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The paper concerns two versions of the notion of real forms of Lie super-
algebras. One is the standard approach, where a real form of a complex
Lie superalgebra is a real Lie superalgebra whose complexification is the
original complex Lie superalgebra. The second arises from considering A-
points of a Lie superalgebra over a commutative complex superalgebra A
equipped with superconjugation. The first kind of real form can be obtained
as the set of fixed points of an antilinear involutive automorphism; the sec-
ond is related to an automorphism φ such that φ2 is the identity on the even
part and the negative identity on the odd part. The generalized notion of
real forms is then introduced for complex algebraic supergroups.

1. Introduction

There are two equivalent points of view for defining a complex Lie superalge-
bra. The standard one treats a complex Lie superalgebra as a supervector space
with a superbracket. The other defines Lie superalgebra as a representable functor.
The equivalence of the two definitions is a corollary of the so-called “even rules”
[Deligne and Morgan 1999]. In studying any particular aspect of the theory of
Lie superalgebras, we can choose to work either with the standard (supervector)
Lie superalgebra or with the functorial definition. We argue in this paper that the
functorial language is particularly well adapted to the problem of defining and
classifying real forms of simple Lie superalgebras.

Real forms were defined and classified by Serganova [1983] in the standard
framework of complex vector superspaces with a somewhat puzzling conclusion
that simple complex Lie superalgebras have no compact real forms. The functorial
point of view avoids this puzzle by defining two kinds of real forms, which we call
standard and graded. In the standard approach a real form is defined as a real Lie su-
peralgebra whose complexification is the original complex Lie superalgebra. It can
be seen easily that every standard real form is naturally associated to an antilinear
involutive automorphism of the complex Lie superalgebra [Serganova 1983]. The
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notion of a graded real form is characterized by antilinear automorphisms that are
not involutive, but rather graded involutive. It turns out, remarkably, that Serganova
classified in her paper also the graded involutive automorphisms, although she did
not interpret them as real forms. Using her results, we show that our more general
definition of real forms solves the puzzle, in the sense that every simple complex
Lie superalgebra possesses precisely one compact (graded) real form.

The functorial point of view turns out to be useful also for defining real forms
of complex algebraic supergroups. We do this for subsupergroups of GLm|n . We
show that a real form of a supergroup induces a real form on its corresponding
Lie superalgebra. This raises a question: What are the lifts of Serganova automor-
phisms to the corresponding supergroups? We answer this question completely for
the series SLm|n and OSpm|2n .

2. Graded and standard real forms of complex Lie superalgebras

By a “superalgebra” we mean a commutative and associative superalgebra over C.
The even and odd parts of a superalgebra A are denoted respectively by A0 and A1.
Elements of A0 and A1 are called homogeneous and the parity of an homogeneous
element x is |x | = 0 for x ∈ A0 or |x | = 1 for x ∈ A1. A superalgebra is called
commutative if xy = (−1)|x ||y|yx for homogeneous elements x, y. By Iodd

A we
denote the ideal in A generated by the odd part. We say that a superalgebra A is
reduced if A/Iodd

A has no nilpotent elements.
We denote by A the category of reduced, finitely generated complex superalge-

bras and by S the category of sets. We restrict our category A to reduced and finitely
generated superalgebra because we are only concerned with the Lie superalgebra
that come from affine algebraic supergroups.

Let O : A → S be the functor sending each superalgebra A on its even part:
O(A)= A0. Here is the definition of a complex Lie superalgebra in the functorial
setting, as given in [Fioresi and Lledó 2004]:

Definition 2.1. A Lie superalgebra is a representable functor

GV : A → S

A 7→ GV (A)

satisfying these conditions:

(i) For each superalgebra A we have an A0-module structure on GV (A) that is
functorial in A; in other words, there is a natural transformation O×GV → GV .

