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Let A be a unital separable amenable C∗-algebra and let C be a unital C∗-
algebra with a certain infinite property. We show that two full monomor-
phisms h1, h2 : A → C are approximately unitarily equivalent if and only if
[h1] = [h2] in KL(A, C). Let B be a nonunital but σ -unital C∗-algebra for
which M(B)/B has a certain infinite property. We prove that two full es-
sential extensions are approximately unitarily equivalent if and only if they
induce the same element in KL(A, M(B)/B). The set of approximately
unitarily equivalence classes of full essential extensions forms a group. If A
satisfies the Universal Coefficient Theorem, the group can be identified with
KL(A, M(B)/B).

1. Introduction

The study of C∗-algebra extensions originated in the study of essentially normal
operators on the infinite-dimensional separable Hilbert space. The original Brown–
Douglas–Fillmore theory gives a classification of essential normal operators via
certain Fredholm related indices (see [Brown et al. 1973b]). Later the theory was
expanded to yield a classification of essential extensions of C(X) by compact op-
erators [Brown et al. 1973a; Brown 1984]. The study of C∗-algebra extensions
developed into Kasparov’s KK -theory and its applications can be found not only
in operator theory and operator algebras but also in differential geometry and non-
commutative geometry.

Let
0→ B→ E→ A→ 0

be an essential extension of A by B. The extension is determined by a monomor-
phism τ : A→ M(B)/B, the Busby invariant. When B is a σ -unital stable C∗-
algebra, KK 1(A, B) gives a complete classification of such essential extensions, up
to stable unitary equivalence. However, KK 1(A, B) gives little information, if any,
about unitary equivalence classes of these mentioned extensions when B 6= K in
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general. There are examples in which KK 1(A, B)={0} but inequivalent nontrivial
extensions exist [Lin 1998, Example 0.6]. There are also examples in which there
are infinitely many inequivalent classes of trivial extensions [Lin 1995b, 7.4 and
7.5]. When B is not stable, KK 1(A, B) certainly should not be used to understand
unitary equivalence classes of the essential extensions mentioned above.

There are a number of results in classification of essential extensions (up to
unitary equivalence or approximate unitary equivalence) when B 6=K. Kirchberg’s
results [1996] on extensions in which B is a nonunital purely infinite simple C∗-
algebra show that KK 1(A, B) can be used to compute unitary equivalence classes
of those extensions. If B is a nonunital but σ -unital simple C∗-algebra with contin-
uous scale (see item (6) on page 391), then M(B)/B is simple. A classification of
essential extensions of a separable amenable C∗-algebra A by B (up to approximate
unitary equivalence) was obtained in [Lin 2005b] (for some special cases in which
A = C(X), a classification up to unitary equivalence was obtained in [Lin 1995a;
1995b; 1997]. In this case, B may not be stable, so KK 1(A, B) is not used as
an invariant for essential extensions. Results about extensions of AF-algebras can
be found in [Brown and Elliott 1982; Goodearl and Handelman 1982; Elliott and
Handelman 1989].

Here we study full essential extensions. These are essential extensions τ : A→
M(B)/B such that τ(a) is a full element for each nonzero element a ∈ A. Since
the Calkin algebra M(K)/K is simple, all essential extensions by K are full. If B is
a nonunital but σ -unital purely infinite simple C∗-algebra, M(B)/B is also simple.
Therefore essential extensions by those C∗-algebras are all full. The homogeneous
extensions of A by C(X)⊗K studied by Pimsner, Popa and Voiculescu [Pimsner
et al. 1979; 1980] are all full extensions. In these three cases, B is stable. There
are nonstable, nonunital but σ -unital C∗-algebras that have continuous scale. In
that case essential extensions by these C∗-algebras are also full. Furthermore, if
A is a unital simple C∗-algebra and if the monomorphism τ : A→ M(B)/B is
unital, then the essential extension induced by τ is always full for any nonunital
C∗-algebra B.

With a technical condition on M(B)/B, we show that two full essential ex-
tensions are approximately unitarily equivalent if they induce the same element
in KL(A,M(B)/B) (see Theorem 2.5), provided that A is amenable and sep-
arable. When A is assumed to satisfy the (Approximate) Universal Coefficient
Theorem, we show that there is a bijective correspondence between approximate
unitary equivalence classes of essential and full extensions and KL(A,M(B)/B).
The advantage of studying these full extensions is that full extensions (in these
cases) are “approximately absorbing”. For stable B, we show that KK 1(A, B)
classifies the unitary equivalence classes of full essential extensions. In this case,
full extensions are “purely large” in the sense of [Elliott and Kucerovsky 2001].
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Section 2 describes the main results in this paper and introduces the technical
conditions P1, P2 and P3. Section 3 shows that the corona algebras M(B)/B
of many stable C∗-algebras satisfy these conditions. In Section 4, we show that
there are examples of nonstable, nonunital and σ -unital C∗-algebras B for which
M(B)/B has properties P1, P2 and P3. In Section 5 we give a few modified ver-
sions of some known results concerning amenable contractive completely positive
linear maps. Section 6 discusses certain commutants in the ultrapower of corona
algebras. In Section 7 we prove Theorem 2.5, mentioned above. In Section 8 we
prove other main results described in Section 2.

Conventions and definitions. (1) Ideals are always closed and two-sided.

(2) Let A be a C∗-algebra and let p, q ∈ A be two projections. We write p ∼ q if
there exists v ∈ A such that v∗v = p and vv∗ = q .

(3) Let A and B be C∗-algebras and let L1, L2 : A → B be linear maps. Take
F⊂ A and ε > 0. We write L1 ∼ε L2 on F if

‖L1(a)− L2(a)‖< ε for all a ∈ F.

(4) Let A and B be C∗-algebras. A contractive completely positive linear map
L : A→ B is said to amenable if for ε > 0 and any finite subset F⊂ A, there exists
an integer n > 0 and two contractive completely positive linear maps φ : A→ Mn

and ψ : Mn→ A such that

ψ ◦φ ∼ε L on F.

(5) A C∗-algebra A is said to be amenable (or nuclear) if idA is amenable.

(6) Let B be a nonunital but σ -unital simple C∗-algebra. B is said to have con-
tinuous scale if there exists an approximate identity {en} of B with en+1en = en

such that, for each nonzero element b ∈ B, there exists an integer n > 0 for which
en+m − en . b for all m; see [Lin 2004b].

Let e ∈ B be a nonzero projection and Te(B) the set of all traces t on B for
which t (e) = 1. Let B be a separable nonunital simple C∗-algebra with real rank
0, stable rank 1 and weakly unperforatated K0(B). If supn{t (en)} is a continuous
function on Te(B), then B has continuous scale.

(7) Let {An} be a sequence of C∗-algebras. Denote by c0({An}) the C∗ direct sum
of {An} and by l∞({An}) the C∗- product of {An}. Let q∞({An}) be the quotient

q∞({An})= l∞({An})/c0({An}).

When A = An for all n, we write c0(A), l∞(A) and q∞(A) for simplicity.
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(8) For each integer n > 0, define fn ∈ C0((0,∞)) by

(1-1) fn(t)=


1 if t ≥ 1/n;

linear if 1/(n+ 1)≤ t < 1/n;

0 if 0≤ t < 1/(n+ 1).

(9) An element a in a C∗-algebra A is said be full if the ideal generated by a is A
itself. Let A and B be C∗-algebras and let h : A→ B be a monomorphism. The
monomorphism h is said to be full if h(a) is full for every nonzero a ∈ A.

(10) Let a ∈ A+ be a nonzero element, we write Her(a) for the hereditary C∗-
subalgebra a Aa generated by a.

2. Main results

Property P1. Let B be a unital C∗-algebra. We say that B has property P1 if for
every full element b ∈ B there exist x, y ∈ B such that xby = 1. If b is positive, it
is easy to see that xby = 1 implies that there is z ∈ B such that z∗bz = 1.

It is obvious that an element b is full if and only if b∗b is full. It follows that B
has property P1 if and only if for every full element 0 ≤ b ≤ 1, there exists x ∈ B
such that x∗bx = 1.

Every unital purely infinite simple C∗-algebra has property P1.
Many other unital C∗-algebras have property P1. Let A be a unital C∗-algebra

and B = A⊗K. In the next section we will show that M(B) and M(B)/B have
property P1 for many such B. In Section 3 we will show that, for some nonstable
(but σ -unital) C∗-algebra C , M(C) and M(C)/C can also have property P1.

Property P2. Let B be a unital C∗-algebra. We say that B has property P2 if
1 is proper infinite, that is, if there is a projection p 6= 1 and partial isometries
w1, w2 ∈ B such that w∗1w1 = 1, w1w

∗

1 = p, w∗2w2 = 1 and w2w
∗

2 ≤ 1− p.
In this case it is easy to see that, for each integer n ≥ 2, there are mutually

orthogonal and mutually equivalent projections s11, s22, . . . , snn such that 1B ≥∑n
i=1 si i and there exists an isometry Z ∈ B such that Z∗Z = 1B and Z Z∗ = s11.

Let C = s11 Bs11. Then we may write Mn(C)⊂ B.

It is clear that if B is stable then M(B) and M(B)/B have property P2.

Proposition 2.1. Let B be a unital C∗-algebra having property P1. If B contains
two mutually orthogonal full elements, B has property P2.

Proof. Let 0≤ a, b≤ 1 be two mutually orthogonal full elements in B. Since B has
property P1, there are x, y ∈ B such that x∗ax = 1 and y∗by = 1. Set v1 = a1/2x
and v2 = b1/2 y. Then v∗i vi = 1 and s11 = v1v

∗

1 and s22 = v2v
∗

2 are two projections.
Thus B has property P2. �
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Every purely infinite C∗-algebra (not necessary simple; see [Kirchberg and
Rørdam 2000]) has properties P1 and P2.

Property P3. Let B be a unital C∗-algebra. We say that B has property P3 if,
for any separable C∗-subalgebra A ⊂ B, there exists a sequence of sequences of
elements {{a(i)n } : i = 1, 2, . . . } in B satisfying these properties:

(a) 0≤ a(i)n ≤ 1 for all i and n;

(b) limn→∞
∥∥a(i)n c− ca(i)n

∥∥= 0 for all iand all c ∈ A;

(c) limn→∞
∥∥a(i)n a( j)

n
∥∥= 0 if i 6= j ;

(d) {a(i)n } is a full element in l∞(B), for all i .

Even though property P3 looks more complicated than P1 and P2, it will be
shown in Proposition 3.13 that M(B)/B has property P3 for all B =C⊗K, where
C is a unital C∗-algebra, for all B having continuous scale, and for many other
nonunital σ -unital C∗-algebras B.

Proposition 2.2. Let B =C⊗C1, where C1 is a unital separable amenable purely
infinite simple C∗-algebra. Then B has properties P1, P2 and P3.

Let B be a nonunital but σ -unital C∗-algebra and let A be a unital separable
amenable C∗-algebra. We study essential extensions of the following form:

(2-1) 0→ B→ E→ A→ 0.

Using the Busby invariant, we study monomorphisms τ : A→ M(B)/B. We will
only consider the case in which the corona algebra M(B)/B has properties P1, P2
and P3.

Definition 2.3. An essential extension τ : A→ M(B)/B is said to be full if τ is a
full monomorphism. An extension τ is weakly unital if τ is unital monomorphism.
If A is a unital simple C∗-algebra then every weakly unital essential extension is
full. If M(B)/B is simple, every essential extension is full.

Definition 2.4. Let A be a unital separable C∗-algebra and C a unital C∗-algebra.
Let h1, h2 : A → C be homomorphisms. We say h1 and h2 are approximately
unitarily equivalent if there exists a sequence of partial isometries un ∈C such that
u∗nh1(1A)un = h2(1A), unh2(1A)u∗n = h1(1A) and

lim
n→∞

∥∥ad un ◦ h1(a)− h2(a)
∥∥= 0 for all a ∈ A.

Note that if both h1 and h2 are unital, the un can be chosen to be unitaries.
Let B be a nonunital but σ -unital C∗-algebra. Two essential extensions of A

by B are said to be approximately unitarily equivalent if the corresponding Busby
invariants τ1, τ2 : A→ M(B)/B are approximately unitarily equivalent.
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Recall that τ : A→M(B)/B is trivial if there is a monomorphism h : A→M(B)
such that π ◦ h = τ , where π : M(B)→ M(B)/B is the quotient map. In the case
that B = C ⊗ K, where C is a σ -unital C∗-algebra, the invariants τ1 and τ2 are
stably unitarily equivalent if there exists a trivial extension τ0 : A→ M(B)/B and
a unitary u ∈ M2(M(B)/B) such that ad u ◦ (τ1⊕ τ0)= τ2⊕ τ0.

Let Ext(A, B) be the set of stable unitary equivalence classes of extensions
of the form (2-1). When A is a separable amenable C∗-algebra, Ext(A, B) can
be identified with KK 1(A, B). When A satisfies the Universal Coefficient The-
orem, KK 1(A, B) is computable. However, as mentioned in the introduction,
KK 1(A, B) may not provide any useful information about unitary equivalence of
extensions in general. In particular, when B is not stable, KK 1(A, B) should not
be used to describe unitary equivalence classes of essential extensions.

