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Let ϕt be a nonsingular flow on a 3-dimensional manifold M. Denote by
πP : P X → M the projectivized bundle of the quotient bundle of T M by
the line bundle tangent to ϕt . The derivative of ϕt induces a flow ψt on P X ,
called the projective flow of ϕt . In this paper, we consider the dynamical
properties of ψt restricted to π−1

P (M) for a minimal set M of ϕt , under the
condition that the restriction of ψt to π−1

P (M) has exactly two minimal sets
N1 and N2. If ϕt has no dominated splitting over M, we find two types of
orbits of ψt in the domain between N1 and N2: one is “bounded below”
and the other is “bounded above”. As an application we prove that, if ϕt is
further assumed to be almost periodic on the minimal set, there is a dense
orbit in that domain.

1. Introduction

Let M be a closed oriented 3-dimensional manifold, and X a nonsingular C1 vec-
tor field of M . We denote by T M the tangent bundle of M , and by ϕt the flow
generated by X . Let πN : N X → M denote the quotient bundle of T M by the 1-
dimensional bundle tangent to X . We take the projectivized bundle πP : P X → M
of N X , that is,

P X =
⋃

z∈M

(
(π−1

N (z)− 0)/v ∼ kv
)

for v ∈ πN
−1(z)−0, k ∈ R−0. The derivative Dϕt of ϕt induces a projective flow

ψt on P X (also called an inductance flow). Here, each fiber π−1
P (z) is oriented

by the orientations of T M and X , and ψt preserves the orientation of fibers. Let
O(z, s) denote the orbit of ψt passing through (z, s) ∈ P X , and let O+(z, s) and
O−(z, s) denote the positive and negative orbits of ψt passing through (z, s)∈ P X .

In order to consider the dynamical properties of ψt , we will frequently use the
renormalized linear Poincaré flow νt , defined as follows: Let | · | denote the norm
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on each fiber of N X induced from a Riemannian metric of M . We take an or-
thonormal basis

(
v1(z), v2(z)

)
of π−1

N (z) for any point z of M , with
(
v1(z), v2(z)

)
not necessarily continuous with respect to z. The derivative Dϕt |π−1

N (z) is rep-
resented by a matrix, and hence we can define its determinant det

(
Dϕt |π−1

N (z)
)
.

Since det
(
Dϕt |π−1

N (z)
)

is independent of the choice of the orthonormal basis, we
can define a new flow νt on N X by

νt(z, [v]N )=

(
ϕt(z),

(
det(Dϕt |π−1

N (z))
)−1/2

[(Dϕt)z(v)]N

)
,

where [v]N denotes the element of π−1
N (z) represented by the vector v of Tz M .

The flow νt preserves the area form on each fiber, and the next diagram commutes:

N X - P X
πP- M

N X

νt
?

- P X

ψt
?

πP- M

ϕt
?

Let M be a minimal set of ϕt (that is, a closed ϕt -invariant set which is mini-
mal with respect to the inclusion), and let M̃ denote its lift πP

−1(M). Since the
restriction of ψt to M̃ is a flow on a compact set, ψt |M̃ has a minimal set N. The
set πP(N) coincides with M itself.

The number of minimal sets of ψt |M̃ is essential for the study of the dynamical
structure of ψt |M̃. For example, if ψt |M̃ has more than two minimal sets, it was
already proved in [Nakayama and Noda 2005] that ϕt |M is uniformly quasicon-
formal. In particular, if we further assume that ϕt is a C∞ minimal flow on the
3-manifold M , then M is the 3-dimensional torus T 3 and ϕt is topologically equiv-
alent to an irrational flow, by [Sullivan 1981; Brunella 1996; Ghys 1996] (see also
[Matsumoto and Nakayama 1997]).

On the other hand, if ϕt |M is uniformly quasiconformal, then ψt |M̃ does not
have exactly two minimal sets, because ϕt |M is transversely conformal, again by
[Sullivan 1981, p. 468], and a minimal set of ψt |M̃ is still a minimal set after the
constant rotation along the fiber with respect to this transverse conformal structure.
(This can also be proved in the following way: if ϕt |M is uniformly quasiconformal
and the whole M̃ is not a minimal set of ψt |M̃, we can show that, for any minimal
set N of ψt |M̃, the set N ∩ π−1

P (z) does not contain an interval, for any z ∈ M,
and the lengths of the connected components of π−1

P (z) \ N are bounded below
for z ∈ M; therefore, N∩π−1

P (z) consists of finitely many points, and furthermore
πP |N is a finite covering; we can also prove that an orbit disjoint from N cannot
approach N; therefore, ψt |M̃ does not have exactly two minimal sets.)

We will restrict our attention to the case when ψt |M̃ has exactly two minimal
sets N1 and N2. In this case, we have the following properties of N1 and N2 from
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[Nakayama and Noda 2005], where (S)z denotes the intersection S ∩π−1
P (z) for a

set S in P X and z ∈ M :

Proposition 1.1. (a) Either (N1)z or (N2)z consists of a single point for any z ∈M.

(b) There is a residual set in M on which both (N1)z and (N2)z consist of a single
point.

