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FORCED SECOND ORDER DYNAMIC EQUATIONS

MARTIN BOHNER AND CHRISTOPHER C. TISDELL

Oscillation and nonoscillation properties of second order Sturm–Liouville
dynamic equations on time scales — for example, second order self-adjoint
differential equations and second order Sturm–Liouville difference equa-
tions — have attracted much interest. Here we consider a given homoge-
neous equation and a corresponding equation with forcing term. We give
new conditions implying that the latter equation inherits the oscillatory
behavior of the homogeneous equation. We also give new conditions that
introduce oscillation of the inhomogeneous equation while the homogeneous
equation is nonoscillatory. Finally, we explain a gap in a result given in the
literature for the continuous and the discrete case. A more useful result is
presented, improving the theory even for the corresponding continuous and
discrete cases. Examples illustrating the theoretical results are supplied.

1. Introduction

The theory of dynamic equations on time scales continues to be a rapidly growing
area of research. Behind the main motivation for the subject lies the key concept
that dynamic equations on time scales represent a way of unifying and extending
continuous and discrete analysis. In this paper, we consider the second order linear
dynamic equation

(1) (c(t)x1)1 + q(t)xσ
= 0

together with an inhomogeneous equation of the form

(2) (c(t)u1)1 + q(t)uσ
= f (t).

Equations (1) and (2) are so-called dynamic equations on a time scale T. Through-
out this paper we assume that c, q , and f are rd-continuous real-valued functions
defined on the time scale T such that c(t) 6= 0 for all t ∈ T and f is not eventually
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identically equal to zero. No further assumptions on the sign of these functions
are imposed. Since we are interested in oscillatory behavior of solutions of (1) and
(2), we assume that the time scale T is unbounded above. The setup of this paper
is as follows. In Section 2, we give some preliminaries concerning the time scales
calculus. In Section 3, we introduce the Komkov transformation and present some
basic results about equations (1) and (2). In Section 4, given that (1) is nonoscilla-
tory, we offer criteria that introduce oscillation in (2) and also criteria that preserve
nonoscillation in (2). Finally, in Section 5, we explain a gap in a result given in the
continuous case by Rankin [1979, Theorem 1] and in the discrete case by Grace
and El-Morshedy [1997, Theorem 2.1]. A more useful result is presented, hence
improving the theory even for the corresponding continuous and discrete cases.
Throughout, relevant examples illustrating the theoretical results are supplied.

2. The time scales calculus

In this section we present some definitions and elementary results connected to the
time scales calculus. For further study we refer the reader to [Bohner and Peterson
2001; 2003]. A time scale T is an arbitrary nonempty closed subset of the real
numbers R. On T we define the forward and backward jump operators by

σ(t) := inf {s ∈ T : s > t} and ρ(t) := sup {s ∈ T : s < t} for t ∈ T.

A point t ∈ T with t > inf T is said to be left-dense if ρ(t) = t and right-dense
if σ(t) = t , left-scattered if ρ(t) < t and right-scattered if σ(t) > t . Next, the
graininess function µ is defined by µ(t) := σ(t) − t for t ∈ T. For a function
f :T →R the (delta) derivative f 1(t) at t ∈T is defined to be the number (provided
it exists) with the property such that for every ε > 0 there exists a neighborhood U
of t with∣∣ f (σ (t)) − f (s) − f 1(t)(σ (t) − s)

∣∣ ≤ ε |σ(t) − s| for all s ∈ U.

A useful formula is

(3) f σ
= f + µ f 1, where f σ

:= f ◦ σ.

We will use the product rule and the quotient rule for the derivative of the product
f g and the quotient f/g (if ggσ

6= 0) of two differentiable functions f and g

(4) ( f g)1 = f 1g + f σ g1
= f g1

+ f 1gσ and
(

f
g

)1

=
f 1g − g1 f

ggσ
.

For a, b ∈ T and a function f : T → R, the Cauchy integral of f is defined by

(5)
∫ b

a
f (t)1t = F(b) − F(a),
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where F is an antiderivative of f , i.e., F1
= f holds. The function f : T → R

is called rd-continuous if it is continuous in right-dense points and if the left-
sided limits exist in left-dense points. Hilger’s main existence theorem [Bohner
and Peterson 2001, Theorem 1.74] says that rd-continuous functions possess an-
tiderivatives. If p : T → R is rd-continuous and regressive (i.e., 1 + µ(t)p(t) 6= 0
for all t ∈ T), then another existence theorem says that the initial value problem
y1

= p(t)y, y(t0) = 1 (where t0 ∈ T) possesses a unique solution ep( · , t0).

