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Let k be an algebraically closed field, let X0 be a rational normal cubic
surface in P3 = P3

k, and let C0 ⊂ X0 be a locally Cohen–Macaulay curve,
which is therefore an effective Weil divisor on X0. I show that C0 can be
expressed as the limit of a family of curves whose general member lies on a
smooth surface, in the following sense: There exists a flat family X t of cubic
surfaces specializing to X0 and a flat family Ct of curves specializing to C0,
parametrized by a smooth (noncomplete) curve T , such that the general
member of X t is a smooth cubic surface and Ct ⊂ X t is an effective (Cartier)
divisor for all t ∈ T \ {0}.

Introduction

Let k be an algebraically closed field. In this paper, I will use the term curve to
refer to a locally Cohen–Macaulay scheme of pure dimension 1 over k; a space
curve is such a curve embedded as a subscheme of P3

=P3
k . As has been frequently

observed, even if one’s primary interest is in smooth space curves, one needs to
work in the more general category of space curves as defined above in order to
use the modern ideas of linkage and minimal curves, since this category is the
closure of the category of smooth space curves under liaison (see, for example of
[Hartshorne 1980, Section 4] for a discussion of this point).

A common approach to studying space curves is to study the curves on a par-
ticular surface or class of surfaces. For example, Gruson and Peskine [1982] con-
structed a quartic surface with a double line and showed that for any degree-genus
pair in a certain range there is a smooth curve with this degree and genus on this
quartic, thus answering the question which (d, g) are possible for smooth space
curves. Phrased in terms of Hilbert schemes, any H d

g which contains a smooth
curve contains a curve lying on a plane, a smooth quadric surface, a smooth cubic
surface, or the quartic with a double line. Mori [1984] then showed that in fact any
(d, g) pair that occurs for a smooth curve on this quartic also occurs for a smooth
curve on a smooth quartic; this surface, however, depends on the pair (d, g).
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There is also the finer question of which irreducible components of the Hilbert
scheme have curves on a given surface or on a member of a class of surfaces.
There is little work in the literature in this direction, but one can ask a number of
interesting questions along these lines:

(1) For a given curve C on a given singular surface S of degree s, is it true that,
in the Hilbert scheme, C is in the closure of the space of curves on smooth
surfaces of degree s?

(2) For a given singular surface S, is it true that all curves on S are in the closure
of the set of curves on smooth surfaces as above?

(3) If one stratifies in some way the space of all surfaces of a given degree, sur-
faces in which strata contain the most general curves in some component of
some Hilbert scheme?

Here I investigate these questions for S a rational normal surface of degree 3.
That the questions are not trivial is shown by a few examples. Consider:

Theorem [Hartshorne 1997]. Let S0 ⊂ P3 be a quadric cone. There exists a family
of smooth quadric surfaces St parametrized by a smooth curve T and specializing
to S0 such that every effective Weil divisor C0 on S0 is the limit of a flat family of
curves Ct , where Ct ⊂ St for all t ∈ T .

Thus, at least some singular surfaces satisfy the very strong property (2) above.
On the other hand, if one allows a quadric surface to degenerate into the union

of two planes, there are many curves on this union whose (d, g) pairs do not corre-
spond to the values which arise from curves on a smooth quadric, so certainly not
every surface satisfies property (2). Even if we insist that our special surface be
integral, it may not satisfy this property: Gruson and Peskine [1982] have produced
an example of a family of curves of degree 13 and genus 18, lying on a cubic scroll
with a double line, for which they show by dimension-counting that the general
member cannot be the specialization of a flat family of curves on smooth cubic
surfaces. In [Brevik and Mordasini 2003] we gave very strong necessary condi-
tions for a curve to be such a specialization; a consequence of these conditions
is a generalization of Gruson and Peskine’s example: In fact, no smooth curve of
degree greater than 10 on this surface is the specialization of a flat family of curves
on smooth cubic surfaces.

The present work answers the question (2) above (and therefore question (1) as
well) in the affirmative for curves on rational normal cubic surfaces in P3. In fact,
the result is stronger, since it shows that the necessary deformation of surfaces is
independent of the curve chosen.

Theorem. Let X0 ⊂ P3 be a rational normal cubic surface. Then there exists a
(not necessarily complete) curve T with point 0 and a flat family X → T of cubic
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surfaces in P3 such that X0 is the fibre over 0, X t is smooth for t 6= 0, and such
that any effective Weil divisor C0 on X0 is the limit of a flat family of curves C over
T with Ct ⊂ X t for each t ∈ T .

With respect to question (3) above, then, the most general member of an irre-
ducible component of a Hilbert scheme is never contained in a rational normal
cubic surface and not a smooth cubic. This result is again a generalization of the
work of Gruson and Peskine, in the following sense: In the proof of [Gruson and
Peskine 1982, Théorème 2.11], root systems are used to show that any (d, g) pair
for a smooth curve on a rational normal cubic surface already occurs as a (d, g) pair
for a smooth curve on a smooth cubic surface. The method of proof and the current
paper’s elementary Proposition 5.19 together imply the result for smooth curves
(at least in characteristic 0). The difficulty, then, is to construct an appropriate flat
family for general curves in our sense, which may be reducible or nonreduced.

It is natural to ask whether this result generalizes to surfaces of higher degree.
Consider, however, the example of a quartic surface S with one A1 singularity and
a line L containing the singular point. Then it is easy to show that the Weil divisor
2L on S has arithmetic genus −2, and there simply are no curves on a smooth
quartic of degree 2 and genus −2, since the arithmetic genus of a double line on
a smooth quartic is always −3. On the other hand, Proposition 5.5 below shows
that, for any rational double point surface singularity in P3, the problem of lifting
a divisor to a smooth surface is at least “locally unobstructed,” in some sense,
relative to the combinatorics of the exceptional curves on the desingularization. I
believe then, that it is natural to conjecture that, given a surface of degree d in
P3 whose only singularities are rational double points, any sufficiently positive
(maybe numerically effective) divisor can be expressed as the flat limit of a family
whose general member lies on a smooth surface of degree d.

Section 1 of this paper briefly recalls some relevant facts about ideals defining
0-dimensional subschemes of a smooth surface and establishes the terminology
regarding these objects that will be used in this paper. Section 2 concerns the
construction, from the standpoint of blowing up the plane, of a normal cubic surface
in P3. Section 3 “relativizes” the blowing-up process; this technique is used in
Section 4 to construct families of surfaces. Section 5 consists largely of a study of
numerical invariants of curves on cubic surfaces and culminates in the proof of the
main theorem.

1. Complete ideals and base loci

This material can be found in [Lipman 1969; 1988]; what it does for us is to estab-
lish a dictionary between base conditions on linear systems on a smooth surface and
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0-dimensional subschemes of that surface. For a thorough treatment, specialized
to our particular situation, see [O’Sullivan 1996].

For any ideal I defining a 0-dimensional subscheme of a smooth surface Y ,
and for any point P on Y , define ordP(I) to be the largest power of the maximal
ideal mP in the local ring OP which contains IP . Also, if X → Y is obtained by
blowing up a finite sequence of closed points, define the transform IX of I on X to
be the ideal obtained from IOY by factoring out the invertible part, so that IX again
defines a 0-dimensional subscheme. For any point Q existing on some blown-up
surface above Y , define ordQ(I) to be ordQ(IX ), where X is the minimal surface
above Y for which Q exists as an ordinary point. Then I gives rise to a formal
sum of points

∑
Q ordQ(I) · Q, to which I will refer as the base locus of I. (In

[Lipman 1988], this is called the point basis of I.)
Recall that if I is an ideal of a ring R, an element r of R is integral over I if r

satisfies a polynomial
rn

+ a1rn−1
+ · · · + an,

where each ai ∈ I i . The completion of I is the set of elements of R which are
integral over I ; we say that I is complete if it contains all elements of R integral
over I . One can show that the completion of I is a complete ideal, and also that
completeness is a local property, so it makes sense to speak of the completion of
an ideal sheaf.

Proposition 1.1 [Lipman 1988, Proposition 1.10]. Let Y be a smooth surface. Two
ideals I, J of finite colength on Y have the same base locus if and only if they have
the same completion.

Theorem 1.2 [Lipman 1988, Theorem 3.1]. Let Y be a smooth surface, and let I

be a complete ideal sheaf of Y defining a 0-dimensional subscheme Z. Then the
base locus

∑
Q ordQ(I) · Q of I is a finite sum, and the length of Z is equal to∑

Q

1
2(ordQ(I))(ordQ(I) + 1).

Remark 1.2.1. Thus, the base locus defines a mapping from the set of ideals on Y
of finite colength to the free additive monoid on the set of (equivalence classes of)
points on surfaces birationally dominating Y . The fibres are ideals having the same
completion. The image is the set of point sums satisfying the proximity inequalities
(compare [Zariski 1971, Chapter II, §2]). The proximity inequalities are the set of
conditions that no point in a sum has a coefficient which is smaller than the sum
of the coefficients of the points infinitely near to it.

Therefore, there is a one-to-one correspondence between the set of complete
ideals of finite colength on a surface Y and the set of formal sums of points on
surfaces birationally dominating Y which satisfy the proximity inequalities.
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Proposition 1.3 [Lipman 1988, Lemma 1.11]. Suppose that Z is a 0-dimensional
scheme on the smooth projective surface Y with base locus B. Let P be a closed
point on Y , and let YP

π
→ Y be the blowing-up of Y at P , with exceptional curve

E. Then IZ · OYP = IordP (Z)
E · IZ ′ , where Z ′ is a 0-dimensional subscheme of YP .

Then the base locus B ′ of Z ′ obeys the formula

B = B ′
+ ordP(Z) · P,

where we identify infinitely near points on the two surfaces in the obvious way.

As shorthand, I will sometimes refer to a sum of points on P2 which satisfy the
proximity inequalities as a base locus without specifying its ideal. I will refer to a
sum of points P1 +· · ·+ Pn such that, for i = 2, . . . , n, Pi is infinitely near to Pi−1

and to no other Pj as a tower.

