
only if ai (x)= bi (x)= 1. Moreover, one can explicitly compute ai and bi in terms
of the dihedral angles, using for example [Frigerio 2006, Proposition 1.14]:

Theorem 2.2.

ai (x)= ((sin γ 1
2i−1 sin γ 2

2i )/(sin γ 2
2i−1 sin γ 1

2i )) exp(i(γ 3
2i−1 − γ 3

2i )),

bi (x)= ((sin γ 2
2i−1 sin γ 3

2i )/(sin γ 3
2i−1 sin γ 2

2i )) exp(i(γ 1
2i−1 − γ 1

2i )).

The next theorem shows that a solution of consistency and completeness equa-
tions always exists, and is as symmetric as possible.

Theorem 2.3 [Frigerio et al. 2003]. There exist constants αg,k, βg,k ∈ (0, π/3)
such that the point

x0 = (αg,k, αg,k, αg,k, π/3, π/3, π/3, . . . , αg,k, αg,k, αg,k, π/3, π/3, π/3, βg,k)

in R12k+1 provides the unique solution of the consistency and completeness equa-
tions for T.

Thus the complete hyperbolic structure of M induces on each boundary torus the
regular hexagonal Euclidean structure which is obtained by gluing two Euclidean
equilateral triangles.

Dehn filling equations. From now on we denote by �g,k ⊂ R12k+1 the set of so-
lutions of consistency equations for T (it is clear that this set indeed depends only
on g and k). If x ∈�g,k is as in equation (2-4), we set

ui (x)= ln ai (x)= ln((sin γ 1
2i−1 sin γ 2

2i )/(sin γ 2
2i−1 sin γ 1

2i ))+ i(γ 3
2i−1 − γ 3

2i ),

vi (x)= ln bi (x)= ln((sin γ 2
2i−1 sin γ 3

2i )/(sin γ 3
2i−1 sin γ 2

2i ))+ i(γ 1
2i−1 − γ 1

2i ).

It is proved in [Frigerio 2006] that near x0, the space �g,k ⊂ R12k+1 is a smooth
manifold of real dimension 2k, whose tangent space Tx0�g,k at x0 is given by the
solutions of the linearization of consistency equations (2-1), (2-2), (2-3). Moreover,
there exists a small neighbourhood U of x0 in �g,k with the following properties:

(1) For x ∈ U , we have ui (x)= 0 ⇔ vi (x)= 0 ⇔ the metric structure defined by
x is complete at the i-th end of M ;
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(2) The map (u1, . . . , uk) : U → Ck is a diffeomorphism between U and an open
neighbourhood of 0 in Ck .

Let U be a sufficiently small neighbourhood of x0 in �g,k and let x ∈ U . For
j = 1, . . . , k, we define the j-Dehn filling coefficient (p j (x), q j (x)) ∈ R2

∪ {∞}

as follows: if u j (x)= 0, then (p j (x), q j (x))= ∞; otherwise, p j (x), q j (x) are the
unique real solutions of the equation

p j (x)u j (x)+ q j (x)v j (x)= 2π i.

The existence and uniqueness of such solutions near x0 are proved in [Frigerio
2006]. Set

d = (d1, . . . , dk) : U →

k∏
i=1

S2, d j (x)= (p j (x), q j (x)) ∈ S2
= R2

∪ {∞}.

It is proved in the same paper that, if U is small enough, the map d defines a
diffeomorphism onto an open neighbourhood of (∞, . . . ,∞) in S2

× · · · × S2.
For x ∈ �g,k we denote by M(x) the hyperbolic structure induced on M by x ,

and by M̂(x) the metric completion of M(x). We also define the set

(2-5) I�g,k =
{

x ∈U ⊂�g,k : for i =1, . . . , k the i-th Dehn filling coefficient
associated to x is either ∞ or a pair of coprime integers

}
.

Thurston’s hyperbolic Dehn filling Theorem (see, for example, [Thurston 1979;
Neumann and Zagier 1985; Benedetti and Petronio 1992; Frigerio 2005]) asserts
that if U is sufficiently small and x belongs to I�g,k ∩ U , then M̂(x) admits a
complete finite-volume smooth hyperbolic structure which is obtained by adding
to M(x) a closed geodesic at any cusp with noninfinite Dehn filling coefficient.
From a topological point of view, M̂(x) is obtained by filling the i-th cusp of M
along the slope pi (x)µi + qi (x)λi if (pi (x), qi (x)) 6= ∞, and by leaving the i-th
cusp of M unfilled if (pi (x), qi (x))= ∞, i = 1, . . . , k.

For U sufficiently small, take x ∈ I�g,k ∩ U and suppose (p j (x), q j (x)) 6= ∞.
Let ` j ⊂ M̂(x) be the added geodesic at the j-th cusp of M and let L x

C
(` j ) be its

complex length. Choose integers r j (x), s j (x) with p j (x)s j (x)−q j (x)r j (x)= −1.
It is proved in [Neumann and Zagier 1985] that

(2-6) L x
C(` j )= r j (x)u j (x)+ s j (x)v j (x).

3. Isolation of cusps

We now study small deformations of the complete hyperbolic structure of M by
analyzing deformations of the shapes of the geometric tetrahedra of T. For x ∈�g,k

let `(x) ∈ R be the length of any boundary edge of any compact lateral hexagon
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in the geometric realization of T parameterized by x . The following results are
proved in [Frigerio 2006, Section 3].

Lemma 3.1. The map ` :�g,k → R is smooth and d`x0 = 0.

Lemma 3.2. For x ∈�g,k let β(x)= x12k+1 be the dihedral angle along the edges
of any compact tetrahedron in the geometric realization of T parameterized by x.
Then dβx0 = 0.