The first main result of this paper is the following:

Theorem 2.5. Let A be a unital separable amenable C∗-algebra and let B be a
nonunital but σ -unital C∗-algebra such that M(B)/B has properties P1, P2 and
P3. Two full monomorphisms τ1, τ2 : A→ M(B)/B are approximately unitarily
equivalent if and only if

[τ1] = [τ2] in KL(A,M(B)/B).

We will describe KL(A,C) in Definition 7.1. Theorem 2.5 is an easy corollary
of the next theorem.

Theorem 2.6. Let A be a unital separable amenable C∗-algebra and let B be
a unital C∗-algebra having properties P1, P2 and P3. Two full monomorphisms
h1, h2 : A→ B are approximately unitarily equivalent, i.e., there exists a sequence
of partial isometries un ∈ B such that u∗nun = h1(1A), unu∗n = h2(1A) and

lim
n→∞

ad un ◦ h1(a)= h2(a) for all a ∈ A,

if and only if [h1] = [h2] in KL(A, B).

Corollary 2.7. Let A be a unital separable amenable simple C∗-algebra and B a
nonunital but σ -unital C∗-algebra such that M(B)/B has properties P1, P2 and
P3. Suppose that τ1, τ2 : A→ M(B)/B are two weakly unital essential extensions.
Then τ1 and τ2 are approximately unitarily equivalent if and only if

[τ1] = [τ2] in KL(A,M(B)/B).

Definition 2.8. Let A be a unital separable amenable C∗-algebra and B a unital
C∗-algebra having property P2. Fix a full monomorphism jo : A→O2→ B. (Note
that P2 implies such full monomorphisms do exist.) Let h1, h2 : A→ B ⊗K be
homomorphisms. We write h1∼ h2 if h1⊕ jo is approximately unitarily equivalent
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to h2⊕ jo. Denote by H(A, B) the set of ∼-equivalence classes of homomorphisms
A→ B⊗K.

Proposition 2.9. Let A be a unital separable amenable C∗-algebra and B a unital
C∗-algebra having property P2. Then H(A, B) is a group with zero element [ jo].

Corollary 2.10. Let A be a unital separable amenable C∗-algebra and B a unital
C∗-algebra having properties P1, P2 and P3. Denote by H f (A, B) the set of
approximate unitary equivalence classes of full monomorphisms from A to B⊗K.
Then H f (A, B) is a group with zero element [ jo].

Definition 2.11. Let A be a unital separable amenable C∗-algebra and B a nonuni-
tal but σ -unital C∗-algebra. Denote by Ext f

ap(A, B) the approximate unitary equiv-
alence classes of full essential extensions. Denote by τo : A→M(B)/B an essential
extension that factors through O2. Note that [τo] = 0 in KL(A,M(B)/B). Sup-
pose that M(B)/B has properties P1, P2 and P3. By Corollary 2.7, τo is unique
up to approximately unitary equivalence, Let τ1, τ2 : A → M(B)/B be full es-
sential extensions. Since M(B)/B has property P2, there are partial isometries
z1, z2 ∈ M(B)/B such that z∗1z1 = 1M(B)/B , z1z∗1 = τ1(1A), z∗2z2 = 1M(B)/B and
z2z∗2 = τ2(1A). Define [τ1] + [τ2] = [ad z1 ◦ τ1⊕ ad z2 ◦ τ2].

Note this is well defined, since [τo] = 0 in KL(A.M(B)/B) and ad z1 ◦ τ ⊕

ad z2 ◦ τo is approximately unitarily equivalent to τ by Corollary 2.7. With this
addition Ext f

ap(A, B) forms a semigroup.

By Corollary 2.10, we have:

Corollary 2.12. Let A be a unital separable amenable C∗-algebra and B a nonuni-
tal but σ -unital C∗-algebra for which M(B)/B has properties P1, P2 and P3. Then
Ext f

ap(A, B) is a group with zero element [τo], where τo : A→ M(B)/B is a full
monomorphism that factors through O2.

If, furthermore, A satisfies the so-called Approximate Universal Coefficient
Theorem (see Definition 7.1 below), we can say more:

Theorem 2.13. Let A be a unital separable amenable C∗-algebra satisfying the
Approximate Universal Coefficient Theorem and let B be a nonunital but σ -unital
C∗-algebra such that M(B)/B has properties P1, P2 and P3. Then there is a
bijection 0 from Ext f

ap(A, B) onto KL(A,M(B)/B).

The Approximate Universal Coefficient Theorem will be briefly reviewed in
Definitions Definition 7.1 and Definition 8.1. Note that, when B is not stable,
Ki (M(B)/B) is very different from Ki (SB) [Lin 2005b, 1.7].

In the special case that B = C ⊗K, where C is a unital C∗-algebra, we have:

Theorem 2.14. Let A be a unital separable amenable C∗-algebra and set B =
C ⊗K, where C is a unital C∗-algebra such that M(B)/B has the property P1.
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Two full essential extensions τ1, τ2 : A→ M(B)/B are unitarily equivalent if and
only if

[τ1] = [τ2] in KK 1(A, B).

If x ∈ KK 1(A, B), there is a full essential extension τ : A→ M(B)/B such that
[τ ] = x.

Theorem 2.15. Let A be a unital separable amenable C∗-algebra and set B =
C ⊗K, where C is a unital C∗-algebra for which the tracial state space T (C) is
nonempty. Suppose that there is d > 0 for which C satisfies the following:

(1) If p, q ∈ B are two projections, the condition t (p) > d+ t (q) for all t ∈ T (C)
implies q ∼ p in B.

(2) If b ∈ Mk(C) is such that 1≥ b ≥ 0 and τ(b) > α+ d for all τ ∈ T (A), there
is a projection e ∈ bMk(A)b such that τ(e) > α for all τ ∈ T (A).

Then two full essential extensions τ1, τ2 : A→ M(B)/B are unitarily equivalent if
and only if

[τ1] = [τ2].

Remark 2.16. In the case that B = K, Theorem 2.14 is the classical Brown–
Douglas–Fillmore theorem, and M(K)/K is a purely infinite simple C∗-algebra. It
has property P1 (as well as P2 and P3) and every essential extension is full. Let X
be a compact metric space with finite dimension d . When B=C(X)⊗K, M(B)/B
has property P1 (Corollary 3.9). Theorems 2.14 and 2.15 deal with the extensions
studied by Pimsner, Popa and Voiculescu [Pimsner et al. 1979; 1980]. The case
where B is a nonunital purely infinite simple C∗-algebra was proved by Kirchberg.

Theorem 2.14 is closely related to a result of Elliott and Kucerovsky [2001]; see
Remark 8.7 for discussion.

3. C∗-algebras have properties P1, P2 and P3

Let A be a unital C∗-algebra. Denote by T (A) (or T if no confusion exits) the set
of tracial states on A. If t ∈ T (A), we extend t to a trace (t ⊗ T r ) on A⊗Mn by
defining t ((ai j )=

∑n
i=1 t (ai i ). We further use t for the trace defined on a dense set

of A⊗K. If a ∈ A⊗K+, then t (a) is well defined (although it could be infinity).
Suppose that hn ∈ A⊗K+ is such that hn↗ h ∈ A∗∗. Then t (h)= limn→∞ t (hn).
These conventions will be used in this section.

Lemma 3.1. Let A be a unital C∗-algebra and I a σ -unital ideal of A. If a ∈
(A/I )+ is a full element, there exists a full element b ∈ A+ such that π(b) = a,
where π : A→ A/I is the quotient map.
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Proof. This result is certainly known, but we prove it for completeness. Since
a ∈ (A/I )+ is full, there are x1, x2, . . . , xm ∈ A/I such that

m∑
i=1

x∗i axi = 1.

Hence there are c ∈ A+ and y1, y2, . . . , ym ∈ A such that π(c) = a and 1 −∑m
i=1 y∗i cyi ∈ I . Let e be a strictly positive element of I . Put b = c+ e. Denote

by J the ideal generated by b. Since b ≥ c and b ≥ e, both c and e are in J . It
follows that I ⊂ J . Since

∑m
i=1 y∗i cyi ∈ J , it follows that 1 ∈ J . Thus J = A, and

b is full. �

Corollary 3.2. Let A be a unital C∗-algebra and I a σ -unital ideal of A. If A has
property P1, then so does A/I .

Lemma 3.3. Let A be a unital C∗-algebra and let B = A ⊗ K. Suppose that
a ∈M(B) is an element for which b=π(a) is full in M(B)/B, where π :M(B)→
M(B)/B is the quotient map. Then a is full in M(B). If M(B)/B has property P1,
so does M(B).

Proof. There are x1, x2, . . . , xm y1, . . . , ym ∈ M(B)/B such that
∑m

i=1 xi byi = 1.
Then there are w1, w2, . . . , wm , z1, z2, . . . , zm ∈ M(B) such that

1−
m∑

i=1

wi azi ∈ B.

Let {ei j } be a system of matrix units for K. Put En =
∑n

i=1 ei i . Then {En} is an
approximate identity consisting of projections. It follows that there exists n > 0
such that ∥∥∥∥ m∑

i=1

(1−En)wi azi (1−En)− (1−En)

∥∥∥∥< 1
2 .

Thus there exists s ∈ (1−En)M(B)(1−En) such that
m∑

i=1

s∗(1−En)wi azi (1−En)s = 1− En.

But there exists V ∈ M(B) such that V ∗(1−En)V = 1. Therefore a is full.
For the last statement, we take m = 1 in the argument above. �

Proposition 3.4. Let B be a unital purely infinite simple C∗-algebra. Then M(B⊗
K) and M(B⊗K)/A⊗K have property P1.

Proof. It follows from [Zhang 1992] that M(B⊗K)/(B⊗K) is purely infinite and
simple. Therefore M(B ⊗K)/B ⊗K has property P1. Now Lemma 3.3 implies
that M(B⊗K) has property P1. �
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Theorem 3.5. Let B = A⊗K, where A is a unital separable C∗-algebra for which
T (A) 6=∅. Let d > 0. Suppose A satisfies the following:

(1) If p, q ∈ B are two projections then t (p) > d + t (q) for all t ∈ T (A) implies
p - q in B.

(2) If 1 ≥ b ≥ 0 in Mk(A) such that τ(b) > α + d for all τ ∈ T (A) (and some
α > 0), then there is a projection e ∈ bMk(A)b such that τ(e) > α for all
τ ∈ T (A).

Then M(B) and M(B)/B have property P1.

Proof. Let b ∈M(B) be a full element. Without loss of generality, we may assume
that 0≤ b ≤ 1. Let {ei j } be a system of matrix units for K and set En =

∑n
k=1 ei i .

Then EnbEn converges to b in the strict topology. Furthermore b1/2 Enb1/2 in-
creasingly converges to b in the strict topology.

Since b is full, there are x1, x2, . . . , xm ∈ M(B) such that
m∑

k=1

x∗i bxi = 1.

Let τ ∈ T (A) be a tracial state. We extend τ to B+ and then to M(B)+ in a usual
way. Let T be the set of all (densely defined) traces on M(B)+ whose restrictions
to A are tracial states. With the usual weak *-topology, T is a compact convex set.

Because b1/2x∗i xi b1/2
≤ ‖xi‖

2b, one has

τ(x∗i bxi )= τ
(
b1/2x∗i xi b1/2)

≤ ‖xi‖
2τ(b)

for all τ ∈ T (A) Therefore
m∑

i=1

τ(x∗i bxi )≤

( m∑
i=1

‖xi‖
2
)
τ(b)

for all τ ∈ T (A). Since τ(1)=∞, it follows that τ(b)=∞. Because b1/2 Enb1/2
↗

b and because T is compact, by Dini’s theorem, we have τ(b1/2 Enb1/2)→∞ uni-
formly on T . Since τ(EnbEn)= τ(b1/2 Enb1/2) for all τ ∈T , we have τ(EnbEn)↗

∞ uniformly on T . There is n(1)≥ 1 such that

τ(En(1)bEn(1)) > 1+ 2d for all τ ∈ T .

Let A1 be the hereditary C∗-subalgebra of B generated by En(1)bEn(1). It follows
from assumption (2) that there is a projection p1 ∈ A1 such that τ(p1) > 1+d for
all τ ∈ T . Thus there is v1 ∈ B such that v∗1v1 ≤ p1 and v1v

∗

1 = E1. There are
nonnegative continuous functions f, g ∈ C0((0, 2‖b‖] such that g f = f and∥∥ f (En(1)bEn(1))p1 f (En(1)bEn(1))− p1

∥∥< 1
4 .
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It follows by [Effros 1981, A8] that there is a projection

q1 ∈ f (En(1)bEn(1))B f (En(1)bEn(1))

such that q1 is unitarily equivalent to p1. We conclude that g(En(1)bEn(1))q1= q1,
since g f = f . By functional calculus, we see that there is f1 ∈ A1 such that

f1 En(1)bEn(1) f1 = g.

Thus we obtain z1 ∈ En(1)B En(1) such that

z∗1bz1 = z∗1 En(1)bEn(1)z1 = E1.

Note that τ
(
(1−En(1))bEn(1)

)
= τ

(
bEn(1)(1−En(1))

)
= 0. It follows that

τ
(
(1−En(1))b(1−En(1))

)
= τ

(
(1−En(1))b

)
.

