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We define and study the Tutte polynomial of a hyperplane arrangement.
We introduce a method for computing the Tutte polynomial by solving a
related enumerative problem. As a consequence, we obtain new formulas
for the generating functions enumerating alternating trees, labelled trees,
semiorders and Dyck paths.

1. Introduction

Much work has been devoted in recent years to studying hyperplane arrangements
and, in particular, their characteristic polynomials. The polynomial χA(q) is a very
powerful invariant of the arrangement A; it arises very naturally in many different
contexts. Two of the many important and beautiful results about the characteristic
polynomial of an arrangement are the following.

Theorem 1.1 [Zaslavsky 1975]. Let A be a hyperplane arrangement in Rn . The
number of regions into which A dissects Rn is equal to (−1)nχA(−1). The number
of regions which are relatively bounded is equal to (−1)nχA(1).

Theorem 1.2 [Orlik and Solomon 1980]. Let A be a hyperplane arrangement in
Cn , and let MA = Cn

−
⋃

H∈A H be its complement. Then the Poincaré polynomial
of the cohomology ring of MA is given by:∑

k≥0

rank H k(MA, Z) qk
= (−q)nχA(−1/q).

Several authors have worked on computing the characteristic polynomials of
specific hyperplane arrangements. This work has led to some very nice enumerative
results; see for example [Athanasiadis 1996; Postnikov and Stanley 2000].

Somewhat surprisingly, nothing has been said about the Tutte polynomial of a
hyperplane arrangement. Graphs and matroids have a Tutte polynomial associated
with them, which generalizes the characteristic polynomial and arises naturally
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in numerous enumerative problems in both areas. Many interesting invariants of
graphs and matroids can be computed immediately from this polynomial.

The present paper aims to define and investigate the Tutte polynomial of a
hyperplane arrangement. This paper is devoted to purely enumerative questions,
particularly the computation of Tutte polynomials of specific arrangements. We
addressed the matroid-theoretic aspects of this investigation in [Ardila 2004].

In Section 2 we introduce the basic notions of hyperplane arrangements that we
will need. In Section 3 we define the Tutte polynomial of a hyperplane arrange-
ment, and we present a finite field method for computing it. This is done in terms
of the coboundary polynomial, a simple transformation of the Tutte polynomial.
We recover several known results about the characteristic and Tutte polynomials of
graphs and representable matroids, and derive other consequences of this method.
In Section 4 we compute the Tutte polynomials of Coxeter arrangements, thresh-
old arrangements, and generic deformations of the braid arrangement. In Section
5 we focus on a large family of deformations of the braid arrangement, where
the computation of Tutte polynomials is related to the enumeration of classical
combinatorial objects. As a consequence, we obtain several purely enumerative
results about alternating trees, parking functions, semiorders, and Dyck paths.

2. Hyperplane arrangements

We recall some of the basic concepts of hyperplane arrangements. For a more
thorough introduction, see [Orlik and Terao 1992] or [Stanley 2004].

Given a field k and a positive integer n, an affine hyperplane in k
n is an (n −1)-

dimensional affine subspace of kn . If we fix a system of coordinates x1, . . . , xn

on k
n , a hyperplane can be seen as the set of points that satisfy a certain equation

c1x1 + · · · + cnxn = c, where c1, . . . , cn, c ∈ k and not all ci s are equal to 0. A
hyperplane arrangement A in k

n is a finite set of affine hyperplanes of kn . We
will refer to hyperplane arrangements simply as arrangements. We will mostly be
interested in arrangements in Rn , but we will find it useful to work over other fields
as well.

We will say that an arrangement A is central if the hyperplanes in A have a
nonempty intersection. (Sometimes we will call an arrangement affine to empha-
size that it does not need to be central.) Similarly, we will say that a subset (or
subarrangement) B ⊆ A of hyperplanes is central if the hyperplanes in B have a
nonempty intersection.

The rank function rA is defined for each central subset B by rA(B) = n −

dim
⋂

B. This function can be extended to a function rA : 2A
→ N, by defining

the rank of a noncentral subset B to be the largest rank of a central subset of B.
The rank of A is rA(A), and it is denoted rA.
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Alternatively, if the hyperplane H has defining equation c1x1 + · · · + cnxn = c,
associate its normal vector v = (c1, . . . , cn) to it. Then define rA({H1, . . . , Hk}) to
be the dimension of the span of the corresponding vectors v1, . . . , vk in Rn . It is
easy to see that these two definitions of the rank function agree. In particular, this
means that the resulting function rA : 2A

→ N is the rank function of a matroid.
We will usually omit the subscripts when the underlying arrangement is clear, and
simply write r(B) and r for rA(B) and rA, respectively.

(Note that there is another natural way to extend rA to the rank function of a
matroid; see [Ardila 2004].)

The rank function gives us natural definitions of the usual concepts of matroid
theory, such as independent sets, bases, flats, and circuits, in the context of hyper-
plane arrangements. All of this is done more naturally in the broader context of
semimatroids in [Ardila 2004].

To each hyperplane arrangement A we assign a partially ordered set, called the
intersection poset of A and denoted LA. It consists of the nonempty intersections
Hi1 ∩ · · · ∩ Hik , ordered by reverse inclusion. This poset is graded, with rank
function r(Hi1 ∩ · · · ∩ Hik ) = rA({Hi1, . . . , Hik }), and a unique minimal element
0̂ = Rn . We will call two arrangements A1 and A2 combinatorially isomorphic or
simply isomorphic, and write A1 ∼= A2, if LA1

∼= LA2 . Isomorphic arrangements
may be defined over different fields.

The characteristic polynomial of A is

χA(q) =

∑
x∈LA

µ(0̂, x)qn−r(x).

where µ denotes the Möbius function of LA [Stanley 1997, Section 3.7].
Let A be an arrangement and let H be a hyperplane in A. The arrangement

A − {H} (or simply A − H ), obtained by removing H from the arrangement, is
called the deletion of H in A. It is an arrangement in Rn . The arrangement A/H =

{H ′
∩ H | H ′

∈ A − H, H ′
∩ H 6= ∅}, consisting of the intersections of the other

hyperplanes with H , is called the contraction of H in A. It is an arrangement in H .
However, some technical difficulties can arise. In a hyperplane arrangement

A, contracting a hyperplane H may give us repeated hyperplanes H1 and H2 in
the arrangement A/H . Say we want to contract H1 in A/H . In passing to the
contraction (A/H)/H1, the hyperplane H2 of A/H becomes the “hyperplane”
H2∩ H1 = H1 in the “arrangement” (A/H)/H1. But this is not a hyperplane in H1.