(c) For i = 1, 2, let ξ+

i (z) and ξ−

i (z) denote the maximum and minimum points
of (Ni )z for z ∈ M, with respect to the orientation of the fiber (P X)z . Here,
these points are uniquely determined by (a). We observe that ξ+

i (z) and ξ−

i (z)
may not be continuous in z, but are semicontinuous; this implies that, if (Ni )z

is a single point, then z is a continuity point of ξ+

i and ξ−

i . If we set

Ki =
{
(z, s) ∈ P X

∣∣ ξ−

i (z)≤ s ≤ ξ+

i (z)
}
,

E1 =
{
(z, s) ∈ P X

∣∣ ξ+

1 (z) < s < ξ−

2 (z)
}
,

E2 =
{
(z, s) ∈ P X

∣∣ ξ+

2 (z) < s < ξ−

1 (z)
}
,

then Ki is a closed invariant set in M̃ and Ei is an open invariant set in M̃.

(d) By (c), there are two (continuous) sections h1 : M → P X and h2 : M → P X
such that h1(M) and h2(M) are contained in E1 and E2, respectively. Thus,
h1(M) and h2(M) separate N1 and N2 in P X. In particular, P X is a trivial
bundle over M.

Here we remark that [Nakayama and Noda 2005, Theorem 1 (2)] was proved
under the stronger condition that ϕt is minimal on the whole 3-manifold and is
not topologically equivalent to an irrational flow of T 3. However, its proof is
also valid for the restriction of ϕt to the minimal set M, if ϕt |M is not uniformly
quasiconformal. Now, as above, if ψt |M̃ has exactly two minimal sets, then ϕt |M

is not uniformly quasiconformal.
The dynamics of ψt |M̃ are still very complicated, as indicated by an example

of Johnson [1981] and our Example 1.4. Thus, we will apply the next result of
Contreras [2002]:

Let π : V → B be a symplectic vector bundle over a compact set B. Let 9t

be a flow on V which is a bundle map that preserves the canonical symplectic
structure on each fiber. The flow 9t induces a flow 8t on B satisfying 8t ◦ π =

π ◦9t . Contreras [2002] showed that, if 9t is a weakly partially hyperbolic flow
whose stable and unstable bundles have the same dimension, then the restricted
flow 9t |π−1(�(8t )) is hyperbolic where �(8t) is a nonwandering set of 8t .

We will apply his result to the renormalized linear Poincaré flow νt and extend
his theorem under the stronger condition that M is a minimal set instead of a
nonwandering set �(8t) and that ψt |M̃ has exactly two minimal sets (the precise
definitions will be given in the next sections). In Section 2, we give relations
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between the dynamics of the renormalized linear Poincaré flow νt and the projective
flow ψt . In Section 3, if ψt |Ei has a fiberwise-divergent orbit, we find two types
of orbits of ψt in Ei , one that does not approach N1 and the other that does not
approach N2. Here, the cross-ratio plays an important role. If all the orbits of ψt

are fiberwise convergent, then ϕt has a dominated splitting over M, which will be
proved in Section 4. Hence:

Theorem 1.2. Let M be a minimal set of ϕt . If ψt |M̃ has exactly two minimal sets
N1 and N2, then either

(1) ϕt has a dominated splitting over M; or

(2) for any i = 1, 2, there exist points (z, s) and (z′, s ′) of Ei such that

O(z, s)∩ N1 = ∅ and O(z′, s ′)∩ N2 = ∅;

in particular, ψt |Ei has an orbit which is not dense in Ei .

To take advantage of finding two types of orbits, we apply Theorem 1.2 to
almost-periodic flows (defined in Section 5):

Theorem 1.3. If ϕt |M is an almost-periodic minimal flow and ψt |M̃ has exactly
two minimal sets, then either

(1) ϕt has a dominated splitting over M; or

(2) both ψt |E1 and ψt |E2 have dense orbits.

Finally, we give an example (communicated to the author by T. Noda) of an
almost-periodic minimal flow on T 3 satisfying the conditions (2) of Theorems 1.2
and 1.3:

Example 1.4. Let g : S1
→ S1 be a Cω diffeomorphism such that g is topologi-

cally conjugate to an irrational rotation Rα but is not C1-conjugate to Rα; such an
example was constructed by Arnold [Herman 1979]. Let β be an irrational number
which is Q-independent of α. We define a Cω diffeomorphism f : T 2

→ T 2 by
f (x, y) = (g(x), y + β). Let ϕt denote its suspension flow on T 3. Since g is
topologically conjugate to an irrational rotation, ϕt is an almost-periodic minimal
flow. On the other hand, supn≥0 | log Dgn(x)| = ∞ for any x ∈ S1, because g is
not C1-conjugate to a rotation [Herman 1979]. Therefore, the projective flow of ϕt

has exactly two minimal sets, corresponding to the x-direction and the y-direction.
Furthermore, by [Arroyo and Rodriguez Hertz 2003, Theorem B], we can show
that ϕt has no dominated splitting. Thus, the conditions (2) of Theorems 1.2 and
1.3 hold. The key point of this example is that such an example can be constructed
as a Cω flow.
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2. Relations between lengths and angles

Throughout this paper, we assume that M is a minimal set of ϕt and ψt |M̃ has
exactly two minimal sets N1 and N2, where M̃ = π−1

P (M). By (d) in Proposition
1.1, there exist two sections h1 : M → P X and h2 : M → P X separating N1 and
N2. We choose a trivialization of M̃ = M× P1 so that

h1(M)= M× {0} and h2(M)= M×
{
π
2

}
,

where the coordinate of P1 is given by
[
−
π
2 ,

π
2

]
/−π

2 ∼
π
2 . Let p2 :M̃→ P1 denote

the projection to the second factor.
In this section, we prepare several properties of orbits of νt and ψt , which will

be frequently used throughout this paper.
We only consider the properties of ψt restricted to

E1 =
{
(z, s) ∈ P X

∣∣ ξ+

1 (z) < s < ξ−

2 (z)
}
.

