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ON THE UNIT GROUP OF SOME MULTIQUADRATIC
NUMBER FIELDS

ELLIOT BENJAMIN, FRANZ LEMMERMEYER AND CHIP SNYDER

We study the index of the group of units in the genus field of an imaginary
quadratic number field modulo the subgroup generated by the units of the
quadratic subfields (over Q) of the genus field.

1. Introduction

One major problem in algebraic number theory is the computation of the class
number h(K ) for a number field K . In the case of quadratic fields, this problem
is easily solved by elementary methods. Once the field degree is larger than 2, the
problem becomes more challenging. Historically, the oldest case after the quadratic
fields seems to be when K runs through a particular family of quartic bicyclic fields
over Q, meaning that Gal(K/Q) ' (2, 2) (here (a1, . . . , ar ) denotes the direct sum
of cyclic groups of order ai , for i =1, . . . , r ). Dirichlet [1842] in essence computed
the class number h(K ) for the family of quartic fields K = Q(

√
−1,

√
m ), m a

positive nonsquare integer. Namely, let k1 = Q(
√

−1 ), k2 = Q(
√

m ), and k3 =

Q(
√

−m ), and denote by EF the group of units of a number field F . Then Dirichlet
discovered the class number formula

h(K ) =
1
2 q(K/Q)h(k2)h(k3),

where q = q(K/Q) = (EK : Ek1 Ek2 Ek3). Dirichlet went on to show that the unit
index q could be determined and was equal to 1 or 2.

Over time, Dirichlet’s formula has been generalized in several directions; see
in particular [Herglotz 1922; Kubota 1953; 1956; Kuroda 1950; Lemmermeyer
1994b; Wada 1966], and references therein. One particularly striking formula is
usually attributed to Kuroda [1950], but in fact goes back to Herglotz [1922] in an
equivalent, if less convenient, form for q . Let L =

∏
i ki be the multiquadratic field

generated as the composite of all its quadratic subfields ki , and suppose further that
[L : Q] = 2m . Then

h(L) =
1
2ν

q(L/Q)
∏

i

h(ki ),
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where q = q(L/Q) = (EL :
∏

i Eki ) and

ν =

{
m(2m−1

− 1) if L is real,
(m − 1)(2m−2

− 1) + 2m−1
− 1 if L is complex.

Hence h(L) can be computed easily provided that the unit index q(L/Q) can be
computed. Herein lies the obstruction to an easy determination of the class number
of multiquadratic number fields. For quartic bicyclic fields, Kubota [1956] gave
a method for finding a system of fundamental units and thus for computing q.
Wada [1966], generalized Kubota’s method, creating an algorithm for computing
fundamental units in any given multiquadratic field. However, in general there
seems to be no explicit formula for q , even when L is of degree 4 over Q.

This brings us to the purpose of this article. We try to glean some understanding
of the difficulties in computing the unit index by giving explicit computations of
q for special families of multiquadratic fields L . We consider the special case of
the genus field L = kgen of a complex quadratic field k for which the 2-rank of the
class group Cl(k) of k is ≤ 3. (Recall that the 2n-rank of a finite abelian group G is
the minimal number of generators of the factor group G2n−1

/G2n
.) If the 2-rank of

Cl(k) is 1, then [L : Q] = 4, by genus theory, and in this case it is known that q = 1
(see [Lemmermeyer 1995], for instance; the proof is easy — see the next section).

Next, if the 2-rank is 2, then [L : Q]= 8 by genus theory. In this case, we reduce
the problem to that of computing q(K/Q) where K is the maximal real subfield
of L . But then K is a totally real bicyclic field and we may apply the results of
[Kubota 1956] to compute q(K/Q). We find that q(L/Q) = 8 or 2 according as
the 2-class field tower of k is of length 1 or > 1. (Here k1 is the Hilbert 2-class field
of k and kn+1

= (kn)1; the length of the 2-class field tower of k is the cardinality
of the set of kn.)

For the case where the 2-rank of Cl(k) is 3, we seem to be in new territory. We
restrict to the case of elementary 2-class group. Specifically, we assume Cl2(k) '

(2, 2, 2), so L = kgen = k1. If the rank of Cl2(k1) is 2 as a module over the integral
group ring 3 = Z[Gal(k1/k)], then q(L/Q) = 27. This condition on the 3-rank
is, by the way, a natural one; see [Benjamin et al. 2003]. We then obtain less
complete information about q for the other case where Cl2(k1) is of 3-rank 3. In
the particular fields we consider, q = 24 or 25.