Therefore, the class of hyperplane arrangements, as defined, is not closed under
deletion and contraction. This is problematic when we want to mirror matroid-
theoretic results in this context. There is an artificial solution to this problem: we
can consider multisets {H1, . . . , Hk} of subspaces of a vector space V , where each
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Hi has dimension dim V − 1 or dim V . In other words, we allow repeated hyper-
planes, and we allow the full space V to be regarded as a “hyperplane”, mirroring a
loop of a matroid. This class of objects is closed under deletion and contraction, but
it is somewhat awkward to work with. A better solution is to think of arrangements
as members of the class of semimatroids: a class that is also closed under deletion
and contraction, and is more natural matroid-theoretically. We develop this point
of view in [Ardila 2004]. However, such issues will be irrelevant in this paper,
which focuses on purely enumerative aspects of arrangements.

3. Computing the Tutte polynomial

Athanasiadis [1996] introduced a powerful method for computing the characteristic
polynomial of a subspace arrangement, based on ideas of Crapo and Rota [1970].
He reduced the computation of characteristic polynomials to an enumeration prob-
lem in a vector space over a finite field. He used this method to compute explic-
itly the characteristic polynomial of several families of hyperplane arrangements,
obtaining very nice enumerative results. As should be expected, this method only
works when the equations defining the hyperplanes of the arrangement have integer
(or rational) coefficients. Such an arrangement will be called a Z-arrangement.

Reiner discovered an elegant interpretation for the Tutte polynomial TM of a
representable matroid M (Equation (3) in [1999]), and asked whether it could be
used to compute TM for some nontrivial families of matroids. Compared to all
the work that has been done on computing characteristic polynomials explicitly,
virtually nothing is known about computing Tutte polynomials.

Our Theorem 3.3 below gives a new method for computing Tutte polynomi-
als of hyperplane arrangements. Our approach does not use Reiner’s result; it is
closer to Athanasiadis’ method. After proving the theorem, we present some of its
consequences, using it in Section 4 to compute explicitly the Tutte polynomials of
several families of arrangements.

The Tutte and coboundary polynomials.

Definition 3.1. The Tutte polynomial of a hyperplane arrangement A is

(3-1) TA(x, y) =

∑
B⊆A
central

(x − 1)r−r(B)(y − 1)|B|−r(B),

where the sum is over all central subsets B ⊆ A.

If A is central and M(A) is its associated matroid, this definition coincides with
the usual definition of the Tutte polynomial of the matroid M(A).

It will be useful for us to consider a simple transformation of the Tutte polyno-
mial, first considered by Crapo [1969] in the context of matroids.
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Definition 3.2. The coboundary polynomial χA(q, t) of an arrangement A is

(3-2) χA(q, t) =

∑
B⊆A
central

qr−r(B)(t − 1)|B|.

It is easy to check that

χA(q, t) = (t − 1)r TA

(
q + t − 1

t − 1
, t

)
and

TA(x, y) =
1

(y − 1)r χA ((x − 1)(y − 1), y) .

Therefore, computing the coboundary polynomial of an arrangement is essen-
tially equivalent to computing its Tutte polynomial. The results in this paper can
be presented more elegantly in terms of the coboundary polynomial.

Also, recall Whitney’s theorem [Stanley 2004, Theorem 2.4], which states that

χA(q) =

∑
B⊆A
central

(−1)|B|qn−r(B).

This allows us to express the characteristic polynomial in terms of the coboundary
polynomial:

χA(q) = qn−rχA(q, 0).

The finite field method. Let A be a Z-arrangement in Rn , and let q be a prime
power. The arrangement A induces an arrangement Aq in the vector space F n

q .
If we consider the equations defining the hyperplanes of A, and regard them as
equations over Fq , they define the hyperplanes of Aq .

Say that A reduces correctly over Fq if the arrangements A and Aq are iso-
morphic. This does not always happen; sometimes the hyperplanes of A do not
even become hyperplanes in Aq . For example, the hyperplane 2x + 2y = 1 in R2

becomes the empty “hyperplane” 0 = 1 in F 2
2 . Sometimes independence is not

preserved. For example, the independent hyperplanes 2x + y = 0 and y = 0 in R2

become the same hyperplane in F 2
2 .

However, if q is a power of a large enough prime, A will reduce correctly over
Fq . To have A ∼= Aq , we need central and independent subarrangements to be
preserved. Cramer’s rule lets us rephrase these conditions, in terms of certain
determinants (formed by the coefficients of the hyperplanes in A) being zero or
nonzero. If q is a power of a prime which is larger than all these determinants, we
will guarantee that A reduces correctly over Fq .
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Theorem 3.3. Let A be a Z-arrangement in Rn . Let q be a power of a large enough
prime, and let Aq be the induced arrangement in F n

q . Then

(3-3) qn−r χA(q, t) =

∑
p ∈ F n

q

th(p)

where h(p) denotes the number of hyperplanes of Aq that p lies on.

Proof. Let q be a power of a large enough prime, so that A reduces correctly over
Fq . For each B ⊆ A, let Bq be the subarrangement of Aq induced by it. For each
p ∈ F n

q , let H(p) be the set of hyperplanes of Aq that p lies on. From (3-2) we
have

qn−r χA(q, t) =

∑
B⊆A
central

qn−r(B)(t − 1)|B|
=

∑
B⊆A
central

qdim ∩B(t − 1)|B|

=

∑
Bq⊆Aq
central

| ∩ Bq | (t − 1)|Bq |
=

∑
Bq⊆Aq
central

∑
p ∈ ∩Bq

(t − 1)|Bq |

=

∑
p ∈ F n

q

∑
Bq⊆H(p)

(t − 1)|Bq |
=

∑
p ∈ F n

q

(1 + (t − 1))h(p),

as desired. �

In principle, Theorem 3.3 only computes χA(q, t) when q is a power of a large
enough prime. In practice, however, when we compute the right-hand side of (3-3)
for large prime powers q , we will get a polynomial function in q and t . Since the
left-hand side is also a polynomial, these two polynomials must be equal.

Theorem 3.3 reduces the computation of coboundary polynomials (and hence
Tutte polynomials) to enumerating points in the finite vector space F n

q , according
to a certain statistic. This method can be extremely useful when the hyperplanes
of the arrangement are defined by simple equations. We illustrate this in Section 4.

We remark that Theorem 3.3 was also obtained by Welsh and Whittle [1999,
Theorem 7.1]. Also, since the characteristic polynomial of A is given by χA(q) =

qn−rχA(q, 0), the special case t = 0 is the following result:

Theorem 3.4 [Athanasiadis 1996, Theorem 2.2]. If A and q are as in Theorem 3.3,
then χA(q) is the number of points in F n

q which are not on any of the hyperplanes
of Aq ; that is,

χA(q) = |F n
q − Aq |.