(ii) For each superalgebra A, we have a Lie-bracket [ , ]A on GV (A) which is A0-
linear and functorial in A; in other words, there is a natural transformation
[ , ] : GV × GV → GV which is O-linear and satisfies a commutative diagram
corresponding to the antisymmetric property and Jacobi identity.
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The statement that a Lie superalgebra is representable means that there exists a
supervector space V (which is unique) such that GV (A) = (A ⊗C V )0. Following
the even rules principle, V inherits a superbracket from the Lie algebra structure of
the GV (A) for all A. For clarity, we explain the even rules principle to the extent
needed in this article. (For a proof see [Deligne and Morgan 1999, Theorem 1.7.1
and Corollary 1.7.3, pp. 56–57] or [Varadarajan 2004].) Let f be a bilinear map
from V × V to V . We define a B0-bilinear map fB : GV (B)×GV (B)→ GV (B) by

(1) fB(b1 ⊗ v1, b2 ⊗ v2)= (−1)N (N−1)/2b1b2 ⊗ f (v1, v2),

where b1, b2 ∈ B and v1, v2 ∈ V are such that |bi | = |wi | and there are N odd
elements among the bi . The collection of maps fB is functorial in B. This means
that the diagram

GV (B)× GV (B)
fB- GV (B)

GC × GC

(GV ( f ),GV ( f ))

?

fC
- GC

GV ( f )

?

is commutative for any complex superalgebras B,C , where the morphism GV ( f )
associated to f : B → C is given by GV ( f )(b ⊗ v) = f (b)⊗ v for b ∈ B, v ∈ V .
The even rules principle claims that any functorial collection fB of B0-linear maps

fB : GV (B)× GV (B)→ GV (B)

comes from a unique C-linear map f : V ×V → V ; that is, the maps fB and f are
linked by the formula (1). Thus a Lie superbracket [ , ] comes from the functorial
collection of Lie bracket [ , ]A and , vice versa, a Lie superbracket gives rise to a
system of functorial brackets. The relation between [ , ] and [ , ]A is

[a ⊗ v, b ⊗w]A = (−1)|b||v|ab ⊗ [v,w],(2)

where a, b ∈ A, v, w ∈ V which fulfill |a| = |v| and |b| = |w|.
We next introduce the notion of a real structure of a complex Lie superalgebra.

For this, the category A from Definition 2.1 must be constructed as the category
of superalgebras with conjugation. In particular, the morphism in A must respect
(commute with) conjugation. In contrast to the nonsuper case, there are two kinds
of conjugation on the commutative associative superalgebra:

Definition 2.2 [Deligne and Morgan 1999]. Let A be a complex superalgebra. A
map a → ā with a, ā ∈ A is called a standard conjugation if

λa = λ̄ā, ab = āb̄, ¯̄a = a for λ ∈ C, a, b ∈ A.
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Definition 2.3. Let A be a complex superalgebra. A map a → ã with a, ã ∈ A is
called a graded conjugation if

λ̃a = λ̄ã, ãb = ãb̃, ˜̃a = (−1)|a|a for λ ∈ C, a, b ∈ A.

Remark 2.4. We denote the conjugate of a ∈ A by â when the distinction between
graded and standard conjugation does not matter. We say that an element a ∈ A is
real if it satisfies a = â. The superalgebra Areal is the superalgebra consisting of
the real elements of A.

To give the definition of the real structure of a Lie superalgebra in the functorial
setting we need some conventions. In the case of a supervector space V = V0 +V1,
a map f : V → V is said to be even if it respects parity; that is, if it maps V0

into V0 and V1 into V1. The A0-module (A ⊗ V )0 also has a grading, given by the
decomposition

(A ⊗ V )0 = A0 ⊗ V0 + A1 ⊗ V1.(3)

The elements of A0 ⊗ V0 are called even and those of A1 ⊗ V1 are called odd. A
map f on (A ⊗ V )0 is even when it preserves the grading above.