Since τ(En(1)bEn(1)) <∞ for all τ ∈ T , we conclude that

τ
(
(1−En(1))b(1−En(1))

)
=∞ for all τ ∈ T .

By the earlier argument we obtain n(2)>n(1) and z2∈(En(2)−En(1))B(En(2)−En(1))

such that

z∗2bz2 = z∗2(En(2)− En(1))b(En(2)− En(1))z2 = E2− E1.

Continuing this fashion, we obtain a sequence {n(k)} with n(k+1) > n(k) and
zk ∈ (En(k+1)− En(k))B(En(k+1)− En(k)) such that

z∗k bz∗k = z∗k(En(k+1)− En(k))b(En(k+1)− En(k))zk = Ek+1− Ek,

for k= 1, 2, . . . . Hence z=
∑
∞

k=1 zk ∈M(B), since the sum converges in the strict
topology. Furthermore,

z∗bz = 1.

This shows that M(B) has property P1. By Corollary 3.2, M(B)/B also has prop-
erty P1. �

Corollary 3.6. Let A be a unital AF-algebra and take B = A⊗K. Then M(B) and
M(B)/B have property P1.

Proof. Clearly A satisfies (1) in Theorem 3.5 with any d > 0. To see that it satisfies
(2), we let 1 ≥ b ≥ 0 be an element in Mn(A) such that τ(b) > α + d for all
τ ∈ T . Set C = bMn(A)b and let {en} be an approximate identity for C consisting
of projections. Then ‖enben− b‖→ 0 as n→∞. Since 0≤ b ≤ 1, it follows that
τ(en) > α+ d for some n > 0 and all τ ∈ T . �

The proof of the corollary implies the following:
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Corollary 3.7. Let A be a unital separable C∗-algebra with real rank zero for
which T (A) 6=∅ and which satisfies (1) in Theorem 3.5. Then M(B) and M(B)/B
have property P1, where B = A⊗K.

Corollary 3.8. Let B = A⊗K, where A is a unital simple C∗-algebra with real
rank zero, stable rank one and weakly unperforated K0(A). Then both M(B) and
M(B)/B have property P1.

Corollary 3.9. Let A = C(X), where X is a compact Hausdorff space with finite
covering dimension d. Then M(A⊗K) and M(A⊗K)/(A⊗K) have property P1.

Proof. Suppose e, f ∈ A⊗K are projections. We may assume that e, f ∈Mn(C(X))
for some integer n > 0. Suppose that τ(e) > τ( f )+ d + 1 for all t ∈ T (A). It
follows that for each x ∈ X , the rank of e(x) is greater than d + 1 + the rank of
f (x). It follows from [Husemoller 1966, 8.1.2 and 8.1.6] (see [Blackadar 1998,
6.10.3(d)]) that f . e. So Theorem 3.5(1) holds (for (d + 1)/2).

For (2), let 1≥ b≥ 0 be an element in Mk(C(X)) for which τ(b) > α+ (d+1).
Let fn be as in (1-1). For some large n, we have τ( fn(b)) > α + (d + 1) for all
τ ∈ T (A). Thus, for each ξ ∈ X , the rank of fn(b)(ξ) is at least α+ (d + 1). By
[Blackadar et al. 1991, Lemma C], there is a projection e ∈ bMk(A)b such that
the rank of e(ξ) is greater than α for all ξ ∈ X . It follows that τ(e) > α for all
τ ∈ T (A). �

To discuss property P2, we begin with an easy observation:

Proposition 3.10. Let B be a unital C∗-algebra having property P2. For any
integer n > 0, there are s11, s22, . . . , snn such that 1B ≥

∑n
i=1 si i and there exists

an isometry Z ∈ B such that Z Z∗ = e11. Moreover:

(1) If for some n ≥ 2, 1B =
∑n

i=1 si i , then there exists a unital embedding from
On to B.

(2) There is a unital embedding from O∞ to B.

(3) There exists a full embedding j : O2→ B.

Conversely, if there is a unital embedding of O∞ in B, then B has property P2.
Furthermore, if B admits a full embedding from O2, then B has property P2.

Proposition 3.11. (1) Let A be a unital C∗-algebra and B = A⊗K. Then M(B)
and M(B)/B has property P2.

(2) Let A be a nonunital σ -unital simple C∗-algebra which has continuous scale.
Then M(A)/A has property P2

(3) Let A be a unital purely infinite simple C∗-algebra and B = C0(X, A), where
X is a locally compact Hausdorff space. Then M(B) and M(B)/B have
property P2.
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Proof. For (3), we note there is a unital embedding from O∞ to A and the constant
maps from X into A are in Cb(X, A)= M(B). �

Now we turn to property P3. Every unital purely infinite simple C∗-algebra has
property P3, by [Lin 2005b, 2.6]. Therefore, if B is a nonunital but σ -unital simple
C∗-algebra with continuous scale, then M(B)/B has property P3.

Proposition 3.12. Let B be a unital C∗-algebra having property P1. Suppose that
0≤ a, b ≤ 1, where ab= a and a is full. Then there exists x ∈ B with ‖x‖ ≤ 1 and

x∗bx = 1.

Note that the proposition includes the case that a is a full projection.

Proof. There is z ∈ B such that z∗az = 1. Then a1/2zz∗a1/2
= p must be a

projection. Moreover, p ∈ Her(a). Therefore pb = p. Put v = a1/2z. Then
v∗v = 1 and vv∗ = p. In particular, ‖v‖ = 1. Now

1≥ ‖b‖v∗v ≥ v∗bv ≥ v∗ pv = 1.

We conclude that v∗bv = 1. �

Proposition 3.13. Let A be a unital C∗-algebra and set B= A⊗K. Then M(B)/B
has property P3.

Proof. Let π : M(B) → M(B)/B be the quotient map and D a separable C∗-
algebra. Let {ei, j } be a system of matrix units for K. Set En =

∑n
i=1 ei,i . By

[Pedersen 1979, 3.12.14] and the proof of [Lin 2001, 5.5.3], there is a sequence
{en} ⊂ Conv{Ek : k = 1, 2, . . . } such that

(3-1) en+1en = en and ‖ena− aen‖→ 0 as n→∞

for all a ∈ D.
Suppose that en =

∑k(n)
i=1 αi Ei , where the αi are nonnegative scalars such that∑k(n)

i=1 αi = 1. There exist 0≤ β j ≤ 1 such that en =
∑k(n)

i=1 β j e j j . Since, for each i ,

‖emei i − ei i‖→ 0 as m→∞,

there is N (n)> 0 such that, for each m> N (n), em =
∑k(m)

i=1 β
(m)
i ei i with βk(n)+1>

1
2 . It follows that

(em − en)ek(n)+1,k(n)+1 =

( k(m)∑
k(n)+1

β
(m)
i ei i +

k(n)∑
i=1

(β
(m)
i −β

(n)
i )ei i

)
ek(n)+1,k(n)+1

=

( k(m)∑
k(n)+1

β
(m)
i ei i

)
ek(n)+1,k(n)+1 = β

(m)
i ek(n)+1,k(n)+1.
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By passing to a subsequence if necessary we may as well assume that

(en+1− en)ek(n)+1,k(n)+1 = λnek(n)+1,k(n)+1

for some λn >
1
2 . Now let F ⊂ N be an infinite subset. Then

bF =
∑
n∈F

(en+1− en)≥
1
2

∑
n∈F

ek(n)+1,k(n)+1.

Thus bF is a full positive element in M(B). Suppose that {Fn} is a sequence of
infinite subsets of N. By Proposition 3.12, the image π

(
{
∑

j∈Fn
ek( j)+1,k( j)+1}

)
is

full in l∞(M(B)/B). So {π(bFn )} is full in l∞(M(B)/B).
By (3-1), π(bF ) commutes with π(d) for each d ∈ D. Also by (3-1)

(en+1− en)(em+1− em)= 0 if |n−m| ≥ 2.

It follows that bF bF ′ = 0 if |n−m| ≥ 2 for any n ∈ F and any m ∈ F ′. Note that
one may write bF =

∑
n∈S(F) λnen,n , where each 0< λn ≤ 1 is a positive number

and S(F) is an infinite subset of N.
It is easy to find a family of (disjoint) infinite subsets {Fi, j : i, j = 1, 2, . . . } of

N such that |n −m| ≥ 2 for any n ∈ Si, j and any m ∈ Si ′, j ′ , if i 6= i ′ or j 6= j ′.
Define Si, j = S(Fi, j ) as above. We note that Si, j ∩ Si ′, j ′ = ∅ if i 6= i ′ or j 6= j ′.
Write bi, j for bFi, j . It follows that M(B)/B has property P3. �

4. Nonstable cases

In [Kirchberg and Rørdam 2000] the notion of purely infinite C∗-algebras was
extended to nonsimple C∗-algebras. Let C1 be a unital C∗-algebra and C2 be a
unital separable purely infinite simple C∗-algebra. Then C1⊗C2 is purely infinite
[Kirchberg and Rørdam 2000, 4.5]. Therefore, for any unital C∗-algebra C the
C∗-algebra B = C ⊗O∞ has properties P1 and P2 as well as P3.

Proof of Proposition 2.2. From the preceding paragraph, we know that B is purely
infinite, and so has properties P1 and P2. Let A be a separable C∗-subalgebra of B.
There is a separable C∗-subalgebra C0⊂C such that A⊂C0⊗C1. It follows from
[Kirchberg and Phillips 2000] that C1⊗ O∞ ∼= C1. By [Rørdam 2002, 7.2.6] and
[Kirchberg and Phillips 2000, 3.12], there is a sequence of unital monomorphisms
φn : O∞→ C0⊗C1 such that

lim
n→∞
‖φn(x)a− aφn(x)‖ = 0 for all a ∈ C0⊗C1.

Let {ek} be a sequence of nonzero mutually orthogonal projections in O∞. Define
a(i)n = φn(ei ), n, i = 1, 2, . . . . One checks that a(i)n satisfies the requirements for
property P3. �
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There are σ -unital but nonstable separable C∗-algebras B for which the corona
C∗-algebra M(B)/B has properties P1 and P2 as well as P3. For example, when B
has continuous scale, M(B)/B is a purely infinite simple C∗-algebra [Lin 2004b].
So in those cases M(B)/B has all three properties. There are other nonstable
separable C∗-algebras B for which B has properties P1, P2 and P3.

To make a point, we will present a very simple example of a nonstable σ -unital
C∗-algebra B for which M(B)/B is not simple but both M(B) and M(B)/B have
properties P1, P2 and M(B)/B has P3. Many such examples can be constructed.

Proposition 4.3 is not needed in Example 4.4 but will be used again later.

Lemma 4.1. Let A be a unital C∗-algebra and let 0 ≤ a ≤ 1 be an element in A.
Suppose that there is x ∈ A such that x∗ax = 1. Then there is N > 0, depending
on ‖x‖ but not on A or a, for which there is y ∈ A with ‖y‖ ≤ 1 such that

y∗ fN (a)y = 1.

In particular, fN (a) is full, where fN is as defined in (1-1).

Proof. Let q = a1/2xx∗a1/2. Then q is a projection. There exists k > 0 depending
on ‖x‖ such that

‖ fk(t)t1/2
− t1/2

‖<
1

16‖x‖2
for all t ∈ [0, 1],

where fk is as in (1-1). Then

‖ fk(a)q − q‖ =
∥∥( fk(a)a1/2

− a1/2)x∗xa1/2∥∥< 1
16 .

It follows from [Effros 1981, A8] that there is a projection p ∈ fk(a)A fk(a) such
that

‖q − p‖< 1
2 .

Thus there exists w ∈ A such that w∗w = 1 and ww∗ = p. Choose N = k + 1.
Then fN (a)q = q , showing that

w∗ fN (a)w = 1. �

Lemma 4.2. Let A be a unital C∗-algebra and let a ∈ A with 0 ≤ a ≤ 1 be a full
element. Suppose that there are x1, x2, . . . , xm ∈ A such that

m∑
i=1

x∗i axi = 1.

Set r =
∑m

i=1 ‖xi‖
2. Suppose also that 1Mm(A) . 1. Then there exists an integer

N > 0, depending on r but not on A on a, such that fN (a) is full. Moreover, there
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are y1, y2, . . . , ym ∈ A such that
∑m

i=1 ‖yi‖
2
≤ 1 and

m∑
i=1

y∗i fN (a)yi = 1.

Proof. Let

X =


x1 x2 · · · xm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 and b =


a 0 · · · 0
0 a · · · 0
...
...
. . .

...

0 0 · · · a.


Since 1Mm(A).1, one obtain Y ∈Mm(A)with ‖Y‖=1 and Y ∗ diag(1, 0, . . . , 0)Y =
1Mm(A). Note that 0≤ b ≤ 1 and XbX∗ = diag(1, 0, . . . , 0). Thus

Y ∗XbX∗Y = 1Mm(A).

We compute that ‖X∗Y‖ ≤ r1/2. It follows from Lemma 4.1 that there exist N > 0
and z ∈ Mm(A) with ‖z‖ ≤ 1 such that

z∗ fN (b)z = 1Mm(A).

So Y z∗ fN (b)zY ∗=1. An easy computation shows that there are y1, y2, . . . , yn ∈ A
such that

∑m
i=1 ‖yi‖

2
≤ 1 and

m∑
i=1

y∗i fN (a)yi = 1. �

Proposition 4.3. Let {An} be a sequence of unital C∗-algebras having property
P1. Then l∞({An}) also has property P1.

