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We study the ideal structure of C∗-algebras arising from C∗-correspondenc-
es. We prove that gauge-invariant ideals of our C∗-algebras are parameter-
ized by certain pairs of ideals of original C∗-algebras. We show that our
C∗-algebras have a nice property that should be possessed by a general-
ization of crossed products. Applications to crossed products by Hilbert
C∗-bimodules and relative Cuntz–Pimsner algebras are also discussed.

Introduction

For a C∗-algebra A, a C∗-correspondence over A is a (right) Hilbert A-module
with a left action of A. Since endomorphisms (or families of endomorphisms)
of A define C∗-correspondences over A, we can regard C∗-correspondences as
(multivalued) generalizations of automorphisms or endomorphisms. This point of
view has the same philosophy as the idea that certain topological correspondences
are generalizations of continuous maps [Katsura 2004a, Section 1].

A crossed product by an automorphism is a C∗-algebra which has an original
C∗-algebra as a C∗-subalgebra, and reflects many aspects of the automorphism.
For example, the set of ideals of the crossed product that are invariant under the
dual action of the one-dimensional torus T corresponds bijectively to the set of
ideals of the original C∗-algebra that are invariant under the automorphism. As
C∗-correspondences are generalizations of endomorphisms, a natural problem is
to define “crossed products” by C∗-correspondences. There is plenty of evidence
that the construction given in [Katsura 2003a] for the C∗-algebra OX from a C∗-
correspondence X is the right one. One piece of evidence given there is that this
construction generalizes many constructions that were or were not considered as
generalizations of crossed products. We are going to explain another piece of
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evidence. For a C∗-correspondence X , we can naturally define a notion of repre-
sentations of X (Definition 2.7). Thus one C∗-algebra which is naturally associated
with a C∗-correspondence X is a C∗-algebra TX having a universal property with
respect to representations of X (Definition 3.1). This C∗-algebra TX is none other
than the (augmented) Cuntz–Toeplitz algebra defined in [Pimsner 1997]. When
a C∗-correspondence X is defined by an automorphism, the C∗-algebra TX is
isomorphic to the Toeplitz extension of the crossed product by the automorphism
defined in [Pimsner and Voiculescu 1980]. This C∗-algebra is too large to reflect
the information in X . In order to get crossed products, we have to go to a quotient
of TX . There are two ways to proceed. One is to define the covariance of repre-
sentations of a C∗-correspondence X , and define a crossed product by X so that it
has the universal property with respect to covariant representations of X . This kind
of method has been used in many papers, and we define our C∗-algebra OX along
this line (Definitions 3.4 and 3.5). The other way is to list up the properties of TX

that the crossed product should have, and define a crossed product by X to be the
smallest quotient of TX among the quotients satisfying these properties. For this
method, the following two properties seem to be reasonable:

(i) The original C∗-algebra is embedded into the crossed product,
(ii) There exists a “dual action” of T on the crossed product.

In this paper, we show that these two methods give the same C∗-algebra OX (Propo-
sition 7.14). This indicates that the C∗-algebra OX is the right one for a “crossed
product” by a C∗-correspondence X . We note that Cuntz–Pimsner algebras do not
satisfy the property (i) above when the left action of the C∗-correspondence is not
injective, and that the C∗-algebra OX is isomorphic to the Cuntz–Pimsner algebra
when the left action of the C∗-correspondence is injective.

The “dual action” of T on the C∗-algebra OX is called the gauge action. The main
purpose of this paper is to describe the all ideals of the C∗-algebra OX associated
with a C∗-correspondence X that are invariant under the gauge action. We define
invariance of ideals of A with respect to a C∗-correspondence X over A (Definition
4.8). Unlike the case of crossed products by automorphisms, we need extra ideals
of A other than invariant ideals to describe all gauge-invariant ideals of OX . Similar
facts were observed in many papers ([Bates et al. 2002; Drinen and Tomforde 2005;
Katsura 2003b; Katsura 2006a] to name a few) for C∗-algebras arising from graphs
or topological graphs. We introduce a notion of O-pairs, which are pairs consisting
of invariant ideals and extra ideals of A, and show that gauge-invariant ideals are
parameterized by O-pairs (Theorem 8.6).

This paper is organized as follows. In Sections 1 and 2, we fix notation and
gather results on Hilbert C∗-modules and C∗-correspondences. In Section 3, we
give the definition of our C∗-algebras OX constructed from C∗-correspondences X .
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In Sections 4 and 5, we introduce and study invariance of ideals, T -pairs and O-
pairs. These are related to representations of C∗-correspondences. In Section 6, we
construct a C∗-correspondence Xω from a T -pair ω, and in Section 7 we prove that
this C∗-correspondence Xω has a certain universal property. As a corollary, we give
an alternative definition of our C∗-algebras OX described above (Proposition 7.14).
In Section 8, we prove the main theorem (Theorem 8.6) which says that the set of all
gauge-invariant ideals of OX corresponds bijectively to the set of all O-pairs of X .
We also see that a quotient of OX by a gauge-invariant ideal falls into the class of our
C∗-algebras. In Section 9, we see that every gauge-invariant ideals have hereditary
and full C∗-subalgebras which are isomorphic to C∗-algebras associated with C∗-
correspondences. As a consequence of the study of crossed products by Hilbert
C∗-bimodules in Section 10, all gauge-invariant ideals themselves are shown to be
isomorphic to C∗-algebras associated with C∗-correspondences. In Section 11, we
apply our investigation to the relative Cuntz–Pimsner algebras defined in [Muhly
and Solel 1998].

We denote by N = {0, 1, 2, . . .} the set of natural numbers, and by C the set
of complex numbers. We denote by T the group consisting of complex numbers
whose absolute values are 1. We use a convention that γ (A, B) = {γ (a, b) ∈ D |

a ∈ A, b ∈ B} for a map γ : A × B → D such as inner products, multiplications or
representations. We denote by span{· · · } the closure of linear span of {· · · }. The
Hewitt–Cohen factorization theorem can be stated as follows:

Lemma. Let A be a C∗-algebra, X be a Banach space, and π : A → B(X)
a bounded homomorphism from A to the Banach algebra B(X) of the bounded
operators on X. Then we have π(A)X = span(π(A)X).