Special cases and applications. We now show how the finite field method of The-
orem 3.3 can be used to give straightforward proofs of four known facts (Theorems
3.5, 3.6, 3.7, 3.8) and an apparently new result (Theorem 3.9) on Tutte polynomials.
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Colorings of graphs. Given a graph G on [n], we associate to it an arrangement
AG in Rn . It consists of the hyperplanes xi = x j , for all 1 ≤ i < j ≤ n such that
i j is an edge in the graph G. It is easy to see that the matroid of AG is the cycle
matroid of G, so TAG (x, y) coincides with the (graph-theoretic) Tutte polynomial
TG(x, y). We can define the coboundary polynomial for a graph as we did for
arrangements, and then χG(q, t) = χAG

(q, t) also.
We shall now interpret Theorem 3.3 in this framework. It is easy to see that the

rank of AG is equal to n − c, where c is the number of connected components of
G. Therefore the left-hand side of (3-3) is qc χG(q, t) in this case.

To interpret the right-hand side, notice that each point p ∈ F n
q corresponds to a

q-coloring of the vertices of G. The point p = (p1, . . . , pn) will correspond to the
coloring κp of G which assigns color pi to vertex i . A hyperplane xi = x j contains
p when pi = p j . This happens precisely when edge i j is monochromatic in κp;
that is, when its two ends have the same color. Therefore, applying Theorem 3.3
to the arrangement AG , we recover the following known result:

Theorem 3.5 [Brylawski and Oxley 1992, Proposition 6.3.26]. Let G be a graph
with c connected components. Then

qc χG(q, t) =

∑
q−colorings

κ of G

tmono(κ),

where mono(κ) is the number of monochromatic edges in κ .

Linear codes. Given positive integers n ≥ r , an [n, r ] linear code C over Fq is an
r -dimensional subspace of F n

q . A generator matrix for C is an r × n matrix U
over Fq , the rows of which form a basis for C . It is not difficult to see that the
isomorphism class of the matroid on the columns of U depends only on C . We
shall denote the corresponding matroid MC .

The elements of C are called codewords. The weight w(v) of a codeword is
the cardinality of its support; that is, the number of nonzero coordinates of v. The
codeweight polynomial of C is

(3-4) A(C, q, t) =

∑
v ∈ C

tw(v).

The translation of Theorem 3.3 to this setting is the following.

Theorem 3.6 [Greene 1976]. For any linear code C over Fq ,

A(C, q, t) = tn χ MC

(
q,

1
t

)
.

Proof. Let AC be the central arrangement corresponding to the columns of U . (We
can call it AC because, as stated above, its isomorphism class depends only on C .)
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This is a rank r arrangement in F r
q such that χ MC

(q, 1
t ) = χAC

(q, 1
t ). Comparing

(3-4) with Theorem 3.3, it remains to prove that∑
v ∈ C

tw(v)
=

∑
p ∈ F r

q

tn−h(p).

To do this, consider the bijection φ : F r
q → C determined by right multiplication

by U . If u1, . . . , ur are the row vectors of U , then φ sends p = (p1, . . . , pr ) ∈ F r
q

to the codeword vp = p1u1+· · ·+ pr ur ∈C . For 1 ≤ i ≤ n, p lies on the hyperplane
determined by the i th column of U if and only if the i th coordinate of vp is equal
to zero. Therefore h(p) = n − w(vp). This completes the proof. �

Deletion-contraction. The point of view of Theorem 3.3 can be used to give a sim-
ple enumerative proof of the deletion-contraction formula for the Tutte polynomial
of an arrangement. Once again, this formula is more natural in the context of semi-
matroids, as shown in [Ardila 2004]. For the moment, leaving matroid-theoretical
issues aside, we only wish to present a special case of it as an application.

Theorem 3.7. Let A be a hyperplane arrangement, and let H be a hyperplane in
A such that rA(A − H) = rA. Then TA(x, y) = TA−H (x, y) + TA/H (x, y).

Proof. Because there will be several arrangements involved, let h(B, p) denote the
number of hyperplanes in Bq that p lies on. Then

qn−r χA(q, t) =

∑
p ∈ F n

q

th(A, p)
=

∑
p ∈ F n

q −H

th(A, p)
+

∑
p ∈ H

th(A, p)

=

∑
p ∈ F n

q −H

th(A−H, p)
+

∑
p ∈ H

th(A−H, p)+1

=

∑
p ∈ F n

q

th(A−H, p)
+ (t − 1)

∑
p ∈ H

th(A−H, p)

= qn−r χA−H (q, t) + (t − 1)q(n−1)−(r−1) χA/H (q, t).

We conclude that χA(q, t) = χA−H (q, t)+(t −1) χA/H (q, t), which is equivalent
to the deletion-contraction formula for Tutte polynomials. �

A Möbius formula. The finite field method, when combined with the Möbius inver-
sion formula for posets, naturally gives an alternative formula for the coboundary
polynomial. This formula, in the context of matroids, is due to Crapo [1968].

Theorem 3.8. For an arrangement A and an affine subspace x in the intersection
poset LA, let h(x) be the number of hyperplanes of A containing x. Then

χA(q, t) =

∑
x≤y in LA

µ(x, y) qr−r(y)th(x).
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Proof. Consider the arrangement A restricted to F n
q , where q is a power of a large

enough prime, so that A reduces correctly over Fq . Given x ∈ LAq , let P(x) be the
set of points in F n

q which are contained in x , and are not contained in any y such
that y > x in LAq . Then the set x is partitioned by the sets P(y) for y ≥ x , so we
have

qdim x
= |x | =

∑
y≥x

|P(y)|.

By the Möbius inversion formula [Stanley 1997, Proposition 3.7.1] we have

|P(x)| =

∑
y≥x

µ(x, y) qdim y .

Now, from Theorem 3.3 we know that

qn−rχA(q, t) =

∑
x∈LA

∑
p∈P(x)

th(p)
=

∑
x∈LA

|P(x)| th(x)
=

∑
x≤y in LA

µ(x, y) qn−r(y)th(x),

as desired. �

A probabilistic interpretation. In matroid reliability and percolation problems, one
starts with a fixed matroid M . Each element of the ground set of M has a certain
probability of being deleted, independently of the other elements. One then asks for
the probability that the retained elements satisfy a certain property. See [Brylawski
and Oxley 1992, Section 6.3.E] for more on this subject. The following theorem is
similar in spirit to these results, and it may be applied to the analogous questions
concerning hyperplane arrangements.