Proof. Let a={an} be a full element in l∞({An}) such that 0≤a≤1. (Note that full
elements of l∞({An}) cannot be in c0({An}).) By Lemma 4.2, there exists N > 0
for which fN (a) is full. For each n, there exists xn ∈ An such that x∗n fN (an)xn = 1.
Note that fN+1(an) fN (a)= fN (a). It follows from Proposition 3.12 that, for each
n, there is yn ∈ A with ‖yn‖ ≤ 1 such that

y∗n fN+1(a)yn = 1.

Put y = {yn}. Then y ∈ l∞({An}). It is clear that there is g ∈C0((0, 1])+ such that

‖g(a)ag(a)− fN+1(a)‖< 1
4 .

Then
‖y∗g(a)ag(a)y− 1‖ = ‖y∗(g(a)ag(a)− fN (a))y‖ ≤ 1

4 .

Hence there is z ∈ l∞({An}) with ‖z‖< 4
3 such that

z∗y∗g(a)ag(a)yz = 1. �
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This proposition is not required in the following example. However it will be
used in Lemma 6.5.

Example 4.4. Let A be a unital separable amenable purely infinite simple C∗-
algebras. Denote by B= c0(A). Then M(B)= l∞(A). Put q∞(A)= l∞(A)/c0(A).
So M(B)/B = q∞(A).

(1) M(B) and M(B)/B has properties P1 and P2.

(2) M(B)/B has property P3.

Claim (1) is obvious (it also follows from Proposition 4.3). In fact, if C =
C0((0, 1), A), then M(C) and M(C)/C also have properties P1 and P2. This can
be proved rather easily.

To see (2), let D be a separable C∗-subalgebra of M(B). Suppose that x (1) =
{x (1)n }, x (2) = {x (2)n }, . . . , x (k) = {x (k)n }, . . . is a dense sequence in the unit ball of
D. Using the fact that A⊗O∞ ∼= A [Kirchberg and Phillips 2000, Theorem 3.15],
we obtain a sequence of homomorphisms φn : O∞→ A such that

lim
n→∞
‖φn(b)a− aφn(b)‖ = 0

for all a ∈ A and b ∈ O∞. Let e1 ∈ O∞ be a proper projection. There is an integer
n(1) > 0 such that ∥∥φn(1)(e1)x

(1)
1 − x (1)1 φn(1)(e1)

∥∥< 1
2 .

There is a projection e2 ∈ O∞ such that e1e2 = e2e1 = 0 and 1> e1+ e2. There is
n(2) > 0 such that∥∥φn(2)(e j )x (i)l − x (i)l φn(2)(e j )

∥∥< 1
4 for i, j, l = 1, 2.

Continuing in this fashion, we obtain a sequence of mutually orthogonal nonzero
projections {em} ⊂ O∞ and a subsequence {n(m)} such that

‖φn(m)(e j )x (i)l − x (i)l φn(m)(e j )‖< 2−m for i, j, l = 1, 2, . . . ,m.

Put p( j)
= {φn(m)(e j )} ∈ l∞(A), for j = 1, 2, . . . .. Then p(i)m p( j)

m = 0 if i 6= j .
Moreover, ∥∥π(p( j))π({x (i)})−π({x (i)})π(p( j))

∥∥= 0.

This implies that
π(p( j))π(d)= π(d)π(p( j)).

Put a( j)
n = p( j), j = 1, 2, . . . . This shows that M(B)/B has property P3.

It is clear, in fact, that l∞({An})/c0({An}) has property P3 if each An is a unital
purely infinite simple C∗-algebra.
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5. Amenable contractive completely positive linear maps

Lemma 5.1 ([Akemann et al. 1986, 2.3]; see also [Lin 2001, 5.3.2]). Let A be a
separable C∗-algebra and ψ : A→C a pure state. Denote by ψ also the extension
of ψ to Ã and put L = {a ∈ Ã : ψ(a∗a) = 0}. For any ε > 0 and any finite subset
F ⊂ A, there exist z1, z2, z3 ∈ Ã+ such that ‖zi‖ = 1 and zi 6∈ L for i = 1, 2, 3,
zi+1zi = zi for i = 1, 2, and

‖zi (φ(a)− a)zi‖<
1
2ε for i = 1, 2, 3 and all a ∈ F.

Moreover, if {en} is an approximate identity for A, then, for some large N ,

‖enzi en(φ(a)− a)enzi en‖< ε and enzi en 6∈ L

for all a ∈ F and all n ≥ N.

Proof. To simplify notation, we assume that F is a subset of the unit ball of A. Let

N = {a ∈ Ã : φ(a)= 0}.

Note that L is a closed left ideal. Let C be the hereditary C∗-subalgebra given by
L ∩ L∗. As in the proof of [Lin 2001, 5.3.2], we have z1, z2, z3,∈ Ã with ‖zi‖ = 1
(i = 1, 2, 3) such that zi 6∈ L , zi+1 yi = zi , i = 1, 2, 3, and

‖zi (ψ(a)− a)zi‖<
1
2ε, i = 1, 2, 3.

Let {en} be an approximate identity for A such that enen+1 = en for all n. Note
that zi has the form λi 1B + y′i , where y′i ∈ A and λi ∈ C, i = 1, 2. Choose a large
n such that

‖eka− aek‖<
1
4ε, ‖eka− a‖< 1

4ε and ‖ekzi − zi ek‖<
1
4ε

for all a ∈ F ∪ {z1az1, z2az2, z3az3 : a ∈ F} and for all k ≥ n. Let yi = enzi en .
Then, for n ≥ N ,

‖yi (ψ(a)− a)yi‖<
1
4ε+‖e

2
nzi (ψ(a)− a)zi e2

n‖< ε for all a ∈ F. �

The following is folklore.

Lemma 5.2. Let A be a C∗-subalgebra of B and take a ∈ A+. Denote by C the
hereditary C∗-subalgebra of B generated by a. Then, for any approximate identity
{en} of A, the sequences ‖enb−b‖ and ‖ben−b‖ converge to 0 as n→∞, for all
b ∈ C.

Proof. There exists a sequence of positive functions fn ∈C0(sp(a))with 0≤ fn≤1
such that { fn(a)} forms an approximate identity for C . Fix an element b ∈ C . For
any ε > 0, there is fk such that

‖ fk(a)b− b‖< 1
4ε and ‖b fk(a)− b‖< 1

4ε.
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Choose an integer N > 0 such that

‖en fk(a)− fk(a)‖<
ε

4(‖b‖+ 1)
for all n ≥ N .

Then

‖enb− b‖ ≤ ‖enb− en fk(a)b‖+‖en fk(a)b− fk(a)b‖+‖ fk(a)b− b‖

< 1
4ε+‖b‖

(
ε

4(‖b‖+ 1)

)
+

1
4ε =

3
4ε < ε. �

Lemma 5.3. Let B be a unital C∗-algebra that has the property P1. Let A be a
separable C∗-algebra and let I be an ideal of A. Suppose that j : A→ B is an
embedding such that j (a) is a full element of B for all a 6∈ I . Then, for any pure
state φ : A→ C1B ⊂ B which vanishes on I , any finite subset F ⊂ A, and any
ε > 0, there is a partial isometry V ∈ B such that

‖φ(a)− V ∗ j (a)V ‖< ε for a ∈ F, V ∗V = 1B and V V ∗ ∈ Her( j (A)).

Proof. To simplify notation, we identify A with j (A). Fix 0< ε < 1
2 . By Lemma

5.1, there are z1, z2, z3∈ Ã+ such that ‖zi‖=1 and zi 6∈ L for i=1, 2, 3, zi+1zi = zi

for i = 1, 2, and

‖φ(a)z2
i − zi j (a)zi‖<

1
4ε for i = 1, 2 and all a ∈ F.

Note that L = {a ∈ Ã : ψ(a∗a) = 0}. Therefore I ⊂ L ∩ L∗ ⊂ L . Let {en} be
an approximate identity for A such that enen+1 = en , n = 1, 2, . . . . Let N be an
integer as in Lemma 5.1, such that

(5-1)
∥∥φ(a)(enzi en)

2
− enzi en j (a)enzi en

∥∥< 1
2ε, for i = 1, 2, 3.

Put y1 = eN z1eN . We may assume that y1 6∈ L . By the assumption, y1 is full.
Because B has property P1, there exists x ∈ B such that x∗y2

1 x = 1B . Put v1= y1x .
Then v∗1v1 = 1B and v1v

∗

1 = p1 is a projection. Note that p1 ∈ Her(y1). There is
a projection in q1 ∈ Her(z1/2

1 eN z1/2
1 ) such that q1 is equivalent to p1. Therefore

there is a partial isometry w1 ∈ B such that w∗1q1w1 = 1B and w1w
∗

1 = q1. Since
z2

2z1 = z1, z2
2q1 = q1. By applying Lemma 5.2, one can choose a large integer

k > N such that, for all n ≥ k,

(5-2) ‖enq1− q1‖<
1
32ε and ‖enzi − zi en‖<

1
32ε for i = 1, 2, 3.

Thus
‖(ekz2ek)

2q1− q1‖ = ‖ekz2e2
k z2ekq1− q1‖<

8
32ε =

1
4ε.

Put y2 = ekz2ek . Then one estimates

‖w∗1 y2
2w1− 1‖ = ‖w∗1q1 y2

2q1w1−w
∗

1q1w1‖<
1
2ε.
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Thus there is s ∈ Her(z1/2
1 eN z1/2

1 )+ ⊂ B+ such that ‖s‖ ≤
1

1− 1
2ε

and

s1/2w∗1 y2
2w1s1/2

= 1.
Note that

(5-3) ‖w1s1/2
‖ ≤

√
1

1− 1
2ε
<

√
2

2− 1
2

=

√
4
3
=

2
√

3
3
.

Define V = y2w1s1/2. Note that

(5-4) V ∗V = 1B and V V ∗ ∈ Her( j (A)).

Put y3 = ek+1z3ek+1. Then, by (5-2),

(5-5) ‖y3 y2− y2‖ = ‖ek+1(z3ekz2− z2)ek‖<
1

32ε.

Furthermore, by (5-3) and (5-5),

(5-6) ‖y3V − V ‖ = ‖y3 y2w1s1/2
− y2w1s1/2

‖ ≤ ( 1
32ε)

2
√

3
3
=

√
3

48
ε.

We estimate, by applying (5-6), (5-4) and (5-1), that

‖φ(a)−V ∗aV ‖ = ‖φ(a)V ∗V − V ∗aV ‖ ≤

√
3

48
ε+

∥∥φ(a)V ∗y2
2 V − V ∗y2ay2V

∥∥
≤

√
3

48
ε+‖φ(a)y2

2−y2ay2‖<

√
3

48
ε+ 1

2ε < ε for all a ∈ F. �

Remark 5.4. If A has a unit, the proof of Lemma 5.3 is almost identical to that
of [Lin 2001, 5.3.2], which has its origin in [Akemann et al. 1986]. When A has
no unit, the elements z1, z2, z3 are not in A+ but in Ã+. By using an approximate
identity {en}, one does have ‖y3 y2− y2‖ small. However the norm of x could be
large and it depends on the choice of zi as well as N as in the proof above. By
introducing q1, we are able to control the norm of w1s1/2.

Lemma 5.5. Let B be a unital C∗-algebra having property P1 and let A be a
separable C∗-algebra. Suppose there exists a sequence of homomorphism φn :

A→ B such that {φn(a) : n = 1, 2, . . . } is an orthogonal set in B for all a ∈ A.
Let I be an ideal of A such that kerφn ⊂ I and φn(a) is a full element in B for all
a 6∈ I and for all n. Then, for any state ψ : A/I → C1B ⊂ B, any finite subset
F⊂ A, and any ε > 0, there is a partial isometry V ∈ B and an integer n such that
V ∗V = 1B,∥∥∥ψ ◦π(a)− V ∗

( n∑
k=1

φk(a)
)

V
∥∥∥< ε for a ∈ F and V V ∗ ∈ Her

n∑
i=1
φi (A),
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where π : A→ A/I is the quotient map. If ψ is only assumed to be a nonzero pos-
itive linear functional with ‖ψ‖ ≤ 1, the conclusion still holds with the difference
that V is merely a contraction.

Proof. By the Krein–Milman theorem, we have positive numbers α1, α2, . . . , αm

with
∑m

i=1 αi = 1 and pure states ψ1, ψ2, . . . , ψm of A/I such that∥∥∥∥ψ ◦π(a)− m∑
i=1

αiψi (a)
∥∥∥∥< 1

2ε for a ∈ F.

Let πn : A → A/ kerφn and γn : A/ kerφn → A/I be the quotient maps, for
n = 1, 2, . . . . Note that ψi ◦ γn is a pure state of A/ kerφn .

By Lemma 5.5, there are Vi ∈ B such that V ∗i Vi = 1B , Vi V ∗i ∈ Herφi (A) and∥∥ψi ◦ γi (φi (a))− V ∗i φi (a)Vi
∥∥< ε for all a ∈ F.