Definition 2.5. A real structure of a Lie superalgebra is a natural transformation
8 : G → G such that for a, b ∈ A0 and x, y ∈ G(A) we have

8A(ax + by)= â8A(x)+ b̂8A(y),

8A(8A(x))= x,

8A([x, y]A)= [8A(x),8A(y)]A;

we also demand that 8A be an even map. The real structure is called standard if
ˆ represents the standard conjugation, and graded if ˆ is the graded conjugation.

Theorem 2.6. (a) A standard real structure (GV ,8) comes from a unique map
φ : V → V such that

(4) φ(λx +µy)= λ̄φ(x)+ µ̄φ(y), φ2(x)= x, φ([x, y])= [φ(x), φ(y)],

with λ,µ ∈ C and x, y ∈ V .

(b) A graded real structure (GV ,8) comes from a unique map φ : V → V such
that

(5) φ(λx+µy)= λ̄φ(x)+µ̄φ(y), φ2(x)= (−1)|x |x, φ([x, y])= [φ(x), φ(y)],

with λ,µ ∈ C and x, y ∈ V .

(c) Conversely, a map φ on V fulfilling condition (4) (resp. (5)) gives rise to a
standard (resp. graded) real form (GV ,8).

Proof. We prove (b) and (c). The proof of (a) is very similar to that of (b).
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(b) Let (GV ,8) be a graded real form. We first show that 8 gives rise to a map
φ : V → V , which means that 8(a ⊗ v) = ã ⊗ φ(v) with a ∈ A, v ∈ V and
|a| = |v|. The crucial property is that 8 is a natural transformation. Thus for
two superalgebras A, B and a morphism of superalgebras p : A → B we have the
commutative diagram

GV (A)
8A- GV (A)

GV (B)

GV (p)

?

8B
- GV (B).

GV (p)

?

We say that this diagram is associated to the triple (A, B, p). The morphism p
clearly fixes the orientation of the diagram. First we want to extract a map φ :

V → V from 8A for A = C[θ, θ̃ ].1 For this we have to evaluate 8A only on
1 ⊗ v and θ ⊗w, where |v| = 0, |w| = 1, λ ∈ C. It is not necessary to compute
8A(θ̃ ⊗w) because the graded conjugation is a superalgebra morphism and 8 is
a natural transformation. To evaluate 8A(1 ⊗ v) we use the commutative diagram
associated to the triplet (C, A, p), where p is the morphism that injects the algebra
of complex numbers into A. We find that 8A(1⊗v)= 1⊗8C(v). Let π : A → C

be the canonical projection π(θ) = π(θ̃) = 0. From the commutative diagram
associated to (A,C, π) and the fact that8A is an even map we deduce the existence
of x, y ∈ V1 such that

8A(θ ⊗w)= θ ⊗ x + θ̃ ⊗ y.

In defining the morphism of superalgebra q : A → D with A = C[θ, θ̃ ], D =

C[θ, θ̃ , η, η̃] (such that q(θ)= θ, q(θ̃)= θ̃ ), we obtain from the diagram (A, D, q)
the equality

8D(θ ⊗w)= θ ⊗ x + θ̃ ⊗ y.

By multiplying this last equation by ηθ̃ we find ηθ̃θ ⊗ x = 0, hence x = 0. Thus

8D(θ ⊗w)= θ̃ ⊗ y.

Then from the commutative diagram associated to the triplet (D, A,5), where 5
is defined by 5(η)=5(η̃)= 0, we deduce

8A(θ ⊗w)= θ̃ ⊗ y

1 A is an example of a Grassmann algebra with a graded conjugation. A Grassmann algebra
is a superalgebra C[θ1, . . . , θn] over C generated by n odd elements θi that anticommute, that is,
satisfy θi θ j + θ j θi = 0 for all i ; in particular, θ2