We use this result just to abbreviate the notation and arguments. Readers not
familiar with the theorem may use span(π(A)X) instead of π(A)X ; the two spaces
are actually the same (for a proof, see [Raeburn and Williams 1998, Proposition
2.33] for example).

1. Hilbert C∗-modules

Definition 1.1. Let A be a C∗-algebra. A (right) Hilbert A-module X is a linear
space with a right action of the C∗-algebra A and an A-valued inner product 〈 · , · 〉X

satisfying certain conditions such that X is complete with respect to the norm
defined by ‖ξ‖X = ‖〈ξ, ξ〉X‖

1/2 for ξ ∈ X .

For a precise definition of Hilbert C∗-modules, consult [Lance 1995]. We do
not assume that a Hilbert A-module X is full. Thus span〈X, X〉X can be a proper
ideal of A, where an ideal of a C∗-algebra always means a closed two-sided ideal,
except in the proof of Lemma 4.6.
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Definition 1.2. For a Hilbert A-module X , we denote by L(X) the C∗-algebra of
all adjointable operators on X . For ξ, η ∈ X , the operator θξ,η ∈ L(X) is defined
by θξ,η(ζ )= ξ〈η, ζ 〉X for ζ ∈ X . We define the ideal K(X) of L(X) by

K(X)= span{θξ,η ∈ L(X) | ξ, η ∈ X}.

We fix a C∗-algebra A and a Hilbert A-module X throughout this section.

Proposition 1.3. Let I be an ideal of A. For ξ ∈ X , the following are equivalent:

(i) ξ ∈ X I .
(ii) 〈η, ξ〉X ∈ I for all η ∈ X.

(iii) 〈ξ, ξ〉X ∈ I .
(iv) There exist η ∈ X and a positive element a ∈ I such that ξ = ηa.

Proof. Clearly (iv) ⇒ (i) ⇒ (ii) ⇒ (iii). For ξ ∈ X with 〈ξ, ξ〉X ∈ I , we can find
η ∈ X such that ξ = ηa for a = (〈ξ, ξ〉X )

1/3
∈ I ([Lance 1995, Lemma 4.4]). This

proves (iii) ⇒ (iv). �

Corollary 1.4. For an ideal I of A, X I is a closed linear subspace of X which is
invariant by the right action of A and by the left action of L(X).

Proof. Since the set of ξ ∈ X satisfying condition (ii) in Proposition 1.3 is a closed
linear space, we see that X I is a closed linear space (this also follows from the
Cohen factorization theorem). The rest of the statement is easy to verify. �

By this corollary, X I is a Hilbert A-submodule of X . We can and will consider
K(X I ) as a subalgebra of K(X) by

K(X I )= span{θξ,η ∈ K(X) | ξ, η ∈ X I } ⊂ K(X)

(see [Fowler et al. 2003, Lemma 2.6 (1)] for the proof). Note that X I is also
considered as a Hilbert I -module. For an ideal I of A, we denote by X I the
quotient space X/X I . Both of the natural quotient maps A → A/I and X → X I

are denoted by [ · ]I . The space X I has an A/I -valued inner product 〈 · , · 〉X I and
a right action of A/I so that〈

[ξ ]I , [ζ ]I
〉
X I

=
[
〈ξ, ζ 〉X

]
I , [ξ ]I [a]I = [ξa]I

for ξ, ζ ∈ X and a ∈ A. By Proposition 1.3, η ∈ X I satisfies 〈η, η〉X I = 0 only
when η = 0. Hence ‖η‖X I = ‖〈η, η〉X I ‖

1/2 defines a norm on X I .

Lemma 1.5. For η ∈ X I , there exists ξ ∈ X such that η= [ξ ]I and ‖η‖X I = ‖ξ‖X .
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Proof. Clearly [ · ]I is a norm-decreasing map. Thus it suffices to find ξ ∈ X such
that [ξ ]I = η and ‖ξ‖X ≤ ‖η‖X I for η ∈ X I . Set C = ‖η‖2

X I
= ‖〈η, η〉X I ‖. Let f, g

be functions on R+ = [0,∞) defined by

f (r)=

{
1 (0 ≤ r ≤ C)
√

C/r (r > C)
, g(r)= min{r,C}.

Then we have g(r)= r f (r)2 and g(r)≤ C for r ∈ R+. Take ξ0 ∈ X with η= [ξ0]I .
Set a = f (〈ξ0, ξ0〉X ) ∈ Ã and ξ = ξ0a ∈ X where Ã is the unitization of A. We
have 〈ξ, ξ〉X = a∗

〈ξ0, ξ0〉X a = g(〈ξ0, ξ0〉X ). Hence we get ‖ξ‖X ≤ C1/2
= ‖η‖X I .

Since f is 1 on [0,C], we have

[a]I = f ([〈ξ0, ξ0〉X ]I )= f (〈η, η〉X I )= 1.

Therefore we see that [ξ ]I = [ξ0]I [a]I = η. We are done. �

By this lemma, the norm ‖ · ‖X I of X I coincides with the quotient norm of
[ · ]I : X → X I (see [Fowler et al. 2003, Lemma 2.1] for another proof). Hence X I

is complete, and so it is a Hilbert A/I -module.
Since X I is closed under the action of L(X), we can define a map L(X) →

L(X I ), which is also denoted by [ · ]I , so that [S]I [ξ ]I = [Sξ ]I for S ∈ L(X) and
ξ ∈ X . By definition, S ∈ L(X) satisfies [S]I = 0 if and only if Sξ ∈ X I for all
ξ ∈ X , which is equivalent to the condition that 〈η, Sξ〉 ∈ I for all ξ, η ∈ X by
Proposition 1.3.

Lemma 1.6. For ξ, η ∈ X , we have [θξ,η]I = θ[ξ ]I ,[η]I . The restriction of the map
[ · ]I : L(X)→ L(X I ) to K(X) is a surjection onto K(X I ) whose kernel is K(X I ).