(Note that ψi ◦ γi ◦φi = ψi ◦π .)
Set V =

∑m
i=1
√
αi Vi ∈ B. Since {φn(a) : n = 1, 2, . . . } is an orthogonal set for

each a ∈ A, we compute that

V ∗V =
m∑

i=1

1B = 1B and V V ∗ =
∑
i, j

√
αiα j Vi V ∗j ∈ Her

m∑
i=1

φi (A).

Moreover∥∥∥ψ ◦π(a)− V ∗
( m∑

i=1
φi (a)

)
V

∥∥∥
=

∥∥∥ψ ◦π(a)− m∑
i=1
αi V ∗i φi (a)Vi

∥∥∥
≤

∥∥∥ψ ◦π(a)− m∑
i=1
αiψi (a)

∥∥∥+ m∑
i=1
αi

∥∥ψi ◦π(a)− V ∗i φi (a)Vi
∥∥

< 1
2ε+

1
2ε = ε for a ∈ F.

To check the last statement of the lemma, note that there is 0< λ≤ 1 such that
ψ(a)= λ · g(a) for some state g and for all a ∈ A. �

Lemma 5.6. Let A be a separable C∗-algebra and let B be a unital C∗-algebra
having properties P1 and P2. Let C be as described in the definition of Property
P2, with n = k (see Proposition 3.10). Suppose that φn : A→ B is a sequence of
homomorphisms such that {φn(a) :n=1, 2, . . . } is an orthogonal set in B. Suppose
that I is an ideal of A such that I ⊃ kerφn and φn(a) is a full element for all a 6∈ I .
Let ψ : A/I → Mk(C) ⊂ Mk(C) ⊂ B be a contractive completely positive linear
map. Then, for any finite subset F⊂ A and ε > 0, there exists a contraction V ∈ B
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and an integer m > 0 such that∥∥∥ψ(a)− V ∗
( m∑

i=1
φi (a)

)
V

∥∥∥< ε for a ∈ F and V V ∗ ∈ Her
K∑

i=1
φi (A),

where π : A→ A/I is the quotient map.

Proof. Write ψ(a)=
∑k

i=1 ψi j (a)⊗si j for a ∈ A, where {si j } is a system of matrix
units for Mn and ψi j : A→ C is linear. Also assume that si i are as in Property
P2 and Proposition 3.10, for i = 1, 2, . . . , k. Define 8 : Mk(A) → C ⊂ C by
8((ai j )k×k) =

∑
i, j=1 ψi j (ai j ), where ai j ∈ A. Let Z be as in the definition of

Property P2, so that Z Z∗ = s11. Put Jn(a) = Zkφn(a)Z∗ for all a ∈ A. Then Jn

maps A into C = s11 Bs11. Note that φn ⊗ id : Mk(A)→ Mk(C) is also full. Set
G = {(ai j ) : ai j ∈ F∪ {0}}. By applying Lemma 5.5, we see there is W ∈ Mk(B)
with ‖W‖ ≤ 1 such that∥∥∥8(b)−W ∗

( m∑
k=1

Jk ⊗ id b
)

W
∥∥∥< ε

2n2 for b ∈ G.

We may also assume that W ∗W ≤ diag(1C , 0, . . . , 0). Choose a positive d ∈ A
such that 0≤ d ≤ 1 and

‖da− a‖<
ε

2n2 for all a ∈ F.

Let vi = 0, . . . , 0, d, 0, . . . , 0), where the nonzero entry is in i-th place. Let v′i be
the n × n matrix whose first row is vi and whose remaining rows are zero. Put
ri =

∑m
n=1 Jn ⊗ id(v′i ). For any a ∈ A,∥∥∥r∗i

( m∑
n=1

Jn(a)⊗ id(a⊗ s11)
)

r j −
m∑

n=1
Jn ⊗ id(a⊗ si j )

∥∥∥< ε

2n2 .

Therefore∥∥∥ψi j (a)−W ∗r∗i
( m∑

k=1
Jk ⊗ id(a⊗ s11)

)
r j W

∥∥∥< ε

n2 for all a ∈ F.

Put V ′= (v′1W, v′2W, . . . , v′nW ). We view V ′ as an n×n matrix whose i-th column
is the nonzero column v′i W , for i = 1, 2, . . . , n. Then∥∥∥ψ(a)− V ′∗

m∑
k=1

Jk ⊗ id(a⊗ e11)V ′
∥∥∥< ε for a ∈ F.

Define V = Z∗V ′. We have∥∥∥ψ(a)− V ∗
m∑

n=1
φn(a)V

∥∥∥< ε for a ∈ F.

We also note that V V ∗ ∈ Her
∑m

n=1 φn(A). �
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Lemma 5.7. Let A be a separable C∗-algebra and let B be a unital C∗-algebra
having properties P1 and P2. Suppose that φn : A→ B is a sequence of homomor-
phisms such that the embedding jn :φn(A)→ B is full, where {φn(a) :n=1, 2, . . . }
is an orthogonal set in B. Suppose that ψ : A → B is amenable and such that
kerψ ⊃ kerφn , n = 1, 2, . . . . For any finite subset F⊂ A and ε > 0, there exists a
contraction V ∈ B and an integer K > 0 such that∥∥∥ψ(a)− V ∗

( K∑
i=1
φi (a)

)
V

∥∥∥< ε for a ∈ F and V V ∗ ∈ Her
K∑

i=1
φi (A).

Proof. Fix a finite subset F and ε > 0. Since ψ is amenable, we may as well
assume that ψ = α ◦ β, where β : A→ Mn = Mn(C · 1C) and α : Mn → B are
contractive completely positive linear maps (however, n depends on F as well as
ε). Write Mn(C)⊂ B as in the definition Property P2 (see also Proposition 3.10).
Put G= β(F). It is convenient to assume that F lies in the unit ball of A so G lies
the unit ball of Mn(C · 1C). Note that σ : Mn → Mn(C) ⊂ B is full. There exists
an integer m > 0 and a contraction Z ∈ Mm(B) such that

‖α(b)− Z∗(b Idm)Z‖< 1
4ε for b ∈ G,

where Idm is the m ×m identity matrix It follows from Lemma 5.6 that there is
N (1) > 1 and a contraction W1 ∈ B such that∥∥∥β(a)−W ∗1

N (1)∑
i=1

φi (a)W1

∥∥∥< ε

4m
for a ∈ F

as well as integers N (k+ 1) > N (k) and a contractions Wk ∈ B such that∥∥∥β(a)−W ∗k+1

N (k+1)∑
i=N (k)+1

φi (a)Wk+1

∥∥∥< ε

4m
for a ∈ F and k = 1, 2, . . . .

Note that ∥∥α ◦β(a)− Z∗(β(a) Idm)Z
∥∥< 1

2ε for a ∈ F.

It follows that∥∥∥ψ(a)− Z∗
(

diag
(

W ∗1
m(1)∑
i=1

φi (a)W1, · · · ,Wm

N (m)∑
i=N (m−1)+1

φi (a)
)

Wm

))
Z
∥∥∥< 1

2ε

for all a ∈ F. There exist di ∈ Her(φi (A))+ with 0≤ di ≤ 1 such that

‖diφi (a)−φi (a)‖<
ε

2m
and ‖diφi (a)di −φi (a)‖<

ε

2m

for all a ∈ F. Note that di d j = 0 if i 6= j , i, j = 1, 2, . . . ,m. Now let Y be
the n × n matrix whose first row is (d1, d2, . . . , dm) and the rest are zero. Put
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W = diag(W1,W2, . . . ,Wm) and V = Y W Z . Then∥∥∥diag
(

W ∗1
m(1)∑
i=1

φi (a)W1, . . . ,Wm

N (m)∑
i=N (m−1)+1

φi (a)Wm

)
−W ∗Y ∗

N (m)∑
k=1

φk(a)Y W
∥∥∥

is less than 1
2ε for a ∈ F. Moreover∥∥∥ψ(a)− V ∗

N (m)∑
k=1

φk(a)V
∥∥∥< ε for a ∈ F and V V ∗ ∈ Her

N (m)∑
k=1

φk(A). �

6. Commutants in the ultrapower of corona algebras

Definition 6.1. Recall that a family ω of subsets of N is an ultrafilter if

(i) X1, . . . , Xn ∈ ω implies
⋂n

i=1 X i ∈ ω,

(ii) ∅ 6∈ ω,

(iii) if X ∈ ω and X ⊂ Y , then Y ∈ ω, and

(iv) if X ⊂ N then either X or N \ X is in ω.

An ultrafilter is said to be free if
⋂

X∈ω X = ∅. The set of free ultrafilters is
identified with elements in βN \N, where βN is the Stone–Çech compactification
of N.

A sequence {xn} (in a normed space) is said to converge to x0 along ω, written
limω xn = x0, if for any ε > 0 there exists X ∈ ω such that ‖xn − x0‖ < ε for all
n ∈ X .

Let {Bn} be a sequence of C∗-algebras. Fix an ultrafilter ω. The ideal of
l∞({Bn}) consisting of those sequences {an} in l∞({Bn}) such that limω ‖an‖ = 0
is denoted by cω({Bn}). Define

qω({An})= l∞({Bn})/cω({Bn}).

If Bn = B, n = 1, 2, . . . , we write cω(B) for cω({Bn}) and qω(A) for qω({An}).

Lemma 6.2. Let A be a C∗-algebra, I an ideal of A, and let a ∈ A \ {0} be such
that 0 ≤ a ≤ 1. Suppose that a 6∈ I . Then there is b ∈ C∗(a) with 0 ≤ b ≤ 1 and
‖b‖ = 1 such that if c ∈ C∗(b) \ J , then c 6∈ I , where

J = { f (b) : f ∈ C0(sp(b) \ {0}), f (1)= 0}.

Proof. Let π : A → A/I be the quotient map. Then π(a) 6= 0. Suppose that
ξ ∈ sp(π(a)) \ {0}. Note sp(π(a)) ⊂ sp(a). Let f ∈ C0(sp(a) \ {0}) such that
f (ξ)=1 and 0< f (t)<1 for all other t ∈ sp(a)\{0}. Set b= f (a). Then, π(b) 6=0
and ‖π(b)‖= 1. If c 6∈ J , c= g(b) for some g ∈C0(sp(b)\{0}) such that g(1) 6= 0.
Thus c= g ◦ f (a). Note that g ◦ f (ξ) 6= 0. It follows that π(c)= π(g ◦ f (a)) 6= 0.
Therefore c 6∈ I . �
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Lemma 6.3. Let B be a unital C∗-algebra and let a ∈ B be an element with
0 ≤ a ≤ 1. Suppose that there is x ∈ B such that x∗ax = 1. Then there exists an
element b ∈ C∗(a) such that c is full for all c ∈ C∗(b) \ J , where

J = { f (b) : f ∈ C0(sp(b) \ {0}), f (1)= 0}.

Proof. Put v = a1/2x . Then v∗v = 1 and vv∗ = q for some projection q ∈ B. Note
that q ∈ Her(a1/2xx∗a1/2)⊂ Her(a). For any 0< ε < 1

4 , there is N > 0 such that

‖ fn(a)p− p‖< 1
2ε for all n ≥ N ,

with fn is as in (1-1). It follows that

‖ fn(a)p fn(a)− p‖< ε for all n ≥ N .

Hence there is a projection q ∈Her( fN (a)) and a partial isometry w ∈ B such that
w∗qw= 1 and ww∗ = q . Thus fN+1(a)q = q. Put b= fN+1(a). For any function
g ∈ C0((0, 1]), if g(1) 6= 0, then g(b)q = q . It follows that w∗g(b)w = 1, so g(b)
is full and the lemma follows. �

Lemma 6.4. Let A be a unital separable C∗-subalgebra of a unital C∗-algebra
B which has properties P1 and P3. Suppose that every nonzero element in A is
full in B. Then there exists a sequence of sequences of positive elements {a(i)n },
i = 1, 2, . . . with 0≤ a(i)n ≤ 1 satisfying the following:

(1) limn→∞ ‖a(i)n a− aa(i)n ‖ = 0 for all a ∈ A and i = 1, 2, . . . .

(2) limn→∞ ‖a(i)n a( j)
n ‖ = 0 if i 6= j .

(3) 5({a(i)n })5 ◦ J (a) is full in qω(A) for any free ultrafilter ω ∈ βN \N, where
J : B → l∞(B) is defined by J (b) = (b, b, . . . , b, . . .) for b ∈ B and 5 :
l∞(B)→ qω(B) is the quotient map.

Proof. For each nonzero element 0≤ a ≤ 1 in A, define

r(a)= inf{‖x‖ : x∗ax = 1}.

Let b1, b2, . . . , bn, . . . be a dense sequence of the unit ball of A. We may assume
that {bn} contains a subsequence of positive elements which is dense in the positive
part of the unit ball. For each 0 ≤ bk ≤ 1 in the sequence, from the assumption,
there is xk ∈ B such that x∗k bk xk = 1 and ‖xk‖ ≤

4
3r(bk). Let D be the separable

C∗-subalgebra generated by A and {xk}.
We claim that, for each nonzero a ∈ A with 0 ≤ a ≤ 1 there is x ∈ D such that

x∗ax = 1. There is z ∈ B such that z∗az = 1 and ‖z‖ < 4
3r(a). There is bk with

0≤ bk ≤ 1 for which

‖a− bk‖<
1

8
( 4

3r(a)+ 1
)2 .
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Then
‖z∗bkz− 1‖ ≤ ‖z∗(bk − a)z‖ ≤ 1

8 .

