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We consider the Allen–Cahn equation

ε21u + u − u3
= 0 in �,

∂u
∂ν

= 0 on ∂�,

where � = B1(0) is the unit ball in Rn and ε > 0 is a small parameter. We
prove the existence of a radial solution uε having N interfaces {uε(r) = 0} =⋃N

j=1{r = rε
j }, where 1 > rε

1 > rε
2 > · · · > rε

N are such that 1− rε
1 ∼ ε log(1/ε)

and rε
j−1 − rε

j ∼ ε log(1/ε) for j = 2, . . . , N . Moreover, the Morse index of
uε in H1

r (�ε) is exactly N .

1. Introduction

The aim of this paper is to construct a family of clustered transitional layered
solutions to the Allen–Cahn equation

(1-1) ε21u + u − u3
= 0 in � and

∂u
∂ν

= 0 on ∂�,

where 1 =
∑n

i=1 ∂2/∂x2
i is the Laplace operator, � = B1(0) is the unit ball in Rn ,

ε > 0 is a small parameter, and ν(x) denotes the unit outer normal at x ∈ ∂�.
Problem (1-1) and its parabolic counterpart have been a subject of extensive

research for many years. In order to describe some known results, we define the
Allen–Cahn functional (see [Allen and Cahn 1979]),

Jε[u] =

∫
�

(
ε2

2
|∇u|

2
− F(u)

)
, where F(u) = −

1
4
(1 − u2)2.

The set {x ∈ � | u(x) = 0} is called the interface of u. Let Per�(A) be the relative
perimeter of the set A ⊂ �. Using 0-convergence techniques (see [Modica 1987]),
Kohn and Sternberg [1989] obtained a general result stating that in a neighborhood
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of an isolated local minimizer of Per� there exists a local minimizer to the func-
tional Jε. They further used this idea to show the existence of a stable solution for
(1-1) in two-dimensional nonconvex domains, such as a dumb-bell. Since then, the
existence of solutions with a single interface intersecting the boundary has been
established and studied by many authors. See [Alikakos et al. 2000; Bronsard
and Stoth 1996; Flores et al. 2001; Kowalczyk 2005; Padilla and Tonegawa 1998;
Sternberg and Zumbrun 1998] and the references therein. However, the existence
of multiple interfaces is only proved, in the one-dimensional case, for the Allen–
Cahn equation (with inhomogeneous terms)

(1-2) ε2u′′
+ a(x)(u − u3) = 0, −1 < x < 1, u′(±1) = 0

(see [Nakashima 2003; Nakashima and Tanaka 2003]); and, in the higher-dim-
ensional case, for the following nonlinear equation with bistable nonlinearity and
inhomogeneous term:

(1-3) ε21u + u
(
u − a(|x |)

)
(1 − u) = 0 in B1(0),

∂u
∂ν

= 0 on ∂ B1(0)

(see [Dancer and Yan 2003]). The result of this last paper states that if a(r) has
a critical point r0 ∈ (0, 1) such that a(r0) = 1/2 , a′(r0) = 0, a′′(r0) < 0, then
there exists a clustered interior-layer solution to (1-3). All three papers use the
properties of the inhomogeneous terms to construct multiple (interior) interfaces.
(For the Allen–Cahn equation with inhomogeneity, 1u + a(x)(u − u3) = 0 in R2,
see [Rabinowitz and Stredulinsky 2003; 2004].)

Here, we continue our study, initiated in [Malchiodi et al. 2005], of clustered
layered solutions for semilinear elliptic equations, and show that the homogeneous
Allen–Cahn equation itself can generate multiple clustered interfaces near the
boundary. In that paper we showed that the singularly-perturbed Neumann problem

(1-4)


ε21u − u + u p

= 0 in �,

u > 0 in � and
∂u
∂ν

= 0 on ∂�,

has a clustered layered solution near the boundary. (The existence of a one-layer
solution to (1-4) near the boundary was first established in [Ambrosetti et al. 2003;
2004].) The purpose of this paper is to show that a similar phenomenon happens to
the Allen–Cahn equation. In particular, we establish the existence of clustered in-
terfaces — the so-called “phantom interfaces” — in higher dimensions. Moreover,
we show that, for each fixed positive integer N , there exists a solution to (1-1) with
Morse index N (in the space of radial functions).

Our main result is this:
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Theorem 1.1. Let N be a fixed positive integer. There exists εN > 0 such that ,
for all ε < εN , problem (1-1) admits a radially symmetric solution uε with the
following properties:

(1) the set of interfaces {uε(r) = 0} contains N spheres {r = r ε
j }, j = 1, . . . , N ,

with

(1-5) 1 − r ε
1 ∼ ε log 1

ε
, r ε

j−1 − r ε
j ∼ ε log 1

ε
, j = 2, . . . , N .

More precisely , we have uε(r ε
j + εy) → (−1) j H(y), where H(y) is the unique

heteroclinic solution of

(1-6) H ′′
+ H − H 3

= 0, H(0) = 0, H(±∞) = ±1.

(2) The solution uε has the energy bound

(1-7) Jε[uε] = ωn−1 Nε I [H ] + o(ε),

where
I [H ] =

∫
R

( 1
2(H ′)2

− F(H)
)
,

and where ωn−1 denotes the volume of Sn−1.

(3) The Morse index of uε in H 1
r (�) is exactly N , where H 1

r (�) denotes the space
of radial functions in H 1(�).

Remark 1.2. By a simple transformation, Theorem 1.1 readily extends to (1-3)
with a(r) ≡ 1/2 .

Our approach is similar to that of [Malchiodi et al. 2005], where a finite-dimen-
sional reduction procedure combined with a variational approach is used. Such a
method has been used successfully in many other papers, for example, [Ambrosetti
et al. 2003; 2004; Dancer and Yan 1999; Gui and Wei 1999; 2000; Gui et al. 2000].