Example 1. Note that in the case T = R we have

σ(t) = t, µ(t) ≡ 0, f 1(t) = f ′(t),

and in the case T = Z we have

σ(t) = t + 1, µ(t) ≡ 1, f 1(t) = 1 f (t) = f (t + 1) − f (t).

Another important time scale is T = qN0 := {qk
: k ∈ N0} with q > 1, for which

σ(t) = qt, µ(t) = (q − 1)t, f 1(t) =
f (qt) − f (t)

(q − 1)t
,

and this time scale gives rise to so-called q-difference equations.

3. Generalized zeros and the Komkov transformation

We say that a solution x of (1) (or (2)) has a generalized zero in [t, σ (t)] if

c(t)x(t)x(σ (t)) ≤ 0.

Next, x is called oscillatory provided [T, ∞) contains infinitely many zeros for
each T ∈ T. Otherwise we say that x is nonoscillatory. The equation (1) (or (2))
is called oscillatory if all solutions of (1) (or (2)) are oscillatory. Otherwise we
say that (1) (or (2)) is nonoscillatory. It is a well-known fact that (1) is oscillatory
if and only if it has an oscillatory solution. The proof is easy: Suppose x is a
nonoscillatory solution of (1), i.e., cxxσ > 0 on [T, ∞)T for some T > 0. Let x̃
be any solution of (1) such that x and x̃ are linearly independent. Then (x̃/x)1 =

W (x, x̃)/(cxxσ ) by the quotient rule (4), where W (x, x̃) := c(x̃1x − x1 x̃), the
Wronskian, is actually equal to a nonzero constant (use the product rule (4) to verify
this). Hence x̃/x is eventually strictly monotone, and therefore it is eventually of
one sign. Thus (cx̃ x̃σ )/(cxxσ ) = (x̃/x)(x̃σ/xσ ) is eventually positive, and hence
cx̃ x̃σ > 0 eventually, meaning that x̃ is nonoscillatory as well.

In contrast to (1), it is not true that (2) is oscillatory if and only if it has an
oscillatory solution. We supply the following examples.

Example 2. Suppose x solves (1) such that |x(t)| ≤ 1 for all t ∈ T and such that
for all t ∈ T there exist t1, t2 ≥ t with x(t1) = 1 and x(t2) = −1. Then u1 := 1+x/2
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is a nonoscillatory solution of (2) with f = q while u2 := 1 + 2x is an oscillatory
solution.

Example 3. Consider the second order linear dynamic equation

(6)
(
µ(t)u1

)1
+

4
µ(t)

uσ
=

4
µ(t)

on an isolated time scale (i.e., each point is left-scattered and right-scattered). A
solution of the corresponding homogeneous equation is x = e−2/µ( · , t0), where
t0 ∈ T. Since xσ

= −x , this solution is oscillatory. Hence the corresponding
homogeneous equation is oscillatory. However, u1 := 1 + x/2 is a nonoscillatory
solution of (6) while u2 := 1 + 2x is an oscillatory solution of (6). Hence (6)
possesses both oscillatory and nonoscillatory solutions.

The transformation u = xy, where x solves (1) and u solves (2), was studied
by Komkov [1972] and has been successfully applied, for example, in [Grace and
El-Morshedy 1997; Patula 1979; Rankin 1979]. Our results given in this paper
mainly rely on the following easy but useful identity. We abbreviate the operator
(cx1)1 + qxσ by Lx .

Lemma 1. If u = xy, then

(7) W (x, u) = cxxσ y1

and
[W (x, u)]1 = xσ Lu − uσ Lx .

In particular, if x solves (1) and u solves (2), then

(8) [W (x, u)]1 = (cxxσ y1)1 = f xσ ,

and if in addition x(t) 6= 0 for all t ≥ T , then

(9) y(t) = y(T ) + c(T )x(T )x(σ (T ))y1(T )

∫ t

T

1s
c(s)x(s)x(σ (s))

+

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s for all t ≥ T .

Proof. We apply the product rule (4) to u = xy to find u1
= x1y + xσ y1 and

cxxσ y1
= cxu1

− cxx1y = cu1x − cx1u = W (x, u).