Infinitesimal deformations. We begin by looking for explicit equations for the
tangent space Tx0�g,k . So fix a smooth arc ϕ : (−ε, ε) → �g,k . For any smooth
f : �g,k → R, denote by ḟ the derivative of f ◦ ϕ at t = 0. With notation as on
page 344, if θ(t) is the geometric realization of T parameterized by ϕ(t) ∈ �g,k ,
we set α j

l (t)= θ(t)(e j
l ), γ

j
l (t)= θ(t)( f j

l ).
Recall that for every l = 1, . . . , 2k, j = 1, 2, 3 we have

`(ϕ(t))=
cosα j+1

l (t) · cosα j+2
l (t)+ cos γ j

l (t)

sinα j+1
l (t) · sinα j+2

l (t)
,

where apices are considered mod 3. Moreover, by Lemma 3.1 we have ˙̀ = 0, so
differentiating at 0 the equation above we easily get

√
3(α̇ j+1

l + α̇
j+2
l ) cosαg,k + γ̇

j
l sinαg,k = 0.

Summing up these equations for j = 1, 2, 3 and observing that γ̇ 1
l + γ̇ 2

l + γ̇ 3
l = 0

we obtain

(3-1) α̇1
l + α̇2

l + α̇3
l = 0,

whence

(3-2)
√

3α̇ j
l cosαg,k = γ̇

j
l sinαg,k .

Let i ∈ {1, . . . , k}. Evaluating equations (2-2) along ϕ and differentiating at 0
we get
√

3(α̇1
2i−1 + α̇1

2i ) cosαg,k + (γ̇ 1
2i−1 + γ̇ 1

2i ) sinαg,k

=
√

3(α̇2
2i−1 + α̇2

2i ) cosαg,k + (γ̇ 2
2i−1 + γ̇ 2

2i ) sinαg,k

=
√

3(α̇3
2i−1 + α̇3

2i ) cosαg,k + (γ̇ 3
2i−1 + γ̇ 3

2i ) sinαg,k .

Together with equations (3-1) and (3-2), this implies

(3-3) α̇1
2i−1 = −α̇1

2i , α̇2
2i−1 = −α̇2

2i , α̇3
2i−1 = −α̇3

2i .
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We can now summarize all these computations giving explicit equations for
Tx0�g,k . Let Z be the linear subspace of R12 defined by the equations

(
√

3 cosαg,k)x1 = (sinαg,k)x4,

(
√

3 cosαg,k)x2 = (sinαg,k)x5,

(
√

3 cosαg,k)x3 = (sinαg,k)x6,

(
√

3 cosαg,k)x7 = (sinαg,k)x10,

(
√

3 cosαg,k)x8 = (sinαg,k)x11,

(
√

3 cosαg,k)x9 = (sinαg,k)x12,

x1 + x7 = x2 + x8 = x3 + x9 = 0,

x1 + x2 + x3 = 0.

Observe that dimR Z = 2. For i = 1, . . . , k let ri : R12k+1
→ R12 be the map defined

by ri (x)= (x12i−11, x12i−10, . . . , x12i−1, x12i ). Let

Z = {x ∈ R12k+1
: x12k+1 = 0, ri (x) ∈ Z for i = 1, . . . , k}

be the product of one copy of Z for each cusp. Now dimR Z = 2k = dimR Tx0�g,k ,
and by Lemma 3.2 and equations (3-1), (3-2), (3-3) we also have Tx0�g,k ⊆ Z ,
whence:

Proposition 3.3. Tx0�g,k = Z.

Isolation of cusps. We now go into the proof of Theorem 1.3. Let C1, . . . ,Ck

be the cusps of our fixed manifold M ∈ Mg,k corresponding to the boundary tori
T1, . . . , Tk . We look for equations defining the set of structures in �g,k which are
complete at C1, . . . ,Ch . To this aim we set:

Jh = {x ∈ R12k+1
: x12i+1 = x12i+2 = x12i+3 for all i = 0, . . . , h − 1}.

It is easily seen that Tx0 Jh + Tx0�g,k = Jh + Z = R12k+1
= Tx0R12k+1, so basic

results about transverse intersections of submanifolds readily imply the following:

Lemma 3.4. Near x0, the set Jh ∩�g,k is a smooth submanifold of �g,k of real
dimension 2(k − h).

Let 1 be a topological partially truncated tetrahedron with ideal vertex v0, and
take ϑ ∈ (0, π/3). Then there exists, up to isometry, exactly one geometric real-
ization of 1 with dihedral angles π/3 along the internal edges emanating from v0,
and angle ϑ along the other internal edges. We denote this geometric tetrahedron
by 1ϑ .
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Proposition 3.5. For each l = 1, . . . , 2h let 1∗

l (p) be the geometric realization of
1l parameterized by p ∈ Jh ∩�g,k . Then a real number ϑ(p) ∈ (0, π/3) exists
such that 1∗

l (p) is isometric to 1ϑ(p) for l = 1, . . . , 2h.

Proof. For l = 1, . . . , 2h, j = 1, 2, 3 let T j
l (p) be the truncation triangle of 1∗

l (p)
having a vertex on the edge f j

l . Fix i ∈ {0, . . . , h − 1}, consider the tetrahedron
1∗

2i+1(p), and let H be the compact lateral hexagon of1∗

2i+1(p). Since the internal
edges of H have all the same length, by an easy result in hyperbolic trigonometry
also the boundary edges of H have all the same length. Together with the equality
x12i+1(p) = x12i+2(p) = x12i+3(p) (which holds by hypothesis, since p ∈ Jh),
this implies that the triangles T 1

2i+1(p), T 2
2i+1(p) and T 3

2i+1(p) are isosceles and
isometric to each other. This gives in turn x12i+4(p) = x12i+5(p) = x12i+6(p), so
1∗

2i+1 is isometric to1ξ2i+1 for some ξ2i+1 = x12i+1(p)∈ (0, π/3). Moreover, since
the noncompact faces of 1∗

2i+1 are isometrically glued to the noncompact faces of
1∗

2i+2 we easily see that the truncation triangles T 1
2i+2(p), T 2

2i+2(p) and T 3
2i+2(p)

are isosceles and isometric to each other. This forces x12i+7(p) = x12i+8(p) =

x12i+9(p) = ξ2i+2 and x12i+10(p) = x12i+11(p) = x12i+12(p) = π/3, so 1∗

2i+2 is
isometric to 1ξ2i+2 for some ξ2i+2 ∈ (0, π/3).