In the rest of section, we introduce some notation to be used later.
By the scaling x = εy, problem (1-1) is reduced to the ODE

(1-8)

urr +
n−1

r
ur + f (u) = 0 for r ∈ (0, 1/ε),

u′(0) = u′(1/ε) = 0,

where f (u) = u − u3. From now on, we will work with (1-8).
Let H(y) be the unique solution to (1-6). Set

(1-9) �ε = (1/ε)B1(0) = B1/ε(0), and Iε = (0, 1/ε).

For u ∈ C2(�ε) and u = u(r), we have

(1-10) 1u = u′′
+

n−1
r

u′.
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For k ∈ N, we denote by H k
r (�ε) the space of radial functions in H k(�ε). On

H 1
r (�ε), we define an inner product as follows:

(1-11) (u, v)ε =

∫ 1/ε

0
(u′v′

+ 2uv)rn−1dr.

Similarly, the inner product on L2
r (�ε) can be defined by

(1-12) 〈u, v〉ε =

∫ 1/ε

0
(uv)rn−1dr.

We also introduce a new energy functional that, up to a positive multiplicative
constant, is equivalent to Jε:

(1-13) Eε[u] =
1
2

∫ 1/ε

0
|u′

|
2rn−1

−

∫ 1/ε

0
F(u)rn−1dr, u ∈ H 1

r (�ε).

Throughout this paper, unless otherwise stated, the letter C will always denote
various generic constants that are independent of ε, for ε sufficiently small. The no-
tation Aε � Bε means that limε→0 |Bε|/|Aε| = 0, while Aε � Bε means (1/Aε) �

(1/Bε).

2. Some preliminary analysis

In this section we introduce a family of approximate solutions to (1-8) and derive
some useful estimates.

Let H be the unique solution of (1-6). It is easy to see that

(2-1)


H(y) − 1 = −A0 e−

√
2|y|

+ O
(
e−2

√
2|y|

)
for y > 1,

H(y) + 1 = A0 e−
√

2|y|
+ O

(
e−2

√
2|y|

)
for y < −1,

H ′(y) =
√

2A0 e−
√

2|y|
+ O

(
e−2

√
2|y|

)
for |y| > 1,

where A0 > 0 is a fixed constant.
We state the following well-known lemma on H . For a proof, see [Müller 1993,

Lemma 4.1].

Lemma 2.1. For the eigenvalue problem

(2-2) φ′′
+ f ′(H)φ = λφ, |φ| ≤ 1, in R,

there holds

(2-3) λ1 = 0, φ1 = cH ′, λ2 < 0.

For u ∈ H 2
r (�ε), we define the operator

(2-4) Sε[u] := urr +
n−1

r
ur + f (u).
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We introduce the set

(2-5) 3 =

{
t = (t1, . . . , tN )

∣∣∣∣∣ tN > 1 − ε(log(1/ε))2, 1 − t1 ≥ η ε log(1/ε),

tj−1 − tj > η ε log(1/ε), j = 2, . . . , N

}
,

where η ∈ (0, 1/8
√

2 ) is a fixed number.
Let χ(s) be a cut-off function such that χ(s) = 1 for s ≤ 1/4 and χ(s) = 0 for

s ≥ 1/2 . For t ∈ (3/4 , 1), we define

(2-6) ρε(t) = H ′

(1−t
ε

)
; βε(r) =

1
√

2
e
√

2(r−1/ε), r ∈ [0, 1/ε],

and

(2-7)
Ht(r) = H

(
r −

t
ε

)
,

Hε,t(r) =

(
H

(
r −

t
ε

)
− ρε(t)βε(r)

)(
1 − χ(εr)

)
− χ(εr).

It is easy to see that, for (1 − t)/ε � 1,

(2-8) ρε(t) =
√

2A0 e−
√

2(1−t)/ε
+ O

(
e−2

√
2(1−t)/ε).

We first assume that N is odd. For t ∈ 3, we now define our approximate
function:

(2-9) Hε,t(r) =

N∑
j=1

(−1) j Hε,tj (r).

If N is even, we set

(2-10) Hε,t(r) =

N∑
j=1

(−1) j Hε,t(r) − 1 =

N+1∑
j=1

(−1) j Hε,tj (r)

where we use the convention that Hε,tN+1 = 1. So, without loss of generality, we
can assume that N is odd.

Note that, for r ≤ 1/(2ε), there holds

(2-11) |Hε,t(r) − (−1)N
| + |H ′

ε,t(r)| + |H ′′

ε,t(r)| ≤ e−1/(Cε).

Observe also that, by construction, Hε,t satisfies the Neumann boundary condition,
namely H ′

ε,t(0) = H ′
ε,t(1/ε) = 0. Furthermore, Hε,t depends smoothly on t as a

map with values in C2
(
[0, 1/ε]

)
.

The next lemma shows that Hε,t is a good approximate function to (1-8).

Lemma 2.2. For ε sufficiently small and t ∈ 3, one has

(2-12)
∥∥Sε[Hε,t]

∥∥
L∞ + εn−1

∫ 1/ε

0

∣∣Sε[Hε,t]
∣∣rn−1dr

≤ C
(
ε +

N∑
j=1

(
ρε(tj )

)2
+

∑
i 6= j

e−
√

2|ti −tj |/ε
)
.
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Proof. Using (1-6) it is easy to see that

(2-13) Sε[Hε,t] =
n−1

r
H ′

ε,t + f (Hε,t)

−

N∑
l=1

(−1)l f (Htl ) − 2
N∑

l=1
(−1)lρε(tl)βε(r) + O

(
e−1/(Cε)

)
.

The first term in the right-hand side of (2-13) can be estimated as

1
r

H ′

ε,t =
1
r

N∑
j=1

(−1) j(H ′

tj − ρε(tj )β ′

ε(r)
)
+ O

(
e−1/(Cε)

)
.