Theorem 3.9. Let A be an arrangement and let 0 ≤ t ≤ 1 be a real number. Let
B be a random subarrangement of A, obtained by independently removing each
hyperplane from A with probability t . Then the expected characteristic polynomial
χB(q) of B is qn−rχA(q, t).

Proof. We have

E[χB(q)] =

∑
C⊆A

Pr [B = C] χC(q) =

∑
C⊆A

Pr [B = C] | F n
q − Cq |

=

∑
p ∈ F n

q

∑
C⊆A
p /∈ Cq

Pr [B = C],

where in the second step we have used Theorem 3.4.
Recall that H(p) denotes the set of hyperplanes in Aq containing p. Then

E[χB(q)] =

∑
p ∈ F n

q

Pr [Bq ∩ H(p) = ∅] =

∑
p ∈ F n

q

th(p),

which is precisely what we wanted to show. �
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4. Computing coboundary polynomials

In this section we use Theorem 3.3 to compute the coboundary polynomials of
several families of arrangements. As remarked on page 4, this is essentially the
same as computing their Tutte polynomials.

Coxeter arrangements. To illustrate how our finite field method works, we start
by presenting some simple examples.

Let 8 be an irreducible crystallographic root system in Rn , and let W be its
associated Weyl group. The Coxeter arrangement of type W consists of the hyper-
planes (α, x) = 0 for each α ∈ 8+, with the standard inner product on Rn . See
[Björner and Brenti 2005] or [Humphreys 1990] for an introduction to root systems
and Weyl groups, and [Björner et al. 1993, Section 2.3] or [Orlik and Terao 1992,
Chapter 6] for more information on Coxeter arrangements.

In this section we compute the coboundary polynomials of the Coxeter arrange-
ments of type An , Bn and Dn . (The arrangement of type Cn is the same as the
arrangement of type Bn .) The best way to state our results is to compute the
exponential generating function for the coboundary polynomials of each family.

The following three theorems have never been stated explicitly in the literature
in this form. Theorem 4.1 is equivalent to a result of Tutte [1954], who computed
the Tutte polynomial of the complete graph. It is also an immediate consequence
of a more general theorem of Stanley [1998a, (15)]. Theorems 4.2 and 4.3 are
implicit in the work of Zaslavsky [1995].

Theorem 4.1. Let An be the Coxeter arrangement (known as the braid arrange-
ment) of type An−1 in Rn , consisting of the hyperplanes xi = x j for 1 ≤ i < j ≤ n.
We have

1 + q
∑
n≥1

χAn
(q, t)

xn

n!
=

( ∑
n≥0

t(
n
2)

xn

n!

)q

.

Proof. For n ≥ 1 we have q χAn
(q, t) =

∑
p ∈ F n

q
th(p) for all powers of a large

enough prime q , according to Theorem 3.3. For each p ∈ F n
q , if we let Ak = {i ∈

[n] | pi = k} for 0 ≤ k ≤ q − 1, then h(p) =
(
|A0|

2

)
+ · · · +

(
|Aq−1|

2

)
. Thus

q χAn
(q, t) =

∑
A0∪ ··· ∪Aq−1=[n]

t(
|A0|

2 )+ ···+(
|Aq−1|

2 )

summing over all weak ordered q-partitions of [n]; that is, ordered lists of q pair-
wise disjoint, possibly empty sets whose union is [n]. The compositional formula
for exponential generating functions [Bergeron et al. 1998; Stanley 1999, Propo-
sition 5.1.3] implies the desired result. �
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Theorem 4.2. Let Bn be the Coxeter arrangement of type Bn in Rn , consisting of
the hyperplanes xi = x j and xi + x j = 0 for 1 ≤ i < j ≤ n, and the hyperplanes
xi = 0 for 1 ≤ i ≤ n. We have

∑
n≥0

χBn
(q, t)

xn

n!
=

( ∑
n≥0

2nt(
n
2)

xn

n!

)q−1
2

( ∑
n≥0

t n2 xn

n!

)
.

Proof. Let q be a power of a large enough prime, and let s =
q−1

2 . Now for each
p ∈ F n

q , if we let Bk = {i ∈ [n] | pi = k or pi = q − k} for 0 ≤ k ≤ s, we have
that h(p) = |B0|

2
+

(
|B1|

2

)
+ · · · +

(
|Bs |

2

)
. Also, given a weak ordered partition

(B0, . . . , Bs) of [n], there are 2|B1|+···+|Bs | points of p which correspond to it: for
each i ∈ Bk with k 6= 0, we get to choose whether pi is equal to k or to q − k.
Therefore

q χBn
(q, t) =

∑
B0∪ ··· ∪Bs=[n]

t |B0|
2
(

2|B1|t(
|B1|

2 )
)

· · ·

(
2|Bs |t(

|Bs |

2 )
)

,

and the compositional formula for exponential generating functions implies the
theorem. �

The proof of the next theorem is very similar to that of Theorem 4.2.

Theorem 4.3. Let Dn be the Coxeter arrangement of type Dn in Rn , consisting of
the hyperplanes xi = x j and xi + x j = 0 for 1 ≤ i < j ≤ n. We have

∑
n≥0

χDn
(q, t)

xn

n!
=

( ∑
n≥0

2nt(
n
2)

xn

n!

)q−1
2

( ∑
n≥0

t n(n−1) xn

n!

)
.

Setting t = 0 in Theorems 4.1, 4.2 and 4.3, it is easy to recover the formulas for
the characteristic polynomials of the above arrangements:

χAn (q) = q(q − 1)(q − 2) · · · (q − n + 1),

χBn (q) = (q − 1)(q − 3) · · · (q − 2n + 1),

χDn (q) = (q − 1)(q − 3) · · · (q − 2n + 3)(q − n + 1),

which are well known; see for example [Stanley 2004].

Two more examples.

Theorem 4.4. Let A#
n be a generic deformation of the arrangement An , consisting

of the hyperplanes xi − x j = ai j (1 ≤ i < j ≤ n), where the ai j are generic real
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numbers1. For n ≥ 1,

q χA#
n
(q, t) =

∑
F forest
on [n]

qn−e(F)(t − 1)e(F),

where e(F) denotes the number of edges of F. Also,

1 + q
∑
n≥1

χA#
n
(q, t)

xn

n!
= exp

(
q

t − 1

∑
n≥0

nn−2 xn(t − 1)n

n!

)
.

Proof. It is possible to prove Theorem 4.4 using our finite field method, as we did
in the previous section. However, it will be easier to proceed directly from (3-2),
the definition of the coboundary polynomial.