Similar properties hold for ψt |E2 . We define

11 : E1 → R by 11(z, s)= s − ξ+

1 (z) > 0,

12 : E1 → R by 12(z, s)= ξ−

2 (z)− s > 0.

Let e1(z) and e2(z) denote the unit vectors of π−1
N (z) representing ξ+

1 (z) and ξ−

2 (z),
respectively, where e2(z) is assumed to be on the positive side of e1(z). Set

1(z)= ξ−

2 (z)− ξ
+

1 (z).

Lemma 2.1. There is a real number C > 0 such that, for any z ∈ M,

1
C

≤ |νt(e1(z))| |νt(e2(z))| ≤ C

Proof. Since ξ−

2 (ϕt(z))=ψt(ξ
−

2 (z)) and ξ+

1 (ϕt(z))=ψt(ξ
+

1 (z)), the angle between
νt(e1(z)) and νt(e2(z)) is equal to 1(ϕt(z)). Now, νt preserves the area of the
triangle defined by the vectors e1(z) and e2(z). Hence, the area

|νt(e1(z))| |νt(e2(z))| sin1(ϕt(z))

is invariant under t ∈ R. Thus, we obtain

|νt(e1(z))| |νt(e2(z))| =

∣∣∣ sin1(z)
sin1(ϕt(z))

∣∣∣.
Since N1 and N2 are disjoint closed sets, we can choose C > 0 (independent of
z ∈ M) so that 1/C ≤ | sin1(z)/ sin1(ϕt(z))| ≤ C . �
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Lemma 2.2. For (z, s) ∈ E1, we have

inf
t≥0

|νt(e2(z))|
|νt(e1(z))|

= 0

if and only if inft≥011(ψt(z, s)) = 0. In particular, if inft≥011(ψt(z, s)) = 0 for
some (z, s) ∈ E1, then inft≥011(ψt(z, s ′))= 0 for any (z, s ′) ∈ E1. Similarly,

inf
t≥0

|νt(e1(z))|
|νt(e2(z))|

= 0

if and only if inft≥012(ψt(z, s))= 0 for (z, s) ∈ E1.

Proof. Let v = k1 e1(z)+ k2 e2(z) with k1, k2 > 0 denote the unit vector of π−1
N (z)

representing (z, s) of E1. We denote by ϑt the angle between νt(v) and νt(e1(z)).
By the law of sines for the triangle defined by νt(k1 e1(z)) and νt(k2 e2(z)), we
obtain

|νt(k1 e1(z))|
sin

(
1(ϕt(z))−ϑt

) =
|νt(k2 e2(z))|

sinϑt
.

Thus,
|νt(e2(z))|
|νt(e1(z))|

=
k1

k2

tanϑt

sin1(ϕt(z))− cos1(ϕt(z)) tanϑt
.

Since sin1(ϕt(z)) is bounded below, inft≥0 |νt(e2(z))|/|νt(e1(z))| = 0 if and
only if inft≥0 ϑt = 0, which is equivalent to inft≥011(ψt(z, s))= 0. �

The next lemma is efficient for the study of the dynamical properties of ψt |E1 .

Lemma 2.3. For (z, s) ∈ E1, we have inft≥011(ψt(z, s))= 0 if and only if

O+(z, s)∩ N1 6= ∅.

Proof. It is enough to show that O+(z, s)∩N1 = ∅ if inft≥011(ψt(z, s)) is greater
than 0.

Let C = min
{
inft≥011(ψt(z, s)), π/2

}
. By (b) in Proposition 1.1, there is

a point z1 of M such that N1 ∩ π−1
P (z1) consists of a single point. Then, ξ±

1 is
continuous at z1. We choose a neighborhood U1 of z1 so that supx∈U1

ξ+

1 (x) −

infx∈U1
ξ−

1 (x) < C . For some small ε > 0, let W1 be the open set{
(x, u) ∈ E1

∣∣ x ∈ U1, inf
y∈U1

ξ−

1 (y)− ε < u < inf
y∈U1

ξ−

1 (y)+ C
}
.

Since 11(ψt(z, s)) ≥ C for t ≥ 0, the point ψt(z, s) is not contained in W1 for
t ≥ 0. On the other hand, π−1

P (U1)∩ N1 is contained in W1, because, if x ∈ U1,
then ξ+

1 (x) ≤ sup y∈U1
ξ+

1 (y) < infy∈U1
ξ−

1 (y)+ C . Therefore,
⋃

t≤0 ψt(W1) is a
neighborhood of N1 disjoint from O+(z, s), which implies O+(z, s)∩N1 = ∅. �
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Lemma 2.4. If (z, s) is a point of E1 satisfying

lim
t→+∞

11(ψt(z, s))= 0

(respectively, limt→−∞
11(ψt(z, s))= 0), then

lim
t→+∞

|νt(v)| = ∞

(respectively, lim t→−∞
|νt(v)| = ∞), for any v ∈ π−1

N (z) − {0} with [v] ∈ N1,
where [v] denotes the element of P X represented by v.