From the decay of H ′ and βε we deduce that

(2-14)
∥∥∥1

r
H ′

ε,t

∥∥∥
∞

+ εn−1
∫ 1/ε

0

1
r

|H ′

ε,t|r
n−1dr ≤ Cε.

Next, we note that∣∣∣ f (Hε,t) −

N∑
l=1

f
(
(−1)l Htl

)
− 2

N∑
l=1

(−1)lρε(tl)βε(r)

∣∣∣ ≤ S1 + S2,

where

S1 =

∣∣∣ f
( N∑

j=1
(−1) j Htj

)
−

N∑
j=1

f
(
(−1) j Htj

)∣∣∣,
S2 =

∣∣∣ f
( N∑

j=1
(−1) j Hε,tj

)
− f

( N∑
j=1

(−1) j Htj

)
− 2

N∑
j=1

(−1) jρε(tj )βε(r)

∣∣∣.
To estimate S1 and S2, we divide the domain Iε = (0, 1/ε) into the N intervals
Iε,1, . . . , Iε,N defined by

(2-15)
Iε,1 =

[ t1 + t2
2ε

,
1
ε

)
, Iε, j =

[ tj + tj+1

2ε
,

tj + tj−1

2ε

)
, j = 2, . . . , N − 1,

and Iε,N =

(
0,

tN + tN−1

2ε

)
.

We choose t0 = 2 − t1 and tN+1 = −tN , so that

(2-16) Iε, j =

[ tj + tj+1

2ε
,

tj + tj−1

2ε

)
, j = 1, . . . , N , Iε =

N⋃
j=1

Iε, j .

For r ∈ Iε, j and j < l, we note that

Htl (r) = 1 + O
(
e−

√
2|r−tj /ε|

)
,

while for j > l,
Htl (r) = −1 + O

(
e−

√
2|r−tj /ε|

)
.



BOUNDARY-CLUSTERED INTERFACES FOR THE ALLEN–CAHN EQUATION 453

Since N is odd, we see that

(2-17)
∑
l 6= j

(−1)l Htl =
∑
l< j

(−1)l(Htl + 1) +
∑
l> j

(−1)l(Htl − 1).

Thus, we can rewrite S1 as:

S1 = f
( ∑

l< j
(−1)l(Htl + 1) + (−1) j Htj +

∑
l> j

(−1)l(Htl − 1)
)

− (−1) j f (Htj )

−
∑
l 6= j

(−1)l f (Htl )

= f ′
(
(−1) j Htj

)( ∑
l< j

(−1)l(Htl + 1) +
∑
l> j

(−1)l(Htl − 1)
)

−
∑
l 6= j

(−1)l f (Htl )

+ O
( ∑

l< j
(Htl + 1)2

+
∑
l> j

(Htl − 1)2
)

This quantity can also be written

S1 =
(

f ′
(
(−1) j Htj

)
− f ′(1)

)( ∑
l< j

(−1)l(Htl + 1) +
∑
l> j

(−1)l(Htl − 1)
)

+ O
( ∑

l< j
(Htl + 1)2

+
∑
l> j

(Htl − 1)2
)

= O
(
min

{
Htj + 1, Htj − 1

})( ∑
l< j

(Htl + 1) +
∑
l> j

(Htl − 1)
)

+ O
( ∑

l< j
(Htl + 1)2

+
∑
l> j

(Htl − 1)2
)
.

Then, with some elementary computations, one finds that

(2-18) ‖S1‖L∞(Iε, j ) + εn−1
∫

Iε, j

|S1(r)|rn−1dr ≤ C
∑
i 6= j

e−
√

2|ti −tj |/ε.

It remains to estimate S2. For this, we note that, for r ∈ Iε, j and j ≥ 2, we have

ρε(tj )βε(r) = O
(
e−

√
2(1−t1)/εe

√
2(r−1/ε)

)
,

from which it follows that, for j ≥ 2,

‖S2‖L∞(Iε, j ) + εn−1
∫

Iε, j

|S2(r)|rn−1dr = O
(
e−2

√
2(1−t1)/ε

)
= O

( N∑
j=1

(
ρε(tj )

)2
)
.

Therefore, we just need to consider the case when r ∈ Iε,1. But, since f ′(±1)=−2,
we have

S2 = f
( N∑

l=1
(−1)l Htl −

N∑
l=1

(−1)lρε(tl)βε(r)
)

− f
( N∑

l=1
(−1)l Htl

)
− f ′(−1)

N∑
l=1

(−1)lρε(tl)βε(r)
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=

(
f ′

( N∑
l=1

(−1)l Htl

)
− f ′(−1)

) N∑
l=1

(−1)lρε(tl)βε(r) + O
( N∑

l=1
ρε(tl)2βε(r)2

)
= O

( N∑
l=1

e−
√

2|r−tl/ε|
)( N∑

l=1
ρε(tl)βε(r)

)
+ O

( N∑
l=1

ρε(tl)2βε(r)2
)
.

Hence, we also get

(2-19) ‖S2‖L∞(I1) + εn−1
∫

I1
|S2(r)|rn−1dr ≤ Cρ2

ε (t1). �

The proof of the next lemma is postponed to the appendix.

Lemma 2.3. Let t ∈ 3. For ε sufficiently small , we have

(2-20) Eε

[ N∑
j=1

(−1) j Hε,tj

]
= I [H ]

N∑
i=1

( ti
ε

)n−1
−

(1
ε

)n−1(√
2A2

0 + o(1)
)
e−2

√
2(1−t1)/ε

−

N∑
j=2

( tj
ε

)n−1(√
2A2

0 + o(1)
)
e−

√
2|tj −tj−1|/ε + O(ε2−n),

where A0 > 0 is defined in (2-1).

3. Lyapunov–Schmidt process: finite-dimensional reduction

In this section we outline the so-called Lyapunov–Schmidt reduction process. Since
this can be proved along the same ideas of [Malchiodi et al. 2005, Sections 3], we
skip some of the details.