2. Blowing up P2 at six points

In this section, we will establish some preliminaries for studying rational normal
cubic surfaces in P3. The point of view is that such a surface arises from the
blowing-up of a set of 6 points in P2, with some of the points possibly infinitely
near, satisfying generality conditions (Proposition 2.4). In fact, with the exception
of the final result (Theorem 2.5), all of the results in this section are easy to establish
using means analogous to those for smooth cubics (see, for example, [Hartshorne
1977, V, Section 4]).

Definition 2.1. Let V be a smooth quasiprojective surface (over k) and let Ṽ → V
be a finite composition of blowings-up of closed points (Q1, . . . , Qn). The strict
exceptional divisor Ei on Ṽ is defined to be the strict transform of the exceptional
curve obtained when Qi is blown up. The total exceptional divisor ei is the total
transform of the point Qi .

Remark 2.1.1. In case the sequence (Q1, . . . , Qn) form a union of towers, then
there are restrictions on the order in which the points must be blown up, and it is
easily seen that the resulting surface Ṽ and the divisors Ei and ei are independent
of that order.

Proposition 2.2. Let S = {P1, . . . , Pr } be a union of towers in P2 with the points
numbered so that the index of any point is greater than the index of its source. Let
X be the surface obtained by sequentially blowing up the points of S, and let Ei

and ei respectively be the strict and total exceptional divisors on X. Let D be a
divisor on X.

(1) If Pi is the source of some other point Pj , then Ei = ei − e j .

(2) Pic X ∼= Z7, generated by `, e1, . . . , e6.
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(3) The intersection pairing on X is given by `2
= 1, `.ei = 0, ei .e j = −δi j .

(4) The canonical class of X is K = −3` +
∑

ei .

(5) The self-intersection of D is D2
= a2

−
∑

b2
i .

(6) If D is effective, its arithmetic genus is

pa(D) =
1
2(D2

+ D.K ) + 1 =

(
a−1

2

)
−

∑(bi
2

)
.

Proposition 2.3. Let S be a union of towers consisting of six points P1, . . . , P6 of
P2, no four collinear. Let X be the surface obtained by blowing up S. Then any
integral curve with negative self-intersection must be one of the following:

(1) an exceptional curve Ei , which has self-intersection −2 if there is a point of
S infinitely near to Pi and −1 otherwise;

(2) the strict transform Fi j of a line in P2 containing only the points Pi and Pj of
S, which has self-intersection −1;

(3) the strict transform Fi jk of a line in P2 containing the points Pi , Pj and Pk of
S, which (if it exists) has self-intersection −2;

(4) the strict transform G j of a conic in P2 containing all of S except Pj , which
has self-intersection −1;

(5) the strict transform G of a conic in P2 containing all of S, which (if it exists)
has self-intersection −2.

Proposition 2.4. Let S be a union of towers consisting of six points P1, . . . , P6 of
P2, no four collinear. Let X be the surface obtained by blowing up S. Then the
anticanonical divisor −K defines a morphism φ, which is an isomorphism away
from (−2)-curves and which collapses (−2)-curves, from X to a normal rational
cubic surface in P3 having only rational double points as singularities.

Conversely:

Theorem 2.5 [Nagata 1960, Theorem 8]. Let X be a normal cubic surface in P3

which is not a cone. Then the minimal desingularization X̃ of X is isomorphic to
P2 blown up at a set S of 6 points which is a union of towers with no 4 points
collinear. The morphism X̃ → X ⊂ P3 is given by the linear system induced by the
system of cubics through S.

Remark 2.5.1. A thorough treatment of Theorem 2.5 can be found in [O’Sullivan
1996]. Briefly, the idea of the proof is as follows: First, it follows easily that
the singularities of X are double points. Projecting from a singular point gives
a birational map to P2 whose indeterminacy can be resolved by blowing up at
the singular point. One then shows that the blown-up surface has only rational
singularities, because these are the only singularities that can dominate a smooth
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point [Zariski and Samuel 1960]. Therefore, the original surface also has only
rational singularities and thus can be desingularized by a sequence of blowings-up.
The minimal desingularization X̃ dominates P2, and its canonical divisor has self-
intersection 3, since resolving rational double points does not affect the canonical
divisor. Thus X̃ → P2 must involve exactly six intermediate blowings-up. That
S is a union of towers with no four points collinear follows from the fact that the
general hyperplane section of X is a smooth elliptic curve.

3. Relative constructions

The main result of this section is that the process of blowing-up is compatible with
flat families in the sense that, under conditions that are met for our applications,
blowing up a flat family of schemes along a flat family of closed subschemes gives
another flat family, and that taking a fibre of this family gives an identical result
to taking a fibre and then blowing up. This will allow us to construct families of
cubic surfaces from families of points in the plane and study limits of families of
curves on these particular families of surfaces. A few algebraic preliminaries are
first necessary.

The following lemma and its “sheafified” sequel are readily verified.

Lemma 3.1. Let A → B → C be rings such that B and C are both flat over A. Let
M be an A-module. Then for all i > 0,

Tori
B(B ⊗ M, C) = 0.

Proposition 3.2. Suppose Z
g

→ T and Y
f

→ T are flat morphisms and Z
h

→ Y is a
morphism over T . Let L be a quasicoherent sheaf on T . Then, for all i > 0,

Tor i
Y ( f ∗L, h∗OZ ) = 0.

To proceed, we need a result from ring theory. Let R be a ring. Recall that an
ideal I of R is regular if it is generated by a regular sequence in R; I is perfect if
depth(I ) = pdR(R/I ).

The significance of perfect ideals lies in the following result.

Theorem 3.3 [Balcerzyk and Józefiak 1989, III, Theorem 3.5.11]. Let R be a
Cohen–Macaulay ring, I an ideal of R such that pdR(R/I ) is finite. Then I is
perfect if and only if R/I is Cohen–Macaulay.

Theorem 3.4 (Auslander–Buchsbaum; see [Balcerzyk and Józefiak 1989, III, The-
orem 3.5.6]). Let R be a local ring with maximal ideal m, and let M be a nonzero
finitely-generated R-module of finite projective dimension. Then

pdR(M) + depth(m; M) = depth(m).
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Corollary 3.5 [Balcerzyk and Józefiak 1989, III, Theorem 3.5.10]. Let (R, m) be
a local ring, I a regular ideal in R. Then for all n ≥ 1, I n is a perfect ideal.

The following standard result will be used several times in the sequel.

Proposition 3.6 [Hartshorne 1977, III.9.7]. Let X
f

→ Y be a morphism of schemes,
with Y integral and regular of dimension 1. Then f is flat if and only if every
associated point x ∈ X maps to the generic point of Y .

Corollary 3.7. Let X be a Cohen–Macaulay scheme, Z a closed subscheme which
is a local complete intersection on X , that is, the ideal sheaf I = IZ/X is locally
generated by codim(Z , X) elements.

(1) For each positive integers n, let Zn be the subscheme of X defined by In . Then
Zn is a Cohen–Macaulay scheme.

(2) Suppose further that Z is flat over a nonsingular curve T . Then for all n, Zn

is flat over T .

Proof. (1) For any point x ∈ X , (IZ )x is a regular ideal in a Cohen–Macaulay local
ring, so Corollary 3.5 can be used, which gives the result.

(2) By Proposition 3.6, flatness over T is equivalent to having all associated points
map to the generic point of T . Since Zn is Cohen–Macaulay from part (1), it
has no embedded points, so the associated points are just the generic points of
its components. But these are the components of Z , and so the fact that all of its
generic points map to the generic point of T forces the same to hold true for Zn . �

Proposition 3.8. Let T be a smooth curve over k, and let Y be an integral Cohen–
Macaulay scheme which is flat and of finite type over T . Let Z be a closed sub-
scheme of Y such that Z is a local complete intersection on Y and is also flat over
T . Let Ỹ be the blowing-up of Y along Z with exceptional divisor E. Then Ỹ and
E are both flat over T , and for all t ∈ T , (Ỹ )t is the blowing-up of Yt at Z t .

Proof. The blow-up map is birational, and Ỹ is integral, so by Proposition 3.6, it
is flat over T .

Now, let Zn be the subscheme of Y defined by In
Z and tensor the exact sequence

0 → In
Z → OY → OZn → 0

by OYt . Since Zn is flat by Corollary 3.7, we can apply Proposition 3.2 to L = k(t)
so that Tor i

Y (OYt , OZn ) = 0 for i > 0. Hence we obtain the exact sequence

0 → In
Z ⊗ OYt → OYt → OZn ⊗ OYt → 0.

Let J = IZ OYt . A priori, Jn is the image of In
Z ⊗OYt in OYt . But by the injectivity

of the map on the left it follows that In
Z ⊗ OYt

∼= Jn . This shows that

Proj
⊕

Jn ∼= Proj
(
OYt ⊗

⊕
In

Z

)
;
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that is, blowing up is compatible with taking fibres. This is the last statement of
the proposition.

Finally, since E is of pure codimension 1 in Ỹ and is of codimension 1 on every
fibre of Ỹ , E can have no components which lie over closed points of T . Thus, by
Proposition 3.6, E is flat over T . �

4. Families of blown-up surfaces

We will now apply the results of the last section to a configuration of 6 points
in P2, possibly infinitely near. For this section, we will be considering flat fami-
lies of surfaces over a smooth curve, where a “smooth curve” is understood to be
nonsingular, connected and of finite type over k but not necessarily complete. The
reason that it is important not to insist on completeness for our base schemes is that
eventually (Proposition 4.11) it may become necessary to excise a finite number
of closed points in order to make the results go through.

Proposition 4.1. Let T be a (possibly nonprojective) smooth connected curve over
k. Let Z be a flat family of length-n, 0-dimensional schemes parametrized by T
such that, for all t ∈ T , the fibre Z t is reduced. Then there exists a surjective base
extension T ′

→ T of curves such that Z ′
= Z ×T T ′ is the scheme-theoretic union

of n disjoint families of points parametrized by T ′.