2. The Main Results

Let k be an imaginary quadratic field for which the 2-rank of Cl(k) is t −1. Hence,
by genus theory, k =Q(

√
d1 · · · dt ), where disc k =d1 · · · dt is a factorization of the

discriminant of k into distinct prime discriminants di divisible by the rational prime
pi for i = 1, . . . , t . Then L = kgen = Q(

√
d1, . . . ,

√
dt ) and hence multiquadratic
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of degree 2t over Q. Hence for t ≥ 2 Kuroda’s class number formula above yields

h(L) =
1
2ν

q(L/Q)
∏

i

h(ki ),

where ki range over the 2t
− 1 quadratic subfields of L , q(L/Q) = (EL :

∏
i Eki ),

and ν = (t − 1)(2t−2
− 1) + 2t−1

− 1 since L is complex.
We start our computations of q = q(L/Q) by first considering t = 2 (for the

sake of completeness).

Theorem 1. Let k be a complex quadratic number field and L = kgen. If the 2-rank
of Cl(k) equals 1, then q(L/Q) = 1.

Proof. Since the 2-rank of Cl(k) is 1, t = 2 so k = Q(
√

d1d2 ) for prime discrim-
inants d1, d2. Then L = Q(

√
d1,

√
d2 ). Now, by Kuroda’s class number formula

(where t = 2 implies ν = 1),

h(L) =
1
2q(L/Q)h(d1d2)h(d1)h(d2),

where h(n) = h(Q(
√

n ) ). Now, it is well known that h(d) is odd for any prime
discriminant d . Moreover, by the Artin map, Gal(k1/k) ' Cl2(k) where Cl2(k)

is the 2-class group of k, the Sylow 2-subgroup of the class group, the order of
which is h2(k), the 2-class number of k. Now consider G = Gal(k2/k). Since the
commutator subgroup G ′

= Gal(k2/k1), we see G/G ′
' Gal(k1/k) ' Cl2(k). But

in the present case, Cl2(k) is cyclic, whence G ′
= 〈1〉, and thus k2

= k1. But then
since in general k1

⊆ L1
⊆ k2, we have L1

= k1. Therefore, h2(L) = [L1
: L] =

[k1
: L] = [k1

: k]/2 = h2(k)/2. Now by restricting to 2-class numbers and using
the fact that q is a power of two, (see [Wada 1966], for instance) the Kuroda class
number formula becomes

h2(L) =
1
2q(L/Q)h2(k)h2(d1)h2(d2).

From the preceding discussion we get 1
2 h2(k) =

1
2q h2(k), as needed. �

Next, we consider the case where the 2-rank of Cl(k) is 2, i.e. t = 3. Hence
k = Q(

√
d1d2d3 ), with prime discriminants di . Moreover, since k is complex,

disc k < 0 so either all the di are negative or exactly two are positive, say d1, d2 > 0,
d3 < 0. Notice that we have L = Q(

√
d1,

√
d2,

√
d3 ). Let K = L+ be the

maximal real subfield of L , (so K = Q(
√

d1,
√

d2 ) if say d1, d2 > 0, d3 < 0,
and K = Q(

√
d1d2,

√
d2d3 ) if di < 0, for i = 1, 2, 3). But then it follows that

q(L/Q) = Q(L/K )q(K/Q), where Q(L/K ) = (EL : WL EK ) with WL the group
of roots of unity of L . To see this apply for example [Benjamin et al. 2003, Propo-
sition 1], where we notice that any primitive eighth root ζ8 of unity is not contained
in L since any ramification index of a prime in L/Q must divide 2, whereas 2 is
totally ramified in Q(ζ8). Now suppose d1, d2 > 0, d3 < 0. By [Lemmermeyer
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1995, Theorem 1], Q(L/K ) = 1, since L = K (
√

d3 ) implies that L/K is essen-
tially ramified if d3 6= −4 and that 2OK is not an ideal square if d3 = −4, see
[Lemmermeyer 1995] again for the details. Thus we have q(L/Q) = q(K/Q). If
however all the di < 0, then for any i , L = K (

√
di ). In this case, it can be shown

that Q(L/K ) = 2 by [Lemmermeyer 1995], but we shall see that this is the case by
another method. In either case, it is well known that Q(L/K ) = 1, 2 (see [Hasse
1985, Satz 14]), and moreover, by Kubota [Kubota 1956], q(K/Q) divides 4. Thus
q(L/Q) must divide 8.

Theorem 2. Let k be a complex quadratic field with 2-rank Cl(k) = 2. Then for
L = kgen, q(L/Q) = 8 or 2 according as the 2-class field tower of k is of length 1
or > 1.