i = 0. The notation C[θ, θ̃ ] indicates how the graded
conjugation acts on the generators.
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Now we define φ by φ(w)= y and φ(v)=8C(v) for v ∈ V0, w ∈ V1. We have to
prove that this map φ gives rise to 8C for any superalgebra C . In other words, we
have to show that 8C(c ⊗v)= c̃ ⊗φ(v) for |c| = |v|. For c ∈ C0 the commutative
diagram associated to (C[θ, θ̃ ],C,m(1)=1) implies that8C(1⊗v)=1⊗φ(v) and
thus, by C0-antilinearity, 8C(c ⊗v)= c̃ ⊗φ(v). For c ∈ C1 we define a morphism
of superalgebras from C[θ, θ̃ ] to C by n(θ)= c, n(θ̃)= c̃ and we obtain the desired
equality from the commutativity of the diagram (C[θ, θ̃ ],C, n). The final step is
to show that φ satisfies (4). Antilinearity is clear from the C0-antilinearity of 8C

(which implies C-antilinearity) and the linearity of the tensor product. From the
involutivity of 8C and the definition of φ (8(c ⊗ v) = c̃ ⊗ φ(v)) we find that
˜̃c ⊗ φ2(v) = c ⊗ v. Therefore φ2(v) = (−1)|v|v, since |c| = |v|. That φ is a
morphism of Lie superalgebras comes from equation (1) together with the fact that
8C is a morphism of Lie algebras. This proves the claim.

(c) Let (V, φ) be a graded real form. For each superalgebra A we define a collec-
tion of maps 8A : GV (A)→ GV (A) by

8A(a ⊗ v)= ã ⊗φ(v)(6)

for all a ∈ A and v ∈ V . From this formula, we find that

GV ( f )(8A(a ⊗ v))=8B(GV ( f )(a ⊗ v)),(7)

thanks to the definition of GV ( f ) and the equality f (ã) = f̃ (a). The equality
(7) means that the collection of maps 8A is functorial in A. The property of
antilinearity in A0 comes from the definition of 8A in (6), the linearity of the
tensor product and the structure of A0-module on GV (A). Then (6) implies that,
for a ∈ A and v ∈ V with |a| = |v|,

8A(8A(a ⊗ v))=8A(ã ⊗φ(v))= ˜̃a ⊗φ(φ(v))= (−1)|a|+|v|a ⊗ v = a ⊗ v;

that is,8A is involutive. From equation (1) and the fact that φ is a morphism of Lie
superalgebra we deduce easily that 8A is a morphism of the Lie algebra GV (A).
Hence 8 is a graded real structure. �

In the standard setting we can associate to each real structure 8 the corre-
sponding real form, which is by definition the real Lie superalgebra V φ

= {v ∈

V, φ(v) = v} obtained as the fixed point set of the automorphism φ. However
the corresponding notion of a graded real form as the fixed point set of φ is more
subtle, because it turns out that V φ

={v∈ V, φ(v)=v} is a trivial Lie superalgebra
(its odd elements were killed by the requirement φ(v) = v). The correct point of
view to solve this difficulty is again functorial, since it treats the notion of the real
form on the same footing for both the standard and the graded real structure:
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Definition 2.7. Let 8 be a real structure of GV . The real form associated to 8 is
the functor G8V

G8V : A → S,

A 7→ G8V (A),

where G8V (A) = {w ∈ GV (A),8A(w) = w} is an Areal
0 -Lie algebra that associates

to a morphism of superalgebras f : A → B the restriction G8V ( f )= GV ( f )G8V (A) of
GV ( f ) to the set of fixed points of 8A. The real form is called standard (graded)
when the real structure is standard (graded).

Remark 2.8. This definition is consistent because G8V is a functor, as can be easily
demonstrated. Moreover, G8V ( f ) sends elements of G8V (A) into G8V (B) because 8
is a natural transformation.

That we can extract a real Lie superalgebra V φ from a standard real structure,
whereas this is impossible for a graded real structure, has some consequences for
the representability of the real form. In fact:

Theorem 2.9. (1) If 8 is a standard real structure, the functor G8V is represented
by V φ; that is, G8V (A)= (Areal

⊗ V φ)0.

(2) If 8 is a graded real structure, the functor G8V is not representable.