Proof. Suppose that limt→+∞
11(ψt(z, s)) = 0. By the same proof as that of

Lemma 2.2, |νt(e2(z))|/|νt(e1(z))| converges to 0 as t → +∞. By Lemma 2.1,
|νt(e1(z))| |νt(e2(z))| is bounded below. Thus, |νt(e1(z))| tends toward ∞ as t →

+∞, because
|νt(e1(z))|2 =

|νt(e1(z))|
|νt(e2(z))|

|νt(e1(z))| |νt(e2(z))|.

Again by Lemma 2.1, we obtain limt→+∞
|νt(e2(z))| = 0, and hence, for any

v ∈ π−1
N (z)− {0} with [v] ∈ N1, limt→+∞

|νt(v)| = ∞.
The other case (that is, when limt→−∞

11(ψt(z, s)) = 0) can be shown in the
same way. �

3. Fiberwise divergent orbits

An orbit O(z, s) of ψt in Ei (i = 1, 2) is called fiberwise convergent if either

lim
t→+∞

11(ψt(z, s))= 0 or lim
t→+∞

12(ψt(z, s))= 0

and either

lim
t→−∞

11(ψt(z, s))= 0 or lim
t→−∞

12(ψt(z, s))= 0.

If not, we call it fiberwise divergent.

Lemma 3.1. If there is a point (z1, s1) of Ei (i = 1, 2) whose orbit is fiberwise
divergent, then there exist points (z2, s2) and (z3, s3) of Ei such that

O(z2, s2)∩ N1 = ∅ and O(z3, s3)∩ N2 = ∅.

Proof. Let O(z1, s1) be an orbit of ψt in E1 which is fiberwise divergent. We as-
sume first that neither lim t→+∞

11(ψt(z1, s1))= 0 nor limt→+∞
12(ψt(z1, s1))=

0. Since ω(z1, s1) contains a minimal set, ω(z1, s1) contains N1 or N2. If ω(z1, s1)

contains N1, then inft≥011(ψt(z1, s1))=0 by Lemma 2.3. Then, there exist points
(z2, s2) and (z3, s3) of E1 such that O(z2, s2)∩N1 = ∅ and O(z3, s3)∩N2 = ∅ by
Lemma 3.3 at the end of this section. The other cases in Lemma 3.1 can be proved
similarly. �
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In order to later prove Lemma 3.3, we introduce the cross-ratio of straight lines
in the plane: Let s be an element of P1. We denote by l the straight line in the
plane, passing through the origin and representing s. If ρ(s) (in R ∪{∞}) denotes
the slope of l, then (1, ρ(s))∈R2 is the intersection of l and the line {(1, y) | y ∈R}.
We give the coordinate of P1 by

[
−
π
2 ,

π
2

]
/∼, and thus ρ(s)= tan s.

Let s1, s2, s3 and s4 be elements of P1. The cross-ratio (s1, s2, s3, s4) is

(s1, s2, s3, s4)=
ρ(s1)− ρ(s3)

ρ(s3)− ρ(s2)

/ ρ(s1)− ρ(s4)

ρ(s4)− ρ(s2)
.

It is invariant under the action of PSL(2; R). In particular, for (z, s) and (z, s ′)

in E1, the cross-ratio (ξ+

1 (ϕt(z)), ξ−

2 (ϕt(z)), p2ψt(z, s), p2ψt(z, s ′)) is invariant
under t ∈ R. Now, we define R1, R2 : E1 → R by

R1(z, s)=
ρ(s)− ρ(ξ+

1 (z))
ρ(ξ−

2 (z))− ρ(ξ
+

1 (z))
and R2(z, s)=

ρ(ξ−

2 (z))− ρ(s)
ρ(ξ−

2 (z))− ρ(ξ
+

1 (z))
.

We have(
ξ+

1 (ϕt(z)), ξ−

2 (ϕt(z)), p2ψt(z, s), p2ψt(z, s ′)
)

=
R1(ψt(z, s))

1 − R1(ψt(z, s))

/ R1(ψt(z, s ′))

1 − R1(ψt(z, s ′))
.

Lemma 3.2. If there exists a sequence {(zn, sn)}n=1,2,... in E1 such that

R1(ψt(zn, sn))≥ R1(zn, sn)

for −n ≤ t ≤ n, then there is a z∞ in M such that O(z∞, 0)∩ N1 = ∅.
On the other hand, if there exists a sequence {(z′

n, s ′
n)}n=1,2,... in E1 such that

R2(ψt(z′

n, s ′

n))≥ R2(z′

n, s ′

n)

for −n ≤ t ≤ n, then there is a z′
∞

in M such that O(z′
∞
, 0)∩ N2 = ∅.