Proof. By assumption, k = Q(
√

d1d2d3 ) for prime discriminants di . Now notice
that Ki = k(

√
di ) for i = 1, 2, 3 are the three unramified quadratic extensions of

k in L . These fields are quartic bicyclic extensions of Q and so Kuroda’s class
number yields

h(K1) =
1
2 q(K1/Q)h(k)h(d2d3)h(d1),

since m = 2, so ν = 1, (analogously for K2 and K3). Now since the Ki are
unramified quadratic extensions of a complex quadratic field k, it is known that
q(Ki/Q) = 1; see for example [Lemmermeyer 1995]. Hence by considering 2-
class numbers so that we may use h2(di ) = 1, we have

h2(L) =
1

32 q(L/Q)h2(k)h2(d1d2)h2(d1d3)h2(d2d3), h2(K1) =
1
2 h2(k)h2(d2d3).

Now we rewrite the formula for h2(L) in terms of h2(Ki ). From above, notice
that for example h2(d2d3) = 2h2(K1)/h2(k), etc. and so by class field theory,

h2(d2d3) =
2[K 1

1 : K1]

[k1 : k]
=

2[K 1
1 : k1

][k1
: K1]

[k1 : K1][K1 : k]
= [K 1

1 : k1
].

Substituting into the above formula yields

[L1
: L] =

1
32q(L/Q)[k1

: k][K 1
1 : k1

][K 1
2 : k1

][K 1
3 : k1

]

and since [L : k] = 4, we have

[L1
: k1

] =
1
8q(L/Q)[K 1

1 : k1
][K 1

2 : k1
][K 1

3 : k1
].

Notice, in particular, that if the 2-class field tower of k is of length 1, then all the
field degrees in the above formula equal 1, and therefore q = 8. Now, the length of
the 2-class field tower of k is 1 precisely when di <0 for i =1, 2, 3; see for example
[Benjamin et al. 1997]. From this we have 8 = q(L/Q) = Q(L/K )q(K/Q) from
which it follows (by the comments before the proposition) that Q(L/K ) = 2 and
q(K/Q) = 4.
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Now suppose that d1, d2 > 0, d3 < 0. In this case we have q(L/Q) = q(K/Q),
where K = Q(

√
d1,

√
d2 ). Kuroda’s class number formula implies

h2(K ) =
1
4q(K/Q)h2(F),

where F = Q(
√

d1d2 ). Then notice that Cl2(F) is cyclic and thus F1
= F2. Thus

since K/F is unramified so K ⊆ F1, h2(K ) = h2(F)/2. Plugging this into the
formula above yields q(K/Q) = 2. Thus q(L/Q) = 2. �

Proposition 3. Let k be a complex quadratic field with 2-rank Cl(k) ≤ 2 and with
4-rank Cl(k) ≤ 1. Then ∏

i

K 1
i =

( ∏
i

Ki

)1

,

where Ki range over all the unramified quadratic extensions of k.

Proof. If k1
= k2, then the proposition is trivially true, since both fields are k1.

Thus, assume k1
6= k2. Hence we know k = Q(

√
d1d2d3 ) where d1, d2 > 0, d3 < 0.

From the proof of Theorem 2,

[L1
: k1

] =
1
4 [K 1

1 : k1
][K 1

2 : k1
][K 1

3 : k1
],

where L = K1K2K3 with Ki = k(
√

di ). But notice that

[K 1
1 K 1

2 K 1
3 : k1

] =
[K 1

1 : k1
]

[K 1
1 ∩ K 1

2 K 1
3 : k1]

[K 1
2 : k1

]

[K 1
2 ∩ K 1

3 : k1]
[K 1

3 : k1
].

(Also notice this equation is true for any permutation of the indices.) Now since

[L1
: k1

] = [L1
: K 1

1 K 1
2 K 1

3 ][K 1
1 K 1

2 K 1
3 : k1

],

we see by putting these equations together that

[L1
: K 1

1 K 1
2 K 1

3 ] =
1
4 [K 1

1 ∩ K 1
2 K 1

3 : k1
][K 1

2 ∩ K 1
3 : k1

].

To finish the proof, it suffices to show that

[K 1
1 ∩ K 1

2 K 1
3 : k1

] = [K 1
2 ∩ K 1

3 : k1
] = 2.

Here is where some group theory comes in. Let G = Gal(k2/k), and further let
H1, H2, H3 be the three maximal subgroups of G such that Gal(k2/Ki )= Hi . Then
we need to show that

(G ′
: H ′

2 H ′

3) = (G ′
: H ′

1(H ′

2 ∩ H ′

3)) = 2.