Proof. Since each fibre of Z is a union of reduced points, Z is flat and unramified
over T , so (by [Hartshorne 1977, III, Ex. 9.4]) Z is smooth over T . Therefore Z
is the disjoint union of a number of smooth curves Zi . Let K be the function field
of T , and let Ki be the function field of Zi .

Let K ′

1 be a splitting field for K1 over K . Then tensoring the field extension
K → K1 with K ′

1 gives K ′

1 → (K ′

1)
n1 ; therefore, if T ′

1 is the normalization of T in
K ′

1, Z1×T T ′

1
∼=

⋃n1 T ′

1; that is, the base-extended family is the union of n1 disjoint
families of points. Now proceed in this manner to the other Zi , finally producing
a curve T ′

= T ′
n over which all of the Zi have been separated into disjoint families

of points. �

Example 4.1.1. Let R = k[x](x3−x) and S = (R[y]/y2
− (x3

− x))y , so the family
of pairs of points given by the map R → S corresponds to the unramified part of a
map of degree 2 from an elliptic curve to P1. (In this case, of course, the extension
of function fields is already Galois and the curve normal.) Then tensoring by S
gives S → S[z]/z2

− y2 ∼= S ⊕ S; we have thus base-extended the family to two
disjoint families.

Proposition 4.2. Let T be a smooth curve over k, let 0 be a (closed) point of T ,
and let Y → T be a flat family of smooth surfaces over k. Let Z ⊂ Y be a family of
length-n schemes such that Z t is a union of n distinct points for t 6= 0. Then there
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exists a base extension T ′
→ T such that Z ′

= Z × T ′ is equal to the union of n
smooth irreducible components.

Proof. The base extension T ′
→ T \{0} exists by Proposition 4.1. To make the base

extension to all of T , consider the map of complete nonsingular curves induced by
the base extension T ′

→ T \{0} and augment T ′ by one of the preimages of 0. �

Definition 4.3. A 0-dimensional subscheme Z of a surface Y is curvillinear if Z
is contained locally in a smooth curve on Y .

Proposition 4.4. Let T be a smooth curve over k with special point 0, and let
Y → T be a flat family of smooth surfaces over k. Let Z ⊂ Y be a family of
length-n schemes such that Z t is reduced for t 6= 0 and such that the scheme Z0 is
curvillinear with base locus S0. Then S0 is a union of towers, and the fibre Y0 is
isomorphic to the sequential blowing-up of Y at the points of the base locus S0.

Proof. S0 is a union of towers, since any other base locus (satisfying the proximity
inequalities) has a coefficient ≥ 2 for some point, which forces a curve containing
the base locus to have a multiple point. If necessary, base-extend T as in Propo-
sition 4.2 so that Z is the union of n disjoint copies of T away from 0. Label the
components of Z as P1, P2, . . . , Pn and proceed by induction on n:

For n = 1, we can treat the point 0 just as any other point in Proposition 4.2.
Notice that the blowing-up is a flat family of surfaces by Proposition 3.8.

Now let Q = (P1)0, the point at which P1 meets Y0. Consider the following
exact diagram of OY -modules.

0 0 0
↓ ↓ ↓

0 → F → IY0,Y → IZ0,Z → 0
↓ ↓ ↓

0 → IZ → OY → OZ → 0
↓ ↓ ↓

0 → IZ0,Y0 → OY0 → OZ0 → 0
↓ ↓ ↓

0 0 0

Choose O(1) very ample on Y and take m � 0 such that the general element of
H 0IZ0,Y0(m) is smooth and H 1F(m) = 0. Let s ∈ H 0IZ (m) restrict to a smooth
element of H 0IZ0,Y0(m). Then s is smooth at Q, since Y0 is locally defined by a
generator of the maximal ideal (coming from the uniformizing parameter at 0) in
a regular local ring. Therefore s defines a locally smooth surface W in Y such that
Z ⊂ W . Blow up Y at P1 to obtain Y 1. On Y 1, the strict transform W̃ of W contains
the strict transforms of P2, . . . , Pn . Further, the surface (Y 1)0 is the blowing-up
of Y at Q by Proposition 3.8, and the ideal of W̃0 is contained in the transform
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IY 1

Z of IZ , since each ideal differs from its total transform by exactly one copy of
the exceptional divisor. IY 1

Z is a complete ideal corresponding to the base locus
S0\Q on Y 1. Now apply induction: X → Y 1 has the property that X0 → (Y 1)0 is
isomorphic to the sequential blowing-up of the points of S0\{Q}, and (Y 1)0 → Y0

is the sequential blowing-up of Q. �

Remark 4.4.1. Note that the families Pi can be blown up in any order at all, but the
points Qi of S0 have conditions imposed on the order in which they can be blown
up, namely that “lower” points on any tower must be blown up before “higher”
ones.

Remark 4.4.2. If Qi is in some tower with successors Qi1, . . . , Qir , then ei =

Ei + Ei1 +· · ·+ Eir , since at each successive blowing-up, the divisor will pick up
exactly one copy of the new exceptional curve.

Proposition 4.5. Let T be a nonsingular curve (as usual, not necessarily complete)
over k with point 0, let Y → T be a flat family of smooth projective surfaces over
k. Let Z ⊂ Y be a flat family of curvillinear length-n subschemes of Yt such that
Z t is a union of n distinct points for t 6= 0. Suppose further that Z =

⋃
σ∈6 Pσ ,

where 6 is a set of cardinality n and each Pσ
∼= T . Let S0 be the base locus of Z0,

which consists of n points with coefficient 1 by Proposition 4.4. Then any choice
of numbering P1, . . . , Pn of the Pσ establishes a unique numbering Q1, . . . , Qn of
the points of S0 such that

(1) for all i the fibre over 0 of the scheme Y i obtained by blowing up P1, . . . , Pi

sequentially is isomorphic to the sequential blowing-up of Y0 at Q1, . . . , Qi ;

(2) if Qi = s(Q j ), then i < j ;

(3) Qi is an ordinary point of Y i−1
0 and Qi = Pi ∩ Y i−1

0 ;

(4) on X = Y n , the surface obtained by sequentially blowing up the Pi , the re-
striction of the strict transform of Pi to X0 is the total exceptional divisor ei

corresponding to the point Qi .

Proof. For each i in sequence, take Qi to be the lowest (possibly infinitely near)
point not yet blown up on the tower supported at the (closed) point where Pi meets
Y0. This is clearly the only ordering that could possibly satisfy the desired condi-
tions. By definition, the second is satisfied, and by Proposition 4.4, the first and
third are satisfied.

For the last item, since neither of the divisors in question is going to be in-
fluenced by families of points that do not become infinitely near to Qi , we may
assume that Q1, . . . , Qn form a tower. Further, each divisor will consist only of
divisors from subsequent points, so we may as well assume that i = 1. If n = 1,
there is really nothing to prove, so assume that n > 1. As in Proposition 4.4, on
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the blow-up Y 1 the families P2, P3, . . . , Pn all meet the exceptional divisor E1 at
the (ordinary) point Q2 on Y 1

0 . Therefore when we blow up P2 to get the surface
Y 2, the divisor E1 gets the point Q2 blown up, so that the strict transform of E1

meets E2 in the new exceptional line above 0. The remaining Pi all pass through a
particular point on this line, so on blowing up P3, we see that the strict transform
of E1 picks up yet another line above 0. Similarly, each Pi contributes a line, so
that on the final surface X = Y n we will have (e1)0 = E1 + · · · + En = e1 on the
surface X0. �

Example 4.5.1. For an illustration, let T = A1
= Spec k[t] and let Z consist of two

families of points in A2 given respectively by (t, 0) and (0, t). To find the ideal for
Z , note that away from t = 0 it is given by the product of the ideals of the families.
This product is the ideal

(x − t, y)(y − t, x) = (xy, y2
− t y, x2

− t x, xy − t x − t y + t2)

= (xy, y2
− t y, x2

− t x, t x − t y + t2)

= (xy, y2
− t y, x2

− t x, t (t − x − y)).

To find the ideal of the flat family, then, we need to throw into the ideal any elements
killed by t , in this case t −x − y. Therefore the ideal for Z0 is I0 = (x2, xy, y2, x +

y) = (x2, x + y), and the associated base locus is Q1 + Q2, where Q1 is the origin
and Q2 is the tangent direction associated to the line x + y = 0.

Now, blowing up the ideal (x − t, y) gives (for the appropriate open affine) the
ring map

k[x, y, t]
y 7→w(x−t)
− −− −−−− −−−→ k[x, w, t].

The total transform of the family (x, y − t) on this new surface is given locally by
the ideal

(w(x − t) − t, x) = (t (w + 1), x)

so that the strict transform is given by (x, w + 1). Therefore this second family
meets the fibre over t = 0 at the point on the exceptional curve x = 0 where
w + 1 = 0, corresponding to the tangent direction x + y = 0. Therefore, blowing
up in the order we did established the correspondence

(x − t, y) ↔ Q1, (x, y − t) ↔ Q2.

But by the symmetry of the variables, it is clear that blowing up the points in the
other order would have reversed the correspondences.

Having blown up (x − t, y), we now blow up the strict transform (x, w + 1) of
the second family. This gives (again on the interesting open affine) the ring map

k[x, w, t]
x 7→r(w+1)

− −− −−−− −−−→ k[r, w, t].
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The composite blowing-up on the special fibre looked like

k[x, y]
y 7→wx
− −−−→ k[x, w]

x 7→r(w+1)

− −− −−−− −−−→ k[r, w],

which is the blowing-up of the origin followed by the blowing-up of the tangent
direction x + y. Note that the surfaces over t = 0 obtained by blowing up the two
families of points in the other order are isomorphic, but that this isomorphism does
not extend over any open neighborhood of 0.

We can calculate the divisor class group of the threefold X obtained from the
blowing-up of a family of planes at a family of points by using the following, which
is an adaptation of [Hartshorne 1997, Proposition 1.1].