Then, using the product rule again, we find

(cxxσ y1)1 = (cu1)1xσ
+ cu1x1

− (cx1)1uσ
− cx1u1

=
(
Lu − quσ

)
xσ

−
(
Lx − qxσ

)
uσ

= xσ Lu − uσ Lx .
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Hence, if Lx = 0 and Lu = f , (8) follows. By using the definition (5) of the
integral, we conclude that (9) holds. �

Concluding this section, we use Lemma 1 to derive the following result. For the
continuous version see [Rankin 1979, Equation (3′)] and for the discrete version
see [Patula 1979, Theorem 6] and [Grace and El-Morshedy 1997, Lemma 2.1].

Theorem 1. Suppose x solves (1) and u solves (2). If W (x, u) is eventually of one
sign (either positive or negative), then x oscillates if and only if u oscillates.

Proof. Using (7), we know that W (x, u)= cxxσ y1 is eventually of one sign, where
u = xy. First suppose x is not oscillatory, i.e., cxxσ > 0 eventually. Hence y1 is
eventually of one sign. Therefore y is eventually of one sign. Hence

0 < yyσ
=

u
x

uσ

xσ
=

cuuσ

cxxσ
eventually,

so eventually cuuσ > 0, i.e., u is not oscillatory. Similarly (by considering the
transformation x = u ỹ) we may show that if u is not oscillatory, then x is not
oscillatory either. �

Corollary 1. Suppose c(t) > 0 for all t ∈ T. If (1) is nonoscillatory and f is
eventually of one sign, then (2) is nonoscillatory.

Proof. Let x be any (nonoscillatory) solution of (1) so x is eventually of one sign.
Suppose u is any solution of (2) and let y = u/x . By (8), [W (x, u)]1 is eventually
of one sign, and hence W (x, u) is eventually of one sign. Thus u is nonoscillatory
according to Theorem 1. �

Corollary 2. Suppose (1) is oscillatory (nonoscillatory). If there exists a solution
x of (1) such that∫

∞

T
f (t)x(σ (t))1t = ∞ or

∫
∞

T
f (t)x(σ (t))1t = −∞,

then (2) is oscillatory (nonoscillatory).

Proof. Suppose u is a solution of (2) and define y by u = xy. By (8),

W (x, u)(t) = W (x, u)(T ) +

∫ t

T
f (s)x(σ (s))1s.

Hence W (x, u) is eventually of one sign, and the claim follows with Theorem 1. �

Example 4. Consider the Fibonacci difference equation

x(t+2)= x(t+1)+x(t), i.e., 1
(
(−1)t+11x(t)

)
+(−1)t+1x(t+1)=0, t ∈N.

If a = (1 +
√

5)/2, then x(t) = at is a solution of this equation. Since

c(t)x(t)x(t + 1) = (−a)(−a2)t ,
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the equation is oscillatory. Now, since
∑

∞

τ=0 aτ+1
= ∞, Corollary 2 implies that

x(t +2) = x(t +1)+ x(t)+ (−1)t , i.e., 1
(
(−1)t+11x(t)

)
+ (−1)t+1x(t +1) = 1,

is also oscillatory.

4. Oscillation and nonoscillation criteria

The next theorem generalizes a result due to Rankin for T = R [Rankin 1979,
Theorem 2] and a result due to Grace and El-Morshedy for T = Z [Grace and
El-Morshedy 1997, Theorem 2.2].

Theorem 2. Suppose x is an eventually nonoscillatory solution of (1). If for some
sufficiently large T ∈ T, ∫

∞

T

1t
c(t)x(t)x(σ (t))

< ∞,(10)

lim inf
t→∞

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s = −∞,(11)

and

lim sup
t→∞

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s = ∞,(12)

then (2) is oscillatory.

Proof. Suppose u is an eventually nonoscillating solution of (2) such that y = u/x
is eventually of one sign (note that yyσ

= (cuuσ )/(cxxσ ) > 0). But (9) together
with (10), (11), and (12) ensures that

lim inf
t→∞

y(t) = −∞ and lim sup
t→∞

y(t) = ∞.

This is a contradiction, and therefore there cannot exist an eventually nonoscillating
solution of (2). Thus (2) is oscillatory. �

Example 5. Let q > 1 and consider the q-difference equation (see Example 1)

(13) u11
= (−1)logq t , t ∈ qN0 :=

{
qk

: k ∈ N0
}
.