Fix t ∈ 3. Integrating by parts, one can show that orthogonality to ∂ Hε,tj /∂tj in
H 1

r (�ε), j = 1, . . . , N , is equivalent to orthogonality in L2(�ε) to the functions

(3-1) Zε,tj = 1
(∂ Hε,tj

∂tj

)
− 2

∂ Hε,tj

∂tj
, j = 1, . . . , N .

By elementary computations, differentiating (1-6) we obtain

∂ Hε,tj

∂tj
= −

1
ε

H ′

(
r −

tj
ε

)
+

1
ε

H ′′

(1 − tj
ε

)
βε(r) + O

(
e−1/(Cε)

)
,(3-2)

Zε,tj =
(

f ′(Htj ) − f ′(±1)
)∂ Hε,tj

∂tj
+

n − 1
r

(∂ Hε,tj

∂tj

)′

(3-3)

= −
1
ε

H ′

tj

(
f ′(Htj ) − f ′(±1)

)
+ o(1/ε),

where O
(
e−1/(Cε)

)
and o(1/ε) are intended both in the C1 and H 1

r sense.
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We consider first the following linear problem: Given h ∈ L∞(�ε), find a func-
tion φ satisfying

(3-4)

 Lε[φ] := φ′′
+

n−1
r

φ′
+ f ′(Hε,t)φ = h +

N∑
j=1

cj Zε,tj ;

φ′(0) = φ′(1/ε) = 0 and 〈φ, Zε,tj 〉ε = 0, j = 1, . . . , N ,

for some constants cj , j = 1, . . . , N . For this, define the norm

(3-5) ‖φ‖∗ = sup
r∈(0, 1/ε)

|φ(r)|.

Assuming a solution to (3-4) exists, we have an estimate on φ:

Proposition 3.1. Let φ satisfy (3-4). For ε sufficiently small , we have

(3-6) ‖φ‖∗ ≤ C‖h‖∗,

where C is a positive constant independent of ε and t ∈ 3.

Proof. The argument is similar in spirit of that of [Malchiodi et al. 2005, Proposi-
tion 3.1]. For the sake of completeness, we include a proof here.

Arguing by contradiction, assume that

(3-7) ‖φ‖∗ = 1, ‖h‖∗ = o(1).

We multiply (3-4) by ∂ Hε,tj /∂tj and integrate over �ε to obtain

(3-8)
N∑

i=1
ci

〈
Zε,ti ,

∂ Hε,tj

∂tj

〉
ε
= −

〈
h,

∂ Hε,tj

∂tj

〉
ε
+

〈
1φ + f ′(Hε,t)φ,

∂ Hε,tj

∂tj

〉
ε
.

From the exponential decay of H ′, one finds〈
h,

∂ Hε,tj

∂tj

〉
ε
=

∫ 1/ε

0
h

∂ Hε,tj

∂tj
rn−1dr = O

(
‖h‖∗ε

−n).
Moreover, integrating by parts and using (3-2) and (3-3), we deduce〈

1φ + f ′(Hε,t)φ,
∂ Hε,tj

∂tj

〉
ε
=

〈
Zε,tj + f ′(Hε,t)

∂ Hε,tj

∂tj
, φ

〉
ε
= o

(
ε−n

‖φ‖∗

)
.

From (3-2) and (3-3), we also see that

(3-9)
〈
Zε,ti ,

∂ Hε,tj

∂tj

〉
ε
= −ε−n−1

(
tn−1
i δi j

∫
R

f ′(H)(H ′)2
+ o(1)

)
,

where δi j denotes the Kronecker symbol. Note that, using the equation H ′′′
+

f ′(H) H ′
= 0, we find ∫

R

f ′(H)(H ′)2
=

∫
R

(H ′′)2 > 0.
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This shows that the left-hand side of the equation (3-8) is diagonally dominant in
the indices i and j , and hence, by (3-7), we have

(3-10) ci = O
(
ε‖h‖∗

)
+ o

(
ε‖φ‖∗

)
= o(ε), i = 1, . . . , N .

Also, since we are assuming that ‖h‖∗ = o(1) and since ‖Zε,tj ‖∗ = O (1/ε), there
holds

(3-11)
∥∥∥h +

N∑
j=1

cj Zε,tj

∥∥∥
∗

= o(1).

Thus, (3-4) yields

(3-12)

φ′′
+

n−1
r

φ′
+ f ′(±1) +

(
f ′(Hε,t) − f ′(±1)

)
φ = o(1),

φ′(0) = φ′(1/ε) = 0 and 〈φ, Zε,tj 〉ε = 0, j = 1, . . . , N ,

where o(1) is in the sense of L∞(0, 1/ε).
We show that (3-12) is incompatible with our assumption that ‖φ‖∗ = 1. First,

we claim that

(3-13) |φ| → 0 on y ∈

N⋃
j=1

( tj
ε

− R,
tj
ε

+ R
)
, as ε → 0,

where R is any fixed positive constant.
Indeed, assuming the contrary, there exist δ0 > 0, j ∈ {1, . . . , N }, and sequences

εk, φk, yk ∈
(
tj/ε − R, tj/ε + R

)
such that φk satisfies (3-4) and

(3-14) |φk(yk)| ≥ δ0.

Let φ̃k = φk(y − tj/εk). Then, using (3-12) and ‖φ‖∗ = 1, as εk → 0, φ̃k converges
weakly in H 2

loc(R) and strongly in C1
loc(R) to a bounded function φ0 which satisfies

φ′′

0 + f ′(H)φ0 = 0 in R, |φ0| ≤ C.

By Lemma 2.1, we have φ0 = cH ′ for some c. Since φ̃k ⊥ Zε,tj , we conclude that∫
R

φ0 f ′(H)(H ′)2(y) = 0,

which yields c = 0. Hence φ0 = 0 and φ̃k → 0 in B2R(0). This contradicts (3-14),
so (3-13) holds true.