To each subarrangement B of A#
n we can assign a graph GB on the vertex set

[n], by letting edge i j be in GB if and only if the hyperplane xi − x j = ai j is in
B. Since the ai j s are generic, the subarrangement B is central if and only if the
corresponding graph GB is a forest. For such a B, it is clear that |B| = r(B) =

e(GB). Hence,

χA#
n
(q, t) =

∑
B⊆A#

n
central

qr−r(B)(t − 1)|B|
=

∑
F forest
on [n]

q(n−1)−e(F)(t − 1)e(F),

proving the first claim. Now let c(F) = n − e(F) be the number of connected
components of F . We have

1 + q
∑
n≥1

χA#
n
(q, t)

xn

n!
=

∑
n≥0

∑
F forest
on [n]

(
q

t − 1

)c(F) xn(t − 1)n

n!

= exp
(

q
t − 1

∑
n≥0

nn−2 xn(t − 1)n

n!

)
,

using the exponential formula for exponential generating functions, and the fact
that there are nn−2 trees on n labeled vertices [Stanley 1999]. �

Theorem 4.5. The threshold arrangement Tn in Rn consists of the hyperplanes
xi + x j = 0, for 1 ≤ i < j ≤ n. For all n ≥ 0 we have

χTn
(q, t) =

∑
G graph
on [n]

qbc(G)(t − 1)e(G),

1The ai j are “generic" if no n of the hyperplanes have a nonempty intersection, and any nonempty
intersection of k hyperplanes has rank k. This can be achieved, for example, by requiring that the
ai j s are linearly independent over the rational numbers. Almost all choices of the ai j s are generic.
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where bc(G) is the number of connected components of G which are bipartite, and
e(G) is the number of edges of G. Also,

∑
n≥0

χTn
(q, t)

xn

n!
=

( ∑
n≥0

n∑
k=0

(
n
k

)
tk(n−k) xn

n!

)q−1
2

( ∑
n≥0

t(
n
2)

xn

n!

)
.

Proof. Once again, the proof of the first claim is easier using the definition of the
coboundary polynomial. Every subarrangement B of Tn is central, and we can
assign to it a graph GB as in the proof of Theorem 4.4. In view of (3-2), we only
need to check that r(B) = n − bc(GB) and |B| = e(GB). The second claim is
trivial. To prove the first one, we show that dim(∩B) = bc(GB).

Consider a point p in ∩B. We know that, if ab is an edge in GB, then pa =−pb.
If vertex i is in a connected component C of GB, then the value of pi determines
the value of p j for all j in C : p j = pi if there is a path of even length between
i and j , and p j = −pi if there is a path of odd length between i and j . If C is
bipartite, this determines the values of the p j s consistently. If C is not bipartite,
take a cycle of odd length and a vertex k in it. We get that pk = −pk , so pk = 0;
therefore we must have p j = 0 for all j ∈ C .

Therefore, to specify a point p in
⋂

B, we split GB into its connected com-
ponents. We know that pi = 0 for all i in connected components which are not
bipartite. To determine the remaining coordinates of p we have to specify the
value of p j for exactly one j in each bipartite connected component. Therefore
dim

(⋂
B

)
= bc(GB), as desired.

From this point, it is possible to prove the second claim of Theorem 4.5 using
the compositional formula for exponential generating functions, in the same way
that we proved Theorem 4.4. However, the work involved is considerable, and it is
much simpler to use our finite field method, Theorem 3.3, in this case. The proof
that we obtain is very similar to the proofs of Theorems 4.1, 4.2 and 4.3, so we
omit the details. �

5. Deformations of the braid arrangement

This section concerns the deformations of the braid arrangement of the form

(5-1) xi − x j = a1, . . . , ak 1 ≤ i < j ≤ n,

where A = {a1, . . . , ak} is a fixed set of integers. Such arrangements have been
studied extensively by Athanasiadis [2000] and Postnikov and Stanley [2000]. In
this section we study the problem of finding their coboundary polynomials.

We proceed as follows. In the next subsection we introduce the family of graded
A-graphs, and show in Proposition 5.6 that enumerating them is equivalent to the
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problem at hand. By understanding the structure of those graphs, we obtain The-
orem 5.7, a formula for the generating function of our coboundary polynomials.

The formula provided by Theorem 5.7 is not very explicit, as one might expect
from the fact that it applies to such a large family of arrangements. However, we
show that for A ⊆ {−1, 0, 1}, A-graphs possess additional structure, which makes
it possible to obtain very explicit answers. This is done starting on page 19 for
the Linial, Shi, semiorder, and Catalan arrangements. As a consequence, we also
obtain new formulas for the generating functions of alternating trees, labelled trees,
semiorders, and Dyck paths.

Enumerating graphs to compute coboundary polynomials.

Definition 5.1. An exponential sequence of arrangements E = (E0, E1, . . .) is a
sequence of arrangements satisfying the following properties:

(1) En is an arrangement in k
n , for some fixed field k.

(2) Every hyperplane in En is parallel to some hyperplane in the braid arrangement
An .

(3) For any subset S of [n], the subarrangement ES
n ⊆ En , which consists of the

hyperplanes in En of the form xi − x j = c with i, j ∈ S, is isomorphic to the
arrangement E|S|.

The special case t = 0 of the next result is due to Stanley [1996, Theorem 1.2];
we omit the proof, which is an easy extension of his.

Theorem 5.2. Let E = (E0, E1, . . .) be an exponential sequence of arrangements.
Then

1 + q
∑
n≥1

χEn
(q, t)

xn

n!
=

( ∑
n≥0

χEn
(1, t)

xn

n!

)q

.

The most natural examples of exponential sequences of arrangements are the
following. Fix a set A of k distinct integers a1 <. . .<ak . Let En be the arrangement
in Rn consisting of the hyperplanes

(5-2) xi − x j = a1, . . . , ak 1 ≤ i < j ≤ n.

Then (E0, E1, . . .) is an exponential sequence of arrangements and Theorem 5.2
applies to this case. In fact, we can say much more about this type of arrangement.

After proving the results in this section, we found out that Postnikov and Stanley
[2000] had used similar techniques in computing the characteristic polynomials of
these types of arrangements. Therefore, for consistency, we will use the terminol-
ogy that they introduced.
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Definition 5.3. A graded graph is a triple G = (VG, EG, hG), where VG is a
linearly ordered set of vertices (usually VG = [n]), EG is a set of undirected edges,
and hG is a function hG : V → N, called a grading.

We will drop the subscripts when the underlying graded graph is clear. We will
refer to h(v) as the height of vertex v. The height of G, denoted h(G), is the largest
height of a vertex of G.

Definition 5.4. Let G be a graded graph and r be a nonnegative integer. Let the
r th level of G be the set of vertices v such that h(v) = r . Say G is planted if each
one of its connected components has a vertex on the 0th level.