We obtain y ∈ D with ‖y‖< 8
7 such that

y∗z∗bkzy = 1.

It follows that r(bk) ≤
8
7r(a). Hence there is xk ∈ D with ‖xk‖ ≤

4
3 ·

8
7r(a) such

that x∗k bk xk = 1. It follows that

‖x∗k axk − 1‖ ≤ ‖x∗k (a− bk)xk‖<
( 1

8(
4
3r(a)+ 1)2

)(4
3 ·

8
7r(a)

)2
< 8

49 < 1.

Thus there is d ∈ D such that

d∗xkaxkd = 1.

This proves the claim.
Now since B has property P3 and D is separable, there exists a sequence of

sequences of nonzero elements {a(i)n } in B with 0≤ a(i)n ≤ 1 such that

(i) limn→∞ ‖a(i)n d − da(i)n ‖ = 0 for all d ∈ D,

(ii) limn→∞ ‖a(i)n a( j)
n ‖ = 0 if i 6= j , and

(iii) for each i , {a(i)n } is full in l∞(A).

Thus (1) and (2) follow. To see (3), let a ∈ A. From the claim, there is d ∈ D
such that

d∗ad = 1.

Put ai = {a(i)n }. Then, by Proposition 4.3, there is z ∈ l∞(A) such that z∗ai z = 1.
Note that (i) implies that

5(ai )5 ◦ J (b)=5 ◦ J (b)5(ai ) for all b ∈ D.

Put g =5 ◦ J (d)5(z). Then

g∗5(ai )5 ◦ J (a)g =5(z∗)5 ◦ J (d∗)5(ai )5 ◦ J (a)5 ◦ J (d)5(z)

=5(z∗)5(ai )5 ◦ J (d∗)π ◦ J (a)5 ◦ J (d)5(z)

= π(z∗)5(ai )5(z)= 1. �

Lemma 6.5. Let A be a unital separable amenable C∗-algebra and B a unital
C∗-algebra having properties P1, P2 and P3. Let ω ∈ βN \N be a free ultrafilter.
Suppose that τ : A→ B is a full unital embedding. Let τ∞ : A→ l∞(B) be defined
by τ∞(a)= (τ (a), τ (a), . . .) and let ψ =5◦τ∞, where5 : l∞(B)→ qω(B). Then
there is a unital C∗-subalgebra C ∼= O∞ in the commutant of ψ(A) in qω(B).
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Proof. Let {a(i)n } be the sequence of sequences of elements given by Lemma 6.4.
Put ai = {a(i)n }, i = 1, 2, . . . .

Applying Lemma 6.3, and introducing and using D as in the proof of Lemma
6.4, we may assume that each ai has the property that sp(ai )⊂[0, 1] and f (5(ai ))

is full for all 0≤ f ≤ 1 in C0((0, 1]) for which f (1) 6= 0.
Let X = (0, 1] and fix i . Define φ′j , L ′ : C0(X)⊗ A→ qω(B) by φ′i ( f ⊗ a) =

f (5(ai ))ψ(a) and L ′( f ⊗a)= f (1)ψ(a) for a ∈ A. By Lemma 6.4(3), φ′i is full.
Let {F j } be an increasing sequence of finite subsets of A for which

⋃
∞

n=1 F j is
dense in A and let {gn} be a dense sequence of C0((0, 1]).

Let {ai(k)}
∞

k=1 be a subsequence of {ai }. It follows from Lemma 5.7 that there
exists sn ∈ B such that∥∥∥s∗n (

m(n)∑
k=1

g j (ai(k))ψ(a))sn − g j (1)ψ(a)
∥∥∥< 1

2n for a ∈ Fn and j = 1, 2, . . . , n.

Moreover, sns∗n ∈ Her(
∑m(n)

k=1 (ai(k))ψ(A)). Suppose that sn =5((sn,1, sn,2, . . . )),
n = 1, 2, . . . . We may assume that∥∥∥s∗n,k(n)

( m(n)∑
k=1

g j (a
i(k)
k(n))τ (a)

)
sn,k(n)− g j (1)τ (a)

∥∥∥< 1
2n for n = 1, 2, . . . .

Now put tn= sn,k(n), t ′= (t1, t2, . . . ) and t=5(t ′). Define8 :C0(X)⊗A→ l∞(B)
by

8( f ⊗ a)=
{ m(n)∑

k=1
f (a(i(k)k(n) )τ (a)

}
for all f ∈ C0(X) and a ∈ A.

It follows that

t∗5 ◦8( f ⊗ a)t = f (1)ψ(a) for all f ∈ C0(X) and a ∈ A.

Put b({i(k)}) = 5({ai(k)
k(n)}). Note that 0 ≤ b({i(k)}) ≤ 1. We have (with ι(t) = t

for all t ∈ (0, 1])
t∗b({i(k)})t = ι(1)= 1qω(B) .

Put

w({i(k)})= b({i(k)})1/2t and q = b({i(k)})1/2t t∗b({(i(k)})1/2.

Since b({i(k)}) ∈ ψ(A)′ and ι(1)= 1, we have

(6-1) t∗b({i(k)})1/2ψ(a)b({i(k)})1/2t = t∗b({i(k)})ψ(a)t = ι(1)ψ(a)

= ψ(a) for all a ∈ A.

It follows from [Rørdam 2002, 6.36] that w({i(k)}) = b({i(k)})1/2t ∈ ψ(A)′. If
{i(k)} and {i(k)′} are disjoint infinite subsets of N, the corresponding projections
q and q ′ are orthogonal. Thus there is a sequence of isometries vk ∈ ψ(A)′ such
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that v∗kvk = 1qω(B) and 1 ≥
∑n

k=1 vkv
∗

k , n = 1, 2, . . . . Thus ψ(A)′ admits a unital
embedding of O∞, �

7. Full extensions

Definition 7.1. Let Ext(A, B) be the set of stable unitary equivalence classes
of extensions of the form (2-1). When A is amenable, it is known (by work of
Arveson, Choi and Effros) that Ext(A, B) is a group. Moreover, the group can be
identified with KK 1(A, B). Let T(A, B) be the set of all stable unitary equivalence
classes of approximately trivial extensions. It is known that T(A, B) is a subgroup
of KK 1(A, B) (see [Lin 2005a]). Following Rørdam, one defines KL1(A, B) =
KK 1(A, B)/T(A, B).

Let G1,G2,G3 be abelian groups. A group extension 0 → G1 → G3 →

G2→ 0 is said to be pure if every finitely generated subgroup of G2 lifts. Denote
by Pext(G2,G1) the set of all pure extensions and by E(G2,G1) the quotient
extZ(G2,G1)/Pext(G2,G1).

If A satisfies the Approximate Universal Coefficient Theorem, or AUCT (see
[Lin 2005a]), one has the following short exact sequence:

(7-1) 0→ E(Ki (A), Ki (B))→ KL1(A, B)→ Hom(Ki (A), Ki−1(B))→ 0.

So KL1(A, B) may be computable in theory. It should be noted every separable
amenable C∗-algebra which satisfies the Universal Coefficient Theorem (UCT)
satisfies the AUCT. Rosenberg and Schochet [1987] have shown that every sepa-
rable C∗-algebras in the so-called bootstrap class satisfies the UCT (therefore the
AUCT). We also use the notation KL(A, B)= KL1(A, SB).

As mentioned in the introduction, two stably unitarily equivalent extensions are
in general not unitarily equivalent and trivial extensions are not unitarily equivalent.
Furthermore, an essential extension which is zero in KK 1(A, B)may not be trivial
(or approximately trivial). We will use KL1(A,M(B)/B) to give a classification
of full essential extensions up to approximately unitary equivalence.

Proposition 7.2. Let D be a unital C∗-algebra for which there is a unital embed-
ding from O2 to D. Let h1, h2 : O2→ D be two full homomorphisms. Suppose that
h1(1O2)∼ h2(1O2). Then there is a sequence of partial isometries vn such that

v∗nvn = h2(1O2), vnv
∗

n = h1(1O2) and lim
n→∞
‖v∗nh1(a)vn − h2(a)‖ = 0

for all a ∈ O2.

Proof. This is the combination of Theorem 6.5 and Lemma 7.2 in [Lin 2007]. �

Lemma 7.3. Let A be a unital separable C∗-algebra and let B and C be unital C∗-
algebras such that B ⊗ O2 is a unital C∗-subalgebra of C and C has property P1.
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Suppose that h1, h2 : A→ B⊗C ·1⊂ B⊗O2 are two unital full monomorphisms.
Then h1 and h2 are approximately unitarily equivalent in C.

Proof. By [Rørdam 1994] we have O2 ∼= O2⊗ O2. Let pn = 1B ⊗ qn ⊗ 1O2 , where
{qn} is a sequence of mutually orthogonal nonzero projections in O2. Note that
pn ∼ 1B⊗O2⊗O2 , n = 1, 2, . . . . Define φi (a)= pi h1(a) and ψi (a)= pi h2(a) for all
a ∈ A. Also define 8n(a)=

(
1−

∑n
i=1 pi

)
h1(a) and 9n(a)=

(
1−

∑n
i=1 pi

)
h2(a)

for all a ∈ A. Then, for each n, h1 =
∑n

i=1 φi ⊕8n and h2 =
∑n

i=1 ψi ⊕9n . Note
that φi ,8n, ψi and 9n are all full. Now we work in B⊗O2⊗ 1. There are partial
isometries vi, j ∈ O2 such that v∗i, jvi, j = p j and vi, jv

∗

i, j = pi for i, j = 1, 2, . . . , n
and

v∗n+1, jvn+1, j = p j , vn+1, jv
∗

n+1, j = 1−
n∑

i=1

pi for j = 1, 2, . . . , n.

Put wi, j = 1⊗ vi, j ⊗ 1. Then we also have

w∗i,1φ1wi,1 = φi for i = 1, 2, . . . , n and w∗n+1,1φ1wn+1,1 =8n.

Let F1,F2, . . . ,Fn, . . . be an increasing sequence of finite subsets of A such
that

⋃
∞

n=1 Fn is dense in A. It follows from [Lin 2001, Lemma 5.4.2] that, for
each n, there are isometries un, vn ∈ B⊗O2⊗ 1 such that∥∥u∗nh1(a)un − h2(a)

∥∥< 1/n and
∥∥v∗nh2(a)vn − h1(a)

∥∥< 1/n for a ∈ Fn.

Note that the relative commutant of B ⊗ O2 ⊗ 1 contains a unital C∗-subalgebra
1B ⊗ 1O2 ⊗O2 which is isomorphic to O2. It follows from [Kirchberg and Phillips
2000, 1.10] that h1 and h2 are approximately unitarily equivalent. �

Lemma 7.4. Let A be a unital separable nuclear C∗-algebra, let B1 and B2 be
two unital C∗-algebra and let C be another unital C∗-algebra. Suppose that ji :
Bi ⊗ O2→ C are two full monomorphisms so that j1(1) ∼ j2(1) and hi : A→ Bi

are two full unital monomorphisms. Then there is a sequence of partial isometries
vn ∈ C such that v∗nvn = j1(1), vnv

∗
n = j2(1) and

lim
n→∞

∥∥v∗n( j2 ◦ h2(a))vn − j1 ◦ h1(a)
∥∥= 0 for all a ∈ A.

Proof. To simplify notation, we may assume that j1(1) = j2(1). Therefore we
may assume that both j1 and j2 are unital. Define Ji : Bi ⊗ O2 → l∞(C) by
Ji (b)= ( ji (b), ji (b), . . . ) for b ∈ Bi ⊗O2 and Hi = Ji ◦ hi , respectively, i = 1, 2.
Note that these maps are full in l∞(C). Since there is a unital O2 embedding to
l∞(C), by Proposition 7.2, we obtain unitaries un ∈ C such that

lim
n→∞

∥∥u∗n J2(1⊗ b)un − J1(1⊗ b)
∥∥= 0 for all b ∈ O2.

Denote U ={un} in l∞(C). Let ω be a free ultrafilter on N and π : l∞(C)→ qω(C)
be the quotient map. Let D be the C∗-subalgebra generated by π ◦ J1(B1⊗C ·1O2)



418 HUAXIN LIN

and π ◦ ad U ◦ J2(B2⊗C · 1O2). It follows that D′, the commutant of D, contains
J1(1B1 ⊗ O2) which is isomorphic to O2. Therefore we may write D ⊂ D ⊗ O2.
Now π ◦ H1 and π ◦ ad W ◦ H2 are two full unital monomorphisms from A into
D ⊂ D ⊗ O2. It follows from Lemma 7.3 that π ◦ H1 and π ◦ ad W ◦ H2 are
approximately unitarily equivalent. It follows from [Rørdam 2002, Lemma 6.2.5]
that j1 ◦ h1 and j2 ◦ h2 are approximately unitarily equivalent. �

Theorem 7.5. Let A be a unital separable amenable C∗-algebra and let B be a
unital C∗-algebra which has properties P1, P2 and P3. Let jo : A→ O2→ B be a
full embedding of A into B which factors through O2. Suppose that τ : A→ B is
a full monomorphism. Then there is a sequence of partial isometries Vn ∈ M2(B)
such that V ∗n V = 1B ⊕ jo(1A), VnV ∗n = 1B and

lim
n→∞

∥∥Vn(τ ⊕ jo)(a)V ∗n − τ(a)
∥∥= 0 for all a ∈ A.