Given δ > 0, the decay of f ′(H) − f ′(±1) together with (3-13) (with R suffi-
ciently large) imply that

(3-15)
∥∥(

f ′(Hε,t) − f ′(±1)
)
φ
∥∥

∗
≤ δ +

1
2‖φ‖∗.
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Using (3-12) and the Maximum Principle, one finds

‖φ‖∗ ≤
∥∥( f ′(Hε,t) − f ′(±1))φ

∥∥
∗
+

N∑
j=1

|cj | ‖Zε,tj ‖∗ + ‖h‖∗ ≤ 2δ +
1
2‖φ‖∗,

and hence

‖φ‖∗ ≤ 4δ < 1,

if we choose δ < 1/4 . This contradicts (3-7). �

Next, we consider the following nonlinear problem: Find a function φ such that
for some constants cj , j = 1, . . . , N , the equation

(3-16)

1(Hε,t + φ) + f (Hε,t + φ) =

N∑
j=1

cj Zε,tj in �ε,

φ′(0) = φ′(1
ε
) = 0 and 〈φ, Zε,tj 〉ε = 0, j = 1, . . . , N .

holds true.
The proof of the next result follows the same lines of [Malchiodi et al. 2005,

Proposition 4.2].

Proposition 3.2. For t ∈ 3 and ε sufficiently small , there exists a unique φ = φε,t
such that (3-16) holds. Moreover , t 7→ φε,t is of class C1 as a map into H 1

r (�ε),
and we have

(3-17) ‖φε,t‖∗ ≤ C
(
ε +

n∑
j=1

e−(3/2)
√

2(1−tj )/ε +
∑
i 6= j

e−(3/4)
√

2|ti −tj |/ε
)
.

4. Energy computation for reduced energy functional

We expand the quantity

(4-1) Mε(t) := εn−1Eε

[
Hε,t + φε,t

]
: 3 → R

in ε and t, where φε,t is given by Proposition 3.2. Up to negligible error terms, the
same expansion of Lemma 2.3 holds true.

Lemma 4.1. For t ∈ 3 and ε sufficiently small , we have

(4-2)

Mε(t) = εn−1Eε[Hε,t + φε,t]

= I [H ]

N∑
j=1

tn−1
j −

(√
2A2

0 + o(1)
)
e−2

√
2(1−t1)/ε

−
(√

2A2
0 + o(1)

) N∑
j=2

tn−1
j e−

√
2|tj −tj−1|/ε + O(ε).
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Proof. It is sufficient to show that

Mε(t) = εn−1Eε[Hε,t] + o
( N∑

j=1
e−2

√
2(1−tj )/ε +

∑
i 6= j

e−
√

2|ti −tj |/ε
)

+ O(ε),

and to apply Lemma 2.3. In order to do this, we write

ε1−nMε = Eε[Hε,t] + K1 + K2 − K3,

where

K1 =

∫ 1/ε

0

(
H ′

ε,tφ
′

ε,t − f (Hε,t)φε,t
)
rn−1dr;

K2 =
1
2

∫ 1/ε

0

(
|φ′

ε,t|
2
− f ′(Hε,t)φ

2
ε,t

)
rn−1dr;

K3 =

∫ 1/ε

0

(
F(Hε,t + φε,t) − F(Hε,t) − f (Hε,t)φε,t −

1
2 f ′(Hε,t)φ

2
ε,t

)
rn−1dr.

Integrating by parts, using Lemma 2.2 and Proposition 3.1, we find

(4-3) |K1| =

∣∣∣ ∫ 1/ε

0
Sε[Hε,t]φε,trn−1dr

∣∣∣ ≤ C‖φε,t‖∗

∫ 1/ε

0

∣∣Sε[Hε,t]
∣∣rn−1dr

≤ Cε1−n
(
ε2

+

N∑
j=1

(
ρε(tj )

)2+3/2
+

∑
i 6= j

e−(7/4)
√

2|ti −tj |/ε
)
.

To estimate K2, we note that φε,t satisfies

(4-4) 1φε,t + f (Hε,t + φε,t) − f (Hε,t) + Sε[wε,t] =

N∑
j=1

cj Zε,tj .

Multiplying (4-4) by φε,trn−1 and integrating over Iε, we obtain

(4-5)
∫

Iε
Sε[Hε,t]φε,trn−1dr =

∫
Iε

(
|φ′

ε,t|
2
− f ′(Hε,t)φ

2
ε,t

)
rn−1dr

+

∫
Iε

(
f (Hε,t + φε,t) − f (Hε,t) − f ′(Hε,t)φε,t

)
φε,trn−1dr.

Hence, we find

2K2 = −

∫
Iε

(
f (Hε,t + φε,t) − f (Hε,t) − f ′(Hε,t)φε,t

)
φε,trn−1dr

+

∫
Iε

Sε[Hε,t]φε,trn−1dr.

From Taylor’s formula, we get∣∣ f (Hε,t + φε,t) − f (Hε,t) − f ′(Hε,t)φε,t
∣∣ ≤ C |φε,t|

2,
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so we deduce

|K2| ≤ C
∫

Iε
|φε,t|

3rn−1dr + C‖φε,t‖∗

∫
Iε

Sε[Hε,t]rn−1dr.

From the exponential decay of H(±y) − (±1) one finds that φε,t(r) satisfies

φ′′

ε,t +
n−1

r
φ′

ε,t + f (Hε,t + φε,t) − f (Hε,t) = O
( N∑

j=1
e−

√
2|r−tj /ε|

)
,

φ′

ε,t(0) = φ′

ε,t(1/ε) = 0.