Proof. (1) Suppose A is equipped with a standard conjugation and 8 is a standard
real structure. Let a ⊗ v ∈ GV (A) be such that 8A(a ⊗ v) = a ⊗ v. We know
from Theorem 2.6 that a standard real structure 8 comes from a unique map φ
satisfying (3). Every element v of V can be uniquely decomposed as v= v1 + iv2,
with φ(v1) = v1 and φ(v2) = v2. Similarly, every element a of A has a unique
decomposition a = a1 + ia2, with ā1 = a1 and ā2 = a2. Thus we have

a ⊗ v =
a ⊗ v+8A(a ⊗ v)

2
= a1 ⊗ v1 − a2 ⊗ v2.

From this it is clear that the fixed points of 8A are elements of (Areal
⊗ V φ)0.

(2) Now let A and V be equipped, respectively, with a graded conjugation a → ã
and a map φ coming from a graded real structure 8 on GV . It is clear that no odd
element of A can be real for a graded conjugation and no odd vector of V can
be a fixed point of φ. So there are some fixed points of 8A in GV (A) that are not
elements of (Areal

⊗V φ)0: for instance, a⊗v+ã⊗φ(v) with a ∈ A1 and v ∈ V1. �

Denote by (G8V )0 the restriction of the functor G8V to its even part with respect
to the grading defined by the decomposition (3), i.e., (G8V )0(A)= (G8V (A))0. This
restricted functor is representable for both standard and graded real forms; the
proof is similar to that of Theorem 2.9. The representative of (G8V )0 is an ordinary
Lie algebra (V φ)0. It makes sense, therefore, to ask whether (V8)0 is compact.
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Remarkably, it follows from Serganova’s classification [1983, Tables 3 and 6]
that there is exactly one (graded) automorphism φ for each simple complex Lie
superalgebra such that (V φ)0 is always compact. This shows the utility of our
interpretation of graded involutive automorphisms as real forms.

3. Graded and standard real forms of complex algebraic supergroup

The goal of this section is to introduce the notions of real structure and real form
for subsupergroups of GLm|n .

In order to define the supergroup GLm|n , we introduce some notations. We
denote by Am|n the free A-supermodule generated by m even e1, . . . , em and n
odd generators em+1, . . . , em+n such that a ∈ Am|n is of the form a = a1e1 +

· · · + am+nem+n . An even morphism T : Am|n
→ Am|n can be represented by a

supermatrix T of size (m + n)× (m + n):

T =

(
P Q
R S

)
,

where the matrices P, S have even entries from A and are respectively of size
m×m, n×n; the matrices Q, R have odd entries and are respectively of size n×m,
m × n. The endomorphisms and automorphisms of Am|n are denoted respectively
by glm|n(A) and GLm|n(A). The supermatrices T of GLm|n(A) are such that the
Berezinian or superdeterminant

sdet T = det(P − QS−1 R) det(S−1)

is invertible in A. A necessary and sufficient condition for sdet T to be invertible is
the invertibility of P and S. The functor of the linear affine algebraic supergroup is

GLm|n : A → S,

A 7→ GLm|n(A).

Definition 3.1. A complex (linear affine) algebraic supergroup is a functor

GC : A → S,

A 7→ GC(A),

where GC(A)= {x ∈ GLm|n(A) : Pl(x)= 0 for l = 1, . . . , k} and the polynomials
Pl are such that GC(A) is a group.

Remark 3.2. Two examples are the SLm|n and OSpm|2n series of supergroups,
where the polynomials Pl are defined in equations (9), (10), respectively.

Let A be a superalgebra and ε a formal indeterminate. Let A(ε) be the superal-
gebra of dual numbers defined by A(ε) = (A ⊕ εA)/(ε2). There are three useful
morphisms: i : A → A(ε), defined by i(x) = x + ε0; p : A(ε) → A, defined by
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p(x +ε y)= x ; and va : A(ε)→ A(ε), defined by va(x +ε y)= x +εay for a ∈ A0,
x, y ∈ A.