Finally, since the length of the compact internal edges of the 1∗

l ’s does not
depend on l, we have ξ1 = · · · = ξ2h , whence the conclusion. �

Corollary 3.6. Let p be a point in Jh ∩�g,k and denote by M(p) the hyperbolic
structure defined by p on M. Then for all i = 1, . . . , h the following holds:

• M(p) induces a complete metric on the cusp Ci ;

• The Euclidean structure induced on Ti by M(p) is isometric to the regu-
lar hexagonal structure induced on Ti by the complete hyperbolic structure
M(x0).

The corollary just stated says that the Euclidean structures on T1, . . . , Th are not
affected by the deformations of the hyperbolic metric on M which correspond to
points in Jh ∩�g,k . Therefore to conclude the proof of Theorem 1.3 we only need
the following:

Proposition 3.7. Let Kh be the subset of �g,k corresponding to the structures
inducing complete metrics on C1, . . . ,Ch . Then there exists a neighbourhood V of
x0 in �g,k with Kh ∩ V = Jh ∩ V .

Proof. By Lemma 3.4 there exists a neighbourhood W of x0 in �g,k such that both
Kh ∩ W and Jh ∩ W are smooth submanifolds of �g,k of real dimension 2(k − h).
Moreover Corollary 3.6 shows that Jh ∩ W ⊂ Kh ∩ W , whence Jh ∩ V = Kh ∩ V
for some (maybe smaller) neighbourhood V of x0 in �g,k . �
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Nonisolation of the boundary. We now sketch the proof of Theorem 1.4. Let
Teich(∂M) be the Teichmüller space of hyperbolic structures on ∂M , i. e. the
space of equivalence classes of hyperbolic metrics on ∂M , where two such metrics
are considered equivalent if they are isometric through a diffeomorphism homo-
topic to the identity of ∂M . For x ∈ �g,k we denote by M(x) the hyperbolic
structure defined on M by x , and by B(x) ∈ Teich(∂M) the equivalence class
of the hyperbolic structure induced by M(x) on ∂M . Given a nontrivial element
γ ∈ π1(∂M), we also denote by Lγ (x) the length, with respect to the hyperbolic
structure B(x)∈ Teich(∂M), of the unique geodesic representative of γ . It is well-
known that Teich(∂M) admits a structure of differentiable manifold such that the
maps B :�g,k → Teich(∂M) and Lγ :�g,k → R are smooth.

It is proved in [Frigerio 2006] that d Bx0 = 0, thus in order to prove that the
geodesic boundary of M is not isolated from the cusps we need to analyze the map
B up to the second order in a neighbourhood of x0. The key result is this:

Proposition 3.8. There exist a smooth path ρ : (−ε, ε) → �g,k and an element
γ ∈ π1(∂M) such that ρ(0) = x0 and the map t 7→ Lγ (ρ(t)) has nonzero second
derivative at 0.

In order to find the suitable ρ and γ , one has to explicitly describe the combina-
torics of the triangulation of ∂M induced by the triangulation of M , and to compute
the second derivatives of consistency equations at x0. Since computations are quite
long, we address the reader to [Frigerio 2005] for a complete proof of Proposition
3.8. In the rest of this section we show how Theorem 1.4 can be deduced from
Proposition 3.8.

Definition 3.9. Let y0 be a point of a smooth n-manifold Y and let ϕ : U → Rn be
a diffeomorphism with ϕ(y0)= 0, where U ⊂ Y is a small open neighbourhood of
y0. Let 0 6= v ∈ Ty0Y , and consider a sequence {y j } j∈N ⊂ U \ {y0}. We say that yn

converges to y0 along v if

lim
j→∞

y j = y0, lim
j→∞

ϕ(y j )

‖ϕ(y j )‖
=

dϕy0(v)

‖dϕy0(v)‖
,

where we are identifying T0Rn with Rn , endowed with the Euclidean norm ‖ · ‖.

Recall the set I�g,k ⊂�g,k defined in Equation (2-5), and let {yn}n∈N ⊂ I�g,k \

{x0} be a sequence converging to x0 along ρ̇(0). By construction, up to passing to
a subsequence we have B(yn) 6= B(x0) for every n ∈ N.

Since yi ∈ I�g,k , the metric completion of the structure induced on M by yi

gives a nonsingular hyperbolic 3-manifold Ni . Recall that the mapping class group
MCG(∂M) of ∂M acts properly discontinuously on Teich(∂M), so there exists a
neighbourhood W of B(x0) in Teich(∂M) such that the set {ψ ∈ MCG(∂M) :

ψ(W )∩ W 6= ∅} is finite. Up to passing to a subsequence, we may suppose that
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the equivalence classes of the ∂N j ’s are pairwise distinct as elements in Teich(∂M),
and that ∂Ni ∈ U for all i ∈ N. This readily implies that among the ∂N j ’s there are
infinitely many pairwise nonisometric hyperbolic surfaces, whence Theorem 1.4.

4. Similar fillings

Kojima [1990] proved that every complete finite-volume hyperbolic manifold N
with nonempty geodesic boundary admits a canonical decomposition into geomet-
ric polyhedra. Such a decomposition is in a certain sense dual to the cut-locus of
the boundary of N , and is therefore unique. As a corollary, this implies the fact
(that we will be using later) that the isometry group of N is canonically isomorphic
to the group of combinatorial automorphisms of the Kojima decomposition of N .

Proposition 4.1. Any shortest return path in N is an edge of the Kojima decom-
position of N . Moreover, any compact regular partially truncated tetrahedron
isometrically immersed in N whose internal edges are shortest return paths is a
piece of the canonical decomposition of N .