One solution of the corresponding homogeneous equations is x(t) = t , so the ho-
mogeneous equation is nonoscillatory and (10) is satisfied since∫ t

1

1s
c(s)x(s)x(σ (s))

= 1 −
1
t

→ 1 as t → ∞.

Some calculation now shows that∫ t 1
qs2

∫ s
qτ(−1)logq τ1τ1s =

(q − 1)2

q3 + q2 + q + 1
t (−1)logq t ,
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so (11) and (12) are satisfied. Hence, by Theorem 2, (13) is oscillatory.

Now we present an improvement of Theorem 1. For T = Z, see [Grace and
El-Morshedy 1997, Theorem 2.3].

Theorem 3. Suppose x solves (1) such that x(t) 6= 0 for all t ≥ T and

(14)
∫ t

T

1s
c(s)x(s)x(σ (s))

is bounded above or below.

If

(15)
∫

∞

T

1
c(t)x(t)x(σ (t))

∫ t

T
f (s)x(σ (s))1s1t = ∞,

then (1) and (2) either are both oscillatory or both nonoscillatory.

Proof. Let u be a solution of (2). By Theorem 1, we may assume that W (x, u) is
oscillating. First suppose that the integral in (14) is bounded below. Let T ∈ T and
D > 0 be such that

W (x, u)(T ) ≥ 0 and
∫ t

T

1s
c(s)x(s)x(σ (s))

≥ −D for all t ≥ T .

Then, by (9),

y(t) ≥ y(T ) − DW (x, u)(T ) +

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s,

so y(t) → ∞ as t → ∞ by (15). Hence y > 0 eventually and cuuσ has eventually
the same sign as cxxσ . If, however, the integral in (14) is bounded above, then we
pick T ∈ T and E > 0 such that

W (x, u)(T ) ≤ 0 and
∫ t

T

1s
c(s)x(s)x(σ (s))

≤ E for all t ≥ T .

In this case the conclusion now follows as in the previous case. �

The last result in this section is a nonoscillation criterion. We refer to [Grace
and El-Morshedy 1997, Theorem 3.1] for T = Z. The following auxiliary result is
needed.

Lemma 2. Suppose (1) is nonoscillatory. Then there exists a solution x of (1)
satisfying (10).

Proof. Let x be any (nonoscillatory) solution of (1). If x satisfies (10), then we
are done. If not, then

∫
∞

T 1s/(c(s)x(s)x(σ (s))) = ∞. Let x̃ be any solution of
(1) such that x and x̃ are linearly independent, i.e., W (x, x̃) ≡ −k 6= 0. Then
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(x̃/x)1 = k/(cxxσ ), so (x̃/x)(t) → ±∞ as t → ∞ and hence (x/x̃)(t) → 0 as
t → ∞. Thus (x/x̃)1 = −k/(cx̃ x̃σ ) and therefore

k
∫ t

T

1s
c(s)x̃(s)x̃(σ (s))

=
x(T )

x̃(T )
−

x(t)
x̃(t)

→
x(T )

x̃(T )
as t → ∞.

Hence x̃ solves (1) and satisfies (10). �

Below we use for α ∈ R the notation α+
= max{0, α} and α−

= min{0, α}.

Theorem 4. Suppose c(t) > 0 and q(t) > 0 for all t ∈ T. Suppose that all solutions
of (1) are nonoscillatory and bounded. If∫

∞

T

1
c(s)

∫ s

T
f +(τ )1τ1s = ∞(16)

and ∫
∞

T
f −(τ )1τ > −∞,(17)

then (2) is nonoscillatory.

Proof. Let λ > 0 be such that the integral in (17) is bounded below by −λ. By
Lemma 2, there exists a solution x of (1) satisfying (10). Since all solutions of (1)
are bounded, there exists M > 0 such that |x(t)| < M for all t ∈ T. We will show
that (15) is satisfied. Then Theorem 3 is employed to complete the proof.