Definition 3.3. A real structure on a complex algebraic supergroup GC is a natural
transformation 6 : GC → GC satisfying

(8)

6A(xy)=6A(x)6A(y),

6A
2(x)= x,

6A(ε)(GC(va)(z))= GC(vâ)(6A(ε)(z))

for all x, y ∈ GC(A) and z ∈ Ker(GC(p)). The real structure is called standard
(graded) when the superalgebra A is equipped with a standard (graded) conjuga-
tion.

Remark 3.4. The requirement (8) means that the map induced by 6 on the Lie
superalgebra of GC is antilinear.

Definition 3.5. Let 6 be a real structure of GC. The real form associated to 6 is
the functor

G6
C : A → S,

A 7→ G6
C (A),

where G6
C
(A) = {x ∈ GC(A) : 6A(x) = x} is a group associating to a morphism

f : A → B of superalgebras the restriction G6
C
( f ) = GC( f )G6

C
of GC( f ) to the

set of fixed points of 6A. The real form is said standard (graded) when the real
structure is standard (graded).

Definition 3.6 [Fioresi and Lledó 2004]. The Lie superalgebra associated to the
algebraic supergroup GC is the functor

Lie(GC) : A → S,

A 7→ Lie(GC)(A)= Ker(GC(p)),

where GC(p) : GC(A(ε))→ GC(A) is the morphism associated to p : A(ε)→ A.

Remark 3.7. As explained in [Fioresi and Lledó 2004], Ker(GC(p)) has an A0-
module structure with a Lie bracket.

From Definition 3.1 we deduce that Ker(GC(p)) is the set of even supermatri-
ces N such that Pl(1 + εN ) = 0 for all l = 1, . . . , k. From [Fioresi and Lledó
2004] we deduce that the Lie bracket on Ker(GC(p)) is simply the commutator
[M, N ] = M N − N M . Moreover Ker(GC(p)) is an abelian group with respect to
the addition of supermatrices and the action A0 on Ker(GC(p)) corresponds to the
multiplication of the supermatrix entries by an element of A0. Thus Ker(GC(p))
is also a A0-module.
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Now we prove that the real structure of a supergroup gives rise to a real structure
of its corresponding Lie superalgebra.

Theorem 3.8. Let GC be an algebraic supergroup and 6 a real structure of GC.
For every superalgebra A, we have

6A(ε)(Id +εM)= Id +ε8A(M) for all M ∈ GC(A).

The collection of maps 8A define a real structure on Lie(GC).

Proof. Let GC(p) : GC(A(ε))→ GC(A) be the morphism induced by the morphism
p : A(ε)→ A such that p(a + εb)= a for all a, b ∈ A. Then 6A(ε) is a morphism
from GC(A(ε)) to GC(A); by functoriality, we have GC(p)6A(ε)(Id +εM) =

6A(GC(p)(Id +εM)) = 6A(Id) = Id. We deduce that 6A(ε)(Id +εM) lies in
Ker(GC(p)). Therefore we have defined a map 8A such that

6A(ε)(Id +εM)= Id +8A(M).

To show that 8 is a real structure on Lie(GC), we have to prove that each map
8A is antilinear, involutive and is a morphism of Lie algebras. We conclude that
6A(ε)(Id +ε(M + N ))= Id +ε8A(M + N ) and 6A(ε)(Id +εaM)= Id +8A(aM)
with a ∈ A0 and M, N ∈ GC(A). Furthermore we have

6A(ε)(Id +ε(M + N ))=6A(ε)((Id +εM)(Id +εN ))

=6A(ε)(Id +εM)6A(ε)(Id +εN )

= (Id +ε8A(M))(Id +ε8A(N ))

= Id +ε(8A(M)+8A(N )),

6A(ε)(Id +εaM)=6A(ε)(GC(va)(Id +εM))

= GC(vâ)(6A(ε)(Id +εM))

= GC(vâ)(Id +ε8A(M))

= Id +εâ8A(M).

These equations establish the antilinearity of 8A. The involutivity of 8A is de-
duced easily from the involutivity of 6A(ε).