Theorem 4.2 [Frigerio et al. 2003]. Let M ∈ Mg,k with ∂M =6g t
( ⊔k

i=1 Ti
)
.

(1) M has a unique triangulation with g+k tetrahedra, which gives the canonical
Kojima decomposition of M.

(2) The volume of the complete hyperbolic structure of M depends only on g and k.

(3) The Heegaard genus of
(
M, 6g,

⊔k
i=1 Ti

)
is g + 1.

(4) H1(M; Z)= Zg+k .

(5) The Turaev–Viro invariant TVr (M) depends only on r , g and k.

The next result shows that manifolds in Mg,k are geometrically similar to each
other:

Theorem 4.3. Let M ∈ Mg,k be endowed with its complete hyperbolic structure.

(1) The cusp volume of M depends only on g and k;

(2) The Euclidean structures on the boundary tori of M are all isometric to the
regular hexagonal one;

(3) The length of the shortest return path of M depends only on g and k.

Proof. Manipulating equation (2-1), one can easily prove that αg,k<βg,k<2αg,k 6
π/3. Together with some computations in hyperbolic space, this implies that each
noncompact tetrahedron of the Kojima decomposition of M contains a horocusp
neighbourhood of its ideal vertex which is tangent to the truncation triangles. Thus
a maximal regular horocusp neighbourhood for M is obtained by gluing the max-
imal horocusp neighbourhoods of the ideal vertices of the noncompact tetrahedra
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of the Kojima decomposition, whence point (1). Point (2) has already been estab-
lished and point (3) is a consequence of Proposition 4.1 and Theorem 4.2-(1). �

The following result refines Theorem 4.2-(4), and can be proved just by looking
at the description of the combinatorics of the Kojima decomposition of M given
in Proposition 1.1 (see [Frigerio 2005] for a complete proof).

Proposition 4.4. Let M ∈ Mg,k . Then we have the exact sequence

0 −→ H1

( k⊔
i=1

Ti ; Z
)

i∗
−→ H1(M; Z)−→ Zg−k

−→ 0,

where i∗ is the map induced by the inclusion i :
⊔k

i=1 Ti → M.

4A. Boundary slopes and Dehn filling. Let Ti be the i-th boundary torus of a
manifold M ∈ Mg,k , and recall that the unique complete finite-volume hyperbolic
structure on M induces on Ti a Euclidean structure defined up to similarity. For
the sake of simplicity, we endow Ti with a fixed Euclidean structure choosing the
scale factor in such a way that Ti ∼= C/0, where 0 is the discrete additive subgroup
of C with generators 1, eiπ/3. We denote by M(Ti ) the group of isotopy classes of
isometries of Ti . Of course M(Ti ) acts on the set of slopes on Ti .

Let D6 be the dihedral group with 12 elements, i. e. the group of isometries
of C generated by the rotation r : C → C, r(z) = eiπ/3

· z and the reflection
s : C → C, s(z) = z. Any element of D6 induces an isometry of Ti , and any
isometry of Ti lifts up to isotopy to an element of D6. Thus M(Ti ) is canonically
isomorphic to D6.

Let µi , λi be the preferred basis of H1(Ti ; Z) chosen in Section 2 (see bottom of
page 345). In what follows we will often represent slopes as indivisible elements
in H1(Ti ; Z) without emphasizing the fact that each slope corresponds in fact to
two such elements. Any slope s on Ti determines a well-defined isotopy class of
geodesics on Ti , and we denote by L(s) the Euclidean length of such geodesics. An
elementary calculation shows that if s = p ·µi +q ·λi , then L(s)=

√
p2 + q2 − pq .

Thus, if {κ1 < κ2 < · · · < κn < · · · } is the set of lengths of slopes on Ti , then the
following holds:

• There are exactly three slopes of length κ1 = 1. They are represented by µi , λi

and µi + λi , and they are M(Ti )-equivalent to each other.

• There are exactly three slopes of length κ2 =
√

3. They are represented by
µi −λi , µi +2 ·λi and 2 ·µi +λi , and they are M(Ti )-equivalent to each other.

• If s is a slope with L(s)> κ3 =
√

7, then there exist exactly six slopes M(Ti )-
equivalent to s.

The following result completely classifies the Dehn fillings of elements in Mg,k .



354 ROBERTO FRIGERIO

Theorem 4.5 [Frigerio et al. 2003]. Let M ∈ Mg,k with ∂M =6g t
( ⊔k

i=1 Ti
)
, let

h 6 k, let si be a slope on Ti for i = 1, . . . , h and N = M(s1, . . . , sh). Then N
is hyperbolic if and only if L(si ) > κ3 for all i = 1, . . . , h. Moreover, when N is
hyperbolic the Heegaard genus of (N , 6g, Th+1 t · · · t Tk) is g + 1.

4B. Symmetries of �g,k. Let Aut�g,k denote the set of diffeomorphisms of �g,k

onto itself. We describe some elements in Aut�g,k and explain how they act on the
space of Dehn filling coefficients. In order to clarify our arguments it is convenient
to denote the coordinates of R12k+1 as in equation (2-4):

β(x)= x12k+1, α
j
l (x)= x6(l−1)+ j , γ

j
l (x)= x6(l−1)+3+ j ,

for l = 1, . . . , 2k and j = 1, 2, 3.
Let x ∈ �g,k , fix i ∈ {1, . . . , k} and take an element σ of the symmetric group

S3. Define x ′
∈ R12k+1 by

α
j
l (x

′) = α
σ−1( j)
l (x), γ

j
l (x

′) = γ
σ−1( j)
l (x) if l = 2i − 1, 2i;

α
j
l (x

′) = α
j
l (x), γ

j
l (x

′) = γ
j

l (x) if l 6= 2i − 1, 2i;

β(x ′) = β(x),

Due to the symmetry of consistency equations, x ′ lies in �g,k . Roughly speaking,
this means that we can make σ act on the i-th cusp, while leaving all the other cusps
and the compact tetrahedra unchanged, thus defining an element σ̂i ∈ Aut�g,k .