Proof. The first assertion is easily verified by the definition. This implies that the
restriction of the map [ · ]I to K(X) is a surjection onto K(X I ), and that K(X I ) is
in the kernel of [ · ]I . We will show that if k ∈ K(X) satisfies that [k]I = 0, then
k ∈ K(X I ).

There exists an approximate unit {uλ}λ∈3 of K(X) such that for each λ∈3, uλ is
a finite linear sum of elements in the form θξ,η. Take k ∈ K(X) with [k]I = 0. Since
we have k = lim kuλ, to prove k ∈ K(X I ) it suffices to show that kθξ,η ∈ K(X I )
for arbitrary ξ, η ∈ X . Since kξ ∈ X I , we can find ξ0 ∈ X and a positive element
a0 ∈ I such that kξ = ξ0a0 by Proposition 1.3. Then we have

kθξ,η = θkξ,η = θξ0a0,η = θξ0
√

a0,η
√

a0 ∈ K(X I ),

as needed. �

See also [Fowler et al. 2003, Lemma 2.6 (2), (3)]. Note that it often happens
that [S]I ∈ K(X I ) even if S /∈ K(X). This observation plays an important role
in our analysis after Section 5. Note also that though three maps [ · ]I : A →

A/I , [ · ]I : X → X I and [ · ]I : K(X) → K(X I ) are always surjective, the map
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[ · ]I : L(X)→ L(X I ) need not be surjective, because Tietze’s extension theorem
fails in general.

Take two ideals I and I ′ of A such that I ⊂ I ′. Then I ′/I is an ideal of A/I
and (A/I )/(I ′/I ) 3

[
[a]I

]
I ′/I 7→ [a]I ′ ∈ A/I ′ gives a well-defined isomorphism.

By this isomorphism, we will identify (A/I )/(I ′/I ) with A/I ′. Thus the quotient
map [ · ]I ′ : A → A/I ′ coincides with the composition of [ · ]I : A → A/I and
[ · ]I ′/I : A/I → A/I ′. Similarly we will identify (X I )I ′/I with X I ′ so that [ · ]I ′ =

[ · ]I ′/I ◦ [ · ]I holds for both X → X I ′ and L(X) → L(X I ′). It is easy to see the
following.

Lemma 1.7. We have (X I ′)I = X I (I ′/I ) in X I .

Now take two ideals I1 and I2 of A. It is well-known that the ideal I1 ∩ I2

coincides with I1 I2, and that I1+ I2 is an ideal of A. It is easy to see that the natural
map I1/(I1∩ I2)→ (I1+ I2)/I2 is an isomorphism. The pull-back C∗-algebra B of
the two quotient maps [ · ](I1+I2)/I1 : A/I1 → A/(I1+ I2) and [ · ](I1+I2)/I2 : A/I2 →

A/(I1 + I2) is defined by

B =
{
(b1, b2) ∈ A/I1 ⊕ A/I2

∣∣ [b1](I1+I2)/I1 = [b2](I1+I2)/I2 ∈ A/(I1 + I2)
}
.

It is not difficult to see the following (see the proof of Proposition 1.10).

Lemma 1.8. The map

Π : A/(I1 ∩ I2) 3 b 7→
(
[b]I1/(I1∩I2), [b]I2/(I1∩I2)

)
∈ B

is an isomorphism.

We will show analogous statements for Hilbert modules and sets of operators
on them. Define a linear space Y by

Y =
{
(η1, η2) ∈ X I1 ⊕ X I2

∣∣ [η1](I1+I2)/I1 = [η2](I1+I2)/I2 ∈ X I1+I2

}
.

We define a B-valued inner product on Y by〈
(η1, η2), (η

′

1, η
′

2)
〉
Y =

(
〈η1, η

′

1〉X I1
, 〈η2, η

′

2〉X I2

)
∈ B,

for (η1, η2), (η
′

1, η
′

2) ∈ Y . Clearly Y is complete with respect to the norm defined
by the inner product. If we define a right action of B on Y by

(η1, η2)(b1, b2)= (η1b1, η2b2) ∈ Y

for (η1, η2) ∈ Y, (b1, b2) ∈ B, then we can easily see that Y is a Hilbert B-module.

Lemma 1.9. The restriction of the quotient map [ · ]I2/(I1∩I2) : X I1∩I2 → X I2 to
X I1∩I2

(
I1/(I1 ∩ I2)

)
is a bijection onto X I2

(
(I1 + I2)/I2

)
.
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Proof. By Lemma 1.7, we have X I1∩I2

(
I1/(I1 ∩ I2)

)
= (X I1)I1∩I2 . It is easy to see

that the surjection [ · ]I2/(I1∩I2) : (X I1)I1∩I2 → (X I1)I2 is injective. It is also easy to
see that (X I1)I2 =

(
X (I1 + I2)

)
I2

. We have
(
X (I1 + I2)

)
I2

= X I2

(
(I1 + I2)/I2

)
by

Lemma 1.7. This completes the proof. �

Proposition 1.10. By Π in Lemma 1.8, we can consider X I1∩I2 as a Hilbert B-
module. Then the map

T : X I1∩I2 3 η 7→
(
[η]I1/(I1∩I2), [η]I2/(I1∩I2)

)
∈ Y

is an isomorphism of Hilbert B-modules.

Proof. Clearly T preserves inner products and right actions. This implies that
T is isometric. It remains to show that T is surjective. Take (η1, η2) ∈ Y . Since
[ · ]I1/(I1∩I2) : X I1∩I2 → X I1 is surjective, we can find η′

∈ X I1∩I2 with [η′
]I1/(I1∩I2)=

η1. Since [η2](I1+I2)/I2 = [η1](I1+I2)/I1 = [η′
](I1+I2)/(I1∩I2), we have

η2 − [η′
]I2/(I1∩I2) ∈ ker([ · ](I1+I2)/I2)= X I2

(
(I1 + I2)/I2

)
.

By Lemma 1.9, we can find η′′
∈ X I1∩I2

(
I1/(I1 ∩ I2)

)
with

[η′′
]I2/(I1∩I2) = η2 − [η′

]I2/(I1∩I2).