It remains to show that 8A is a morphism of Lie algebras. Let A(ε, η) be the
superalgebra of polynomials in the indeterminates ε and η with coefficients in A
and such that ε2

= 0, η2
= 0, εη−ηε= 0. We have two morphisms pε : A(ε, η)→

A(η) and pη : A(ε, η) → A(ε), defined by pε(a + εb + ηc + εηd) = a + ηc and
pη(a + εb + ηc + εηd) = a + εb. Each induces a morphism of groups via the
functor GC. By functoriality we deduce that 6A(ε,η)(Id +εM)= Id +ε8A(M) and
6A(ε,η)(Id +ηM)= Id +η8A(M) for M ∈ GC(A).
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Finally, from the equalities

6A(ε,η)(Id +εη[M, N ]A)

=6A(ε,η)((Id +εM)(Id +ηN )(Id −εM)(Id −ηN ))

= (Id +ε8A(M))(Id +η8A(N ))(Id −ε8A(M))(Id −η8A(N ))

= Id +εη[8A(M),8A(N )]A,

we deduce that 8A is a morphism of Lie algebra. �

We end this section with a theorem that shows that the Lie superalgebra of the
real form G6

C
is the same thing as the real form of Lie(GC).

Theorem 3.9. Let 6 be the real structure of the algebraic supergroup GC and let
8 be the corresponding real structure on the Lie superalgebra Lie(GC). The real
form (Lie(GC))

8, defined by (Lie(GC))
8(A)= {x ∈ Lie(GC) :8A(x)= x}, is then

the Lie superalgebra of the real form G6
C

.

Proof. By definition, Lie(G6
C
)(A)= {X ∈ G6

C
(A(ε)) : GC(p)(X)= Id, 6A(X) =

X}. The elements X of G6
C
(A) that fulfill the condition GC(p)(X)= Id are the even

supermatrices of the form Id +εM with M ∈ glm|n(A). Therefore, Lie(G6
C
)(A)=

{M ∈ glm|n(A) : 6A(ε)(Id +εM) = Id +εM} = {M ∈ Mm|n(A) : 8A(M) = M},
which proves the theorem. �

4. Lifting the Serganova automorphisms to
the algebraic supergroups SLm|n and OSpm|2n

Before defining the algebraic supergroups SLm|n and OSpm|2n we introduce some
notations. Let Jm,n be the supermatrix diag(1m, Jn), where

diag(M, N )=

(
M 0
0 N

)
, Jn =

(
0 1n

−1n 0

)
,

with 1n the unit square matrix of order n. The supertranspose and the 5-transpose
of an even supermatrix are defined by(

A B
C D

)st

=

(
At

−C t

B t Dt

)
, 5

(
A B
C D

)
=

(
D C
B A

)
,

where M t means the usual transpose of the matrix M . The supertrace of a super-
matrix is given by

str
(

A B
C D

)
= tr A − tr D,
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where tr A is the usual trace of the matrix A. The functor SLm|n is defined by

(9)
SLm|n : A → S,

A 7→ SLm|n(A)= {M ∈ GLm|n(A) : sdet(M)= 1},

and the functor OSpm|2n is

(10)
OSpm|2n : A → S,

A 7→ OSpm|2n(A)= {M ∈ GLm|2n(A) : M st Jm,n M = Jm,n}.

Their corresponding Lie superalgebras are the functors slm|n and ospm|2n that as-
sociate to a superalgebra A the sets slm|n(A) = {X ∈ glm|n(A) : str(X) = 0} and
ospm|2n(A)= {X ∈ glm|2n(A) : X st Jm,n + Jm,n X = 0}.

To describe the Serganova automorphisms for these Lie superalgebras we need
to introduce the following conventions:

δλ

(
A B
C D

)
=

(
A λB

λ−1C D

)
, In

l
= diag(1l,−1n−l),

Ad(M)X = M X M−1, c(N )= N ,

where M, X are supermatrices of the same order, while N is a supermatrix filled
with complex numbers and the bar on N indicates that all the entries of N are
conjugated.