From (4-4) and a comparison principle, we obtain

(4-6) |φε,t(r)| ≤ C
N∑

j=1
e−(

√
2/C̃)|r−tj /ε|

for some C̃ < 1.
Using Proposition 3.2 and (4-6), we get

(4-7) |K2| ≤ Cε1−n
(
ε2

+

N∑
j=1

(
ρε(tj )

)3
+

∑
i 6= j

e−2
√

2|ti −tj |/ε
)
.

From the Hölder continuity of f ′, we deduce∣∣F(Hε,t + φε,t) − F(Hε,t) − f (Hε,t)φε,t −
1
2 f ′(Hε,t)φ

2
ε,t

∣∣ ≤ C |φε,t|
3,

so, again, it follows that

(4-8) |K3| ≤ Cε1−n
(
ε2

+

N∑
j=1

(
ρε(tj )

)3
+

∑
i 6= j

e−2
√

2|ti −tj |/ε
)
.

Combining with (2-20) of Lemma 2.2, we obtain the conclusion. �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Fix t∈3 and let φε,t be given by Proposition
3.2. Let also Mε(t) denote the reduced energy functional defined by (4-1).

Proposition 5.1. For ε small , the following maximization problem

(5-1) sup
{
Mε(t) | t ∈ 3

}
has a solution tε in the interior of 3.

Proof. Since Mε(t) is continuous in t, it achieves a maximum in 3̄. Let tε be a
maximum point. We claim that tε ∈ 3.

We argue by contradiction and assume that tε ∈ ∂3. From the definition of 3,
there are three possibilities: either 1 − t1 = ηε log(1/ε), or there exists j ≥ 2 such
that tj−1 − tj = ηε log(1/ε), or, finally, tN = 1 − ε

(
log(1/ε)

)2.
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In the first case, we have

I [H ]tn−1
1 −

(√
2A2

0 + o(1)
)
e−2

√
2(1−t1)/ε

= I [H ]

(
1 − ηε log 1

ε

)n−1
−

√
2A2

0 e−2η
√

2 log(1/ε)
+ o

(
ε2

√
2η

)
≤ I [H ] − A2

0 ε2
√

2η.

Since η < 1/8
√

2 , we obtain

(5-2) Mε(tε) ≤ N I [H ] − A2
0 ε2

√
2η.

In the second case, there holds

(5-3) Mε(tε) ≤ I [H ]

N∑
j=1

tn−1
j −

(√
2A2

0 + o(1)
)
ε
√

2ηtn−1
j ≤ N I [H ] − A2

0 ε
√

2η.

In the latter case, we have tN = 1 − ε
(
log(1/ε)

)2, and therefore

(5-4) Mε(tε) ≤ I [H ](N − 1 + tn−1
N ) + O(ε)

≤ I [H ]
(
N − (n − 1)ε(log(1/ε))2)

+ O(ε).

On the other hand, choosing tj = 1 − ( j/
√

2)ε log(1/ε), j = 1, . . . , N , we obtain

N∑
j=1

tn−1
j = 1 −

N (N + 1)(n − 1)

2
√

2
ε log(1/ε) + O

(
ε2(log(1/ε))2)

;

e−2
√

2(1−t1)/ε = ε2
; e−

√
2|tj−1−tj |/ε = ε,(5-5)

and we find

Mε(tε) ≥ N I [H ] −
N (N + 1)(n − 1)2

2
√

2
ε log(1/ε) + O(ε),

which contradicts either (5-2) or (5-3) or (5-4). This completes the proof of Propo-
sition 5.1. �

Remark 5.2. The above argument also shows that

(5-6) 1 − tε
1 ∼ ε log(1/ε), tε

j−1 − tε
j ∼ ε log(1/ε).

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.2, there exists εN such that, for ε < εN ,
we have a C1 map t 7→ φε,t from 3 into C2(Iε) such that

(5-7) Sε[Hε,t + φε,t] =

N∑
j=1

cj Zε,tj ,

for some constants {cj } ⊆ R, which are also of class C1 in t.
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By Proposition 5.1, there exists tε ∈ 3 that achieves the maximum of Kε : t 7→

Eε[Hε,t + φε,t]. Let

uε =

N∑
i=1

(−1)i Hε,tεi + φε,tε = Hε,tε + φε,tε .

Then we have
∂ti

∣∣
t=tε Mε(tε) = 0, i = 1, . . . , N ,

and hence∫
Iε

(
∇uε∇∂ti (Hε,t+φε,t)+uε∂ti (Hε,t+φε,t)− f (uε)∂ti (Hε,t+φε,t)

)∣∣∣
t=tε

rn−1dr =0.

Therefore, by (5-7), we find

(5-8)
N∑

j=1
cj

∫
Iε

(
Zε,tj ∂ti (Hε,t + φε,t)

)
rn−1dr = 0.

Differentiating the equation 〈φ, Zε,tj 〉ε = 0 with respect to tj , we get

〈∂ti φ, Zε,tj 〉ε = −〈φ, ∂ti Zε,tj 〉ε = O(‖φ‖∗)ε
−n−1.

Using (3-3), we see that (5-8) is diagonally dominant in the coefficients {ci }, which
implies that cj = 0 for j = 1, . . . , N . Hence

uε = Hε,tε + φε,tε

is a solution of (1-1).
By our construction, one can easily check that εn−1Eε(uε) → N I [H ] as ε → 0,

and that uε has only N zeroes sε
1/ε, . . . , sε

N /ε. By the structure of uε, we see that
(up to a permutation) sε

i − tε
i = o(1). This proves (1) and (2) of Theorem 1.1.

It remains to prove (3). First we note that u′
ε satisfies

(5-9) 1u′

ε + f ′(uε)u′

ε =
n−1

r2 u′

ε.