Set η = η′
+ η′′

∈ X I1∩I2 . We see that

[η]I1/(I1∩I2) = [η′
]I1/(I1∩I2) + 0 = η1,

[η]I2/(I1∩I2) = [η′
]I2/(I1∩I2) + [η′′

]I2/(I1∩I2) = η2.

Therefore T (η)= (η1, η2). Thus T is surjective. �

Proposition 1.11. Define a C∗-algebra M by

M =
{
(S1, S2) ∈ L(X I1)⊕ L(X I2)

∣∣ [S1](I1+I2)/I1 = [S2](I1+I2)/I2 ∈ L(X I1+I2)
}
.

Then the map

Ψ : L(X I1∩I2) 3 S 7→
(
[S]I1/(I1∩I2), [S]I2/(I1∩I2)

)
∈ M

is an isomorphism, and its restriction to K(X I1∩I2) is an isomorphism onto the
C∗-subalgebra K of M defined by

K =
{
(k1, k2) ∈ K(X I1)⊕ K(X I2)

∣∣ [k1](I1+I2)/I1 = [k2](I1+I2)/I2 ∈ K(X I1+I2)
}
.

Proof. Take (S1, S2) ∈ M and define Ψ ′(S1, S2) ∈ L(X I1∩I2). For ξ ∈ X I1∩I2 , we
have

[S1[ξ ]I1/(I1∩I2)](I1+I2)/I1 = [S2[ξ ]I2/(I1∩I2)](I1+I2)/I2 .

Hence by Proposition 1.10, there exists a unique element η ∈ X I1∩I2 with

[η]I1/(I1∩I2) = S1[ξ ]I1/(I1∩I2), and [η]I2/(I1∩I2) = S2[ξ ]I2/(I1∩I2).
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We define Ψ ′(S1, S2) : X I1∩I2 → X I1∩I2 by Ψ ′(S1, S2)ξ = η where η is the unique
element satisfying the two equations above. Then, using Lemma 1.8, we see that

〈Ψ ′(S1, S2)ξ , ξ
′
〉X I1∩I2

= 〈ξ, Ψ ′(S∗

1 , S∗

2 )ξ
′
〉X I1∩I2

for every ξ, ξ ′
∈ X I1∩I2 . Thus Ψ ′(S1, S2) ∈ L(X I1∩I2) for all (S1, S2) ∈ M. It is

easy to see that Ψ ′
: M → L(X I1∩I2) is a ∗-homomorphism, and gives the inverse

of Ψ . Hence Ψ : L(X I1∩I2)→ M is an isomorphism.
Clearly the restriction of Ψ on K(X I1∩I2) is an injection into K. We will show

that this is surjective. By Lemma 1.9, we can see that the restriction of the map
[ · ]I2/(I1∩I2) : K(X I1∩I2)→ K(X I2) to

ker([ · ]I1/(I1∩I2))= K
(
X I1∩I2

(
I1/(I1 ∩ I2)

))
is a bijection onto

ker([ · ](I1+I2)/I2)= K
(
X I2

(
(I1 + I2)/I2

))
.

Take (k1, k2) ∈ K. Since the map [ · ]I1/(I1∩I2) : K(X I1∩I2)→ K(X I1) is surjective,
we can find k ′

∈ K(X I1∩I2) with [k ′
]I1/(I1∩I2) = k1. Then we see that

k2 − [k ′
]I2/(I1∩I2) ∈ ker([ · ](I1+I2)/I2).

Thus there exists a unique element

k ′′
∈ ker([ · ]I1/(I1∩I2))⊂ K(X I1∩I2)

with [k ′′
]I2/(I1∩I2) = k2 − [k ′

]I2/(I1∩I2). Now it is easy to see that k = k ′
+ k ′′

∈

K(X I1∩I2) satisfies Ψ (k)= (k1, k2). We are done. �

Corollary 1.12. If S ∈ L(X I1∩I2) satisfies

[S]I1/(I1∩I2) ∈ K(X I1), [S]I2/(I1∩I2) ∈ K(X I2),

then S ∈ K(X I1∩I2).

Proof. Clear by Proposition 1.11. �

2. C∗-correspondences and representations

Definition 2.1. For a C∗-algebra A, we say that X is a C∗-correspondence over A
when X is a Hilbert A-module and a ∗-homomorphism ϕX : A → L(X) is given.

We refer to ϕX as the left action of a C∗-correspondence X . C∗-correspondences
can be considered as generalizations of automorphisms or endomorphisms. In fact,
we can associate a C∗-correspondence Xϕ with each endomorphism ϕ as follows.
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Definition 2.2. Let A be a C∗-algebra and ϕ : A → A be an endomorphism. We
define a C∗-correspondence Xϕ such that it is isomorphic to A as Banach spaces,
its inner product is defined by 〈ξ, η〉X = ξ∗η, right action is multiplication and left
action is given by ϕXϕ (a)ξ = ϕ(a)ξ . We denote X idA by A, and call it the identity
correspondence over A.

Note that the left action ϕA of the identity correspondence A gives an isomor-
phism from A to K(A).

Definition 2.3. A morphism from a C∗-correspondence X over a C∗-algebra A
to a C∗-correspondence Y over a C∗-algebra B is a pair (Π, T ) consisting of a
∗-homomorphism Π : A → B and a linear map T : X → Y satisfying

(i)
〈
T (ξ), T (η)

〉
Y =Π

(
〈ξ, η〉X

)
for ξ, η ∈ X ,

(ii) ϕY
(
Π(a)

)
T (ξ)= T

(
ϕX (a)ξ

)
for a ∈ A, ξ ∈ X .

A morphism (Π, T ) is said to be injective if a ∗-homomorphism Π is injective.

A morphism is called a semicovariant homomorphism in [Schweizer 2001].
For a morphism (Π, T ) from X to Y , we can see that T (ξ)Π(a) = T (ξa) and
‖T (ξ)‖Y ≤ ‖ξ‖X for a ∈ A and ξ ∈ X by the same argument as in [Katsura 2004b,
Section 2]. We also see that T is isometric for an injective morphism (Π, T ).