Now we write the automorphisms from [Serganova 1983, Table 3], which give
rise to the standard real structure of slm|n . They are of four types:

σ1(M)= − str ◦ Ad(diag(Im
p, Im

q)) ◦ c ◦ δi (M),

σ2(M)= Ad(diag(Jm, Jn)) ◦ c(M) (m, n even),

σ3(M)=5 ◦ c(M) (m = n),

σ4(M)= − str ◦5 ◦ c(M) (m = n even),

with M ∈ slm|n(C).
The automorphisms from [Serganova 1983, Table 6], coming from the graded

real structure of slm|n , are

ω1(M)= c ◦ Ad(diag(1m, Jn)) ◦ (M) (n even),

ω2(M)= −st ◦ c ◦ Ad(diag(Im
p, In

q))(M),

ω3(M)= c ◦5 ◦ δi (M) (m = n),

with M ∈ slm|n(C).
In functorial language, the standard real structures σ̄l (l = 1, 2, 3, 4) associated

to the σl are given by the same formula, except that c (complex conjugation) is
replaced by the standard conjugation a → ā of the superalgebra A. For the graded
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real structure ω̃k (k = 1, 2, 3), complex conjugation is replaced by the graded con-
jugation a → ã.

The lifts of the φ̃ are the following standard real structures of the supergroup
SLm|n:

61(X)= (−σ̄1(X))−1,

62(X)= σ̄2(X) (m, n even),

63(X)= σ̄3(X) (m = n),

64(X)= (−σ̄4(X))−1 (m = n even),

for X ∈ SLm|n(A). The lifts of the graded real structure of the supergroup SLm|n

are, in turn,
�1(X)= ω̃1(X) (n even),

�2(X)= (−ω̃2(X))−1,

�3(X)= ω̃3(X) (m = n),

for X ∈ SLm|n(A).

Remark 4.1. It is easy to prove that the 6k (�l) are indeed the standard (graded)
real forms of SLm|n in the sense of Definition 3.3. It is no more difficult to find
that these real structures satisfy the equalities

6l(Id +εM)= Id +εσ̄l(M),

�l(Id +εM)= Id +εω̃l(M),

which means that they are the lifts of σ̄k , ω̃l .

Now we turn to the Serganova automorphisms of OSpm|2n . The Lie superalge-
bra automorphisms which come from standard real structures are (see [Serganova
1983, Table 3])

ξ1(M)= Ad(diag(Im
p, 12n)) ◦ c(M),

ξ2(M)= Ad(diag(Jm, In
p, In

p))(M) (m even),

for M ∈ospm|2n(C). The Lie superalgebra automorphisms giving rise to the graded
real structure are (see [Serganova 1983, Table 6])

ψ1(M)= c ◦ Ad(diag(Im
p, d(In

q , In
q)) ◦ J2n) ◦ (M),

ψ2(M)= c ◦ Ad(diag(Jm, 12n)) ◦ (M) (m even),

for M ∈ ospm|2n(C).
To switch to the functorial language, we again replace the complex conjugation

in the automorphisms ξ1,2 (ψ1,2) by the standard (graded) conjugation and we de-
note the corresponding standard (graded) real structure by ξ̄1,2 (ψ̃1,2). The lifts to
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the supergroup OSpm|n are respectively

41(X)= ξ̄1(X),

42(X)= ξ̄2(X) (m even),

91(X)= ψ̃1(X),

92(X)= ψ̃2(X) (m even),

for X ∈ OSpm,2n(A).

Remark 4.2. It is easy to prove that the 4k (9l) are indeed the standard (graded)
real forms of OSpm|2n in the sense of Definition 3.3. It is no more difficult to find
that these real structures satisfy the equalities

4l(Id +εM)= Id +εξ̄l(M),

9l(Id +εM)= Id +εψ̃l(M),

which means that they are the lifts of ξ̄k , ψ̃l .
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