Proposition 4.6. Let T be an irreducible nonsingular curve over k (again not
necessarily complete). Let X → T be a projective flat family of surfaces over T
such that H 1(OX t ) = 0 and X t is smooth for all t ∈ T . If 1 ∈ T is any closed point,
then there is an exact sequence

0 → Pic T
f∗

→ Pic X
ρ
→ Pic X1,

where X1 denotes the fibre over 1 and ρ is the restriction map.

Proof. By Stein factorization [Hartshorne 1977, III, Corollary 11.5], the map f
factors as the composition

X
f ′

→ Y = Spec f∗OX
g

→ T,

where f ′ has connected fibres and g is finite. Since f has connected fibres, this
forces the fibres of g to be connected as well, so that g must be an isomorphism.
Therefore f∗OX = OT . Then by the Projection Formula [Hartshorne 1977, II, Ex-
ercise 5.1], f∗ f ∗L = L for any invertible sheaf L on T . This shows that the map
f∗ on Pic is injective.

For exactness in the middle, suppose that F is an invertible sheaf on X and that
F1 = F ⊗ OX1

∼= OX1 . Since then H 1(F1) = 0, the theorem on cohomology and
base change [Hartshorne 1977, III, Theorem 12.11] shows that R1 f∗F = 0 in a
neighborhood of 1, f∗F is locally free in a neighborhood of 1, and ( f∗F)⊗k(1) ∼=

H 0(F1) = k. Hence f∗F is invertible in a neighborhood of 1.
Consider the natural map f ∗ f∗F → F. This map restricts to an isomorphism

on the fibre X1, and it is therefore an isomorphism on a neighborhood of X1. By
properness, there is a neighborhood V of 1 in T such that f ∗ f∗F ∼= F on f −1(V ),
and hence F is in the image of Pic V over this open set.
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Finally, let P be any point of T \V , and let T ′
= V ∪ P, X ′

= f −1T ′. By
[Hartshorne 1977, II, 6.5], there is an exact sequence

Z → Pic X ′
→ Pic f −1V → 0

where the first map sends 1 to the class of X P in Pic X ′. Since X P = f ∗(P), and
the kernel of Pic X ′

→ Pic X1 differs from the kernel of Pic f −1(V ) → Pic X1 by
a multiple of X P , this shows that any F on X ′ which maps to 0 in Pic X1 comes
from f ∗. Proceeding in this manner on the other points of T \V gives the result. �

Proposition 4.7. Let Z be a flat family of length-n schemes in P2
T such that Z t is

the union of n distinct points for t 6= 0. By Proposition 4.2, we can replace T by a
base extension so that Z is the union of n smooth irreducible components. Number
these components P1, . . . , Pn and let X the resulting family of blown-up surfaces.
By Proposition 4.5, the points of the base locus associated to Z0 have an ordering
Q1, . . . , Qn imposed on them by the numbering of the Pi .

(1) Pic X/ Pic T is a free abelian group with generators `X , (e1)X , . . . , (en)X ,
where `X = π∗OP2

T
(1) and (ei )X is the strict transform of Pi .

(2) Denote by `t and (ei )t , respectively, the total transforms of OP2
k(t)

(1) and
the strict exceptional curves ei on the surface X t . Then for each t ∈ T ,
the natural restriction map Pic X → Pic X t factors to give an isomorphism
Pic X/ Pic T → Pic X t taking `X to `t and (ei )X to (ei )t .

Proof. First, the divisor (ei )X restricts to (ei )t on each X t by Proposition 4.5;
clearly `X restricts to `t as well. Proposition 4.6 shows that the restriction map
gives an injection Pic X/ Pic T → Pic X t for each fibre, but these maps are actually
surjective, since ` and the ei generate the Picard groups for the blown-up surfaces.

�

Remark 4.7.1. As with a single blown-up surface, we will write a divisor class
a` − b1e1 − · · · − bnen on X as the n-tuple (a; b1, . . . , bn).

Definition 4.8. I will refer to a length-6 subscheme of P2 as general if it is reduced,
does not lie on a conic, and meets no line in length ≥3. Such a subscheme is almost
general if it is curvillinear and meets no line in length ≥ 4.

Remark 4.8.1. By [Hartshorne 1977, V, Section 4], we see that general subschemes
are those whose base loci give smooth cubics when blown up.

Theorem 4.9 [Fogarty 1968, Theorem 2.4]. Let d be a positive integer. Then the
family of 0-dimensional subschemes of P2 of length d is irreducible.

Corollary 4.10. Let S be any 6-point base locus on P2 which is a union of towers
such that no four points of S are contained in a line, and let Z be the associated
scheme. Then there exists a smooth curve T with point 0 and a flat family of
schemes ZT over T such that Z t is general for t 6= 0 and Z = Z0.
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Proposition 4.11. Let T be a smooth curve, as usual not necessarily complete. Let

Z = P1 ∪ · · · ∪ P6 ⊂ P2
T , Pi ∼= T,

be a family over T of length-6 subschemes of P2 such that Z t is general for t 6= 0
and Z0 is almost general. Let X̃ be the scheme obtained by blowing up P2

T sequen-
tially at the curves P1, . . . , P6. Then (possibly after shrinking T to a neighborhood
of 0) the morphism

X̃
φ
→ P3

T

given by the complete linear system (3; 1, 1, 1, 1, 1, 1) has image Y which is a flat
family of normal cubic surfaces in P3 such that for each t , Yt is isomorphic to
the image in P3 of the surface obtained by sequentially blowing up the base locus
associated to Z t (which is just a reduced set of points for t 6= 0).

Proof. Let L be the invertible sheaf on X̃ corresponding to the divisor class
(3; 1, 1, 1, 1, 1, 1). First, I claim that H 1(L0) = 0. To see this, let H be a smooth
effective divisor in |L0| on X̃0 (these exist since the image of X̃0 under L0 has
only isolated singularities) and consider the exact sequence of sheaves on X̃0

0 → OX̃0
→ L0 → OH (L0) → 0.

Now, H 1OX̃ = 0, and H 1OH (L0) = 0 because L0|H is a divisor of degree 3 on an
elliptic curve. This forces H 1(L0) = 0.

Now, again by cohomology and base change, f∗L is free (of rank 4) in some
neighborhood of 0; therefore, shrinking T if necessary, we may assume that there
are global sections of L which restrict to a generating set of Lt on X̃ t for each
t ∈ T . Then L is generated by global sections, since at any stalk a nongenerator
restricts to a nongenerator on its fibre.

Thus L gives a morphism φ : X̃ → P3
T . Since the restriction Lt of L is the linear

system (3; 1, 1, 1, 1, 1, 1) on X̃ t , it gives the map from X̃ t into P3 with image the
normal cubic surface which comes from the blowing-up of Z t . �

Remark 4.11.1. It is via this morphism φ that we can extract information about
divisors on the normal cubic surface X0 from information about the family X̃ and
Proposition 4.7. Roughly speaking, one would like to take a divisor C0 on X0,
translate it into a divisor C̃0 on X̃0, identify the divisor type, and use this informa-
tion to express C0 as the limit of a flat family of curves on smooth cubic surfaces.
The difficulty with this method is that the actual limit of the flat family so obtained
may have embedded points, so the challenge is to guarantee somehow that one can
find a divisor class on X̃0 giving C0 such that the limit of the resulting family is
without embedded points.
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Example 4.11.2. Consider the family X̃ of surfaces obtained from the blowing-up
of P2

T at the family Z = P1 ∪· · ·∪ P6, where the Pi are ordinary and general except
that (P1) and (P2) meet in P2

k(0), and (P3) and (P4) meet at another point of P2
k(0),

so that the base locus Q1, . . . , Q6 associated to Z0 (in the sense of Proposition
4.5) has Q2 infinitely near to Q1 and Q4 infinitely near to Q3. Upon sequentially
blowing up, we find that X̃0 has two (−2)-curves which do not meet, so that in the
family X ⊂ P3

T , X t is smooth for t 6= 0 and X0 has two isolated singular points.
(In fact, each is a rational double point of type A1, analytically isomorphic to the
“cone singularity” xy − z2.) Consider the line F13 ⊂ P2

k(0) containing Q1 and Q3.
Its strict transform in X̃0 will be mapped under the restriction of φ to a line L0 in
P3, since it is a limit of the strict transforms of the lines (1; 1, 0, 1, 0, 0, 0) on the
smooth cubic surfaces X t . Notice that L0 contains both of the singular points of
X0.

Now consider the multiplicity-2 structure 2L0 on L0 ⊂ X0, defined by throwing
out embedded points from the subscheme of X0 defined by I2

L0,X0
. I claim that

2L0 is actually contained in a plane. To see this, choose any point of L0 besides the
two singularities of X0 and consider the plane section of X0 containing L0 and the
normal direction at the chosen point. This plane section has 3 singular points lying
on L0, and it is easily shown that any plane curve of degree 3 having 3 singular
points along a line must contain the 2-structure on that line, so our chosen plane
section contains 2L0.

Note that each of the families F13, F14, F23, F24 on the smooth cubics specialize
to L0, where Fi j is the family of lines on the smooth cubics coming from lines
through Pi and Pj in the plane. Therefore, there are a number of ways to try
to write 2L0 as a (flat) limit, and all of them will agree with 2L0 generically.
However, for example, the limit of F13 + F14 has an embedded point, since the
fibres are disjoint for t 6= 0, making the arithmetic genus −1, so 2L0 is not the
flat limit of this family. On the other hand, F13 and F24 meet in every fibre, so
the arithmetic genus of F13 + F24 is 0, which is the arithmetic genus of 2L0. By
[Hartshorne 1977, Theorem III.9.7], L0 is the flat limit of the family F13 + F24.

Proposition 4.12. Let Y be a family of smooth surfaces over a nonsingular curve
T with point 0 ∈ T . Let L be a divisor class on Y whose restriction L0 to Y0 is
represented by an effective divisor D0 such that either

(1) H 1(Y0, L0) = 0 or

(2) H 2(Y0, L0) = 0 and H 1(Yt , Lt) is constant in a neighborhood of 0.