Definition 2.4. For a morphism (Π, T ) from a C∗-correspondence X over A to a
C∗-correspondence Y over B, we define a ∗-homomorphism ΨT : K(X)→ K(Y )
by ΨT (θξ,η)= θT (ξ),T (η) for ξ, η ∈ X .

For the well-definedness of a ∗-homomorphism ΨT , see, for example, [Kajiwara
et al. 1998, Lemma 2.2]. Note that ΨT is injective for an injective morphism
(Π, T ). The following two lemmas are easily verified.

Lemma 2.5. For a morphism (Π, T ) from a C∗-correspondence X over A to
a C∗-correspondence Y over B, we have ϕY (Π(a))ΨT (k) = ΨT (ϕX (a)k) and
ΨT (k)T (ξ)= T (kξ) for a ∈ A, ξ ∈ X and k ∈ K(X).

Lemma 2.6. Let X , Y , Z be C∗-correspondences, and (Π1, T1), (Π2, T2) be
morphisms from X to Y and from Y to Z , respectively. Then its composition
(Π2 ◦Π1, T2 ◦ T1) is a morphism from X to Z , and we have ΨT2◦T1 = ΨT2 ◦ΨT1 .

Definition 2.7. A representation of a C∗-correspondence X over A on a C∗-algebra
B is a pair (π, t) consisting of a ∗-homomorphism π : A → B and a linear map
t : X → B satisfying

(i) t (ξ)∗t (η)= π
(
〈ξ, η〉X

)
for ξ, η ∈ X ,

(ii) π(a)t (ξ)= t
(
ϕX (a)ξ

)
for a ∈ A, ξ ∈ X .

We denote by C∗(π, t) the C∗-algebra generated by the images of π and t in B.
We define a ∗-homomorphism ψt : K(X) → C∗(π, t) by ψt(θξ,η) = t (ξ)t (η)∗ ∈

C∗(π, t) for ξ, η ∈ X .
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Representations of a C∗-correspondence X on a C∗-algebra B are precisely the
morphisms from X to the identity correspondence over B, and we have ϕB◦ψt =Ψt .
Note that we get π(a)ψt(k) = ψt(ϕX (a)k) and ψt(k)t (ξ) = t (kξ) for k ∈ K(X),
a ∈ A and ξ ∈ X .

Definition 2.8. A representation (π, t) of X is said to admit a gauge action if for
each z ∈ T, there exists a ∗-homomorphism βz : C∗(π, t) → C∗(π, t) such that
βz(π(a))= π(a) and βz(t (ξ))= zt (ξ) for all a ∈ A and ξ ∈ X .

If it exists, such a ∗-homomorphism βz is unique and β : T → Aut(C∗(π, t)) is
a strongly continuous homomorphism.

3. C∗-algebras associated with C∗-correspondences

In this section, we review the constructions of the C∗-algebras TX and OX from a
C∗-correspondence X . These C∗-algebras were introduced by Pimsner in [Pimsner
1997], and modified in [Katsura 2003a].

Definition 3.1. For a C∗-correspondence X over a C∗-algebra A, we denote by
TX the C∗-algebra generated by the universal representation.

The universal representation can be obtained by taking a direct sum of suffi-
ciently many representations. By universality, we have a surjection TX →C∗(π, t)
for every representation (π, t) of X . The C∗-algebra TX is too large to reflect the
informations of X , and so we will take a certain quotient of TX to get the nice
C∗-algebra OX .

Definition 3.2. For an ideal I of a C∗-algebra A, we define I ⊥
⊂ A by

I ⊥
= {a ∈ A | ab = 0 for all b ∈ I }.

Note that I ⊥ is the largest ideal of A satisfying I ∩ I ⊥
= 0.

Definition 3.3. For a C∗-correspondence X over A, we define an ideal JX of A by

JX = ϕ−1
X

(
K(X)

)
∩

(
kerϕX

)⊥
.

The ideal JX is the largest ideal to which the restriction of ϕX is an injection
into K(X).

Definition 3.4. A representation (π, t) of X is said to be covariant if we have
π(a)= ψt(ϕX (a)) for all a ∈ JX .

Definition 3.5. For a C∗-correspondence X over a C∗-algebra A, the C∗-alge-
bra OX is defined by OX = C∗(πX , tX ) where (πX , tX ) is the universal covariant
representation of X .
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By universality, for any covariant representation (π, t) of a C∗-correspondence
X , there exists a ∗-homomorphism ρ(π,t) : OX → C∗(π, t) such that π = ρ(π,t)◦πX

and t = ρ(π,t) ◦ tX . Again by universality, the universal covariant representation
(πX , tX ) admits a gauge action. We denote it by γ : T y OX . When we consider
OX as a generalization of crossed products by automorphisms, the gauge action γ is
regarded as the dual action of T. If a covariant representation (π, t) admits a gauge
action β, then we have βz ◦ ρ(π,t) = ρ(π,t) ◦ γz for each z ∈ T. In [Katsura 2004b,
Proposition 4.11], we saw that the universal covariant representation (πX , tX ) is
injective. The following gauge-invariant uniqueness theorem says that two condi-
tions, admitting a gauge action and being injective, characterize the universal one
(πX , tX ) among all covariant representations.

Theorem 3.6 [Katsura 2004b, Theorem 6.4]. For a covariant representation (π, t)
of a C∗-correspondence X , the map ρ(π,t) : OX → C∗(π, t) is an isomorphism if
and only if (π, t) is injective and admits a gauge action.

In Proposition 7.14, we see that the universal covariant representation (πX , tX )

is the smallest one among injective representations admitting gauge actions.

Remark 3.7. A morphism (Π, T ) from a C∗-correspondence X to a C∗-corre-
spondence Y gives us a ∗-homomorphism TX → TY . This also gives a ∗-ho-
momorphism OX → OY when the morphism (Π, T ) is covariant, that is, we have
Π(a) ∈ JY and ϕY (Π(a))= ΨT (ϕX (a)) for all a ∈ JX . We do not use these facts
explicitly.

4. Invariant ideals

In this section, we introduce the notion of invariant ideals with respect to C∗-
correspondences. Let us take a C∗-correspondence X over a C∗-algebra A, and fix
them until the end of Section 9.