Here is a sketch of the proof. If G ′ is cyclic, say G ′
= 〈c〉, by the table of possi-

ble groups and their presentations at the end of [Benjamin et al. 1997], we have
(without loss of generality) H ′

3 = 〈c2
〉 and H ′

1 H ′

2 = 〈c2
〉, from which our result

follows.
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Now suppose G ′ is not cyclic. Then by our assumption on the class group of k,
G must be nonmetacyclic with G/G ′

' (2, 2n) for some n >1. Now we assume the
notation before [Benjamin et al. 2001, Lemma 1]. Hence let G =〈a, b〉 where a2

≡

b2n
≡ 1 mod G ′. Let [a, b] = c and define inductively, c2 = c and c j+1 = [b, c j ].

We have G ′
= 〈c2, c3, . . . 〉, and G3 = 〈c2

2, c3, . . . 〉, and G4 = 〈c4
2, c2

3, c4, . . . 〉;
see [Benjamin et al. 1997, Lemma 2]. Now if H3 = 〈a, b2, G ′

〉, then it is easy
to see that H ′

3G4 = G3. Thus H ′

3 = G3 by [Hall 1933, Theorem 2.49ii]. Hence
(G ′

: H ′

3) = (G ′
: G3) = 2. Similarly, if H1 = 〈b, G ′

〉 and H2 = 〈ab, G ′
〉, then

H ′

1 H ′

2G4 = G3 so once again H ′

1 H ′

2 = G3. This shows the result and finishes the
proof of the proposition. �

Now we consider Cl2(k) ' (2, 2, 2), and thus in particular disc k = d1d2d3d4 for
distinct prime discriminants di . If we assume the 3-rank of Cl2(k1/k) is 2, then
by [Benjamin et al. 2003, Theorem 2], exactly three of the di ’s must be negative,
say d1, d2, d3 < 0, d4 > 0.

Theorem 4. Let k be a complex quadratic field with Cl2(k) ' (2, 2, 2). If the
3-rank of Cl2(k1) equals 2, the unit index q(k1/Q ) equals 27.

Proof. If Cl2(k) ' (2, 2, 2), then Cl2(k1/k) has 3-rank 2 if and only if G/G ′
'

(2, 2, 2) and G ′/G3 ' (2, 2), where G = Gal(k2/k). Thus (G : G3) = 32 and
G ′/G3 ' (2, 2), and by [Hall and Senior 1964], G/G3 must be one of the seven
groups 32.033, 32.035, 32.036, 32.037, 32.038, 32.040, 32.041, in the notation of
that same reference.

Let L = k1
= kgen. Kuroda’s class number formula (with t = 4, so ν = 16) gives

(1) h2(L) =
1

216 q(L/Q)h2(k)
∏

i

h2(ki ),

where the ki are the quadratic subfields of L excluding k.
The following table lists the 2-class numbers h2(ki ) and h2(L):

G/G3 h2(ki ) h2(L)

32.041, 32.040 1 (7), 2 (6), 4 4
32.035, 32.037, 32.038 1 (7), 2 (5), 4, 2n 2n+1

32.036 1 (7), 2 (5), 2m+1, 2n 2m+n

32.033 1 (7), 2 (3), 4, 2l, 2m, 2n 2l+m+n−1

Here “1 (7)” means that 7 quadratic subfields have 2-class number equal to 1. Plug-
ging these data into (1) we immediately find the values of the unit index q(L/Q)

in each of the cases.
The 2-class numbers of the quadratic subfields ki of L are easily determined

using genus theory (see [Kaplan 1976], for instance). The 2-class numbers of L
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were computed in [Benjamin et al. 2003], except for the group G/G3 = 32.033
(for the first five groups, we have given the structure of G ′ explicitly; in the
case G/G3 = 32.036, we computed the 2-class number and actually showed that
q(L/Q) = 27).

We will now study the case G/G3 ' 32.033 in detail. By Proposition 16 in the
same reference, we have k = Q(

√
d1d2d3d4 ) with di < 0, (i = 1, 2, 3), d4 > 0 and

such that ( d1
p2

)
=

( d2
p3

)
=

( d3
p1

)
=

( d1
p4

)
= −1,

( d4
p2

)
=

( d4
p3

)
= +1.

Here is a list of the 2-class numbers of the quadratic subfields of L = k1. Along
with h2(k) = 8, we have

h2(d j ) = h2(d1d2) = h2(d2d3) = h2(d1d3) = 1, ( j = 1, 2, 3, 4)

h2(d1d4) = h2(d1d2d4) = h2(d1d3d4) = 2, h2(d1d2d3) = 4,

h2(d3d4) = 2l, h2(d2d3d4) = 2m, h2(d2d4) = 2n (l, m, n ≥ 2).