Then, possibly after shrinking T to an open neighborhood of 0, the divisor class
L is represented by an effective divisor D on Y without vertical components whose
restriction to Y0 is equal to D0.
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The following is needed for the vanishing of certain cohomology groups.

Lemma 4.13. Let X be a smooth surface, and let C ⊂ X be a reduced Cartier
divisor such that each irreducible component of C has negative intersection with
the canonical divisor KP̃ of P̃. Then H 1OC(C) = 0.

Proof. Let ωC be the dualizing sheaf of C , and let ωX be the canonical sheaf of
X . Then ωC ∼= ωX (C)|C . By Serre duality, H 1OC(C) ⊥ H 0ωC(−C) = H 0(ωX |C).
Therefore it suffices to show that H 0(ωX |C) = 0.

First, assume that C is integral. Then ωX |C is a Cartier divisor of negative degree
on the integral curve C , so H 0(ωX |C) = 0.

Now suppose that C =
⋃r

1 Ci , where the Ci are integral. Let Y be the disjoint

union of the Ci . Then the natural projection Y
f

→ C exhibits ωX |C as a subsheaf of
f∗(

⊕
ωX |Ci ). Since H 0(

⊕
ωX |Ci )

∼= H 0( f∗(
⊕

ωX |Ci )) (see [Hartshorne 1977,
III, Ex. 8.2], for example), and since H 0(ωX |Ci ) = 0 for all i by the previous
paragraph, H 0(ωX |C) = 0 and the lemma is proved. �

5. The Main Theorem

Configuration of (−2)-curves on the blown-up surface. In this section, I will
identify the possible configurations of (−2)-curves on a surface obtained by blow-
ing up a 6-point base locus in P2 which is a union of towers with no four base
points collinear.

Definition 5.1. I will refer to a connected set of curves as a cluster. If a surface
singularity arises from the collapsing of a cluster of (−2)-curves to a point, this
singularity is sometimes labelled according to the Dynkin diagram of the configu-
ration of the (−2)-curves; see Definition 5.1. One can show that the configuration
of such (−2)-curves is an invariant of the analytic isomorphism class of the singu-
larity (see [Lipman 1969] or [O’Sullivan 1996] for details). It is well-known that
the intersection matrix of the set of (−2)-curves collapsing to a point is negative-
definite (see [Artin 1962]).

It is known [Artin 1966] that any rational double point surface singularity con-
tained in P3 is of type Ar , Dr , E6, E7, or E8; for rational normal cubic surfaces,
this list is shorter, namely A1, . . . , A5, D4, D5, or E6 (see [Bruce and Wall 1979]).

Recall from [Artin 1966] that the fundamental cycle ξ0 associated to a rational
surface singularity is defined (locally) as the smallest exceptionally supported pos-
itive cycle on the minimal desingularization with the property that its intersection
with each exceptional curve is nonpositive. Fundamental cycles for the rational
double points above are calculated as follows. Note that I express each in terms of
its coefficients in the free monoid on the exceptional curves Ei ; thus, for example,



90 JOHN BREVIK

◦ ◦ · · · ◦ ◦

C1 C2 Cr−1 Cr

◦ Cr−1

◦ ◦ · · · ◦ ◦

C1 C2 Cr−1 Cr

◦ Cr−2

◦ ◦ · · · ◦ ◦ ◦

C1 C2 Cr−3 Cr−1 Cr

Figure 1. Top to bottom: Dynkin diagrams for Ar , Dr , and Er

configurations. The circles in the diagrams stand for curves, and
a connecting line segment between two circles indicates that the
corresponding curves intersect transversally at a single point.

(2, 3, 1) stands for the divisor 2E1 + 3E2 + E3. The curves are numbered as in
Figure 1.

• For Ar , ξ0 = (1, 1, . . . , 1).

• For Dr , ξ0 = (1, 2, 2, 2, . . . , 2, 1, 1).

• For E6, ξ0 = (1, 2, 3, 2, 2, 1).

• For E7, ξ0 = (1, 2, 3, 4, 2, 3, 2).

• For E8, ξ0 = (2, 3, 4, 5, 6, 3, 4, 2).

Definition 5.2. Suppose that P̃S is a surface arising as the minimal resolution of
a rational normal cubic surface in P3, and let D be an effective divisor on P̃S .
D has small intersection with fundamental cycles if, for each connected cluster
{C1, . . . , Cr } of (−2)-curves on P̃S with fundamental cycle ξ0, D has nonnegative
intersection multiplicity with each of the Ei and D.ξ0 ≤ 1. (Equivalently, D has
nonzero intersection multiplicity with at most one of the curves in the cluster, and
furthermore, if there is such a curve Ck , then D.Ek = 1 and Ck has coefficient 1
in ξ0.)
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Proposition 5.3. Let (R, m) be a local ring defining a rational double point on a
surface, let Spec S

π
→ Spec R be the minimal desingularization, with fundamental

cycle ξ0, and let D ⊆ Spec S be a nonexceptional smooth curve. Then the multi-
plicity of the scheme-theoretic image π(D) at m is equal to D.ξ0.

Proof. Artin [1966, proof of Theorem 4] shows that I(ξ0) = m ·S. Now, restricting
the map R → S to D gives a map from the local ring (A, q) of the scheme-theoretic
image of D on Spec R to a semilocal ring B whose maximal ideals pi correspond to
the points of D on the exceptional divisor. Now, each localization Bpi is a discrete
valuation ring, and the multiplicity ei of pi in the primary decomposition of mB is
precisely the coefficient of the component of the exceptional curve containing the
closed point pi in ξ0, from Artin’s above observation. Now, apply Corollary 1 to
[Zariski and Samuel 1960, vol. II, VII, Theorem 24] to conclude that

mm(π(D)) =

∑
m pi (D) · ei .

From the preceding considerations, this last sum is equal to D.ξ0. �

Corollary 5.4. Let P̃S
π
→ S be the minimal resolution of a rational normal cubic

surface in P3, and let D be an effective divisor on P̃S having small intersection
with fundamental cycles. Then D → π(D) is an isomorphism.

Proof. Locally, the map on D is a birational morphism of smooth curves. �

Proposition 5.5. Let S be a 6-point base locus in P2 which is a union of towers such
that no four points of S are collinear. Let P̃S be the surface obtained by blowing up
S sequentially. Let D be an effective divisor on P̃S having nonnegative intersection
with each (−2)-curve. Then there exists an effective divisor E , supported on (−2)-
curves, such that D + E has small intersection with fundamental cycles.

Proof. Clearly, it suffices to consider each connected cluster of (−2)-curves sepa-
rately. Let {C1, . . . , Cr } be such a cluster, and let ai = D.Ci . When convenient, I
will adopt the notation using ordered r -tuples for exceptionally supported divisors
introduced above. I will also use square brackets to indicate intersection multiplic-
ities with the −2-curves; thus, I would write that D has intersection multiplicities
[a1, . . . , ar ].

First, suppose that the Ci form an Ar , r ≥ 1. Proceed by induction on s = 6ai .
If s ≤ 1, then D has small intersection with the fundamental cycle, and we are
done.

If s ≥ 2, first suppose that there are two indices i < j such that ai and a j are
positive. Then add the divisor Ci + Ci+1 + · · ·+ C j . This addition reduces ai and
a j by 1 each and leaves the other intersection numbers unchanged; by induction,
we are finished.
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Finally, if there is only one index i such that ai is positive, then ai ≥ 2. Add a
single copy of Ei to D. Then there are two possibilities: If 1 6= i 6= r , then there
are at least two entries, namely the (i − 1)st and the (i + 1)st , in the new divisor
which are nonzero, and we may proceed as in the last paragraph; if i = 1 or i = r ,
then the sum of the entries has dropped, since the i-th has dropped by 2 and there
is only one which has increased by 1, and we are finished by induction.

For a D4, note that ξ0.Ci = −δi2. By adding copies of C1, C3, and C4 to D,
we may assume that each of a1, a3, a4 is less than or equal to 1; and by adding a
multiple of ξ0, we may assume that a2 = 0. By symmetry, it suffices to assume
that a1 ≥ a3 ≥ a4.

If a3 = 0, then D has small intersection with the fundamental cycle.
If a1 = a3 = 1, a4 = 0, then add the divisor (1, 1, 1, 0) to get a divisor with

intersections [0, 0, 0, 1], which has small intersection with the fundamental cycle.
If a1 = a3 = a4 = 1, then adding the divisor (2, 3, 2, 2) gives intersections

[0, 0, 0, 0].
Thus the proposition is true for a D4.
For r > 4, observe that the curves C2, . . . , Cn form a Dr−1, so by induction

we may assume that there is an divisor L , supported on C2 ∪ C3 ∪ · · · ∪ Cn , such
that D′

= D + L has intersection number 1 with at most one of C2, Cr−1, and Cr

and intersection number 0 with all other Ci except C1. Write the new intersection
sequence as [b1, . . . , br ], and note that b1 ≥ a1 ≥ 0. If b1 ≥ 2, we can reduce b1

by 2 and leave the other bi unchanged by adding the divisor (2, 2, . . . , 2, 1, 1), so
we may assume that b1 is either 0 or 1.

If b1 = b2 = 0, then we are done, as D′ has small intersection with the fun-
damental cycle. If b1 = 1 and all other bi are 0, we are also done. If b1 =

b2 = 1, then D′
+ ξ0 has small intersection with ξ0. If b1 = br−1 = 1, then

D′
+C1+C2+· · ·+Cr−1 has small intersection with ξ0. Treat the case b1 = br = 1

similarly.
This exhausts all possibilities, so the Dr case is complete.