Definition 4.1. For an ideal I of A, we define X (I ), X−1(I )⊂ A by

X (I )= span
{
〈η, ϕX (a)ξ〉 ∈ A

∣∣ a ∈ I, ξ, η ∈ X
}
,

X−1(I )= {a ∈ A | 〈η, ϕX (a)ξ〉X ∈ I for all ξ, η ∈ X}.

Clearly X (I ) is an ideal of A. We also see that X−1(I ) is an ideal because it is
the kernel of the composition of ϕX and the map [ · ]I : L(X)→ L(X I ). For a C∗-
correspondence Xϕ defined from an endomorphism ϕ : A → A, we see that Xϕ(I )
is the ideal generated by ϕ(I ), and X−1

ϕ (I )= ϕ−1(I ) for an ideal I of A. It is easy
to see that we have X (I1)⊂ X (I2) and X−1(I1)⊂ X−1(I2) for two ideals I1, I2 of
A with I1 ⊂ I2. For an ideal I , we have X (X−1(I ))⊂ I and X−1(X (I ))⊃ I . These
inclusions are proper in general, because we always have X (I )⊂ span〈X, X〉X and
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X−1(I )⊃ kerϕX . The inclusions

X (X−1(I ))⊂ I ∩ span〈X, X〉X , X−1(X (I ))⊃ I + kerϕX

still can be proper as we will see in Examples 4.3 and 4.12.

Lemma 4.2. For two ideals I1, I2 of A, we have

X (I1 ∩ I2)⊂ X (I1)∩ X (I2), X−1(I1 ∩ I2)= X−1(I1)∩ X−1(I2),

X (I1 + I2)= X (I1)+ X (I2), and X−1(I1 + I2)⊃ X−1(I1)+ X−1(I2).

Proof. Clear by the definitions. �

Both inclusions in Lemma 4.2 can be proper in general (see Examples 4.3 and
4.12).

Example 4.3. Let A be C ⊕ C ⊕ M2(C), and ϕ : A → A be an endomorphism
defined by ϕ

(
(λ, µ, T )

)
= (0, 0, diag{λ,µ}). This endomorphism gives us a C∗-

correspondence X = Xϕ over A. Let us define three ideals I1, I2 and I3 of A by
I1 =C⊕0⊕0, I2 =0⊕C⊕0 and I3 =0⊕0⊕M2(C). We see that kerϕX =kerϕ= I3

and ϕ−1
X (K(X)) = A. Hence we get JX = I1 + I2. We have X (I1) = X (I2) = I3.

However clearly we have X (I1 ∩ I2) = X (0) = 0. This gives an example of a
proper inclusion X (I1 ∩ I2) ⊂ X (I1) ∩ X (I2). Since X−1(I3) = A, we have two
proper inclusions X−1(X (Ii )) ⊃ Ii + kerϕX for i = 1, 2. We see that there exist
no nontrivial invariant ideals of A (see Definition 4.8), and the C∗-algebra OX is
isomorphic to a simple C∗-algebra M6(C).

For an increasing family {In}n∈N of ideals of a C∗-algebra D, we denote by
limn→∞ In the ideal of D defined by

lim
n→∞

In =

⋃
n∈N

In.

Proposition 4.4. Let {In}n∈N be an increasing family of ideals of A. Then we have
X (limn→∞ In)= limn→∞ X (In).

Proof. Clear by the definition of X (·). �

The analogous statement of Proposition 4.4 for X−1 is not valid as the next
example shows.

Example 4.5. Let A = C((0, 1]). We define a C∗-correspondence X over A which
is isomorphic to A as Hilbert A-modules and its left action ϕX : A → L(X) is
defined by ϕX ( f ) = f (1) idX for f ∈ A. For each n ∈ N, we define an ideal
In of A by In = C((2−n, 1]). We have limn→∞ In = A. It is not difficult to see
that X−1(In) = C((0, 1)) for every n ∈ N. Hence we get limn→∞ X−1(In) =

C((0, 1)). However, we have X−1(limn→∞ In) = X−1(A) = A. The C∗-algebra
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OX is isomorphic to the universal C∗-algebra generated by a contractive scaling
element (see [Katsura 2006b]).

Though we do not have X−1(limn→∞ In)= limn→∞ X−1(In) in general, we can
prove Proposition 4.7, which suffices for the further investigation. For the proof of
Proposition 4.7, we need the following general fact.

Lemma 4.6. Let D be a C∗-algebra, and {In}n∈N be an increasing family of ideals
of D. For each C∗-subalgebra B of D, we have B∩(limn→∞ In)= limn→∞(B∩In).

Proof. Set I∞ = limn→∞ In . Clearly we have B ∩ I∞ ⊃ limn→∞(B ∩ In). Take a
positive element x ∈ B ∩ I∞. For ε > 0, let fε : R+ → R+ be a continuous function
defined by fε(t)=max{0, t−ε}. Then we have ‖x− fε(x)‖≤ε. Since

⋃
n∈N In is a

dense ideal in I∞, we have fε(x)∈
⋃

n∈N In (see [Pedersen 1979, Theorem 5.6.1]).
Thus x is approximated by elements fε(x) ∈ B ∩

⋃
n∈N In =

⋃
n∈N(B ∩ In). This

shows that x ∈ limn→∞(B∩ In). Therefore B∩(limn→∞ In)= limn→∞(B∩ In). �

Note that Lemma 4.6 is not valid when In’s are just C∗-subalgebras.

Proposition 4.7. Let {In}n∈N be an increasing family of ideals of A. For each ideal
J of A with ϕX (J )⊂K(X), we have J ∩X−1(limn→∞ In)= limn→∞(J ∩X−1(In)).