First, putting z = cx1, we see that z1
= −qxσ is eventually of one sign. Thus

z is eventually of one sign. Hence x1 is eventually of one sign. Therefore x
is eventually increasing or eventually decreasing. Since x is nonoscillatory, it is
either eventually positive or eventually negative. So there are the following four
possibilities: (i) x is eventually positive and increasing; (ii) x is eventually positive
and decreasing; (iii) x is eventually negative and increasing; (iv) x is eventually
negative and decreasing. If (iii) or (iv) holds, then we may replace x by −x , which
is also a solution of (1) that satisfies (10) and (i) or (ii). Thus it is sufficient to
discuss the cases (i) and (ii). If (i) holds, then∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s

≥
x(σ (T ))

M2

∫ t

T

1
c(s)

∫ s

T
f +(τ )1τ1s − λM

∫ t

T

1s
c(s)x(s)x(σ (s))

(16)
→ ∞ as t → ∞
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(use f = f +
+ f −), while if (ii) holds, then∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s

≥

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f +(τ )x(σ (s))1τ1s − λM

∫ t

T

1s
c(s)x(s)x(σ (s))

≥
1
M

∫ t

T

1
c(s)

∫ s

T
f +(τ )1τ1s − λM

∫ t

T

1s
c(s)x(s)x(σ (s))

(16)
→ ∞ as t → ∞.

Hence (15) holds in either case and the proof is complete. �

5. Remarks on the results of Rankin, Grace and El-Morshedy

The continuous version of the following result was proved by Rankin [1979, The-
orem 1], while its discrete version was given by Grace and El-Morshedy in [1997,
Theorem 2.1].

Theorem 5. Suppose x is an eventually nonoscillatory solution of (1). If for suffi-
ciently large T ∈ T and some M > 0,∫

∞

T

1t
c(t)x(t)x(σ (t))

= ∞,(18)

lim inf
t→∞

∫ t

T
f (s)x(σ (s))1s = −∞, lim sup

t→∞

∫ t

T
f (s)x(σ (s))1s = ∞,(19)

and

(20)
∣∣∣∣∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s

∣∣∣∣ ≤ M
∫ t

T

1s
c(s)x(s)x(σ (s))

for all t ≥ T , then (2) is oscillatory.

Below we show that the assumptions of Theorem 5 are never satisfied. This
means that, although Theorem 5 is true, the result is not meaningful.

Theorem 6. The assumptions of Theorem 5 are never satisfied.

Proof. Note first that (2) has a solution. Let u be any solution of (2) and define y
by u = xy. Let T ∈ T such that c(t)x(t)x(σ (t)) ≥ 0 for all t ≥ T . By (8), we have

c(t)x(t)x(σ (t))y1(t) = c(T )x(T )x(σ (T ))y1(T ) +

∫ t

T
f (τ )x(σ (τ ))1τ,

so (19) implies

(21) lim inf
t→∞

c(t)x(t)x(σ (t))y1(t) = −∞, lim sup
t→∞

c(t)x(t)x(σ (t))y1(t) = ∞.
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By the first relation in (21), there exists T̃ ≥ T with c(T̃ )x(T̃ )x(σ (T̃ ))y1(T̃ ) <

−2M . Thus, using (8), we find

c(t)x(t)x(σ (t))y1(t) = c(T̃ )x(T̃ )x(σ (T̃ ))y1(T̃ ) +

∫ t

T̃
f (τ )x(σ (τ ))1τ

< −2M +

∫ t

T̃
f (τ )x(σ (τ ))1τ

and hence

y(t)

< y(T̃ )−2M
∫ t

T̃

1s
c(s)x(s)x(σ (s))

+

∫ t

T̃

1
c(s)x(s)x(σ (s))

∫ s

T̃
f (τ )x(σ (τ ))1τ1s

(20)
≤ y(T̃ ) − M

∫ t

T̃

1s
c(s)x(s)x(σ (s))

(18)
→ −∞ as t → ∞.

By the second relation in (21), there exists T̄ ≥ T with c(T̄ )x(T̄ )x(σ (T̄ ))y1(T̄ ) >

2M . Thus, using (8), we find

c(t)x(t)x(σ (t))y1(t) = c(T̄ )x(T̄ )x(σ (T̄ ))y1(T̄ ) +

∫ t

T̄
f (τ )x(σ (τ ))1τ

> 2M +

∫ t

T̄
f (τ )x(σ (τ ))1τ

and hence

y(t)

> y(T̄ )+2M
∫ t

T̄

1s
c(s)x(s)x(σ (s))

+

∫ t

T̄

1
c(s)x(s)x(σ (s))

∫ s

T̄
f (τ )x(σ (τ ))1τ1s

(20)
≥ y(T̄ ) + M

∫ t

T̄

1s
c(s)x(s)x(σ (s))

(18)
→ ∞ as t → ∞.