In the case of an E6, notice that adding the fundamental cycle ξ0 reduces the
intersection number with C4 by 1 and leaves the others unchanged; therefore, we
can always assume that the intersection number of our divisor of interest with C4

is 0. From the Ar case above, add an effective exceptionally supported divisor to
D in order to obtain a divisor D′ whose intersection numbers with C1, C2, C3, C5,
and C6 are all 0 except for possibly one of them; if there are none, clearly we are
done, and if D′.C1 = 1 or D′.C6 = 1, we are done as well, since these curves
have multiplicity 1 in ξ0. If D′.C2 = 1, add (0, 1, 1, 0, 1, 1); similarly for C5. If
D.C3 = 1, add (1, 3, 4, 2, 2, 0).
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For an E7, note that adding the fundamental cycle reduces the intersection num-
ber with C7 by 1 and leaves the others unchanged; as above, then, we need not
worry about this intersection number. Also, note that C1, . . . , C6 form a D6;
therefore, we can find an effective divisor supported on these curves to add to
D in order to obtain D′, whose sequence of intersection multiplicities is either:
all 0’s, in which case we are done; [1, 0, 0, 0, 0, 0, 0], which already has small
intersection with the fundamental cycle; [0, 0, 0, 0, 0, 1, 0], in which case we add
(2, 4, 6, 8, 4, 6, 3) to obtain all 0’s; or [0, 0, . . . , 1, 0, 0], in which case we add
(0, 1, 2, 3, 2, 3, 2, 1) to get back to [1, 0, 0, 0, 0, 0, 0].

Finally, in the case of an E8, adding ξ0 reduces the intersection number with C1

and leaves the others unchanged. C2, . . . , C8 form an E7, so from the previous case
we may assume that we can add an appropriate divisor to D and obtain D′ whose se-
quence of intersection multiplicities is either all 0’s (done) or [0, 1, 0, 0, 0, 0, 0, 0].
In this latter case, adding (3, 6, 8, 10, 12, 6, 8, 4) reduces the intersection multi-
plicities to all 0’s. This finishes the proof. �

Definition 5.6. Label the standard basis elements of Zr as `, e1, . . . , er−1, and
denote by fi j the elements `+ei +e j for i 6= j . Define the Cremona transformation
τi jk for i, j, k all different to be the change of basis `′, e′

1, . . . , e′
n where `′

= l, e′

i =

f jk, e′

j = fik, e′

k = fi j , and e′
n = en for n different from i, j, and k.

Remark 5.6.1. The reason I call this a Cremona transformation is that it is a
generalization of the change of basis induced by the plane Cremona on the surface
obtained by blowing up three noncollinear points, which makes sense whether the
points are ordinary or infinitely near.

Lemma 5.7. Let D be an element of Z7. Then, by a finite number of appli-
cations of the Cremona transformation τ123 and reorderings, one can produce a
basis `, e1, . . . , e6 for Z7 such that, with respect to this basis, the representation
D = a` −

∑
bi ei satisfies

(1) b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6

(2) a − b1 − b2 − b3 ≥ 0.

Proof. Label the standard basis elements for Z7 as `, e1, e2, . . . , e6. In order to
avoid cumbersome notation, I will abuse notation and use the same names for
elements of each basis produced on the way to the desired one. Define a bilinear
form on Z7 as on a smooth cubic surface, i.@e. `2

= 1, `.ei = 0, ei .e j = −δi j ,
and label the elements fi j = l − ei − e j , g j = 2l −

∑
i 6= j ei . Then condition (2)

is interpreted as D. f12 ≥ D.e3. In order for the bi to be in descending order, this
forces D. fi j = a − bi − b j ≥ D.e3 = b3. Note also that D.e1 ≥ D.e2 ≥ D.e3.
Finally, a−bi −b j −bk ≥ 0 for any i, j, k, so D.gm = 2a−

∑
i 6=m bi ≥ b3 for all gm .

Therefore, with respect to our desired basis, the elements e6, e5, e4, e3 must have,
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in order, the four smallest intersections with D among the set S = {ei , fi j , gk}. I
will show that an algorithm exists which accomplishes this.

By repeated applications of the Cremona transformation τ123 and reorderings,
whatever element of S having minimal intersection with D can be brought to e6.
Then the remaining ei can be renumbered so that the bi are in descending order.
Then, as in the previous paragraph, the element of S which has the next minimal
intersection with D is e5, f12, or g6.

If it is e5, proceed to the next step in the algorithm.

If it is f12, applying τ123 leaves e4, e5, and e6 alone but takes f12 to e3. By
renumbering, then, e5 can be made to have next smallest intersection with D.

Finally, if it is g6, apply τ123 so that g6 becomes f45; by renumbering, this
will then become f12, and we are in the previous case.

So far we have the desired e6 and e5. Again renumber the remaining ei so that the
bi are descending. At this point, a priori again the candidates for the next smallest
intersection with D are e4, f12, and g6, but I claim that we need not consider g6. To
see this, note that by choice of e5, D.e5 ≤ D. f12, or in other words b5 ≤a−b1−b2.
Substituting this inequality gives

D.g6 = 2a − b1 − b2 − b3 − b4 − b5

≥ 2a − b1 − b2 − b3 − b4 − (a − b1 − b2)

= a − b3 − b4

≥ a − b1 − b2

= D. f12.

Therefore, the next element of our basis is either e4, in which case we can move on
to the next step, or f12, which is treated just like the second case in the step above
and does not affect our e5 or e6.

The final step in the algorithm goes just like the previous one, since the Cremona
transformation τ123 does not affect e6, e5, or e4, so finally I have produced a basis
with the desired properties.

�

Proposition 5.8. Let P̃ be a surface resulting from the blowing-up of a 6-point base
locus (P1, . . . , P6) in P2 which is a union of towers such that no four base points
are on a line. Let D be a divisor class on P̃ such that the intersection multiplicity
of D with any (−2)-curve is nonnegative. Then there exists a map P̃ → P2 which
is again the blowing-up of a (possibly different) 6-point base locus (P ′

1, . . . , P ′

6)

in P2 such that no four base points are on a line and such that with respect to the
induced basis `, e1, . . . , e6, D = (a; b1, . . . , b6) with the properties:
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• If P ′

j is infinitely near to P ′

i , then i < j ;

• b1 ≥ b2 ≥ · · · ≥ b6;

• a ≥ b1 + b2 + b3.

Proof. If Pj is infinitely near to Pi , the condition D.E j ≥ 0 forces D.ei ≥ D.e j .
Therefore, any renumbering of the points such that the second condition is satisfied
will automatically satisfy the first condition as well. With respect to this number-
ing, P1 is ordinary, P2 is either ordinary or infinitely near to P1, and P3 is ordinary
or infinitely near to either P1 or P2. Thus S′

= P1+ P2+ P3 is a union of towers and
either P1, P2, P3 are collinear or P1, P2, P3 determine a Cremona transformation
of P2.

In the first case, F123 is a (−2)-curve and D.F123 = a −b1 −b2 −b3 ≥ 0, so the
last condition holds. Otherwise,the transformation τ123 corresponds to an actual
Cremona transformation of P2, so we can proceed as in Lemma 5.7 to obtain the
desired basis. �

Definition 5.9. Following the notation in [O’Sullivan 1996], I will refer to the basis
determined in Proposition 5.8 for the divisor D as a preferred basis for D. The
7-tuple of integers representing the divisor class of D with respect to a preferred
basis for D is called a preferred form for D.

Proposition 5.10. Let D = (a; b1, . . . , b6) be a divisor class on a smooth cubic
surface X with respect to the basis `, e1, . . . , e6 such that b1 ≥ b2 ≥ · · · ≥ b6 and
a ≥ b1 + b2 + b3. Then D is effective if and only if a ≥ max(0, b1).

Proof. That a ≥ max(0, b1) is necessary is fairly clear: a cannot be negative for an
effective divisor, and a < b1 would mean that there was a plane curve of degree a
with a point of multiplicity more than a, which is impossible.

To prove sufficiency, let r = max{i : bi ≥ 0} and write D = D+ + D−, where
D+ = (a; b1, . . . , br , 0, . . . , 0) and D− = (0; 0, 0, . . . , br+1, . . . , b6). D− is clearly
effective, as it is the sum of exceptional curves. At this point, either D+ satisfies
the hypotheses of the proposition or b3 < 0 and a − b1 − b2 = c < 0. In the latter
case, D+ intersects F12 with multiplicity −c, so it contains at least c copies of F12.
Now, make the further decomposition D+ = D′

+
+ cF12 and now D′

+
does satisfy

the hypotheses of the proposition.
So it suffices to show that the proposition holds for D with all bi ≥ 0. First

dispensing with an easy case, if a = b1, then the other bi are all 0 and D is a
multiple of the conic (1; 1, 0, 0, 0, 0, 0).

Therefore assume that a > b1. By [Hartshorne 1977, V, Ex. 4.8], if a divisor on
a smooth cubic intersects each of the 27 lines nonnegatively and has nonnegative
self-intersection, then that divisor is linearly equivalent to an effective divisor. The
intersection with the lines is immediate: Since all of the entries for D are positive,
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D.Ei ≥ 0 for each i . Also, D.Fi j ≥ D.F12 by the condition b1 ≥ b2 ≥ · · · ≥ b6,
and D.F12 = a − b1 − b2 ≥ 0 by a ≥ b1 + b2 + b3, b3 ≥ 0. Finally, D.G j ≥ D.G6,
again by b1 ≥ b2 ≥ · · · ≥ b6, and since a ≥ b1 + b2 + b3, certainly a ≥ b4 + b5, so
D.G6 = 2a − b1 − b2 − b3 − b4 − b5 ≥ 0. D2 > 0 is an immediate consequence of
the following lemma, which is readily verified. �

Lemma 5.11. Let (a; b1, b2, . . . , b6) be a 7-tuple of nonnegative integers such that
a ≥ b1 + b2 + b3, a > b1, and b1 ≥ b2 ≥ · · · ≥ b6. Then a2 >

∑
b2

i .

The arithmetic genus of an effective divisor on the blown-up surface. Let X be
a smooth surface and D an effective divisor on X . Recall that the Zariski decom-
position [1962, §7] of D is the unique decomposition D = DL + DN with DL

effective such that

(1) DL =0 or the intersection matrix for each connected component of the support
of DL is negative-definite;

(2) DN is numerically effective;

(3) DN .E = 0 for each prime divisor E in the support of DL .