Proof. Set I∞ = limn→∞ In . First note that we have

J ∩ X−1(I )= {a ∈ J | ϕX (a) ∈ K(X I )}

for an ideal I of A by Lemma 1.6. Take a ∈ J ∩ X−1(I∞) and ε > 0. It is
easy to see that K(X I∞) = limn→∞ K(X In). By Lemma 4.6, we have ϕX (J ) ∩
K(X I∞) = limn→∞(ϕX (J )∩ K(X In)). Since ϕX (a) ∈ ϕX (J )∩ K(X I∞), we can
find n ∈ N and k ∈ ϕX (J ) ∩ K(X In) such that ‖ϕX (a)− k‖ < ε. Then we can
find x ∈ J with ‖x‖ < ε and ϕX (x) = ϕX (a)− k. Set j = a − x ∈ J . We have
ϕX ( j)= k ∈ K(X In). Thus we get j ∈ J ∩ X−1(In) and ‖a − j‖<ε. Therefore we
get J ∩ X−1(I∞)⊂ limn→∞(J ∩ X−1(In)). The converse inclusion is obvious. �

Definition 4.8. An ideal I of A is said to be positively invariant if X (I ) ⊂ I ,
negatively invariant if JX ∩ X−1(I ) ⊂ I , and invariant if I is both positively and
negatively invariant.

In [Kajiwara et al. 1998; Fowler et al. 2003; Schweizer 2001], a positively in-
variant ideal is called X -invariant. It is clear that I is positively invariant if and
only if I ⊂ X−1(I ). It is also equivalent to ϕX (I )X ⊂ X I by Proposition 1.3.
Clearly A is an invariant ideal. We also see that 0 is invariant because X (0) = 0
and JX ∩ X−1(0)= JX ∩ kerϕX = 0.

Proposition 4.9. Let {In}n∈N be an increasing family of ideals of A. If In is posi-
tively invariant (negatively invariant, invariant), then limn→∞ In is also.
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Proof. Clear by Proposition 4.4 and Proposition 4.7. �

Proposition 4.10. If two ideals I1, I2 are positively invariant, then their intersec-
tion I1 ∩ I2 is also positively invariant. The same is true for negative invariance.

Proof. Clear by Lemma 4.2. �

Corollary 4.11. The intersection of two invariant ideals is invariant.

By Lemma 4.2, we see that if two ideals I1, I2 are positively invariant, then so
is their sum I1 + I2. However, the sum of two negatively invariant ideals need not
be negatively invariant. Moreover, the sum of two invariant ideals can fail to be
negatively invariant as we will see in the next example.

Example 4.12. Let A be C⊕C⊕C, and X be C⊕C which is a Hilbert A-module by
the operations 〈(ξ1, η1), (ξ2, η2)〉X =(ξ1ξ2, η1η2, 0) and (ξ, η)(λ, µ, ν)=(ξλ, ηµ).
We define a left action ϕX : A → L(X) by ϕX ((λ, µ, ν))= ν idX . We define three
ideals I1, I2 and I3 of A by I1 = C ⊕ 0 ⊕ 0, I2 = 0 ⊕ C ⊕ 0 and I3 = 0 ⊕ 0 ⊕ C.
We have JX = I3. An easy computation shows that X (I1) = X (I2) = 0 and
X−1(I1) = X−1(I2) = I1 + I2. Thus both I1 and I2 are invariant ideals. However
we have X (I1 + I2)= 0 and X−1(I1 + I2)= A. Thus I1 + I2 is positively invariant,
but not negatively invariant. We also have proper inclusions

A = X−1(I1 + I2) ⊃ X−1(I1)+ X−1(I2) = I1 + I2

0 = X (X−1(Ii )) ⊂ Ii ∩ span〈X, X〉X = Ii (i = 1, 2).

We have OX ∼= M2(C)⊕ M2(C), and the two nontrivial invariant ideals I1, I2 cor-
respond to the two nontrivial ideals of OX .

Definition 4.13. Let us take an ideal I of A. We define ideals Xn(I ) for n ∈ N by
X0(I )= I and Xn+1(I )= X (Xn(I )). We also define ideals X−n(I ) for n ∈ N by
X0(I )= I , X−1(I )= I + JX ∩ X−1(I ) and X−(n+1)(I )= X−1(X−n(I )) for n ≥ 1.

Note that we have I ⊂ X−1(I ), hence X−n(I )⊂ X−(n+1)(I ) for every n ∈ N

Definition 4.14. For an ideal I of A, we define ideals X∞(I ), X−∞(I ) and X∞
−∞
(I )

of A by

X∞(I )=

∞∑
n=0

Xn(I )= lim
k→∞

k∑
n=0

Xn(I ), X−∞(I )= lim
n→∞

X−n(I ),

and X∞

−∞
(I )= X−∞(X∞(I )).

Lemma 4.15. If an ideal I is positively invariant, so are X−n(I ) for n ∈ N ∪ {∞}.

Proof. Let us take a positively invariant ideal I . From

X−1(I )= I + JX ∩ X−1(I )⊂ X−1(I )⊂ X−1(X−1(I ))
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we see that X−1(I ) is positively invariant. By using this fact, we can prove induc-
tively that X−n(I ) is positively invariant for all n ∈N. Finally X−∞(I ) is positively
invariant by Proposition 4.9. �

Proposition 4.16. For an ideal I of A, the ideal X∞(I ) (X−∞(I ), X∞
−∞
(I )) is the

smallest positively invariant (negatively invariant, invariant) ideal containing I .

Proof. For each k ∈ N, we have

X
( k∑

n=0

Xn(I )
)

=

k∑
n=0

Xn+1(I )⊂ X∞(I ).

Hence by Proposition 4.4, we have X (X∞(I ))⊂ X∞(I ). Thus X∞(I ) is positively
invariant. If I ′ is a positively invariant ideal containing I , then we can prove
inductively Xn(I )⊂ I ′ for all n ∈ N. Hence we have X∞(I )⊂ I ′. Thus X∞(I ) is
the smallest positively invariant ideal containing I .

For each n ∈ N, we have JX ∩ X−1(X−n(I )) ⊂ X−(n+1)(I ) ⊂ X−∞(I ). Hence
by Proposition 4.7, we have JX ∩ X−1(X−∞(I )) ⊂ X−∞(I ). Thus X−∞(I ) is
negatively invariant. If I ′ is a negatively invariant ideal containing I , then we can
prove inductively X−n(I ) ⊂ I ′ for all n ∈ N. Hence we have X−∞(I ) ⊂ I ′. Thus
X−∞(I ) is the smallest negatively invariant ideal containing I .