Let K = L+
= Q(

√
d1d2,

√
d1d3,

√
d4 ), the maximal real subfield of L . Then

q(L/Q) = Q(L/K )q(K/Q) by [Benjamin et al. 2003, Proposition 1]. But by
[Lemmermeyer 1995], Q(L/K ) = 2. In fact, if wL(= #WL) ≡ 2 mod 4, then
L = K (

√
d1 ) and (p1)= (π)2 in Q(

√
d1d2 ) since p1 ramifies and the field has odd

class number. But then d1OK = (πOK )2, and part (i)2(a) of [Lemmermeyer 1995,
Theorem 1] implies Q(L/K )=2. If instead wL ≡4 mod 8, then 2OK = (1+i)2OK ,
whence part (ii)2(a) of the same theorem shows again that Q(L/K ) = 2.

Now we compute q(K/Q). To this end, consider the quadratic number field k0 =

Q(
√

d2d3d4 ) with 2-class group Cl2(k0) = (2m) and fundamental unit ε234. Then
K/k0 is a V4-extension with the quadratic subextensions K1 = k0(

√
d1d2 ), K2 =

k0(
√

d1d3 ), K3 = k0(
√

d2d3 ). Let εi j denote the fundamental unit of Q(
√

di d j )

for 1 ≤ i < j ≤ 3. We shall determine Cl2(K1) and q(K1/Q). Since k0 has cyclic
2-class group of type (2m) and since K1/k0 is ramified, its class group contains
(2m) as a subgroup. If we can show that h2(K1) = 2m , then Cl2(K1) ' (2m);
since K/K1 is unramified, it would then follow that Cl2(K ) ' (2m−1). Applying
Kuroda’s class number formula to K/Q would then give q(K/Q) = 26, and this
in turn implies q(L/Q) = 27 and h2(L) = 2l+m+n−1.

For computing the 2-class number of K1 we use Kuroda’s formula

h2(K1) =
1
4q(K1/Q)h2(d1d2)h2(d1d3d4)h2(d2d3d4) = q(K1/Q)2m−1.

It suffices to show that q(K1/Q)≤ 2 (which implies q(K1/Q)= 2 by the argument
above).

We consider two cases: dk := disc k 6≡ 4 mod 8 and dk ≡ 4 mod 8. Assume dk 6≡

4 mod 8. The prime ideal above d1 in Q(
√

d1d2 ) is principal; hence X2
−d1d2 y2

=
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K

K1 K2 K3

Q(
√

d1d2 ) Q(
√

d1d3d4 ) k0

Q

Figure 1. Some subfields of K/Q.

±4d1 is solvable, and so is d1x2
− d2 y2

= −4 (the minus sign must occur since
(d1/p2)=−1). Then η=

1
2(x

√
d1+y

√
d2 ) is a unit in F =Q(

√
d1,

√
d2 ); note that

η2 < 0 in Q(
√

d1d2 ) since otherwise η ∈ R∩F = Q(
√

d1d2 ). Therefore η2
=−εu

12;
notice that u is odd since otherwise

√
−1 ∈ Q(

√
d1,

√
d2 ), a contradiction. Thus

−d1ε12 = (
√

d1η ε
(1−u)/2
12 )2 is a square in Q(

√
d1d2 ).

Next consider Q(
√

d1d3d4 ), along with the diophantine equations

d1x2
− d3d4 y2

= ±4, d3x2
− d1d4 y2

= ±4, d4x2
− d1d3 y2

= ±4,

which are solvable if the prime above d1, d3, d4, respectively, is principal. The
first implies (d1/p4) = +1, which contradicts the assumptions. The last im-
plies (d4/p1) = (d4/p3), which also leads to a contradiction. Thus the second
equation must have a solution, and reduction mod p3 shows that we must have
d3x2

− d1d4 y2
= −4. Thus −d3ε134 is a square in Q(

√
d1d3d4 ). Hence none of

ε12, ε134, ε12ε134 can be squares in K1. Therefore q(K1/Q) ≤ 2, as desired.
Now suppose dk ≡ 4 mod 8. Then our assumptions imply that d3 = −4 or

d2 = −4. First assume that d3 = −4. Then the argument above shows that ε12 =

p1κ
2 for some κ ∈ Q(

√
d1d2 ). Now consider Q(

√
d1d3d4 ) = Q(

√
p1 p4 ). Then

by genus theory ([Lemmermeyer 2000, page 76]) there is a principal ideal (α) in
Q(