Definition 5.5. If u < v are connected by edge e in a graded graph G, let the type
of e be s(e) = h(u)− h(v). Say G is an A-graph if the types of all edges of G are
in A = {a1, . . . , ak}.

Recall that, for a graph G, we let e(G) be the number of edges and c(G) be the
number of connected components of G.

Proposition 5.6. Let A = {a1, . . . , ak}, and let En be the arrangement

xi − x j = a1, . . . , ak 1 ≤ i < j ≤ n.

Then, for n ≥ 1,
q χEn

(q, t) =

∑
G

qc(G)(t − 1)e(G),

where the sum is over all planted graded A-graphs on [n].

Proof. We associate to each planted graded A-graph G = (V, E, h) on [n] a central
subarrangement AG of En . It consists of the hyperplanes xi − x j = h(i) − h( j),
for each i < j such that i j is an edge in G. This is a subarrangement of En

because h(i) − h( j), the type of edge i j , is in A. It is central because the point
(h(1), . . . , h(n)) ∈ Rn belongs to all these hyperplanes.

Example. Consider an arrangement E8 in R8, with a subarrangement consisting of
the hyperplanes x1 − x2 = 4, x1 − x3 = −1, x1 − x6 = 0, x1 − x8 = 1, x2 − x3 = −5
and x4 − x7 = 2. Figure 1 shows the planted graded A-graph corresponding to this
subarrangement.

This is in fact a bijection between planted graded A-graphs on [n] and central
subarrangements of En . To see this, take a central subarrangement A. We will
recover the planted graded A-graph G that it came from. For each pair (i, j) with
1 ≤ i < j ≤ n, A can have at most one hyperplane of the form xi − x j = at . If
this hyperplane is in A, we must put edge i j in G, and demand that the heights
h(i) and h( j) satisfy h(i)− h( j) = at . When we do this for all the hyperplanes in
A, the height requirements that we introduce are consistent, because A is central.
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Figure 1. The planted graded A-graph for the subarrangement of
E8 in the example from the proof of Proposition 5.6.

However, these requirements do not fully determine the heights of the vertices;
they only determine the relative heights within each connected component of G.
Since we want G to be planted, we demand that the vertices with the lowest height
in each connected component of G should have height 0. This does determine G
completely, and clearly A = AG .

With this bijection in hand, and keeping (3-2) in mind, it remains to show that
r(AG) = n − c(G) and |AG | = e(G). The second of these claims is trivial. We
omit the proof of the first one which is very similar to, and simpler than, that of
r(B) = n − bc(GB) in our proof of Theorem 4.5. �

Theorem 5.7. Let A = {a1, . . . , an} and let En be the arrangement

xi − x j = a1, . . . , ak 1 ≤ i < j ≤ n.

Let

(5-3) Ar (t, x) =

∑
n≥0

( ∑
f :[n]→[r ]

ta( f )

)
xn

n!
,

where the inside sum is over all functions f : [n] → [r ], and

a( f ) = #{(i, j) | 1 ≤ i < j ≤ n , f (i) − f ( j) ∈ A}.

Then

(5-4) 1 + q
∑
n≥1

χEn
(q, t)

xn

n!
=

(
lim

r→∞

Ar (t, x)

Ar−1(t, x)

)q

.

Remark. The limit in (5-4) is a limit in the sense of convergence of formal power
series. Let F1(t, x), F2(t, x), . . . be a sequence of formal power series. We say
that limn→∞ Fn(t, x) = F(t, x) if for all a and b there exists a constant N (a, b)

such that, for all n larger than N (a, b), the coefficient of taxb in Fn(t, x) is equal
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to the coefficient of taxb in F(t, x). For more on this notion of convergence, see
[Niven 1969] or [Stanley 1997, Section 1.1].

Proof of Theorem 5.7. Let v(G) be the number of vertices of graph G. First we
prove that

(5-5) Ar (t, x) =

∑
G

(t − 1)e(G) xv(G)

v(G)!

where the sum is over all graded A-graphs G on [n] of height less than r . The
coefficient of xn

n!
in the right-hand side of (5-5) is

∑
G(t − 1)e(G), summing over

all graded A-graphs G on [n] with height less than r . We have∑
G

(t − 1)e(G)
=

∑
h:[n]→[0,r−1]

∑
G: hG=h

(t − 1)e(G)

=

∑
h:[n]→[0,r−1]

(1 + (t − 1))a(h)
=

∑
f :[n]→[r ]

ta( f ).

The only tricky step here is the second: if we want all graded A-graphs G on [n]

with a specified grading h, we need to consider the possible choices of edges of
the graph. Any edge i j can belong to the graph, as long as h(i) − h( j) ∈ A, so
there are a(h) possible edges.

Equation (5-5) suggests the following definitions. Let

Br (t, x) =

∑
G

te(G) xv(G)

v(G)!

where the sum is over all planted graded A-graphs G of height less than r , and let

B(t, x) =

∑
G

te(G) xv(G)

v(G)!

where the sum is over all planted graded A-graphs G.
The equation

(5-6) 1 + q
∑
n≥1

χEn
(q, t)

xn

n!
= B(t − 1, x)q ,

follows from Proposition 5.6, using either Theorem 5.2 or the compositional for-
mula for exponential generating functions.

Now we claim that B(t, x) = limr→∞ Br (t, x). In a planted graded A-graph G
with e edges and v vertices, each vertex has a path of length at most v that connects
it to a vertex on the 0th level. Therefore h(G) ≤ v · max(|a1|, . . . , |ak |), so the
coefficients of te xv

v!
in Br (t, x) and B(t, x) are equal for r > v ·max(|a1|, . . . , |ak |).
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Then it is not difficult to show that

(5-7) B(t − 1, x) = lim
r→∞

Br (t − 1, x).