Proof. Let at = R1(ψt(zn, sn)) and bt = R1(ψt(zn, 0)), where (zn, 0) is contained in
the section h1(M) by the choice of projective structure in Section 2. Since h1(M)

is contained in E1, we have 0 < at < 1 and 0 < bt < 1. By the invariance of the
cross-ratios along orbits, we have

at

1 − at

/ bt

1 − bt
=

a0

1 − a0

/ b0

1 − b0
.

Since at ≥ a0 for t ∈ [−n, n], we obtain bt ≥ b0. Hence,

ρ(p2ψt(zn, 0))− ρ(ξ+

1 (ϕt(zn)))

ρ(ξ−

2 (ϕt(zn)))− ρ(ξ
+

1 (ϕt(zn)))
≥

ρ(0)− ρ(ξ+

1 (zn))

ρ(ξ−

2 (zn))− ρ(ξ
+

1 (zn))
.
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Now, ρ(ξ−

2 )− ρ(ξ
+

1 ) is bounded above, because (N1 ∪ N2)∩ h2(M) = ∅. Since
N1 and h1(M) are disjoint closed sets, ρ(0)−ρ(ξ+

1 (zn)) is bounded below. Thus,
there exists C2 > 0 such that 11(ψt(zn, 0)) > C2 for any n and t ∈ [−n, n].

Let (z∞, 0) be an accumulating point of {(zn, 0)}. Let x be a point of M on
which (N1)x is a single point. There is a neighborhood W of (x, ξ+

1 (x)) such that
11(y, w) < C2 whenever (y, w) ∈ W ∩ E1.

We claim that O(z∞, 0)∩W =∅. Suppose there is a t1 such thatψt1(z∞, 0)∈ W .
If n is a sufficiently large number satisfying −n ≤ t1 ≤ n, then11(ψt1(zn, 0))>C2,
and henceψt1(zn, 0) is not contained in W . However, this contradicts the continuity
of ψt1 . Hence, O(z∞, 0) is disjoint from W .

The invariant set
⋃

t∈R ψt(W ) is a neighborhood of N1 disjoint from O(z∞, 0).
Therefore, O(z∞, 0)∩ N1 = ∅.

The second part of the lemma can be proved in the same way as above, for
R2 = 1 − R1. �

Lemma 3.3. If (z1, s1) is a point of E1 satisfying inft≥011(ψt(z1, s1)) = 0 but
11(ψt(z1, s1)) does not converge to 0 as t → ∞, then there exist points (z2, s2)

and (z3, s3) of E1 such that

O(z2, s2)∩ N1 = ∅ and O(z3, s3)∩ N2 = ∅.

Proof. Since R1(ψt(z1, s1)) does not converge to 0 as t → ∞, there are C1 > 0
and {tn}n=1,2,... (tn ≥ 0) such that limn→∞

tn = ∞ and R1(ψtn (z1, s1)) > C1. Set

K =
{
(z, s) ∈ E1

∣∣ R1(z, s)≥ C1
}
,

Wn = E1 \
{
ψt(z, s)

∣∣ (z, s) ∈ K , −n ≤ t ≤ n
}
.

Let C2 = C1 minz∈M {ρ(ξ−

2 (z))− ρ(ξ
+

1 (z))}. Since the set{
(z, s, s ′, t) ∈ M× P1

× P1
× R

∣∣ |ρ(s)− ρ(s ′)| ≥ C2, −n ≤ t ≤ n
}

is compact, the number

εn = inf
{

|ρ(p2ψt(z, s))− ρ(p2ψt(z, s ′))|

ρ(ξ−

2 (ϕt(z)))− ρ(ξ+

1 (ϕt(z)))

∣∣∣
(z, s), (z, s ′) ∈ E1, −n ≤ t ≤ n, |ρ(s)− ρ(s ′)| ≥ C2

}
is positive.

We denote by Vn the set {(z, s) ∈ E1 | R1(z, s) < εn}. We claim that Vn is
contained in Wn . Suppose that a point (z, s) of E1 is not contained in Wn . Then,
there is a t0 ∈ [−n, n] such that ψt0(z, s) is contained in K . Hence,

ρ(p2ψt0(z, s))− ρ(ξ+

1 (ϕt0(z)))≥ C1
(
ρ(ξ−

2 (ϕt0(z)))− ρ(ξ
+

1 (ϕt0(z)))
)
≥ C2.
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The following inequality holds:

R1(z, s)=
ρ
(

p2ψ−t0(ϕt0(z), p2ψt0(z, s))
)
− ρ

(
p2ψ−t0(ϕt0(z), ξ

+

1 (ϕt0(z)))
)

ρ
(
ξ−

2 (ϕ−t0(ϕt0(z)))
)
− ρ

(
ξ+

1 (ϕ−t0(ϕt0(z)))
) ≥ εn.

Thus, (z, s) is not a point of Vn . This implies that Vn ⊂ Wn .
By the assumption that inft≥011(ψt(z1, s1))= 0, we have

inf
t≥0

R1(ψt(z1, s1))= 0.

We choose an increasing sequence {vn}n=1,2,... in R so that ψv2n−1(z1, s1) ∈ K and
ψv2n (z1, s1)∈ Vn . Let un be the time between v2n−1 and v2n+1 when R1 is minimum
at ψun (z, s), that is,

R1(ψun (z1, s1))= min
{

R1(ψt(z1, s1))
∣∣ v2n−1 ≤ t ≤ v2n+1

}
.