√
p1 p4 ) different from (1) and (

√
p1 p4 ) which is a product of distinct ramified

prime ideals. We now consider the possibilities. First notice that the prime ideals
above p1 and p4 are not principal, since otherwise p1x2

− p4 y2
= ±1 is solvable

which cannot happen. Now assume that the prime ideal above 2 is principal, equal
to say (π) with π = x + y

√
p1 p4, for some x, y ∈ N. Then π2/2 = µ a positive

unit in Q(
√

p1 p4 ). Clearly µ is not a square in Q(
√

p1 p4 ) since otherwise
√

2 ∈

Q(
√

p1 p4 ), a contradiction. Hence ε134 =2κ2, for some κ ∈Q(
√

p1 p4 ). Similarly
ε134 could be of the form 2p1κ

2 or 2p4κ
2. But in all of these cases we see that

none of ε12, ε134, ε12ε134 can be squares in K1. Once again we have q(K1/Q) ≤ 2.
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Finally, suppose d2 = −4. The argument above shows ε134 = p3κ
2, for some

κ ∈ Q(
√

d1d3d4 ). Now consider Q(
√

d1d2 ) = Q(
√

p1 ). Then arguing as above
we see ε12 = 2κ2 or ε12 = 2p1κ

2 for some κ ∈ Q(
√

p1 ). But again this implies
q(K1/Q) ≤ 2; whence the result is established. �

Now we come to the case where Cl2(k) ' (2, 2, 2) but with disc k divisible by
three positive prime discriminants, say disc k = d1d2d3d4 with di > 0 for i = 1, 2, 3
and d4 <0. Our results in this case will be far less complete since our knowledge of
Gal(k2/k) is much more spotty. But we now simplify things somewhat by reducing
to the maximal real subfield of k1. To this end, from now on, let L =k1 and K = L+

the maximal real subfield of L . But then

q(L/Q) = q(K/Q),

because q(L/Q) = Q(L/K )q(K/Q) (by [Benjamin et al. 2003, Proposition 1],
for example). By [Lemmermeyer 1995, Theorem 1] we get Q(L/K ) = 1 since
L = K (

√
d4) is essentially ramified if d4 6= −4 and 2OK is not an ideal square

when d4 = −4.
Now we need only consider K = Q(

√
p1,

√
p2,

√
p3 ) where pi are the rational

primes dividing di . We set up the following notation. Let k0 = Q(
√

p1 p2 p3 ). Let
Ki = k0(

√
pi ) for i = 1, 2, 3 and let ki be the quadratic subfield of Ki not equal to

k0 and Q(
√

pi ). (Notice that ki = Q(
√

disc k0/pi ).) We now let εi for i =0, 1, 2, 3
be the fundamental unit > 1 in ki and Nεi the norm from ki to Q; also let εpi be
the fundamental unit in Q(

√
pi ). Finally let Hi = Gal(k2

0/Ki ).
Now we assume that k0 is a particular type of field. Namely, assume that

Cl2(k0) ' (2, 2). This assumption implies that G = Gal(k2
0/k0) is one of the

following types: abelian, quaternion, dihedral, semidihedral. Moreover notice that
in this case k1

0 = K =Q(
√

p1,
√

p2,
√

p3 ) since K/k0 is unramified and h2(k0)=4.
Without loss of generality we now pick K1 above so that H1 is cyclic. We are in a
position to state and prove the following (rather technical) theorem.

Theorem 5. Let k be a complex quadratic field with Cl2(k) ' (2, 2, 2) and with
disc k = d1d2d3d4 where di are distinct prime discriminants divisible by primes pi

and d1, d2, d3 are positive. With the notation above, assume that Cl2(k0) ' (2, 2).
Then q = q(k1/Q) takes on the two values 24 and 25 as follows:

• If G is abelian, then q = 24.

• If G is nonabelian, then Nε0 = +1 implies q =

{ 24 if Nε1 = −1,

25 otherwise,

}
, while

Nε0 = −1 implies q =


24 if

(
Nε1 = 1 or (Nε1 = −1 and

√
εp1ε0ε1 6∈ K1)

)
and

( p1
p2

)
=

( p1
p3

)
= −

( p2
p3

)
= −1,

25 otherwise.
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Proof. Since H1 is cyclic (and so in particular abelian), we have k2
0 = K 1

1 . Thus
h2(K1) = [k2

0 : k1
0][k

1
0 : K1] = 2h2(k1

0), and hence

(∗) h2(k1
0) =

1
2 h2(K1).