Another symmetry ζi :�g,k →�g,k exists which corresponds to interchanging
the rôles of the tetrahedra12i−1 and12i , i. e. to swapping the indices of the angles
of 12i ,12i−1, while leaving the shape of all the other tetrahedra unchanged. It is
easily seen that the map

ϕi : S3 × Z/2 → Aut�g,k, ϕi (σ, ε)= σ̂i ◦ ζ εi , σ ∈ S3, ε = 0, 1

is an injective homomorphism whose image is a certain subgroup Symi�g,k of
Aut�g,k .

Again because of the symmetries of consistency equations, we can also permute
arbitrarily the shapes of the cusps: in this way any element κ of the symmetric
group Sk induces a well-defined symmetry κ̃ ∈ Aut�g,k . The map κ 7→ κ̃ defines
an injective homomorphism ν : Sk → Aut�g,k .

Denote by Sym�g,k the subgroup of the group Aut�g,k generated by the union
ν(Sk)∪

(⋃k
i=1 Symi�g,k

)
. Since elements in Symi�g,k commute with elements in

Sym j�g,k whenever i 6= j , the kernel of the natural epimorphism π : Sym�g,k →

Sk is given by the direct product
∏k

i=1Symi�g,k . Thus

(4-1) Sym�g,k = ν(Sk)n
( k∏

i=1
Symi�g,k

)
∼= Sk n

( k∏
i=1

S3 × Z/2

)
.
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Our next task is to investigate how symmetries in Sym�g,k act on the space of
Dehn filling coefficients parameterizing a small neighbourhood of x0 in �g,k .

4C. Action on Dehn filling coefficients. Denote by M(T1 t· · ·t Tk) the group of
isotopy classes of isometries of T1 t · · · t Tk . For σ ∈ Sk we define an element
η(σ ) ∈ M(T1 t · · · t Tk) which permutes the marked tori T1, . . . , Tk according to
σ . Namely, η(σ ) is the isotopy class of any element σ ′

∈ Isom(T1 t · · · t Tk)

taking T j to Tσ( j), µ j to µσ( j), λ j to λσ( j) for j = 1, . . . , k. The kernel of the
natural epimorphism π ′

: M(T1 t · · · t Tk) → Sk is canonically isomorphic to
M(T1)× · · · × M(Tk). Therefore

(4-2) M(T1 t · · · t Tk)= η(Sk)n
( k∏

i=1
M(Ti )

)
∼= Sk n

( k∏
i=1

D6

)
,

where D6 ∼= S3 × Z/2 is the dihedral group with 12 elements.
From now on we fix our attention on a small neighbourhood V of x0 in �g,k

such that for all x ∈ V the Dehn filling coefficient (p j (x), q j (x)) ∈ S2
= R2

∪{∞}

is well-defined, and the map

(4-3) d = (d1, . . . , dk) : V →

k∏
i=1

S2, d j (x)= (p j (x), q j (x)) ∈ S2

is a diffeomorphism onto an open neighbourhood of {∞}×· · ·×{∞} in the range.
It is easily seen that we can also assume ψ(V )= V for all ψ ∈ Sym�g,k .

Every element h ∈M(T1t · · · tTk) induces an automorphism of
⊕k

i=1 H1(Ti ; R).
The basis µi , λi defines a canonical isomorphism H1(Ti ; R)∼= R2, so h induces an
automorphism h∗ of

∏k
i=1 S2 that preserves {∞}×· · ·×{∞}. Looking at how the

maps d j : V → S2, i = 1, . . . , k change under precompositions with elements in
Sym�g,k , after some easy computations [Frigerio 2005], one gets:

Proposition 4.6. For any ψ ∈ Sym�g,k there is a unique h(ψ) ∈ M(T1 t · · · t Tk)

such that d(ψ(x))= h(ψ)∗(d(x)) for all x ∈ V . Moreover the map

Sym�g,k → M(T1 t · · · t Tk), ψ 7→ h(ψ)

is a group isomorphism which preserves decompositions (4-1), (4-2).

4D. Return paths. We are now interested in describing the shortest return paths
in small deformations of the complete structure on M . Recall that for x ∈ �g,k

we denote by M(x) the hyperbolic structure induced on M by x , and by M̂(x)
the metric completion of M(x). Moreover, if x ∈ I�g,k then M̂(x) is a complete
finite-volume hyperbolic manifold with geodesic boundary. In this case the unique
compact edge in the geometric triangulation of M(x) defines a return path lx in
M̂(x). For y ∈ I�g,k we denote by L y the length with respect to the hyperbolic
metric on M̂(y). Of course we have limy∈I�g,k , y→x0 L y(ly)= L x0(lx0).
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The next lemma can be thought as an extension of the first statement of Propo-
sition 4.1 to manifolds obtained by Dehn filling M along sufficiently long slopes.

Lemma 4.7. There exists a neighbourhood V ′
⊂ V of x0 in �g,k such that if

x ∈ I�g,k ∩ V ′, then lx is the unique shortest return path in M̂(x).

Proof. We define three real numbers µg,k, νg,k, ηg,k as follows: µg,k is the distance
between a truncation triangle and the opposite lateral hexagon in a noncompact
tetrahedron of the canonical decomposition of M = M(x0); νg,k is the distance
between a truncation triangle and the opposite lateral hexagon in a compact tetra-
hedron of the canonical decomposition of M ; ηg,k = L x0(lx0) is the length of the
compact edge of the canonical decomposition of M . A long but straightforward
computation [Frigerio 2005, Lemma 3.7.3] shows that 2µg,k > ηg,k , 2νg,k > ηg,k .