Then, R1(ψun (z1, s1)) is smaller than εn , because R1(ψv2n (z1, s1)) < εn . Hence,
ψun (z1, s1) is contained in Vn and thus in Wn . Since we have ψun (z1, s1)∈ Wn and
ψv2n−1(z1, s1) ∈ K , the time difference un − v2n−1 is greater than n. Furthermore,
we obtain v2n+1 − un > n, because ψun (z1, s1) ∈ Wn and ψv2n+1(z1, s1) ∈ K .

By the above construction, if −n ≤ t ≤ n, the following inequalities hold:

v2n−1< un−n ≤ t +un ≤ un+n<v2n+1, R1(ψt+un(z1, s1))≥ R1(ψun(z1, s1)).

Therefore, {ψun (z1, s1)}n=1,2,... satisfies the first condition of Lemma 3.2, and hence
there is a point z2 of M such that O(z2, 0)∩ N1 = ∅.

Let wn be the time between v2n and v2n+2 when R2 is minimum, that is,

R2(ψwn (z1, s1))= min
{

R2(ψt(z1, s1))
∣∣ v2n ≤ t ≤ v2n+2

}
.

Since R1 = 1 − R2, ψwn (z1, s1) is contained in K . Hence, wn − v2n ≥ n and
v2n+2 − wn ≥ n. Thus, R2(ψt+wn (z1, s1)) ≥ R2(ψwn (z1, s1)) for −n ≤ t ≤ n.
Therefore, {ψwn (z1, s1)}n=1,2,... satisfies the second condition of Lemma 3.2. As a
consequence, there exists a point z3 of M such that O(z3, 0)∩ N2 = ∅. �

4. Fiberwise-convergent orbits

Let 3 be a closed ϕt -invariant set in M . A C1 flow ϕt admits a dominated split-
ting over 3 if there is a continuous splitting of π−1

N (3) into a direct sum of 1-
dimensional bundles S and U , invariant under D̃ϕt , such that there are constants
C > 0 and λ ∈ (0, 1) satisfying

‖D̃ϕt |S(z)‖

‖D̃ϕt |U (z)‖
≤ Cλt

for any z and t ≥ 0, where D̃ϕt is the map on N X = T M/Tϕt induced from Dϕt ,
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while ‖ · ‖ denotes the operator norm from some continuous Riemannian metric.
The above inequality is equivalent to

‖νt |S(z)‖

‖νt |U (z)‖
≤ Cλt .

We consider the case when3 is a minimal set. For example, if3 is a hyperbolic
closed orbit, then ϕt admits a dominated splitting over 3. On the other hand, a
minimal C2 flow on a closed 3-manifold does not admit a dominated splitting over
the whole 3-manifold, as was proved by Arroyo and Rodriguez Hertz [2003].

In this section, we will consider the case when all the orbits of ψt contained in
E1 are fiberwise convergent. The orbit of ψt passing through (z, s) ∈ E1 is then
classified into four types:

(I) limt→+∞11(ψt(z, s))= 0 and limt→−∞12(ψt(z, s))= 0;

(II) limt→+∞12(ψt(z, s))= 0 and limt→−∞11(ψt(z, s))= 0;

(III) limt→+∞11(ψt(z, s))= 0 and limt→−∞11(ψt(z, s))= 0;

(IV) limt→+∞12(ψt(z, s))= 0 and limt→−∞12(ψt(z, s))= 0.

To prove Theorem 1.2, we will investigate the case when there is no orbit of type
IV. The following lemma of Contreras and Iturriaga [1999] plays an important role;
we change their hypothesis to suit our purpose, but the proof is the same.

Lemma 4.1 [Contreras and Iturriaga 1999, Lemma 3.3]. If supt∈R |νt(v)| = ∞ for
any v 6= 0 with [v] ∈ N1, then there is a C1 > 0 such that

|νt(e1(z))| ≤ C1
(
1 + |νs(e1(z))|

)
for any z, s and t with 0 ≤ t ≤ s.

Lemma 4.2. If all the orbits of ψt in E1 are of type I, II or III, then all the orbits
are of type I or all the orbits are of type II.

Proof. It is enough to show that, if all the orbits of ψt are of type I, II or III and
there is an orbit of type I or III, then all the orbits are of type I.

By the assumption that there is no orbit of type IV, we have

lim
t→+∞

11(ψt(z, s))= 0 or lim
t→−∞

11(ψt(z, s))= 0

for any (z, s)∈ E1. By Lemma 2.4, sup t∈R |νt(v)|=∞ for any v 6=0 with [v]∈N1.
Thus, by Lemma 4.1, there is a C1 > 0 such that |νt(e1(z))| ≤ C1

(
1 + |νs(e1(z))|

)
for any z, s and t with 0 ≤ t ≤ s. If (z1, s1) is a point of type I or III, then
limt→+∞

11(ψt(z1, s1))=0, and hence limt→+∞
|νt(e1(z1))|=∞ by Lemma 2.4.