Proof. Let J : B → l∞(B) be defined by J (c) = (c, c, . . . ) for c ∈ B. Define
τ∞= J ◦τ and Jo= J ◦ jo. Let ω be a free ultrafilter on N and π : l∞(B)→ qω(B)
be the quotient map. It follows from Lemma 6.5 that π ◦ τ∞(A)′ contains a unital
C∗-subalgebra which is isomorphic to O∞. Denote this C∗-subalgebra by O∞. Let
q ∈ O∞ be a nonzero projection such that [q] = 0 in K0(O∞). There is a C∗-
subalgebra C of O∞ for which 1C = q and C ∼= O2. Put τ0(a) = qπ ◦ τ∞(a). So
we may view τ0 is a unital full homomorphism from A into τ0(A)⊗ O2. Since
O2 ∼= O2⊗ O2 by [Rørdam 1994], it follows from Lemma 7.4 that τ0⊕π ◦ Jo and
τ0 are approximately unitarily equivalent. Thus π ◦ τ∞ and π ◦ τ∞ ⊕ π ◦ Jo are
approximately unitarily equivalent. It follows from [Rørdam 2002, 6.2.5] that τ
and τ ⊕ jo are approximately unitarily equivalent. �

Proof of Theorem 2.6. Since A is separable, there is a unital embedding j : A→O2,
by [Kirchberg and Phillips 2000, 2.8]. Since B has property P2, there is a full
monomorphism σ : O2→ B. Define j̄ = σ ◦ j . Note j̄ is full. Let ε > 0 and F⊂ A
be a finite subset. It follows from [Lin 2005a, Theorem 3.9] that there is an integer
n and a unitary v ∈ Mn+1(B) such that∥∥v∗ diag

(
h1(a), j̄(a), j̄(a), . . . , j̄(a)

)
v−diag

(
h2(a), j̄(a), j̄(a), . . . , j̄(a)

)∥∥< 1
4ε

for all a ∈ F. On the other hand, by Proposition 7.2, there is an isometry u ∈
Mn(π ◦ σ(O2)) with uu∗ = 1π◦σ(O2) such that∥∥u∗ j̄(a)u− diag

(
j̄(a), j̄(a), . . . , j̄(a)

)∥∥< 1
4ε

for a ∈ F. Thus, we obtain an isometry w ∈ M2(B) with ww∗ = 1B such that∥∥w∗ diag(h1(a), j̄(a))w− diag(h2, j̄(a))
∥∥< 1

2ε for all a ∈ F.
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By applying Theorem 7.5, we obtain a partial isometry z∈ B such that z∗h1(1A)z=
h2(1A), zh2(1A)z∗ = h1(1A) and

‖z∗h1(a)z− h2(a)‖< ε for all a ∈ F. �

Remark 7.6. If both h1 and h2 are unital, it is clear that z can be chosen to
be unitary. If one of them is unital and the other is not, z can never be unitary.
Suppose that both are not unital. Since B has properties P1, P2 and P3, we obtain
full O2 embeddings into h1(1A)Bh1(1A) and h2(1A)Bh2(1A). Therefore there is
a projection e ≤ h1(1A) such that h1(1A) is equivalent to h1(1A)− e and e is a
full projection. So there is a partial isometry v ∈ B such that v∗v = h1(1A) and
vv∗ = h1(1A) − e. Thus 1 − ad v∗ ◦ h1(1A) is full. Similarly, there is a partial
isometry w ∈ B with w∗w = h2(1A) such that 1− adw∗ ◦ h2(1A) is full. Now
apply Theorem 2.6 to the case that A = C. we know that 1− ad v∗ ◦ h1(1A) and
1− adw∗ ◦ h2(1A) are equivalent. This implies that we can choose z to be unitary
in the proof of Theorem 2.6 in the case that both h1 and h2 are not unital.

Corollary 7.7. Theorem 2.6 also holds for the case that B=q∞({Cn}), where each
Cn is a unital purely infinite simple C∗-algebras.

Proof. It is clear that B has properties P1 and P2. From the proof of Theorem
2.6 above, we only need an absorbing Theorem 7.5 for this B. Let τ : A → B
be a full monomorphism and j0 : A → O2 → B be a full embedding of A into
B which factors through O2. So we may write j0 = 8 ◦ j , where j : A → O2

is a monomorphism and 8 : O2 → B is a full homomorphism. Let L : A →
l∞({Cn} be a contractive completely positive linear map for which π ◦ L = τ ,
where π : l∞({Cn}) → q∞({Cn}) is the quotient map. Write L = {Ln}, where
Ln : A→Cn is a contractive completely positive linear map. Let φn : O2→C such
that π ◦ {ψn} = 8. Denote by Dn the separable unital purely infinite simple C∗-
algebra containing Ln(A) and ψn(O2). Then q∞({Dn})⊂ B and τ : A→ q∞({Cn})

and j0 : A→ O2→ q∞({Cn}). Thus one can apply [Lin 2004a, 7.5]. �

Proof of Proposition 2.9. Let h1 : A→ B ⊗ K be a homomorphism. It follows
from [Lin 2004a, 4.5] that there is a sequence of asymptotically multiplicative
contractive completely positive linear maps {φn} from A to B⊗K and a sequence
of unitaries un ∈ B̃⊗K such that

lim
n→∞

∥∥(h⊕φn)(a)− ad un ◦ j (a)
∥∥= 0 for all a ∈ A.

Since B has property P2, it is easy to see that we may assume that φn maps A into
B and un are unitaries in B. It follows from 6.5 in [Lin 2007] that, for each k,
there exists a sequence of unitaries vn(k) ∈ M2(B) such that

lim
n→∞

∥∥vn(k)∗(φn(a)⊕ jo(a))vn(k)− (φn+k(a)⊕ jo(a))
∥∥= 0 for all a ∈ A.
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It follows from [Lin 2004a, 4.7] that there exists a homomorphism h1 : A→M2(B)
and a sequence of unitaries wn ∈ M2(B) such that

lim
n→∞

∥∥adwn ◦ h1(a)− (φn(a)⊕ jo(a))
∥∥= 0 for all a ∈ A.

By applying the fact that B has property P2 and applying Proposition 7.2, we obtain
a sequence of isometries zn ∈ M3(B) with znz∗n = jo(1A) such that

lim
n→∞

∥∥(h⊕ h1⊕ jo)(a)− z∗n jo(a)zn
∥∥= 0 for all a ∈ A.

Hence [h1] = −[h] in H(A, B). �

Proof of Corollary 2.10. Combine Proposition 2.9 and Theorem 7.5. �

8. Classification of full extensions

Definition 8.1. Let Cn be a commutative C∗-algebra with K0(Cn) = Z/nZ and
K1(Cn) = 0. Suppose that A is a C∗-algebra. Put Ki (A,Z/kZ) = Ki (A⊗ Ck).
One has the following six-term exact sequence (see [Schochet 1984]):

K0(A) → K0(A,Z/kZ) → K1(A)
↑k ↓k

K0(A) ← K1(A,Z/kZ) ← K1(A) .

In [Dadarlat and Loring 1996], Ki (A,Z/nZ) is identified with KK i (In, A) for
i = 0, 1. As in that paper, we use the notation

K (A)=
⊕

i=0,1
n∈Z+

Ki (A;Z/nZ).

By Hom3(K (A), K (B)) we mean all homomorphisms from K (A) to K (B) which
respect to direct sum decomposition and the so-called Bockstein operations; see
[Dadarlat and Loring 1996]. It follows from these authors’ definition that if x ∈
KK (A, B), the Kasparov product KK i (In, A)×x gives an element in KK i (In, B),
which we identify with Hom(Ki (A,Z/nZ), K0(B,Z/nZ)). Thus one obtains a
map 0 : KK (A, B) → Hom3

(
K (A), K (B)

)
. It was shown in the same paper

that if A is in N then, for any σ -unital C∗-algebra B, the map 0 is surjective and
ker0 = Pext(K∗(A), K∗(B)). In particular,

0 : KL(A, B)→ Hom3(K (A), K (B))

is an isomorphism. It is shown in [Lin 2005a] that if A satisfies the AUCT, then 0
is also an isomorphism from KL(A, B) onto Hom3(K (A), K (B)).

Lemma 8.2. Let B be a unital C∗-algebra which admits a full O2 embedding and
let Gi be a countable subgroup of Ki (B) (i = 0, 1). There exists a unital separable
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C∗-algebra B0 ⊂ B which has a full O2 embedding such that Ki (B0) ⊃ Gi and
j∗i = idKi (B0), where j : B0→ B is the embedding.

Proof. Let p1, . . . , pn, . . . be projections and u1, u2, . . . , un, . . . be unitaries in⋃
∞

k=1 Mk(B) such that {pn} and {un} generates of G0 and G1, respectively. There
is a countable set S such that

pn, un ∈
∞⋃

n=1

{
(ai j )n×n ∈ Mn(B) : ai j ∈ S

}
.

Let jo : O2 → B be a full embedding. Let p = j (1O2) and x1, x2, . . . , xm ∈ B
such that

∑m
i=1 x∗i pxi = 1. Let B1 be the unital separable C∗-subalgebra generated

by S, {x1, x2, . . . , xm} and j (O2). Then B1 has a full O2 embedding and pn, un ∈⋃
∞

k=1 Mk(B1) for all n. Note that Ki (B1) is countable. The embedding j1 : B1→ B
gives homomorphisms ( j1)∗i : Ki (B1) → Ki (B). Let F1,i be the subgroup of
K0(B1) generated by {pn} and {un}, respectively. It is clear that ( j1)∗i is injective
on F1,i , i = 0, 1. In particular, the image of ( j1)∗i contains Gi , i = 0, 1. Let
N ′1,i = ker( j1)∗i and let N1,i be the set of all projections (if i = 0), or unitaries (if
i = 1) in

⋃
∞

k=1 Mk(B1) which have images in N ′1,i . Let {p1,n} be a dense subset
of projections in

⋃
∞

k=1 Mk(B1). There are countable pairs of projections {en, e′n}
in {p1,n} such that [en] = [e′n] in K0(B). There are wn ∈

⋃
∞

k=1 Mk(B) such that
w∗nwn = en ⊕ 1k(n) and wnw

∗
n = e′n ⊕ 1k(n).

Let {u1,n} be a dense subset of unitaries in
⋃
∞

k=1 Mk(B1). For each u1,n , there
are unitaries z1,n,k ∈

⋃
∞

j=1 M j (B), k = 1, 2, . . . ,m(n) such that

‖z1,n,1− 1‖< 1
2 , ‖z1,n,m(n)− u1,n‖<

1
2 and ‖z1,n,k − z1,n,k+1‖<

1
2 ,

k = 1, 2, . . . ,m(n), n= 1, 2, . . . . Let B2 be a separable unital C∗-algebra contain-
ing B1 such that

⋃
∞

k=1 Mk(B2) contains all {w1,n} and {z1,n,k}. Note that there is a
full embedding of O2 to B2. Note also that if p, q ∈

⋃
∞

k=1 Mk(B1) are projections
such that [p] − [q] ∈ N1,0 then [p] − [q] = 0 in K0(B2). Similarly, if u ∈ B1

and [u] ∈ N1,1, then [u] = 0 in B2. Suppose that Bl has been constructed. Let
jl : Bl → B be the embedding. Let Nl,i = ker( jl)∗i , for i = 0, 1. As before, we
obtain a unital separable C∗-algebra Bl+1 ⊃ Bl such that every pair of projections
p, q ∈

⋃
∞

k=1 Mk(Bl) with [p] − [q] ∈ Nl,0 has the property that [p] = [q] in
K0(Bl+1), and every unitary u ∈ Bl with [u] ∈ Nl,1 has the property that [u] = 0
in K1(Bl+1). Let B0 be the closure of

⋃
∞

l=1 Bl . Note that B0 admits a full O2

embedding, say j : B0→ B, and that B0 is separable.
We claim that j∗i is injective. Suppose that p , q ∈Mk(B0) is a pair of projections

for which [p]−[q] ∈ ker j∗0 and [p]−[q] 6= 0 in B0. Without loss of generality, we
may assume that p , q ∈ Mk(Bl) for some large integer l. Then [p] − [q] must be
in the ker( jl)∗0. By the construction, [p]−[q] = 0 in K0(Bl+1). This would imply
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that [p] − [q] = 0 in K0(B0). Thus j∗0 is injective. An exactly same argument
shows that j∗1 is also injective. The lemma follows. �

Lemma 8.3. Let B be a unital C∗-algebra which admits a full O2 embedding.
Suppose that Gi ⊂ Ki (B) and Fi (k) ⊂ Ki (B,Z/kZ) are countable subgroups
such that the image of Fi (k) in Ki−1(B) is contained in Gi−1, for i = 0, 1 and
k = 2, 3, . . . . Then there exists a separable unital C∗-algebra C ⊂ B admitting
a full O2 embedding and such that Ki (C) ⊃ Gi , Ki (C,Z/kZ) ⊃ Fi (k) and the
embedding j : C→ B induces an injective map

j∗i : Ki (C)→ Ki (B)

and an injective map

j∗ : Ki (C,Z/kZ)→ Ki (B,Z/kZ) for k = 2, 3, . . . .