We suppose by contradiction that there exists a sequence {yn}n∈N ⊂ I�g,k con-
verging to x0 with the following property: a return path l ′n in M̂(yn) exists such that
l ′n 6= lyn for any n ∈ N and lim supn→∞ L yn (l ′n)6 ηg,k . Since the distance between
the added geodesics M̂(y)\ M(y) and the geodesic boundary of M(y) approaches
∞ as y tends to x0, we can suppose l ′n ⊂ M(yn) for any n ∈ N. Let now pn, qn

be the endpoints of l ′n and 1pn ,1qn the geometric tetrahedra containing pn, qn

respectively. We denote by l ′pn
(resp. l ′qn

) the connected component of l ′n ∩1pn

(resp. l ′n ∩1qn ) containing pn (resp. qn). Since l ′n 6= lyn and l ′n intersect ∂M(yn) at
right angles we easily get

lim sup
n→∞

L yn (l ′n)> lim inf
n→∞

L yn (l ′n)> lim inf
n→∞

L yn (l ′pn
)+ lim inf

n→∞
L yn (l ′qn

)

> 2 min{µg,k, νg,k}> ηg,k,

a contradiction. �

4E. Similar fillings. A set of slopes for a complete finite-volume hyperbolic 3-
manifold N is a set S = {si1, . . . , sih } of either 0 or 1 slope per boundary torus. If
S ={si1, . . . , sih } is a set of slopes for N we denote by N (S) the manifold obtained
by filling N along si1, . . . , sih .

Let M and M ′ be elements in Mg,k (we do not exclude the case M = M ′) with
boundary tori T1, . . . , Tk and T ′

1, . . . , T ′

k . We endow each of these tori with the
Euclidean metric described in Section 4A above. We say that a set of slopes S

for M is equivalent to the set of slopes S′ for M ′ if there exists an orientation-
preserving isometry ψ : T1 t · · · t Tk → T ′

1 t · · · t T ′

k taking S onto S′.

Theorem 4.8. Let M,M ′ be elements of Mg,k and S (resp. S′) be a set of slopes for
M (resp. M ′). Then there exists a positive constant C such that, if all the slopes of
S are longer than C and S is equivalent to S′, then M(S) is geometrically similar
to M ′(S′).
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Proof. Let V ′ be a neighbourhood of x0 in �g,k as in the statement of Lemma 4.7
and d : V ′

→ S2
× · · · × S2 be the map defined in equation (4-3). We can choose

a positive constant C depending only on g and k such that the following holds: if
S = {si1, . . . , sih } is a set of slopes for M with L(sil ) > C for l = 1, . . . , h, then
any k-uple of Dehn filling coefficients corresponding to S lies in d(V ′) (due to the
choice of the signs, there exist exactly 2h such k-uples).

Let now S be a set of slopes for M whose elements are longer than C and
let S′ be a set of slopes for M ′ which is equivalent to S. Choose also points
x, x ′

∈ V ′
⊂ �g,k such that d(x) (resp. d(x ′)) gives a k-uple of Dehn filling

coefficients corresponding to S (resp. S′). By Proposition 4.6 it follows that a
symmetry ϕ ∈ Sym�g,k exists with ϕ(x) = x ′. Let M(x) (resp. M ′(x ′)) be the
hyperbolic structure defined by x on M (resp. by x ′ on M ′). Recall that M(S)
(resp. M ′(S′)) is isometric to the metric completion of M(x) (resp. of M ′(x ′)),
and that M(S) \ M(x) (resp. M ′(S′) \ M ′(x ′)) is the union of h disjoint geodesics
in M(S) (resp. in M(S′)). Notice that since x is Sym�g,k-equivalent to x ′, the
geometric partially truncated tetrahedra in the decomposition of M(x) are isometric
to the geometric tetrahedra in the decomposition of M ′(x ′). Together with Lemma
4.7, this readily implies that the shortest return paths of M(S) and M(S′) have
the same length. Moreover, M(x) and M ′(x ′) have the same volume, whence
volume(M(S))= volume(M ′(S′)).

By Theorem 1.3 the bases of the cusps of M(S) and M ′(S′) are all isometric to
regular hexagonal tori, so M(S) and M ′(S′) share the same cusp shape.

Now consider the shape of the geometric tetrahedra in the triangulations

T = {11, . . . ,1g+k},

T′
= {1′

1, . . . ,1
′

g+k}

of M,M ′ respectively. Without loss of generality we can order the tetrahedra
of these triangulations in such a way that 1l,1

′

l are asymptotic to the cusps of
M(S),M ′(S′) for l = 2h +1, . . . , 2k (this is equivalent to requiring that the slopes
in S and S′ lie on T1, . . . , Th and T ′

1, . . . , T ′

h). Then by Proposition 3.5 a real
number ϑ(x)= ϑ(x ′) ∈ (0, π/3) exists such that 1l and 1′

l are isometric to 1ϑ(x)

for l = 2h + 1, . . . , 2k. For l = 2h + 1, . . . , 2k let now vl, v
′

l be the ideal vertices
of 1l,1

′

l respectively. The same argument as in Theorem 4.3 (1) shows that,
up to increasing C , we can suppose that a unique horocusp neighbourhood Hl of
vl in 1l exists which is tangent to the truncation triangles of 1l and is entirely
contained in 1l . Moreover H2i−1 and H2i glue up in M(S) giving a horocusp
neighbourhood Oi of the i-th cusp for i = h + 1, . . . , k. Also notice that the total
horocusp neighbourhood Oh+1 t· · ·t Ok is regular (since the Hl’s are isometric to
each other) and maximal (since each Oi is tangent to the boundary of M(S)). The
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very same construction also leads to a horocusp neighbourhood O ′

h+1 t · · · t O ′

k
for M ′(S′). Since 1l is isometric to 1′

l for l = 2h + 1, . . . , 2k, we have

vol(Oh+1 t · · · t Ok)= vol(O ′

h+1 t · · · t O ′

k),

so M(S) and M ′(S′) share the same cusp volume.
Recall now that Thurston’s hyperbolic Dehn filling Theorem ensures that if for