Here it is necessary to check that B(t −1, x) is, indeed, a formal power series. This
follows from the observation that the coefficient of xn

n!
in B(t, x) is a polynomial

in t of degree at most
(n

2

)
. Once again, see [Stanley 1997, Section 1.1] for more

information on these technical details.
Next, we show that

(5-8) Br (t − 1, x) = Ar (t, x)/Ar−1(t, x)

or, equivalently, that Ar (t, x)= Br (t −1, x)Ar−1(t, x). The multiplication formula
for exponential generating functions [Stanley 1999, Proposition 5.1.1] and (5-5)
give us a combinatorial interpretation of this identity. We need to show that the
ways of putting the structure of a graded A-graph G with h(G) < r on [n] can
be put in correspondence with the ways of doing the following: first splitting [n]

into two disjoint sets S1 and S2, then putting the structure of a planted graded
A-graph G1 with h(G1) < r on S1, and then putting the structure of a graded A-
graph G2 with h(G2) < r − 1 on S2. We also need that, in that correspondence,
(t − 1)e(G)

= (t − 1)e(G1)(t − 1)e(G2).
We do this as follows. Let G be a graded A-graph G with h(G) < r . Let

G1 be the union of the connected components of G which contain a vertex on
the 0th level. Put a grading on G1 by defining hG1(v) = hG(v) for v ∈ G1. Let
G2 = G − G1. It is clear that hG(v) ≥ 1 for all v ∈ G2; therefore we can put a
grading on G2 by defining hG2(v) = hG(v) − 1 for v ∈ G2. Then G1 is a planted
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Figure 2. The decomposition of a graded A-graph.
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graded A-graph with h(G1) < r , G2 is a graded A-graph with h(G2) < r − 1, and
(t −1)e(G)

= (t −1)e(G1)(t −1)e(G2). It is clear how to recover G from G1 and G2.
Figure 2 illustrates this bijection with an example.

Now we just have to put together (5-6), (5-7) and (5-8) to complete the proof of
Theorem 5.7. �

Subarrangements of the Catalan arrangement. The Catalan arrangement Cn in
Rn consists of the hyperplanes

xi − x j = −1, 0, 1 1 ≤ i < j ≤ n.

When the arrangement in Theorem 5.7 is a subarrangement of the Catalan arrange-
ment, we can say more about the power series Ar of (5-3). Let

A(t, x, y) =

∑
r

Ar (t, x)yr
=

∑
n≥0

∑
r≥0

( ∑
f :[n]→[r ]

ta( f )

)
xn

n!
yr

and let

(5-9) S(t, x, y) =

∑
n≥0

∑
r≥0

( ∑
f :[n]�[r ]

ta( f )

)
xn

n!
yr

where the inner sum is over all surjective functions f : [n] � [r ]. The following
proposition reduces the computation of A(t, x, y) to the computation of S(t, x, y),
which is often easier in practice.

Proposition 5.8. If A ⊆ {−1, 0, 1} in the notation of Theorem 5.7, we have

A(t, x, y) =
S(t, x, y)

1 − yS(t, x, y)

Proof. Once again, we think of this as an identity about exponential generating
functions in the variable x . Fix n, r , and a function f : [n] → [r ]. Write [r ] −

Im f = {m1, m1 + m2, . . . , m1 + · · · + mk−1}, so the image of f is M1 ∪ · · · ∪

Mk = {1, . . . , m1 − 1} ∪ {m1 + 1, . . . , m1 + m2 − 1} ∪ · · · ∪ {m1 + · · · + mk−1 +

1, . . . , m1 + · · · + mk − 1}. Here m1, . . . , mk are arbitrary positive integers such
that m1 +· · ·+mk −1 = r . For 1 ≤ i ≤ k, let fi be the restriction of f to f −1(Mi );
it maps f −1(Mi ) surjectively to Mi . Then we can “decompose” f in a unique way
into the k surjective functions f1, . . . , fk . The weight w( f ) corresponding to f
in A(t, x, y) is ta( f )yr , while the weight w( fi ) corresponding to fi in S(t, x, y) is
ta( fi )ymi −1.

Now observe that a( f ) = a( f1) + · · · + a( fk): whenever we have a pair of
numbers 1 ≤ i < j ≤ n counted by a( f ), since f (i) − f ( j) ∈ {−1, 0, 1}, we
know that f (i) and f ( j) must be in the same Mh . Therefore i and j are in the
same f −1(Mh), and this pair is also counted in a( fh). We also have that r =
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(m1 − 1) + · · · + (mk − 1) + (k − 1). Therefore w( f ) = w( f1) · · · w( fk)yk−1. It
follows from the compositional formula for exponential generating functions that

A(t, x, y) =

∑
k≥1

S(t, x, y)k yk−1
=

S(t, x, y)

1 − yS(t, x, y)
,

as desired. �

Considering the different subsets of {−1, 0, 1}, we get six nonisomorphic sub-
arrangements of the Catalan arrangement. They come from the subsets ∅, {0}, {1},
{0, 1}, {−1, 1} and {−1, 0, 1}. The corresponding subarrangements are the empty
arrangement, the braid arrangement, the Linial arrangement, the Shi arrangement,
the semiorder arrangement, and the Catalan arrangement, respectively. The empty
arrangement is trivial, and the braid arrangement was already treated in detail start-
ing on page 10. We now have a technique that lets us talk about the remaining four
arrangements under the same framework. We will do this in the remainder of this
section.

The Linial arrangement. The Linial arrangement Ln consists of the hyperplanes
xi − x j = 1 for 1 ≤ i < j ≤ n. This arrangement was first considered by Linial
and Ravid. It was later studied by Athanasiadis [1996] and Postnikov and Stanley
[2000], who independently computed the characteristic polynomial of Ln:

χLn (q) =
q
2n

n∑
k=0

(
n
k

)
(q − k)n−1.

They also put the regions of Ln in bijection with several different sets of combina-
torial objects. Perhaps the simplest such set is the set of alternating trees on [n+1]:
the trees such that every vertex is either larger or smaller than all its neighbors.

Now we present the consequences of Proposition 5.8 and Propositions 5.6 and
5.7 for the Linial arrangement. Say that a poset P on [n] is naturally labeled if
i < j in P implies i < j in Z+.

Proposition 5.9. For all n ≥ 1 we have

q χLn
(q, t) =

∑
P

qc(P)(t − 1)e(P)

where the sum is over all naturally labeled, graded posets P on [n]. Here c(P)

and e(P) denote the number of components and edges of the Hasse diagram of P ,
respectively.

Proof. There is an obvious bijection between Hasse diagrams of naturally labeled
graded posets on [n] and planted graded {1}-graphs on [n]. The result then follows
immediately from Proposition 5.6. �
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Theorem 5.10. Let

Ar (t, x) =

∑
n≥0

( ∑
f :[n]→[r ]

t id( f )

)
xn

n!
,

where id( f ) denotes the number of inverse descents of the word f (1) . . . f (n), that
is, the number of pairs (i, j) with 1 ≤ i < j ≤ n such that f (i) − f ( j) = 1. Then

1 + q
∑
n≥1

χLn
(q, t)

xn

n!
=

(
lim

r→∞

Ar (t, x)

Ar−1(t, x)

)q

.