By our construction, at each interval (sε
j /ε, sε

j−1/ε), for j = 2, . . . , N , there exists
a point s̃ε

j−1/ε ∈ (sj/ε, sj−1/ε) such that u′
ε(s̃

ε
j−1/ε) = 0. Now, we set

ϕ1(r) =

{
u′

ε(r) for r ∈
(
s̃ε

1/ε, 1
)
,

0 otherwise;

ϕj (r) =

{
u′

ε(r) for r ∈
(
s̃ε

j /ε, s̃ε
j−1/ε

)
,

0 otherwise,
j = 2, . . . , N − 1;

ϕN (r) =


u′

ε(r), for r ∈
(
1/(2ε), s̃ε

N−1/ε
)
,

2ε(r − 1/(4ε))u′
ε(r), for 1/(4ε) ≤ r ≤ 1/(2ε),

0, for r < 1/(4ε) or r ≥ s̃ε
N−1/ε.
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Next, we define a quadratic functional

(5-10) Q[φ] =

∫
Iε

(
|∇φ|

2
− f ′(uε)φ

2)rn−1dr.

It is easy to check that

(5-11)
∫

Iε
ϕiϕjrn−1dr = 0 for i 6= j.

Using equation (5-9), we obtain

(5-12) Q[ϕi ] = −

∫
Iε

ϕ2
i rn−3dr < 0, i = 1, . . . , N − 1.

When i = N , we have

(5-13) Q[ϕN ] = −

∫
Iε

ϕ2
N rn−3dr + O

(
e−1/(Cε)

)
< 0.

From (5-12) and (5-13), the Morse index of uε in H 1
r (�ε) is at least N .

Finally, we also show that the Morse index of uε in H 1
r (�ε) is at most N . In

fact, we define

(5-14) zε
j (r) = H ′

ε,tεj
χ

( εr − tε
j

ε
√

| log(1/ε)|

)
, j = 1, . . . , N ,

and consider the following minimization problem

(5-15) µε
j = inf

φ∈H1(Iε, j )∫
Iε, j

φ zε
j rn−1dr=0

∫
Iε, j

(
|∇φ|

2
− f ′(uε)φ

2)rn−1dr∫
Iε, j

φ2rn−1dr
.

Assume that µε
j ≤ 0. By standard regularity theory, µε

j is attained by a function φε
j

which satisfies

(5-16)

1φε
j + f ′(uε)φ

ε
j = −µε

j φ
ε
j + cε

j zε
j ,

(φε
j )

′
|∂ Iε, j = 0 and

∫
Iε, j

φε
j zjrn−1dr = 0,

where cε
j is a constant.

First, we notice that cε
j = o(‖φε

j ‖∗), which follows by reasoning as for (3-10)
of Proposition 3.1. Then, from Lemma 2.1 we deduce that µε

j → 0; moreover, the
same argument leading to Proposition 3.1 shows that φε

j = 0.
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Thus, µε
j > 0. Let φ = φ(r) be such that

∫
Iε

φ zε
j rn−1

= 0, j = 1, . . . , N , which
is equivalent to

∫
Iε, j

φ zε
j rn−1

= 0. This then implies that

(5-17)
∫

Iε, j

(
|∇φ|

2
− f ′(uε)φ

2)rn−1dr ≥ µε
j

∫
Iε, j

|φ|
2rn−1dr, j = 1, . . . , N ,

and hence

(5-18)
∫

Iε

(
|∇φ|

2
− f ′(uε)φ

2)rn−1dr =

N∑
j=1

∫
Iε, j

(
|∇φ|

2
− f ′(uε)φ

2)rn−1dr

≥ min
j=1,...,N

µε
j

∫
Iε

|φ|
2rn−1dr.

This yields

(5-19) λN+1 = sup
v1,...,vN

inf∫
Iε

φvj rn−1
=0

j=1,...,N

∫
Iε

(
|∇u|

2
− f ′(uε)φ

2
)
rn−1∫

Iε
φ2rn−1 ≥ min

j=1,...,N
µε

j > 0,

and hence the Morse index of uε in H 1
r (�ε) is at most N .

Combining the upper and lower bound for the Morse index, we see that the
Morse index of uε in H 1

r (�ε) is exactly N . This proves (3) of Theorem 1.1. �

Appendix

In this appendix we expand the quantity Eε

[∑N
j=1(−1) j Hε,tj

]
as a function of ε

and t. Several facts will be used repeatedly:

H(y) = 1 − A0 e−
√

2|y|
+ O

(
e−2

√
2|y|

)
, for y > 1;

H(y) = −1 + A0 e−
√

2|y|
+ O

(
e−2

√
2|y|

)
, for y < −1;

H ′(y) =
√

2A0 e−
√

2|y|
+ O

(
e−2

√
2|y|

)
, for |y| > 1;

ρε(t1) =
√

2
(

A0 + o(1)
)
e−

√
2(1−t1)/ε;

ρε(tj ) = o
(
ρε(t1)

)
for j ≥ 2.

From a Taylor expansion we find

Eε[Hε,t] = I1 + I2 + I3 + O
(
ε1−nρ3

ε (t1)
)
,
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where

I1 = Eε

[ N∑
j=1

(−1) j Htj

]
,

I2 = −

( K∑
l=1

(−1)lρε(tl)
) ∫

Iε

(( N∑
j=1

(−1) j Htj

)′

β ′

ε − f
( N∑

j=1
(−1) j Htj

)
βε

)
rn−1dr,

I3 =
1
2

( N∑
l=1

(−1)lρε(tl)
)2

∫
Iε

(
|β ′

ε|
2
− f ′

( N∑
j=1

(−1) j Htj

)
β2

ε

)
rn−1.

Recalling that f ′(±1) = −2, the term I3 can be estimated by

I3 =
1
2

( N∑
j=1

(−1) jρε(tj )
)2

∫
Iε

(
2 − f ′

( N∑
j=1

(−1) j Htj

))
β2

ε rn−1dr + o(ε1−nρ2
ε (t1))

=
(
ρε(t1)

)2
∫

Iε
β2

ε rn−1dr + o
(
ε1−nρ2

ε (t1)
)
=

1
2
√

2
ε1−n(ρε(t1)

)2
+ o

(
ε1−nρ2

ε (t1)
)

=
A2

0 + o(1)
√

2
ε1−ne−2

√
2(1−t1)/ε.