all l = 1, . . . , h we have L(sl) > C ′ > 0 for some sufficiently large C ′, then the
shortest geodesics of M(S) and M ′(S′) are exactly the geodesics added to M(x)
and M ′(x ′). Thus under the hypothesis that L(sl)>C ′ for all l = 1, . . . , h, in order
to prove that the shortest geodesics of M(S) and M ′(S′) have the same complex
length we only have to compute the complex length of these added geodesics. The
desired result is then easily obtained from the analysis of the action of Sym�g,k

on Dehn filling coefficients, together with equation (2-6).
The fact that H1(M(S); Z) is isomorphic to H1(M ′(S′); Z) is an immediate

consequence of Proposition 4.4. By Theorem 4.5, if 6 (resp. 6′) is the geodesic
boundary of M(S) (resp. of M ′(S′)), the Heegaard genus of both

(M(S),6, ∂M(S) \6) and (M ′(S′),6′, ∂M ′(S′) \6′)

is equal to g + 1.
In order to prove our statement about Turaev–Viro invariants we need to con-

struct ideal triangulations T(S) for M(S) and T′(S′) for M ′(S′). Since S is
equivalent to S′, such triangulations can be chosen in such a way that the incidence
numbers between edges and tetrahedra are the same for T(S) and for T′(S′) (see
[Frigerio 2005] for a detailed proof). As pointed out in [Matveev and Nowik 1994],
this implies that M(S) and M ′(S′) share the same Turaev–Viro invariants. �

4F. Nonhomeomorphic fillings. It is explained in [Benedetti and Petronio 1995]
how ideal triangulations of compact orientable 3-manifolds can be encoded by o-
graphs. Let Tk be the ideal triangulation encoded by the o-graph described in
Figure 2, and let Xk be the manifold obtained by gluing the tetrahedra of Tk .
Computing the boundary of Xk as explained in that paper, one can easily prove
that Xk ∈ Mk+1,k if k is odd and Xk ∈ Mk+2,k if k is even. Moreover, Tk is the
Kojima decomposition of Xk .

Proposition 4.9. For all k > 1, the manifold Xk admits no nontrivial isometries.

Proof. Since Tk is the Kojima decomposition of Xk , the group of isometries of Xk

is canonically isomorphic to the group Aut Tk of the combinatorial automorphisms
of Tk . Now a straightforward analysis of the combinatorics of Tk shows that
Aut Tk is trivial, whence the conclusion. �

Together with Proposition 4.9, the following result implies Theorem 1.6.
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Figure 2. The o-graphs encoding the Kojima decomposition of
Xk (their combinatorics are different according to the fact that k
is either even or odd). Each pair of vertices joined by three edges
gives rise to a toric cusp in Xk .
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Proposition 4.10. Let X ∈ Mg,k with boundary tori T1, . . . , Tk and suppose that X
admits no nontrivial isometry. For each i = 1, . . . , k we can choose a finite set Si

of slopes on Ti with the following property. Let S be a set of slopes for X whose
elements do not belong to Si , i = 1, . . . , k and let h = #S 6 k. Then the number
of sets of slopes equivalent to S is greater than or equal to (k! · 3h)/(h! · (k − h)!).
Moreover, if S′ is a set of slopes equivalent to S and X (S) is homeomorphic to
X (S′), then S = S′.

Proof. Thurston’s hyperbolic Dehn filling Theorem and Theorem 4.8 imply that
we can choose the finite set Si in such a way that if S is as in the statement and
S′ is a set of slopes equivalent to S, then the following conditions hold: no slope
in S′ is contained in some Si ; X (S), X (S′) are geometrically similar hyperbolic
3-manifolds; the cores of the added solid tori give the h shortest geodesics both of
X (S) and of X (S′).

An elementary combinatorial argument shows that the number of sets of slopes
equivalent to S is at least (k! · 3h)/(h! · (k − h)!).

Now suppose that S′ is equivalent to S and let ψ : X (S)→ X (S′) be a homeo-
morphism. By the Mostow–Prasad rigidity Theorem, ψ is homotopic to an isom-
etry ψ ′, which must take the added geodesics of X (S) to the added geodesics of
X (S′). This gives in turn a homeomorphism of X onto itself taking S onto S′. By
rigidity again, up to homotopy such a homeomorphism restricts to an isometry of
X , whence S = S′ since X admits no nontrivial isometry. �

5. Noncommensurable similar Dehn fillings

Two complete hyperbolic n-manifolds with geodesic boundary M1, M2 are com-
mensurable if a hyperbolic manifold with geodesic boundary M3 exists which is
the total space of a finite Riemannian covering both of M1 and of M2.

A commensurability criterion. Let M ∈ Mg,k with canonical decomposition T.
Let N be a hyperbolic manifold obtained by Dehn filling M along a sufficiently
complicated slope, let Ñ be the universal covering of N , and let x ∈ I�g,k be
such that N ∼= M̂(x). As in Section 4D, we denote by lx the unique shortest
return path in N , and by L x(lx) the length of lx . Building on Proposition 4.1
and on Lemma 4.7, one can show that there exists a neighbourhood V of x0 in
�g,k with the following property: let x ∈ I�g,k ∩ V and S1, . . . , S4 be pairwise
distinct connected components of Ñ ; then d(Si , S j ) = L x(lx) for all i 6= j if and
only if there exists a lift of a compact tetrahedron in the geometric triangulation
parameterized by x whose truncation triangles lie on S1, . . . , S4.

Let now p be a point on lx , take a small geodesic surface H passing through p
and orthogonal to lx , and let Bε⊂ H be the disc with center p and radius ε. Let also
Z ⊂ M(x) be the union of all the compact tetrahedra of T. The commensurability
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class of N determines the isometry class of the universal covering Ñ , whence,
by the discussion above, the isometry class of the pair (Bε, Bε ∩ Z). Of course,
such isometry class only depends on the way in which the dihedral angles of the
tetrahedra in M(x) are arranged around lx , and therefore can be explicitly described
in terms of the combinatorics of T and of x .