The following is needed for Proposition 5.14, which characterizes the Zariski
decomposition of an effective divisor on one of our blown-up surfaces.

Proposition 5.12. Let X be a smooth projective surface over k. Let X̃
π
→ X be the

composition of blowings-up of a sequence of closed points (P1, . . . , Pn). Let D be
an exceptionally supported divisor such that D.Ei ≤ 0 for each component Ei of
the exceptional locus. Then D is effective.

Proof. This is immediate from the following lemma about bilinear forms, which is
not difficult to verify. �

Lemma 5.13. Let ( , ) be a negative-definite bilinear form on a finitely generated
free abelian group G and let x1, . . . , xn be a basis of G such that (xi , x j ) ≥ 0
for i 6= j . If y =

∑
si xi such that (y, xi ) ≤ 0 for each i , then all of the si are

nonnegative.

Proposition 5.14. Let P̃ be the surface obtained by blowing up a curvillinear base
locus in P2 of length 6, and let D be an effective divisor on P̃ having nonnegative
intersection with all (−2)-curves, with Zariski decomposition D = DL + DN . Then
DN is effective. Further, if D is in preferred form, this decomposition for D has
one of the following forms:

(1) If a − b1 − b2 ≥ 0, then DN has type (a, b1, . . . , br−1, 0, . . . , 0) and DL has
type (0; 0, . . . , 0, br , . . . , b6), where r is such that br−1 ≥ 0 and br < 0.

(2) If a − b1 − b2 = c < 0, then DN has type (a + c; b1 + c, b2 + c, 0, 0, 0, 0) and
DL has type (−c; −c, −c, b3, . . . , b6) with b3, . . . , b6 all less than 0.
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Proof. First, we need to show that our purported DL is effective. This is imme-
diate, because in each case DL is a positive linear combination of ei and f12 =

(1; 1, 1, 0, 0, 0, 0), which are always effective regardless of the collinearity or in-
finitely near behavior of the six points in P2. Further, in both cases each of these
components is either a single (−1)-curve or a cluster of (−2)-curves together with
a (−1)-curve all collapsing to a point in P2, and one can verify that its intersection
matrix must be negative-definite.

To show that our DN is numerically effective, it suffices to show that DN .E ≥

0 for any curve E with negative self-intersection. For the exceptional curves
E1, . . . , E6, this follows from preferred form 5.8: If Ei is a (−1)-curve, then
DN .Ei is just the i-th coefficient after the semicolon in the divisor type for DN ,
which is always nonnegative. If Ei is a (−2)-curve, say with Pj infinitely near
to Pi , then i < j ; by the decreasing nature of the bi (which property is preserved
when passing to DL ) the intersection number DL .Ei = DL .ei − DL .e j remains
nonnegative. Since D was given in preferred form, it is easy to see that DN .Fi j is
at least as large as DN .F12.

To show that DN has 0 intersection with each component of DL , note that, in
case 1, DL is supported on Er , . . . , E6 and the result follows trivially from the
intersection theory on P̃. For case 2, DL is supported on F12 or F123, depending
on whether P1, P2, P3 are collinear, together with E3, . . . , E6. By construction
DL .F12 = 0 or DL .F123 = 0, and as in case 1 DL .Ei = 0, i = 3, 4, 5, 6.

Therefore, the Zariski decomposition is as stated. Effectiveness of DN now
follows immediately from Proposition 5.12, since item (3) in the Zariski decom-
position shows that DN is effective on the support of DL , and away from this
support it is effective because the original D is. �

Lemma 5.15. Let P̃ be the surface obtained from P2 by the sequential blowing-up
of a curvillinear 6-point base locus with no four base points collinear. Let |D| be
a numerically effective divisor class on P̃. Then the general member of |D| is a
reduced divisor each of whose integral components has negative intersection with
the canonical divisor KP̃ of P̃.

Proof. Since |D| is numerically effective, it has no fixed components by Proposition
5.14. Since there are only finitely many curves with negative self-intersection on
P̃ by Proposition 2.3, the general member of |D| is supported on integral curves
of nonnegative self-intersection. Such curves always move in linear equivalence
classes, so the general member of |D| is reduced. As −KP̃ is very ample away
from (−2)-curves, each component of the general member of |D| has positive
intersection with −KP̃. �

Proposition 5.16. Let P̃ be the surface obtained by the sequential blowing-up of
a 6-point base locus in P2 which is a union of towers with no four base points
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collinear. Let D ⊂ P̃ be an effective divisor such that its intersection with each
(−2)-curve is nonnegative. Write the divisor class of D as (a; b1, . . . , b6) with
b1 ≥ b2 ≥ · · · ≥ b6 and a ≥ b1 + b2 + b3 as in Proposition 5.8. Then

h0OP̃(D) =

(
a+2

2

)
−

∑(
bi +1

2

)
+

(
−c
2

)
,

where c = a − b1 − b2.

Proof. Write D = DN + DL as in Proposition 5.14, where DN is numerically
effective and effective and DL is common to all divisors linearly equivalent to D.
Then h0OP̃(D)= h0OP̃(DN ). I claim that the formula also gives the same result for
D and DN . To see this, first write the divisor type of DN as (aN ; b1N , . . . , b6N ).

If c ≥ 0, then by Proposition 5.14, aN = a and bi N ≤ bi so that cN = aN −b1N −

b2N ≥ 0 as well. Therefore,(
−c
2

)
= 0,

(
−cN

2

)
= 0.

Also, the bi which contribute nonzero terms to the formula are exactly those which
are greater than or equal to 1, in which case bi N = bi so the contributions are the
same. If bi < 1, so is bi N , so the contributions for these i are both 0.

If c <0, then cN =a−b1−b2−c =0; furthermore, bi =bi N =0 for i =3, 4, 5, 6.
Therefore, for D the formula gives(

a+2
2

)
−

(
b1+1

2

)
+

(b2
2

)
+

(
−c
2

)
;

note that in order for c to be negative, b1 and b2 must both be positive. On the
other hand, the formula for DN gives(

a+c+2
2

)
+

(
b1+c+1

2

)
+

(
b2+c+1

2

)
=

(2a−b1−b2+2
2

)
+

(a−b2
2

)
+

(a−b1
2

)
.

One can verify that each of the two sums evaluates to

a2
+ 2a − ab1 − ab2 + b1b2 − b1 − b2 + 1.

In either case, then, the formula gives the same result for D and for DN , as claimed.
It therefore suffices to prove the formula for DN ; for ease of notation, replace

DN by D. Then D is numerically effective, c ≥ 0, and each bi is nonnegative by
Proposition 5.14. Therefore, Lemma 5.15 shows that D is linearly equivalent to a
reduced divisor each of whose integral components has negative intersection with
KP̃; since we are proving a formula about dimensions of linear systems, we may
as well assume that D itself has this form. Consider the exact sequence on D

0 → OD → OD(D) → T → 0,
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where T is a torsion sheaf of degree D2. By Lemma 4.13, H 1(OD(D)) = 0, so

H 0(OD(D)) = χ(OD(D)) = χ(T) + χ(OD) = D2
+ 1 − pa(D) =

1
2(D2

− D.K ),

the last equality coming from the adjunction formula. Now consider the exact
sequence

0 → OP̃ → OP̃(D) → OD(D) → 0

and note that, since P̃ is rational, H 1(OP̃) = 0. Therefore H 1(OP̃(D)) = 0, and
thus, using Proposition 2.2, we find that

H 0(OP̃(D)) = χ(OP̃(D)) = χ(OD(D)) + χ(OP̃)

=
1
2(D2

− D.K ) + 1 =
1
2

(
(a2

−
∑

b2
i ) + (3a −

∑
bi )

)
+ 1

=

(a+2

2

)
−

∑(bi +1

2

)
+

(−c

2

)
. �

Corollary 5.17. Let P̃ be a surface obtained by blowing up a 6-point base locus
in P2 which is a union of towers with no four base points collinear. If an effective
divisor C on P̃ has nonnegative intersection with all −2-curves, then C has the
numerical type of an effective divisor on a smooth cubic surface.

Corollary 5.18. Let P̃ be the surface obtained from P2 by sequentially blowing up
a curvillinear 6-point base locus with no four base points collinear. Let D ⊂ P̃ be
an effective divisor such that its intersection with each (−2)-curve is nonnegative.
Write the divisor class of D as (a; b1, . . . , b6) with b1 ≥ b2 ≥ · · · ≥ b6 and a ≥

b1 + b2 + b3 as in Proposition 5.8, and suppose further that a ≥ b1 + b2. Then
H 1(OP̃(D)) = 0.

Proof. The canonical sheaf of P̃ is antieffective, and D is effective, so by Serre du-
ality H 2(OP̃(D)) = 0. Therefore, it suffices to show that χ(OP̃(D)) = H 0(OP̃(D)).

Consider the exact sequence

0 → OD → OD(D) → T → 0

where T is a torsion sheaf of degree D2. By definition, χ(OD) = 1 − pa(D);
therefore,

χ(OD(D)) = 1 − pa(D) + D2.

Now use the exact sequence

0 → OP̃ → OP̃(D) → OD(D) → 0

together with the fact that H 1(OP̃) = H 2(OP̃) = 0 to see that

χ(OP̃(D)) = 2 − pa(D) + D2.
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Using Proposition 2.2, the right hand side can be expanded to

2 −

(
a−1

2

)
+

∑(bi
2

)
+ a2

−

∑
b2

i

which simplifies to (
a+2

2

)
−

∑(
bi +1

2

)
.

Since by hypothesis a ≥ b1 +b2, this is equal to the formula for H 0(OP̃(D)) found
in Proposition 5.16. �

Proposition 5.19. Let T be a smooth connected (not necessarily complete) curve,
and let Z be a flat family of length-6 schemes in P2

T such that Z t is general for t 6=0
and Z0 is curvillinear meeting no line in multiplicity 4. Let X be the resulting fam-
ily of blown-up surfaces. Let D = (a; b1, . . . , b6) ∈ Pic X/Pic T as in Proposition
4.6 such that D0 is effective and D0.E ≥ 0 for all (−2)-curves E ⊂ X0. Then the
dimensions of the cohomology groups H 0(X t , OX t (Dt)) and H 1(X t , OX t (Dt)) are
constant over the family, and H 2(X t , OX t (Dt)) = 0 for all t ∈ T .