Next notice by Kuroda’s class number formula that

(∗∗) h2(k1
0) =

1
27 q h2(k1)h2(k2)h2(k3),

where we have used ν = 9 and h2(k0) = 4. Now Kuroda’s class number formula
for Ki yields

(∗∗∗) h2(Ki ) =
1
4 qi h2(pi )h2(ki )h2(k0) = qi h2(ki ).

But then (∗), (∗∗), (∗∗∗) imply

1
2

q1h2(k1) =
1
27 q h2(k1)

h2(K2)

q2

h2(K3)

q3
,

and therefore

q =
26q1q2q3

h2(K2)h2(K3)
.

Suppose first of all that G is abelian. Then k2
0 = k1

0 and so h2(Ki ) = 2. Thus
q = 24q1q2q3. But h2(ki ) ≡ 0 mod 2, since the d j > 0 for j = 1, 2, 3. So (∗∗∗)
implies that h2(Ki ) = 2 = qi h2(ki ) and this in turn yields h2(ki ) = 2 and qi = 1,
for i = 1, 2, 3. Thus when G is abelian, q = 24.

Now assume that G is not abelian. Then for G ' H8, the quaternion group of
order 8, or G ' D4, the dihedral group of order 8, Hi has order 4 for i = 1, 2, 3
and so in particular h2(Ki ) = 4. If G 6' H8 or D4, then H2, H3 are either dihedral,
semidihedral, or quaternion, whence in particular the abelianizations Hab

2 ' Hab
3 '

(2, 2) and thus h2(K2) = h2(K3) = 4. Then

q = 22q1q2q3.

Case 1. Assume Nε0 =1. We now compute the qi ’s. First consider q2. By [Couture
and Derhem 1992, Theorem 1], (p1/p3) = −1, whence h2(k2)(= h2(p1 p3)) = 2.
But 4 = h2(K2) = q2h2(k2) = 2q2, so thus

q2 = 2.

Next consider q3. Again by [Couture and Derhem 1992, Theorem 1], (p2/p1) =

1 and (p1/p2)4 = −(p2/p1)4. Since 4 = h2(K3) = q3h2(p1 p2), then either(
h2(p1 p2) = 2 & q3 = 2

)
or

(
h2(p1 p2) = 4 & q3 = 1

)
. We claim the latter

does not hold. For, first by (α) on page 318 of [Kaplan 1976], Cl+2 (k3) ' (4).
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Hence if the latter holds, then Nε3 = −1, which is not possible by [Kaplan 1976,
Corollary 1]. Hence

q3 = 2.

Finally consider q1. First assume Nε1 = −1. Then by [Kubota 1956] the only
possible square root of a nonsquare unit in K1 would be

√
ε0 since the others have

negative norm. Now applying [Benjamin et al. 1998, Proposition 3], for example,
we see k0(

√
ε0 )= k0(

√
δ ), where by genus theory δ|p1 p2 p3 (but 6=) and χ j (δ)= 1

for all genus characters of k0. But then since (p1/p2) = (p3/p2) = 1, p2 is trivial
for all the genus characters and no other pi has this property. Thus we may assume
δ = p2 which is not a square in K1. Thus

Nε1 = −1 implies q1 = 1.

Now assume Nε1 = +1. Then δk0 = p2 again and δk1 = p2 so that ε0ε1 is a square
in K1 this time; again see [Kubota 1956]. Hence

Nε1 = +1 implies q1 = 2.

Therefore, for Nε0 = 1, q = 24 if Nε1 = −1 and q = 25 if Nε1 = +1.

Case 2. Assume Nε0 = −1. Since Cl2(k0) = Cl+2 (k0) is elementary, the Rédei–
Reichardt conditions [1933] imply that

a)

(
pi

p j

)
= −1, for all i 6= j, or b)

(
p1

p2

)
=

(
p1

p3

)
= −

(
p2

p3

)
= −1.

First consider a). Then (pi p j/p`) = 1 for all distinct i, j, ` = 1, 2, 3. By [Couture
and Derhem 1992, Theorem 2], G ' (2, 2) or H8. Hence in the present situation
G ' H8. Thus as noted above the order of Hi is 4 whence h2(Ki ) = 4 so that
4 = h2(Ki ) = qi h2(ki ), for i = 1, 2, 3. But (pi/p j ) = −1 implies h2(ki ) = 2.
Therefore, qi = 2 for i = 1, 2, 3 so q = 25.