Noncommensurable Dehn fillings. From now on, let k be a fixed odd natural
number, let Xk be the manifold defined in Section 4F and l ⊂ Xk be the compact
edge of Tk . If x ∈ �k+1,k , we denote by Xk(x) the hyperbolic structure induced
by x on Xk , and by X̂k(x) the metric completion of Xk(x). A straight-forward
analysis of the combinatorics of Tk shows that the dihedral angles of the geometric
tetrahedra of Tk parameterized by x are arranged along l according to the cyclic
ordering

x12k+1, x1, x7, x13, . . . , x6l+1, . . . , x12k−5,

x12k+1, x12k+1, x2, x8, x14, . . . , x6l+2, . . . , x12k−4,

x12k+1, x12k+1, x12k+1, x3, x9, x15, . . . , x6l+3, . . . , x12k−3.

Let a, b, c :�k+1,k → R be the functions defined by

a(x)=

2k−1∑
i=0

x6i+1, b(x)=

2k−1∑
i=0

x6i+2, c(x)=

2k−1∑
i=0

x6i+3.

The discussion carried out in Section 5 readily implies the following:

Proposition 5.1. Let V be a sufficiently small neighbourhood of x0 in �k+1,k , let
x, x ′ be points in I�k+1,k ∩ V , and suppose that X̂k(x) is commensurable with
X̂k(x ′). Then a(x)= a(x ′), b(x)= b(x ′), c(x)= c(x ′).

To determine if geometrically similar manifolds obtained by Dehn filling Xk

are commensurable with each other, we’re left with the task of determining when
the functions a, b and c take different values on Sym�k+1,k-equivalent points in
�k+1,k . To this end, set

H = {x ∈ R12k+1
: x12i+1 = x12i+2 = x12i+3 for all i = 1, . . . , k − 1}.

We recall that in a neighbourhood of x0 in �k+1,k the set �∗

k+1,k := H ∩�k+1,k

is a smooth 2-dimensional manifold whose points correspond to those structures
which induce a complete metric on all but the first cusp of Xk (see Lemma 3.4 and
Proposition 3.7).

In what follows, we denote simply by α, β the angles αk+1,k, βk+1,k . By Propo-
sition 3.3 the subspace of R12k+1 having equations {x ∈ R12k+1

: x2 = x3, x12i+1 =

x12i+2 = x12i+3, i = 1, . . . , k − 1} intersects �∗

k+1,k transversely near x0 in the
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support of a smooth curve ρ : (−ε, ε)→�k+1,k with ρ(0)= x0 and

(5-1) ρ̇(0)= (2 sinα,−sinα,−sinα, 2
√

3 cosα,−
√

3 cosα,−
√

3 cosα,

− 2 sinα, sinα, sinα,−2
√

3 cosα,
√

3 cosα,
√

3 cosα, 0, . . . , 0).

A long computation [Frigerio 2005] shows that we have

(5-2) ρ̈(0)= (8 cosα sinα,−4 cosα sinα,−4 cosα sinα, 2
√

3,−
√

3,−
√

3,

8 cosα sinα,−4 cosα sinα,−4 cosα sinα, 2
√

3,−
√

3,−
√

3, 0, . . . , 0).

For a smooth f :�k+1,k → R, denote by ḟ and f̈ the first and second derivatives
of f ◦ ρ at 0. From equations (5-1) and (5-2) we deduce that ȧ = ḃ = ċ = 0,while
ä > b̈ > c̈.

Theorem 5.2. Let k be odd. There exists a sequence {Wn}n∈N of pairwise non-
homeomorphic complete finite-volume hyperbolic manifolds with geodesic bound-
ary with the following properties:

• Each Wn is obtained by Dehn filling the first cusp of Xk ;

• For any natural number n there exist at least three (including Wn itself ) pair-
wise noncommensurable hyperbolic Dehn fillings of Xk that are geometrically
similar to Wn .

Proof. We choose an infinite sequence {yn}n∈N ⊂ I�∗

k+1,k \ {x0} converging to x0

along ρ̇(0) (see Definition 3.9), and we set Wn = X̂k(yn).
First note that, since yn belongs to �∗

k+1,k , the last k − 1 cusps of Xk(yn) have
to be complete, so Wn is obtained from Xk by Dehn filling the first cusp of Xk .

Let r ∈ M(T1 t · · ·t Tk) be the element acting as a positive rotation by an angle
of π/3 on T1, and as the identity on Ti for i ∈ {2, . . . , k}. If

2 : M(T1 t · · · t Tk)→ Sym�k+1,k

is the isomorphism described in Proposition 4.6, we set y′
n = 2(r)(yn) and y′′

n =

2(r2)(yn). By construction, Wn = X̂k(yn), X̂k(y′
n) and X̂k(y′′

n ) are pairwise geo-
metrically similar. An easy computation shows that for x ∈�k+1,k we have

a(2(r2)(x))= c(2(r)(x))= b(x),

b(2(r2)(x))= a(2(r)(x))= c(x),

c(2(r2)(x))= b(2(r)(x))= a(x),

whence a(yn) > a(y′′
n ) > a(y′

n), and Wn = X̂k(yn), X̂k(y′
n), X̂k(y′′

n ) are pairwise
noncommensurable by Proposition 5.1. �

Remark 5.3. Let M be an element of Mg,k with canonical decomposition T.
Suppose that the arrangement of compact and noncompact tetrahedra around the
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compact edge of T is sufficiently irregular and let S = {si1, . . . , sih } be a set of
slopes for M such that sil is not equivalent to sim for l 6=m. The same argument used
to prove Theorem 5.2 shows that the Dehn fillings of M which are geometrically
similar to M(S) are expected to be noncommensurable with each other.
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