This is a contradiction, as y(t) → ∞ and y(t) → −∞ at the same time for t → ∞.
�

Example 6. Rankin [1979, Example 2] stated that Theorem 5 for the case T = R

can be used to show that

(22) u′′
= t sin t, t ∈ R

is oscillatory. Here we let x(t) ≡ 1. Clearly, conditions (18) and (19) are satisfied.
A simple calculation shows that∣∣∣∣∫ t

T

∫ s

T
τ sin τ d τds

∣∣∣∣ ≤ (2T + 4)(t − T ),
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so (20) is satisfied if M is allowed to depend on T . However, if M = M(T ), then
the proof of Theorem 5 (and Theorem 6) breaks down. Furthermore, the equation
(22) is in fact not oscillatory: Clearly,

u1(t) = 4 − 2 cos(t) + t (2 − sin t) and u2(t) = −t sin t − 2 cos t

both are solutions of (22), and u1 is nonoscillatory while u2 is oscillatory.

Example 7. We note that Grace and El-Morshedy [1997] did not supply an example
to illustrate Theorem 5 for the case T = Z. Consider the difference equation

(23) 12u = (−1)t+1(2t + 1), t ∈ N.

Here we let x(t) ≡ 1. Clearly, conditions (18) and (19) are satisfied. A simple
calculation shows that∣∣∣∣∣

t−1∑
s=T

s−1∑
τ=T

(−1)τ+1(2τ + 1)

∣∣∣∣∣ ≤ 2T (t − T )

for T ∈ N, so (20) is satisfied if M is allowed to depend on T . Furthermore, the
equation (22) is in fact not oscillatory: Clearly,

u1(t) = t + (−1)t+1
[

t
2

]
and u2(t) = (−1)t+1

[
t
2

]
,

where [x] denotes the largest integer less than or equal to x ∈ R, both are solutions
of (22), and u1 is nonoscillatory while u2 is oscillatory.

We now present the following results.

Theorem 7. Let T ∈ T. Assume x is any solution of (1) with c(t)x(t)x(σ (t)) > 0
for all t ≥ T . If (18) holds and if there exists M > 0 such that (20) is satisfied, then
(2) is not oscillatory.

Proof. Define

y(t) := 2M
∫ t

T

1s
c(s)x(s)x(σ (s))

+

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s.

Using the product and the quotient rule (4), it is easy to check that u defined by
u := yx is a solution of (2). However, (20) ensures that limt→∞ y(t) = ∞, and
therefore u is a nonoscillatory solution of (2). Thus (2) cannot be oscillatory. �

Theorem 8. Let T ∈ T. Assume x is any solution of (1) with c(t)x(t)x(σ (t)) > 0
for all t ≥ T . If (18) holds, if there exists M > 0 such that (20) is satisfied, and if
(11) and (12) hold, then (2) has both oscillatory and nonoscillatory solutions.
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Proof. Define

y1(t) := 2M
∫ t

T

1s
c(s)x(s)x(σ (s))

+

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s

and

y2(t) :=

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s.

As in the proof of Theorem 7, it is easy to check that u1 and u2 defined by u1 := y1x
and u2 := y2x both are solutions of (2). While u1 is nonoscillatory, u2 is oscillatory.
Hence (2) indeed has both oscillatory and nonoscillatory solutions. �

Our next result can be checked easily as in the proof of Theorem 7.

Theorem 9. Suppose that the solution x of (1) satisfies x(t) 6= 0 for all t ≥ T .
Then the solution of (2) satisfying the initial conditions u(T ) = α and u1(T ) = β

is given by u := yx , where

y(t) = γ + δ

∫ t

T

1s
c(s)x(s)x(σ (s))

+

∫ t

T

1
c(s)x(s)x(σ (s))

∫ s

T
f (τ )x(σ (τ ))1τ1s,

where γ = α/x(T ) and δ = c(T )(βx(T ) − αx1(T )).

The following generalization of Theorem 2 now becomes apparent.

Theorem 10. Suppose x is a nonoscillatory solution of (1). If for some T ∈ T,

lim inf
t→∞

t∫
T

1
c(s)x(s)x(σ (s))

s∫
T

f (τ )x(σ (τ ))1τ1s

t∫
T

1s
c(s)x(s)x(σ (s))

= −∞

and

lim sup
t→∞

t∫
T

1
c(s)x(s)x(σ (s))

s∫
T

f (τ )x(σ (τ ))1τ1s

t∫
T

1s
c(s)x(s)x(σ (s))

= ∞,

then (2) is oscillatory.
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