Next consider b). As immediately above, q2 = q3 = 2. Now consider q1. If
Nε1 = +1, then arguing as above shows q1 = 1. If Nε1 = −1, so that the norms
of εp1, ε1, ε0 are negative, then q1 = 1 if √

εp1ε1ε0 6∈ K1, and q1 = 2 otherwise.
This establishes the theorem. �

As a corollary to this theorem, we see that the structure G = Gal(k2
0/k0) deter-

mines q(k1/Q):

Corollary 6. Let k0 satisfy all the conditions in Theorem 5. For G = Gal(k2
0/k0),

q(k1/Q) =

{
24 if G is abelian or dihedral,

25 if G is semidihedral or quaternion.
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Proof. This follows immediately by Theorem 1 of [Couture and Derhem 1992] and
a stronger form of part of Theorem 2 of the same paper, as found in [Lemmermeyer
1994a]. The main change in Theorem 2 is the following: with the notation above
Theorem 5 suppose Nε0 = Nε1 = −1. If √

εp1ε1ε0 ∈ K1, then G is quaternion (of
order 8 or larger). If √

εp1ε1ε0 6∈ K1, then G is dihedral. �

The previous theorem is a special case of the following proposition:

Proposition 7. Let k be a complex quadratic field with Cl2(k) ' (2, 2, 2) and with
disc k = d1d2d3d4 where di are distinct prime discriminants divisible by primes pi

and d1, d2, d3 are positive. With the notation above, assume that k1
0 = k2

0 . Then
q = q(k1/Q) = 24.

Proof. Recall that k0 = Q(
√

p1 p2 p3 ), K = Q(
√

p1,
√

p2,
√

p3 ), and that q =

q(K/Q). Then Kuroda’s class number formula yields

h2(K ) =
1
29 q h2(k0)h2(k1)h2(k2)h2(k3);

(again, refer to the notation before the previous theorem). Now since k0 ⊆ K ⊆ k1
0 ,

we see k1
0 ⊆ K 1

⊆ k2
0 ; but since by assumption k1

0 = k2
0 , we have K 1

= k1
0 . Hence

h2(K ) = [K 1
: K ] = [k1

0 : K ] =
1
4 [k1

0 : k0] =
1
4 h2(k0).

Similarly K 1
i = k1

0 , for i = 1, 2, 3, whence

h2(Ki ) =
1
2 h2(k0).

On the other hand Kuroda’s class number formula again yields

h2(Ki ) =
1
4 qi h2(k0)h2(ki ).

All this implies
1
2 h2(k0) =

1
4 qi h2(k0)h2(ki )

so that 2 = qi h2(ki ). But then since 2 | h2(ki ), we must have h2(ki ) = 2. But then
from above we have

1
4

h2(k0) = h2(K ) =
1
29 q h2(k0)h2(k1)h2(k2)h2(k3) =

1
26 q h2(k0).

Therefore by solving for q , we obtain

q = 24. �
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3. Examples

We now give numerical examples illustrating Theorem 5 with q = 24 and q = 25.

Example 1. Let k0 = Q(
√

2405 ) = Q(
√

5 · 13 · 37 ) and K = Q(
√

5,
√

13,
√

37 ).
By [Rédei and Reichardt 1933] or [Kaplan 1976] we see that Cl2(k0) ' (2, 2).
Moreover, we have Nε0 = −1 and (13/5) = (37/5) = (37/13) = −1. Thus by
[Couture and Derhem 1992, Theorem 2], Gal(k2

0/k0)' H8 or (2, 2); but [Benjamin
et al. 1998, Theorem 1] then shows that Gal(k2

0/k0)' H8. Finally Theorem 4 above
shows q = 25.

Example 2. Consider k0 = Q(
√

290 ) = Q(
√

2 · 5 · 29 ); see the examples in
[Couture and Derhem 1992]. Let K = Q(

√
2,

√
5,

√
29 ). By [Rédei and Re-

ichardt 1933] or [Kaplan 1976] or even [Couture and Derhem 1992], we see that
Cl2(k0) ' (2, 2). Moreover, we have Nε0 = −1, where ε0 = 17 +

√
290 is the

fundamental unit of k0; and (2/5)= (2/29)=−(29/5)=−1. Now by genus theory
K1 =Q(

√
5 · 29,

√
2 ) (notation as in above). Also Nε1 =−1 where ε1 =12+

√
145

is the fundamental unit of Q(
√

5 · 29 ). Finally, ε2 = 1 +
√

2. By the techniques
described in [Kubota 1956] we see that ε0ε1ε2 is not a square in K1. Theorem 5
above then shows q = 24. Furthermore, [Couture and Derhem 1992, Theorem 2]
and PARI show Gal(k2

0/k0) ' D4.
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