Proof. First, find a preferred basis for D0 so that the integers a, b1, . . . , b6 satisfy
the conclusion of in Proposition 5.8. Now, D0 satisfies the hypotheses of Proposi-
tion 5.16; therefore,

h0OX0(D0) =

(
a+2

2

)
−

∑(
bi +1

2

)
+

(
−c
2

)
,

where c = a−b1 −b2. For this number to be positive, surely a ≥ b1, so by Proposi-
tion 5.10, Dt is effective for all t ∈ T . Therefore, the formula equally well applies
to all the Dt , so H 0(X t , OX t (Dt)) is constant on the family. Also, since the canon-
ical divisor K X t is antieffective, by Serre duality shows that H 2(X t , OX t (Dt)) ⊥

H 0(X t , OX t (K X t − Dt)) = 0. Now use the Riemann–Roch formula [Hartshorne
1977, V, Theorem 1.6] on the surface X t to show that

h0(X t , OX t (Dt)) − h1(X t , OX t (Dt)) = χ(OX t (Dt)) = Dt .(K X t − Dt).

Since this last intersection number depends only on the integers a, b1, . . . , b6, and
the h0 term was already shown to be constant over the family, the h1 must be
constant over the family as well. �

Proposition 5.20. Let T be a smooth connected (not necessarily complete) curve,
and let Z be a flat family of length-6 schemes in P2

T such that Z t is general for
t 6= 0 and Z0 is curvillinear meeting no line in multiplicity 4. Let X be the resulting
family of blown-up surfaces, and let D0 ⊂ X0 be an effective divisor having non-
negative intersection with all (−2)-curves. Then, possibly after shrinking T , there
exists an effective divisor D on X without vertical components whose restriction to
X0 is equal to D0.
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Proof. By Proposition 5.19, the family satisfies the hypotheses of Proposition 4.12,
which gives the desired result immediately. �

The main theorem. At this point we have shown that any divisor on X0 meeting
certain conditions can be realized as the limit of a family of divisors on X t . We will
now show that for a given curve on a normal cubic surface, one of these families
gives rise to a flat family specializing to the given curve.

The strategy involved will be to show that any curve on a normal cubic surface
can be “linked up” to a smooth curve by adding hyperplane sections. Then we will
compare genus formulas for our blown-up surfaces with known linkage formulas
for surfaces in P3 and deduce that the special fibre of a suitably-chosen family from
the blown-up surfaces will give a special fibre in P3 that has the right arithmetic
genus to make a flat family. The following two propositions are thus needed to
proceed.

Proposition 5.21. Let P̃ be a surface resulting from the blowing-up of a 6-point
base locus in P2 which is a union of towers such that no four base points are on a
line. Let D be a divisor class on P̃ such that D has small intersection with (−2)-
curves. Let M = −K = (3; 1, 1, 1, 1, 1, 1) be the anticanonical divisor class of
P̃. Then for n sufficiently large, the divisor D + nM is basepoint-free and gives
a birational morphism to projective space whose image is a surface with isolated
singularities.

Proof. First, by Proposition 5.8 we can find a preferred basis for D. Note that this
basis is also preferred for D + nM, since the conditions for a basis to be preferred
are unaffected by the addition or subtraction of M. By Proposition 2.4, M is very
ample away from (−2)-curves, so we may choose n large enough that D + nM

is also very ample away from (−2)-curves. By Lemma 5.15, we can also choose
n large enough that D + nM has no base components. Therefore, for such n the
general member of |D+nM| is integral, since it is smooth away from (−2)-curves
by Bertini’s Theorem and has no (−2)-curves as components. If necessary add on
another M so that (D + nM).M > 1. I claim that for this value of n, D′

= D + nM

is basepoint-free. It suffices to show that the sheaf OP̃(D + nM) is generated by
global sections at each point of the (−2)-curves.

As D has small intersection with fundamental cycles, so does D+nM; therefore,
for each (−2)-curve E on P̃, the sheaf OE(D′) is generated by global sections.
Hence it will suffice to show that in the exact sequence

0 → OP̃(D′
− E) → OP̃(D′) → OE(D′) → 0

the map on the right is surjective on global sections; for this, in turn, it suffices to
show that H 1(OP̃(D′

− E)) = 0.
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Consider the exact sequence

0 → OD′(D′
− E) → OD′(D′) → OD′∩E(D) → 0.

Since D′ has small intersection with fundamental cycles, D′
∩ E is either empty

or a reduced point, so the map on the right is surjective on global sections. On the
other hand, by Lemma 4.13, H 1(OD′(D′))= 0, so this forces H 1(OP̃(D′

−E))= 0,
as desired.

Therefore, the divisor D+nM is basepoint-free and thus determines a morphism
from P̃ to projective space. It is an isomorphism away from (−2)-curves; therefore,
the general hyperplane section is smooth away from the images of the (−2)-curves.
Moreover, the general hyperplane section meets at most one (2)-curve in each
cluster, and it is smooth there as well: In fact by Corollary 5.4 its image in the
associated normal cubic surface remains smooth, so the general hyperplane section
is smooth. �

The particulars of the following formula are not important for our applications,
only that this formula exists and depends only on the numerical data of the curves
and surfaces involved.

Proposition 5.22 [Martin-Deschamps and Perrin 1990, Chapter III, Proposition
3.2]. Let C be a curve of degree d contained in the surface Q of degree s in P3.
Let H be the hyperplane class on Q, and let D be a curve linearly equivalent to
C + nH for some integer n. Then

pa(D) = pa(C) + nd +
1
2 ns(s + n − 4).

Proposition 5.23. Let X0 ⊂ P3 be a normal cubic surface and X̃0
π
→ X0 its

desingularization arising from the blowing-up of a curvillinear length-6 base locus
with no four points on a line. Let C0 ⊂ X0 be a (Cohen–Macaulay) curve. Then
there exists a divisor C̄0 on X̃0 such that

(a) π |C̄0
: C̄0 → C0 is an isomorphism away from (−2)-curves;

(b) C̄0 has small intersection with fundamental cycles;

(c) pa(C̄0) = pa(C0).

Proof. Let C̃0 be the strict transform of C0 on X̃0. Then C̃0 has no (−2)-curves in its
support, so its intersection with each (−2)-curve on X̃0 is nonnegative. Therefore
by Proposition 5.5, we can adjust C̃0 by an effective sum of (−2)-curves to obtain
C̄0 having small intersection with fundamental cycles. This C̄0 satisfies items (a)
and (b).

For item (c), let M = −K be the divisor class (3; 1, 1, 1, 1, 1, 1) on X̃0. By
Proposition 5.21, for large enough n the linear system |L(C̄0)+ nM| is basepoint-
free and gives a birational map from X̃0 to a surface in projective space having
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isolated singularities. Fix such an n. Then the divisor class L(C̄0)+nM contains a
smooth curve D̄0. As M has 0 intersection with all (−2)-curves (remember that M

gave the map π , which collapses all (−2)-curves), D̄0 still has small intersection
with fundamental cycles. Therefore π takes D̄0 isomorphically onto its image D0

in X0, so certainly pa(D̄0) = pa(D0). Also note that D0 is linearly equivalent to
C0 + nH on X0, where H is the hyperplane class.

I claim that this forces pa(C̄0) = pa(C0). To see this, note that by Corollary
5.17 there is a curve C on a smooth cubic surface S with the same numerical type
as C̄0, since C̄0 has nonnegative intersection with (−2)-curves. The degree of C in
P3 is equal to the degree of C0, since in each case this is computed by taking the
intersection with (3; 1, 1, 1, 1, 1, 1). Further, pa(C)= pa(C̄0), since the arithmetic
genus is computed purely by the numerical type of a divisor on a X̃0 or on a smooth
cubic. Let D be a curve in the class of C +nH on S. Again by intersection theory,
pa(D) = pa(D̄0), which is equal to pa(D0) from the preceding paragraph, and
also D and D0 have the same degree. Therefore, the formula in Proposition 5.22
shows that pa(C0) = pa(C), and thus that pa(C0) = pa(C̄0). �

Theorem 5.24. Let X0 ⊂ P3 be the rational normal cubic surface associated to
the blow-up X̃0 of P2 at a set S0 of 6 points which is a union of towers with no
four points collinear, corresponding to the subscheme Z0 with complete ideal IZ0 .
Let Z ⊂ P2

T be a flat family over a (not necessarily complete) smooth curve T with
0 ∈ T such that Z t is general for t 6= 0 and (Z)0 = Z0. As in Proposition 4.11, this
construction gives rise to a family X̃ of smooth surfaces which maps into P3

T as a
family X of normal cubic surfaces with general member smooth and with special
member X0. Then (possibly after shrinking T ) any effective Weil divisor on X0 is
the limit of a flat family of curves on X t .

Proof. Let D0 ⊂ X0 be any effective Weil divisor. Let D̃0 be its strict transform
on X̃0 (that is, the sum of the appropriate multiples of the strict transforms of
the irreducible components of D0). By the last proposition, there exists a divisor
D̄0 on X̃0 which has small intersection with fundamental cycles, which has the
same arithmetic genus as C0, and such that π |D̄0

: D̄0 → D0 is generically an
isomorphism. Then by Proposition 5.20, D̄0 is the limit of a flat family of divisors
on X . The image of this family under π is a family of curves parametrized by
T . By [Hartshorne 1977, Theorem III.9.7], this image is a flat family it suffices
to check Hilbert polynomials. The degree of D0 is equal to the degrees of each
of the Dt by the intersection properties on the smooth surfaces X t . The arithmetic
genus is constant since pa(D0) = pa(D̄0). Therefore the Hilbert polynomials are
constant over the family, and D0 has been expressed as the limit of a flat family,
as desired. �
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