Let z2 be an arbitrary point of M. Since M is a minimal set, there is a sequence
{tn}n=1,2,... of positive numbers such that limn→+∞

tn = ∞ and ϕtn (z1) → z2.
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Taking a subsequence of {tn}, we can assume that νtn (e1(z1))/|νtn (e1(z1))| con-
verges to some unit vector v2. Then [v2] is contained in (N1)z2 . Since we have
limt→+∞

|νt(e1(z1))| = ∞, the constant C2 = inft≥0 |νt(e1(z1))| is positive. For
0 ≤ t ≤ tn , we have∣∣∣ν−t

( νtn (e1(z1))

|νtn (e1(z1))|

)∣∣∣ =
|νtn−t(e1(z1))|

|νtn (e1(z1))|
≤

C1
(
1 + |νtn (e1(z1))|

)
|νtn (e1(z1))|

≤ C1

(
1 +

1
C2

)
.

Therefore, |ν−t(v2)| is bounded above for t ≥ 0. By Lemma 2.4, for (z2, s) ∈ E1,
11(ψt(z2, s)) does not converge to 0 as t → −∞. Since all the orbits are of type
I, II or III, the orbit passing through (z2, s) is of type I. �

Proof of Theorem 1.2. We prove that, if ϕt has no dominated splitting over M, there
exist points (z, s) and (z′, s ′) of E1 with O(z, s)∩N1 = ∅ and O(z′, s ′)∩N2 = ∅.
The proof for ψt |E2 is the same. By Lemma 3.1, we can further assume that all the
orbits of ψt in E1 are fiberwise convergent.

If there is no orbit of type IV, then, by Lemma 4.2, all the orbits are of type I
or all the orbits are of type II. But then ϕt has a dominated splitting over M by
a standard argument (for example, ϕt |M is weakly partially hyperbolic [Contreras
2002]). Therefore, there exists an orbit of type IV. We can show in the same way
that there exists an orbit of type III. Thus, there exist points (z, s) and (z′, s ′) of
E1 such that O(z, s)∩ N1 = ∅ and O(z′, s ′)∩ N2 = ∅. �

5. Almost-periodic minimal flows

We prove Theorem 1.3. A subset A of R is called syndetic if R = {a + k | a ∈

A, k ∈ K } for some compact set K of R. A flow ϕt on a compact metric space
M is called almost periodic if, for any ε > 0, there is a syndetic set A such that
d(z, ϕa(z)) < ε for any z ∈ M and a ∈ A, where d is a metric of M. If the whole
M is a minimal set, then the flow is called minimal.

Almost-periodic minimal flows on a compact metric space M are already classi-
fied in the topological sense. In fact, they are equivalent to equicontinuous minimal
flows, see [Auslander 1988, Theorem, p. 36]. Furthermore, there are invariant
metrics on M, and M is a compact abelian group, see [Auslander 1988, Exercises,
p. 45]. However, the infinitesimal behavior of almost-periodic minimal flows is
still complicated, as Example 1.4 indicates (see also [Nakayama 2001]).

With Theorem 1.2, if ϕt has no dominated splitting, we find two types of orbits.
Thus, we deduce Theorem 1.3 by using the next lemma:

Lemma 5.1. Assume that ϕt |M is an almost-periodic minimal flow and ψt |M̃ has
exactly two minimal sets. If , for some i ∈ {1, 2}, we have both:

(1) ψt has a positive semiorbit in Ei that does not approach N1 (that is, O+(z, s)
and N1 are disjoint for some (z, s)), and
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(2) ψt has a positive semiorbit in Ei that does not approach N2 (that is, O+(z, s)
and N2 are disjoint for some (z, s));

then ψt |Ei has a dense orbit.

Proof. We only prove this lemma for ψt |E1 .
Let W1 and W2 be arbitrary open sets in E1. We only have to show that(⋃

t∈R

ψt(W2)
)
∩ W1 6= ∅.

We choose open sets U1 and U2 in M and open intervals I1 = (α1, β1) and I2 =

(α2, β2), so that U1 × I1 ⊂ W1 and U2 × I2 ⊂ W2. Then it is enough to show that(⋃
t∈R ψt(U2 × I2)

)
∩ (U1 × I1) 6= ∅.

First, we claim that there are a connected open set V2 contained in U2 and a
syndetic set A, such that ϕa(V2) is contained in U1 for any a ∈ A. Let z3 be a point
of U1. There is an ε > 0 such that the ε-ball Bε(z3) with center z3 is contained
in U1. By the minimality of ϕt , there is a t1 ∈ R such that ϕt1(z3) is contained
in U2. Let V2 be a connected component of U2 ∩ ϕt1(Bε/2(z3)). For any y ∈ V2,
we have d(ϕ−t1(y), z3) < ε/2. Since ϕt is almost periodic, there is a syndetic
set A′ such that d(ϕa(x), x) < ε/2 for any x ∈ M and a ∈ A′. In particular,
d(ϕa−t1(y), ϕ−t1(y)) < ε/2 for any a ∈ A′. Hence, d(ϕa−t1(y), z3) < ε, which
implies that ϕa−t1(y) is contained in U1. Since {a − t1 | a ∈ A′

} is also syndetic, the
claim follows. Hence, for any t ∈ R, there is a u ∈ [0,C1] satisfying ϕt+u(V2)⊂U1.