Proof. This is immediate from Theorem 5.7. �

Recall that the descents of a permutation σ =σ1 . . . σr ∈ Sr are the indices i such
that σi > σi+1. For more information about descents, see [Stanley 1997, Section
1.3], for example. We call id( f ) the number of inverse descents, because they
generalize descents in the following way. If π : [r ] → [r ] is a permutation, then
id(π) is the number of descents of the permutation π−1.

We can use Theorem 5.10 to say more about the characteristic polynomial of
Ln which, as discussed on page 4, is given by χLn (q) = qχLn

(q, 0).

Theorem 5.11. Let

(5-10)
1 + yex(1+y)

1 − y2ex(1+y)
=

∑
r≥0

Ar (x)yr .

Then we have ∑
n≥0

χLn (q)
xn

n!
=

(
lim

r→∞

Ar (x)

Ar−1(x)

)q

.

In particular, if fn is the number of alternating trees on [n + 1], we have∑
n≥0

(−1)n fn
xn

n!
= lim

r→∞

Ar−1(x)

Ar (x)
.

Proof. In view of Theorem 5.10 and Proposition 5.8, we compute S(0, x, y). From
(5-9), the coefficient of xn

n!
yr in S(0, x, y) is equal to the number of surjective

functions f : [n] → [r ] with no inverse descents. These are just the nondecreasing
surjective functions f : [n] → [r ]. For n ≥ 1 and r ≥ 1 there are

(n−1
r−1

)
such

functions, and for n = r = 0 there is one such function. In the other cases there are
none. Therefore

S(0, x, y) = 1 +

∑
n≥1

∑
r≥1

(
n − 1
r − 1

)
xn

n!
yr

= 1 +

∑
n≥1

xn

n!
y(1 + y)n−1

=
1 + yex(1+y)

1 + y
.
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Proposition 5.8 then implies that

A(0, x, y) =
1 + yex(1+y)

1 − y2ex(1+y)
,

in agreement with (5-10), and the theorem follows. �

The Shi arrangement. The Shi arrangement Sn consists of the hyperplanes xi −

x j = 0, 1 for 1 ≤ i < j ≤ n. Shi [1986, Chapter 7; 1987] first considered this
arrangement, and showed that first considered this arrangement, and showed that
it has (n + 1)n−1 regions. Headley [1994, Chapter VI; 1997] later computed the
characteristic polynomial of later computed the characteristic polynomial of Sn:

χSn (q) = q(q − n)n−1.

Stanley [1996; 1998b] gave a nice bijection between regions of the Shi arrange-
ment and parking functions of length n. Parking functions were first introduced
by Konheim and Weiss [1966]; for more information, see [Stanley 1999, Exercise
5.49].

For the Shi arrangement, we can say the following.

Theorem 5.12. Let

Ar (x) =

r∑
n=0

(r − n)n xn

n!
.

Then we have ∑
n≥0

χSn (q)
xn

n!
=

(
lim

r→∞

Ar (x)

Ar−1(x)

)q

.

In particular, we have∑
n≥0

(−1)n(n + 1)n−1 xn

n!
= lim

r→∞

Ar−1(x)

Ar (x)
.

Proof. We proceed in the same way that we did in Theorem 5.11. In this case,
we need to compute the number of surjective functions f : [n] → [r ] such that
f (i)− f ( j) is never equal to 0 or 1 for i < j . These are just the surjective, strictly
increasing functions. There is only one of them when n = r , and there are none
when n 6= r . Hence

S(0, x, y) =

∑
n≥0

xn

n!
yn

= exy .

The rest follows easily by computing A(0, x, y) and Ar (x) explicitly. �
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The semiorder arrangement. The semiorder arrangement In consists of the hyper-
planes xi −x j =−1, 1 for 1 ≤ i < j ≤ n. A semiorder on [n] is a poset P on [n] for
which there exist n unit intervals I1, . . . , In of R , such that i < j in P if and only
if Ii is disjoint from I j and to the left of it. It is known [Scott and Suppes 1958]
that a poset is a semiorder if and only if it does not contain a subposet isomorphic
to 3+1 or 2+2. We are interested in semiorders because the number of regions of
In is equal to the number of semiorders on [n], as shown in [Postnikov and Stanley
2000] and [Stanley 1996].

Theorem 5.13. Let

1 − y + yex

1 − y + y2 − y2ex =

∑
r≥0

Ar (x)yr .

Then we have ∑
n≥0

χIn (q)
xn

n!
=

(
lim

r→∞

Ar (x)

Ar−1(x)

)q

.

In particular, if in is the number of semiorders on [n], we have∑
n≥0

(−1)nin
xn

n!
= lim

r→∞

Ar−1(x)

Ar (x)
.

Proof. In this case, S(0, x, y) counts surjective functions f : [n] → [r ] such that
f (i)− f ( j) is never equal to 1 for i 6= j . Such a function has to be constant; so it
can only exist (and is unique) if n ≥ 1 and r = 1 or if n = r = 0. Thus

S(0, x, y) = 1 + (ex
− 1)y

and the rest follows easily. �

The Catalan arrangement. The Catalan arrangement Cn consists of the hyper-
planes xi − x j = −1, 0, 1 for 1 ≤ i < j ≤ n. Stanley [1996] observed that the
number of regions of this arrangement is n!Cn , where Cn =

1
n+1

(2n
n

)
is the n-

th Catalan number. For (much) more information on the Catalan numbers; see
[Stanley 1999, Chapter 6], especially Exercise 6.19.

Theorem 5.14. Let

Ar (x) =

b
r+1

2 c∑
n=0

(
r − n + 1

n

)
xn.

Then we have ∑
n≥0

χCn (q)
xn

n!
=

(
lim

r→∞

Ar (x)

Ar−1(x)

)q

.
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In particular,

(5-11)
√

1 + 4x − 1
2x

=

∑
n≥0

(−1)nCnxn
= lim

r→∞

Ar−1(x)

Ar (x)
.

Proof. If f : [n] → [r ] is a surjective function such that f (i)− f ( j) is never equal
to −1, 0 or 1 for i 6= j , then n = r = 0 or n = r = 1. Thus S(x, y, 0) = 1 + xy,
and the rest of the proof is straightforward. �

The polynomial Ar (x) is a simple transformation of the Fibonacci polynomial.
The number of words of length r , consisting of 0s and 1s, which do not contain
two consecutive 1s, is equal to Fr+2, the (r + 2)th Fibonacci number. It is easy to
see that the polynomial Ar (x) counts those words according to the number of 1s
they contain. In particular, Ar (1) = Fr+2.

We close with an amusing observation. Irresponsibly2 plugging x = 1 into
(5-11), we obtain an unconventional “proof” of the asymptotic rate of growth of
Fibonacci numbers:

√
5 − 1
2

= lim
r→∞

Fr−1

Fr
.
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