Proof. By Lemma 8.2, there is a separable unital C∗-algebra C1 admitting a full O2

embedding j : C1→ B and such that K0(C1) ⊃ G0, K1(C1) ⊃ G1 and j induces
an identity map on K0(C1) and K1(C1). Fix k, and let {x ∈ Ki (C1) : kx = 0} =
{g(i)1 , g(i)2 , . . . , }. Suppose that {s(i)1 , s(i)2 , . . . , } is a subset of Ki−1(B,Z/kZ) such
that the map from Ki−1(B,Z/kZ) to Ki (B) maps s(i)j to g(i)j . For each z(i) ∈
Ki−1(C1,Z/kZ), there is s(i)j such that

z(i)− s(i)j ∈ Ki (B)/kKi (B).

Since Ki (C1) is countable, the set of all possible z(i)− s(i)j is countable. Thus one
obtains a countable subgroup G ′i that contains Ki (C1) and for which G ′i/kKi (B)
contains the countable set just mentioned, as well as Fi (k)∩ (Ki (B)/kKi (B)) for
each k. Since countably many countable sets is still countable, we obtain a count-
able subgroup G(2)

i ⊂ Ki (B) such that G(2)
i contains G ′i and kKi (B)∩G(2)

i = kG(2)
i ,

k = 1, 2, . . . , and i = 0, 1. Note also Fi (k) ∩ (Ki (B)/kKi (B)) ⊂ G(2)
i /kKi (B).

By applying Lemma 8.2, we obtain a separable unital C∗-algebra C2 ⊃ C1 such
that Ki (C2) ⊃ G(2)

i and an embedding from C2 to B gives an injective map on
Ki (C2), i = 0, 1. Repeating what we have done above, we obtain an increasing
sequence of countable subgroups G(n)

i ⊂ Ki (B) such that G(n)
i ∩ kKi (B)= kG(n)

i
for all k and i = 0, 1 and an increasing sequence of separable C∗-subalgebra s Cn

such that Ki (Cn) ⊃ G(n)
i and embeddings from Cn into B giving injective maps

on Ki (Cn), i = 0, 1, and n = 1, 2, . . . . Moreover F (k)i ∩ (Ki (B)/kKi (B)) ⊂
Ki (Cn)/kKi (B). Let C denote the closure of

⋃
n Cn and j :C→ B be the embed-

ding. Then C is a separable unital C∗-algebra and j∗i is an injective map, i = 0, 1.
Since C ⊃ C1 and C1 is unital, C admits a full O2 embedding. We claim that
Ki (C)∩kKi (B)= kKi (C), k=1, 2, . . . , and i =0, 1. Note that Ki (C)=

⋃
n G(n)

i .
Since G(n)

i ∩ kKi (B)= kG(n)
i ⊂ kKi (C), we see that Ki (C)∩ kKi (B)= kKi (C),
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i = 0, 1. Thus Ki (C)/kKi (C)= Ki (C)/kKi (B). Since

Ki (C)/kKi (B)⊃ F (k)i ∩ (Ki (B)/kK0(B)),

we conclude also that Ki (C,Z/kZ) contains Fi (k). Since j∗i is injective, j induces
an injective map from Ki (C)/kKi (C) into Ki (B)/kKi (B) for all integers k ≥ 1.
Using this and the fact that j∗i : Ki (C)→ Ki (B) is injective, by chasing around
the commutative diagram

K0(C) K0(C,Z/kZ) K1(C)

K0(B) K0(B,Z/kZ) K1(B)

K0(B) K1(B,Z/kZ) K1(B)

K0(C) K1(C,Z/kZ) K1(C)

- -

@
@

@R
?

�
�

�	
- -

6

6
?

?

� �

�
�

��

@
@

@I6

� �

j∗0 j∗ j∗1

j∗0 j∗ j∗1

one sees that j induces an injective map from Ki (C,Z/kZ) to Ki (B,Z/kZ). �

Corollary 8.4. Without assuming that B has a full O2 embedding, both Lemma 8.3
and Lemma 8.2 hold if we do not require that C (or B0) has a full O2 embedding.

Proof of Theorem 2.13. By Theorem 2.5, it suffices to show that, for each x ∈
KL(A,M(B)/B), there is a full monomorphism h : A → M(B)/B such that
[h] = x . Put Q = M(B)/B. Since A satisfies the AUCT, we may view x as
an element in Hom3(K (A), K (Q)). Note that Ki (A) is a countable abelian group
(i = 0, 1). Let G(i)

0 = γ (x)(Ki (A)), i = 0, 1, where γ : Hom3(K (A), K (Q))→
Hom(K∗(A), K∗(Q)) is the surjective map. Then G(i)

0 is a countable subgroup of
Ki (Q), i = 0, 1. Consider the commutative diagram

K0(A) K0(A,Z/kZ) K1(A)

K0(Q) K0(Q,Z/kZ) K1(Q)

K0(Q) K1(Q,Z/kZ) K1(Q)

K0(A) K1(A,Z/kZ) K1(A)

.- -

@
@

@R
?

�
�

�	
- -

6

6
?

?

� �

�
�

��

@
@

@I6

� �

γ (x) ×x γ (x)

γ (x) ×x γ (x)

It follows from Lemma 8.3 that there is a unital C∗-algebra C ⊂ Q which has a full
O2 embedding such that Ki (C)⊂ G(i)

0 , Ki (C)∩ kKi (Q)= kKi (C), k = 1, 2, . . . ,
and i = 0, 1, and the embedding j : C → Q induces injective maps on Ki (C)
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as well as on Ki (C,Z/kZ) for all k and i = 0, 1. Moreover Ki (C,Z/kZ) ⊃

(×x)(Ki (A,Z/kZ)) for k = 1, 2, . . . and i = 0, 1. We have the commutative
diagram
K0(A) K0(A,Z/kZ) K1(A)

K0(C) K0(C,Z/kZ) K1(C)

K0(C) K1(C,Z/kZ) K1(C)

K0(A) K1(A,Z/kZ) K1(A)

- -

@
@

@R

�
�

�	
- -

6

6 ?

?

� �

�
�

��

@
@

@I

� �

γ (x) γ (x)

γ (x) γ (x)

We will add two more maps on the above diagram. From the fact that the image of
Ki (A,Z/kZ) under ×x is contained in Ki (C,Z/kZ), (k = 2, 3, . . . , i = 0, 1), we
obtain two maps βi : Ki (A,Z/kZ)→ Ki (C,Z/kZ), k = 2, 3, . . . , i = 0, 1 such
that j∗ ◦βi =×x and obtain the commutative diagram

K0(A) K0(A,Z/kZ) K1(A)

K0(Q) K0(C,Z/kZ) K1(C)

K0(C) K1(C,Z/kZ) K1(C)

K0(A) K1(A,Z/kZ) K1(A)

- -

@
@

@R
?

�
�

�	
- -

6

6 ?

?

� �

�
�

��

@
@

@I6

� �

γ (x) β0
γ (x)

γ (x) β1 γ (x)

Consider the commutative diagram

→ Ki (A,Z/mnZ) → Ki (A,Z/nZ) → Ki−1(A,Z/mZ) →

↓ ↓ ↓

→ Ki (Q,Z/mnZ) → Ki (Q,Z/nZ) → Ki−1(Q,Z/mZ) →

Since j∗ ◦βi =×x and all vertical maps in the diagram

→ Ki (C,Z/mnZ) → Ki (C,Z/nZ) → Ki−1(C,Z/mZ) →

↓ ↓ ↓

→ Ki (Q,Z/mnZ) → Ki (Q,Z/nZ) → Ki−1(Q,Z/mZ) →

are injective, we obtain the commutative diagram

→ Ki (A,Z/mnZ) → Ki (A,Z/nZ) → Ki−1(A,Z/mZ) →

↓ ↓ ↓

→ Ki (C,Z/mnZ) → Ki (C,Z/nZ) → Ki−1(C,Z/mZ) →
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Thus we obtain y ∈ KL(A,C) such that y×[ j] = x . Since A satisfies the AUCT,
one checks that KL(A,C)= KL(A⊗O∞,C). This also follows from the fact that
the unital embedding from A→ A⊗ O∞ gives a KK -equivalence; see [Pimsner
1997]. It follows from [Lin 2007, 6.6, 6.7] that there exists a homomorphism
φ : A⊗O∞→ C⊗K such that [φ] = y. Define ψ = φ|A⊗1. By the same result of
Pimsner, one obtains that [ψ]= y. Since A is unital, we may assume that the image
of ψ is in Mm(C) for some integer m ≥ 1. Since C admits a full O2 embedding, C
has property P2. Thus 1m is equivalent to a projection in C . Thus we may further
assume that ψ maps A into C . Put h1 = j ◦ψ . To obtain a full monomorphism,
we use the embedding ι : A→ O2 given by [Kirchberg and Phillips 2000, Theorem
2.8]. Since M(B)/B has property P2, we obtain a full monomorphism ψ : O2→

M(B)/B. Let e=ψ(1O2). There is a partial isometry w ∈M2(M(B)/B) such that
w∗w = 1M(B)/B and ww∗ = 1⊕ e. Define h = w∗(h1⊕ψ ◦ ι)w. One checks that
[h] = [h1] = x and h is a full monomorphism. �

Corollary 8.5. Let A be a unital separable amenable C∗-algebra satisfying the
AUCT. Let B be a unital C∗-algebra which has property P2. Then, for each x ∈
KL(A, B), there is a full monomorphism h : A→ B such that [h] = x.

Proof. In the proof above, we may replace M(B)/B by B. �

Proof of Theorem 2.14. For the first part of the theorem, it suffices to show that ev-
ery essential and full extension is absorbing. Let τ be a such extension. Following
Elliott and Kucerovsky, we will show that τ is purely large. Denote E = τ−1(A).
Choose c ∈ E \ C . Then, by Lemma 3.3, c is a full element. Since M(C) has
property P1, there exists x ∈ M(B) such that x∗cc∗x = 1. Therefore there exists a
projection p ≤ cc∗ for which there is v ∈ M(B) such that v∗v = 1 and vv∗ = p.
Note cBc∗ = cM(B)c∗ ∩ B. Thus pBp ⊂ cBc∗. Now v∗ pBpv = B, so pBp is
stable and pBp is full. Thus τ is purely large, hence absorbing. The last part of
the theorem follows from the next corollary. �

Corollary 8.6. Let A be a separable unital amenable C∗-algebra and C a uni-
tal C∗-algebra, and set B = C ⊗ K. Then Ext(A, B) is the same set as unitary
equivalence classes of essential and full extensions of A by B.

Proof. It suffices to show that given any element x ∈ Ext(A, B), there exists an
essential and full extension τ : A → M(B)/B so that [τ ] = x . There exists an
essential extension τ1 : A→ M(B)/B such that [τ1] = x . Take a monomorphism
j : A→O2 (see [Kirchberg and Phillips 2000]). Let h :O2→M(K) be a monomor-
phism (given by a faithful representation of O2 on a separable Hilbert space). Let
φ :M(K)→M(B) be the standard unital embedding and π :M(B)→M(B)/B be
the quotient map. Then τ2 = π ◦φ ◦ h ◦ j gives a full essential trivial extension. It
follows that τ = τ1⊕τ2 is an full essential extension. Since [τ2]= 0, [τ ]= [τ1]= x .

�



426 HUAXIN LIN

Remark 8.7. Let B be a nonstable, nonunital but σ -unital C∗-algebra. Suppose
that M(B)/B has properties P1, P2 and P3, and suppose that τ : A→ M(B)/B is
an essential and full extension. One should not expect that such extension is purely
large in general. Let 0→ B → E → A→ 0 be an essential and full extension
corresponding to τ . Recall that the extension is purely large if cBc∗ contains a
C∗-subalgebra which is stable and cBc∗ is full in B; see [Elliott and Kucerovsky
2001]. Given any element c∈ E\B, π(c) is full in M(B)/B. But, in general, c need
not be full in M(B), nor does cBc∗ need to be full in B. Examples are easily seen
in the case that B = c0(C), where C is a unital purely infinite simple C∗-algebra.
Suppose that 0→ c0(C)→ E → A→ 0 is a full extension and c′ ∈ E \ c0(C).
Write c′ = {c′n} ∈ l∞(C). Define cn = c′n if n ≥ N > 1 and cn = 0 if n ≤ N . Put
c={cn}. Then c∈ E \c0(C). However, it is clear that cc0(C)c∗ is not full in c0(C).
By Theorem 7.5, the full extension τ is approximately absorbing in the sense of
Theorem 7.5 but not purely large. It should be also noted that, even if c∗Bc is full
for all c ∈ E \ B, the full extension may not be purely large. Let B be a nonstable,
nonunital but σ -unital simple C∗-algebra with continuous scale (see [Lin 2004b]
for more examples). Then B may be stably finite. No hereditary C∗-subalgebra
of B contains a stable C∗-subalgebra. So none of the essential extensions of a
unital separable amenable C∗-algebra A by B could be possibly purely large in
the sense of [Elliott and Kucerovsky 2001]; nevertheless, all of these extensions
are approximately absorbing in the sense of Theorem 7.5 (and many of them are
actually absorbing: for example, when A = C(X)).
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