The set {
z ∈ M

∣∣ O+(z, s)∩ N1 = ∅ for any (z, s) ∈ E1
}

is a nonempty invariant set in M, by Lemmas 2.2 and 2.3. Hence, it is dense in
M, because ϕt |M is minimal. Furthermore, the set{

z
∣∣ O+(z, s)∩ N2 = ∅ for any (z, s) ∈ E1

}
is also dense in M. Thus, there are points (z1, s1) and (z2, s2) of V2 × I2 such that
O+(z1, s1)∩N1 = ∅ and O+(z2, s2)∩N2 = ∅. Since ψt contains no minimal set
in E1, we have O+(z1, s1)∩ N2 6= ∅ and O+(z2, s2)∩ N1 6= ∅.

Set
F2 =

{
(z, s) ∈ E1

∣∣ z ∈ U 1, s ≤ β1
}
,

W2 = E1 \
{
ψt(z, s)

∣∣ (z, s) ∈ F2,−C1 ≤ t ≤ 0
}
.

Then, W2 ∪ K2 is a neighborhood of N2 in E1 ∪ K2, where

Ki =
{
(z, s) ∈ P X

∣∣ ξ−

i (z)≤ s ≤ ξ+

i (z)
}
,

as in Section 1. If (z, s) ∈ W2, then, for t ∈ [0,C1], ψt(z, s) is not contained in
F2. If we further assume that ϕt(z) ∈ U1, then p2ψt(z, s) > β1.

We claim that there exists a C2> 0 such that, for any t ≥ 0, there is a u ∈ [0,C2]

such that ψt+u(z1, s1)∈ W2. If not, there is a sequence {t ′
n}n=1,2,... with t ′

n ≥ 0, such
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that ψt ′n+u(z1, s1) 6∈ W2 for 0 ≤ u ≤ n. Let (z0, s0) be an accumulating point of
{ψt ′n (z1, s1)}n=1,2,.... The positive semiorbit starting from (z0, s0) is disjoint from
W2. Thus, O+(z0, s0)∩ N2 = ∅. On the other hand, O+(z1, s1) is disjoint from a
neighborhood of N1. Hence, ψt ′n+u(z1, s1) is disjoint from this neighborhood for
0≤u ≤n. Thus, O+(z0, s0)∩N1 =∅. Therefore, theω-limit set of (z0, s0) contains
a minimal set different from N1 and N2, which contradicts the assumption.

We construct a neighborhood W1 of N1, similarly to the construction of W2 as
a neighborhood of N2, by using the constant C1 + C2. Set

F1 =
{
(z, s) ∈ E1

∣∣ z ∈ U 1, s ≥ α1
}
,

W1 = E1 \
{
ψt(z, s)

∣∣ (z, s) ∈ F1,−(C1 + C2)≤ t ≤ 0
}
.

Then, W1 ∪ K1 is a neighborhood of N1 in E1 ∪ K1 such that, if (z, s) ∈ W1 and
ϕt(z) ∈ U1 for some 0 ≤ t ≤ C1 + C2, then p2ψt(z, s) < α1.

We will choose t (as t = t2 + t3 + t4) so that ψt(U2 × I2) ∩ (U1 × I1) 6= ∅.
First, we choose t2 ≥ 0 so that ψt2(z2, s2) ∈ W1. By the choice of C2, there is
a t3 ∈ [0,C2] such that ψt2+t3(z1, s1) ∈ W2. Finally, we take t4 ∈ [0,C1] so that
ϕt2+t3+t4(V2) is contained in U1. Since ψt2(z2, s2) ∈ W1 and ϕt2+t3+t4(z2) ∈ U1,
we have p2ψt2+t3+t4(z2, s2) < α1. On the other hand, p2ψt2+t3+t4(z1, s1) > β1,
because ψt2+t3(z1, s1) ∈ W2 and ϕt2+t3+t4(z1) ∈ U1. Therefore, ψt2+t3+t4 maps an
arc contained in V2 × I2 that joins (z1, s1) and (z2, s2) onto an arc contained in
π−1

P (U1) which intersects U1 × I1. Thus, ψt2+t3+t4(V2 × I2)∩ (U1 × I1) 6= ∅. �

Now, at the end of the paper, we comment on the “cocycle condition” for the
projective flows with exactly two minimal sets N1 and N2: Assume that N1 and
N2 are the image of two (continuous) sections, and change the trivialization of
P X = M × P1

= M ×
[
−
π
2 ,

π
2

]
/∼ so that N1 = M × {0} and N2 = M ×

{
π
2

}
.

Then, for z ∈ M, the restriction of ψt to the fiber can be written(
1 0
0 at(z)

)
,

where (
1 0
0 at(z)

) (
1
ρ(s)

)
=

(
1

ρ(s ′)

)
if ψt(z, s)= (ϕt(z), s ′). Thus, at1+t2(z)= at2(ϕt1(z))at1(z) for t1, t2 ∈ R. Now, ψt

has exactly two minimal sets, N1 and N2. Thus,
∣∣∑n

i=0 log a1(ϕi (z))
∣∣=| log an(z)|

is not bounded. By Gottschalk and Hedlund [1955, Theorem 14.11], there is no
continuous function h : M → R such that h(ϕ1(z)) − h(z) = log a1(z) if ϕ1 is
minimal.
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