Next we estimate the integral in I2. We have∫
Iε

( N∑
j=1

(−1) j H ′

tj β
′

ε − f
( N∑

j=1
(−1) j Htj

)
βε

)
rn−1dr

=

∫
Iε

(√
2

N∑
j=1

(−1) j H ′

tj − f
( N∑

j=1
(−1) j Htj

))
βεrn−1dr

=

∫
Iε,1

(
−

√
2H ′

t1 − f (−Ht1)
)
βε rn−1dr + o

(
ε1−nρε(t1)

)
= −

1
√

2
e−

√
2(1−t1)/ε

∫
R

(√
2H ′

− f (H)
)
e
√

2ydy
(
t1/ε

)n−1
+ o

(
ε1−nρε(t1)

)
= −A0 e−

√
2(1−t1)/ε

(
t1/ε

)n−1
+ o

(
ε1−nρε(t1)

)
,

since ∫
R

(√
2H ′

− f (H)
)
e
√

2ydy =
(
H ′e

√
2y)∣∣∣+∞

−∞

=
√

2A0.

Thus,

I2 = −
(√

2A2
0 + o(1)

)
e−2

√
2(1−t1)/ε

(
t1/ε

)n−1
+ o

(
ε1−nρε(t1)

)
+ O(ε2−n),

which implies that

(5-20) I2 + I3 = −
A2

0 + o(1)
√

2
e−2

√
2(1−t1)/ε

(
t1/ε

)n−1
+o

(
ε1−nρε(t1)

)
+ O(ε2−n),

since t1 = 1 + O
(
ε(log(1/ε))2

)
.
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It remains to consider I1. For this purpose, we decompose it as

I1 =

N∑
j=1

Eε, j ,

where

Eε, j =

∫
Iε, j

(
1
2

∣∣∣ N∑
l=1

(−1)l H ′

tl

∣∣∣2
− F

( N∑
l=1

(−1)l Htl

))
rn−1dr

=

∫
Iε, j

(
1
2

∣∣∣H ′

tj +
∑
l 6= j

(−1) j+l H ′

tl

∣∣∣2
− F

(
Hj +

∑
l 6= j

(−1) j+l Htl

))
rn−1dr

= I4 + I5 + I6 + o
(
ε1−n ∑

i 6= j
e−

√
2|ti −tj |/ε

)
,

with

I4 =

∫
Iε, j

( 1
2 |H ′

tj |
2
− F(Htj )

)
rn−1dr,

I5 =

∫
Iε, j

(
H ′

tj

∑
l 6= j

(−1)l+ j H ′

tl − f (Htj )
∑
l 6= j

(−1)l+ j Htl

)
rn−1dr,

I6 =
1
2

∫
Iε, j

∣∣∣∑
l 6= j

(−1) j+l Htl

∣∣∣2(
2 − f ′((−1) j Htj )

)
rn−1dr.

Using the fact that |H ′
|
2
= 2F(H), for I4 we find

I4 =

∫
Iε, j

|H ′

tj |
2rn−1dr

=

∫
R

|H ′
|
2dy (tj/ε)n−1

−
A2

0 + o(1)
√

2

(
e−

√
2|tj −tj−1|/ε + e−

√
2|tj −tj+1|/ε

)
(tj/ε)n−1

+ O(ε2−n).

For j ≥ 2, I5 can be estimated (by recalling the exponential-decay property of
H(y) ± 1) as

I5 = (tj/ε)n−1 H ′

tj

∑
l 6= j

(−1)l+ j Htl

∣∣
∂ Iε, j

+ O(ε2−n)

= −
(

A2
0 + o(1)

)√
2
(
e−

√
2|tj −tj−1|/ε + e−

√
2|tj −tj+1|/ε

)
(tj/ε)n−1

+ O(ε2−n).

For j = 1, we have

I5 = (t1/ε)n−1 H ′

tj

∑
l>1

(−1)l+1 Htl

∣∣
∂ Iε,1

+ O(ε2−n)

= −
(

A2
0 + o(1)

)√
2e−

√
2|t1−t2|/ε(tj/ε)n−1

+ O(ε2−n).
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I6 can be estimated similarly: for j ≥ 2, we have

I6 = 2
∫

Iε, j

∣∣∣ ∑
l 6= j

(−1) j+l Htl

∣∣∣2
rn−1dr

=
A2

0 + o(1)
√

2

(
e−

√
2|tj −tj−1|/ε + e−

√
2|tj −tj+1|/ε

)
(tj/ε)n−1

+ O(ε2−n),

while for j = 1,

I6 = 2
∫

Iε,1

∣∣∣∑
l>1

(−1)l+1 Htl

∣∣∣2
rn−1dr =

A2
0 + o(1)
√

2
e−

√
2|t1−t2|/ε(t1/ε)n−1

+ O(ε2−n).

Combining the estimates of I4, I5, and I6, we obtain

I1 = I [H ]

N∑
j=1

(tj/ε)n−1
−

√
2
(

A2
0 + o(1)

) N∑
j=2

e−
√

2|tj −tj−1|/ε(tj/ε)n−1

−
A2

0 + o(1)
√

2
e−2

√
2(1−t1)/ε + O(ε2−n)

= I [H ]

N∑
j=1

(tj/ε)n−1
−

√
2
(

A2
0 + o(1)

) N∑
j=2

e−
√

2|tj −tj−1|/ε(tj/ε)n−1

−
A2

0 + o(1)
√

2
e−2

√
2(1−t1)/ε(t1/ε)n−1

+ O(ε2−n).

Adding this to the estimate in (5-20), we obtain the asymptotic expansion (2-20)
of Eε

[∑N
j=1(−1) j Hε,tj

]
.
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