Combining the above argument with Lemma 4.15, we see that X∞
−∞
(I ) is the

smallest invariant ideal containing I . �

5. T -pairs and O-pairs

In this section, we introduce the notion of T -pairs and O-pairs of the C∗-corre-
spondence X over A. These are related to representations of X .

Definition 5.1. For an ideal I of A, we define an ideal J (I ) of A by

J (I )=
{
a ∈ A

∣∣ [ϕX (a)]I ∈ K(X I ), aX−1(I )⊂ I
}
.

For a positively invariant ideal I , we can define a map ϕX I : A/I → L(X I ) so
that ϕX I ([a]I )=

[
ϕX (a)

]
I because a ∈ I implies

[
ϕX (a)

]
I = 0. Thus in this case,

X I is a C∗-correspondence over A/I . It is clear that the pair ([ · ]I , [ · ]I ) of the
quotient maps A → A/I and X → X I is a morphism from X to X I .

Lemma 5.2. For a positively invariant ideal I , we have X−1(I )=[ · ]I
−1(kerϕX I ),

J (I )= [ · ]I
−1(JX I ) and X−1(I )∩ J (I )= I .

Proof. We have

X−1(I )= ker([ · ]I ◦ϕX )= ker(ϕX I ◦ [ · ]I )= [ · ]I
−1(kerϕX I ).
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We also see that [ϕX (a)]I ∈ K(X I ) if and only if ϕX I ([a]I ) ∈ K(X I ). Since
X−1(I ) = [ · ]I

−1(kerϕX I ), the condition aX−1(I ) ⊂ I for a ∈ A is equivalent
to [a]I kerϕX I = 0. Hence a ∈ J (I ) if and only if

[a]I ∈ ϕ−1
X I

(
K(X I )

)
∩

(
kerϕX I

)⊥
= JX I .

Thus we get J (I )= [ · ]I
−1(JX I ). Finally,

X−1(I )∩ J (I )= [ · ]I
−1(kerϕX I ∩ JX I )= [ · ]I

−1(0)= I. �

Note that Lemma 5.2 implies that X−1(I )/I = kerϕX I and J (I )/I = JX I for a
positively invariant ideal I . Note also that X−1(0)= kerϕX and J (0)= JX .

Proposition 5.3. An ideal I is negatively invariant if and only if JX ⊂ J (I ).

Proof. For a ∈ JX , we have ϕX (a) ∈ K(X). Hence [ϕX (a)]I ∈ K(X I ). Thus
JX ⊂ J (I ) if and only if JX X−1(I )⊂ I . This is equivalent to the negative invariance
of I because JX X−1(I )= JX ∩ X−1(I ). �

Note that I1 ⊂ I2 need not imply J (I1) ⊂ J (I2) in general as the following
example shows.

Example 5.4 (compare Example 4.12). Let A ∼= C3 be the C∗-algebra generated
by three mutually orthogonal projections p0, p1 and p2. Let X be the `∞-direct
sum of two Hilbert spaces C, whose base is denoted by s0, and `2(N), whose
base is denoted by {sk}

∞

k=1. We define an inner product 〈·, ·〉X : X × X → A by
〈s0, s0〉X = p0, 〈sk, sk〉X = p1 for k = 1, 2, . . ., and 〈sk, sl〉X = 0 for k 6= l. The
right action of A on X is defined by

sk pi =


s0 for k = i = 0,
sk for k ≥ 1, i = 1,
0 otherwise.

Then X becomes a Hilbert A-module. We define a left action ϕX : A → L(X) by
ϕX (p0) = ϕX (p1) = 0, and ϕX (p2) = idX . Now we get a C∗-correspondence X
over A. This C∗-correspondence is defined from the following graph;

• v1

e1

��
···

��
v0 •

e0
// • v2

(see [Katsura 2004a]). Let us define ideals of A by

I0 = Cp0, I1 = Cp1, I01 = Cp0 + Cp1 and I12 = Cp1 + Cp2.
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Since kerϕX = ϕ−1
X (K(X))= I01, we have JX = 0. Hence all ideals are negatively

invariant. Since X (I1)= X (I01)= 0, both I1 and I01 are invariant. By straightfor-
ward computation, we get J (I1) = I12 and J (I01) = I01. Thus two ideals I1, I01

satisfy that I1 ⊂ I01 and J (I1) 6⊂ J (I01). We can see that OX is isomorphic to
the direct sum of M2(C) and the unitization K̃ of the C∗-algebra K of compact
operators on `2(N). There exist six O-pairs (see Definition 5.12) which correspond
to six ideals of OX ∼= M2(C)⊕ K̃ ;

(0, 0) ⊂ (I1, I1) ⊂ (I1, I12)

∩ ∩ ∩

(I0, I0) ⊂ (I01, I01) ⊂ (A, A)
!

0 ⊂ K ⊂ K̃
∩ ∩ ∩

M2(C) ⊂ M2(C)⊕ K ⊂ OX .

This example also shows that J (I1∩ I2)⊂ J (I1)∩ J (I2) does not hold in general
for two ideals I1, I2 of A. However, the converse inclusion J (I1)∩ J (I2)⊂ J (I1 ∩

I2) always holds.

Proposition 5.5. For two ideals I1, I2 of A, we have J (I1)∩ J (I2)⊂ J (I1 ∩ I2).

Proof. Take a ∈ J (I1)∩ J (I2). Since [ϕX (a)]I1 ∈ K(X I1) and [ϕX (a)]I2 ∈ K(X I2),
we have [ϕX (a)]I1∩I2 ∈K(X I1∩I2) by Corollary 1.12. We get aX−1(I1∩ I2)⊂ I1∩ I2

from

a X−1(I1 ∩ I2)⊂ aX−1(I1)⊂ I1, aX−1(I1 ∩ I2)⊂ aX−1(I2)⊂ I2.

Hence a ∈ J (I1 ∩ I2). Thus we have J (I1)∩ J (I2)⊂ J (I1 ∩ I2). �

Definition 5.6. Let X be a C∗-correspondence over a C∗-algebra A. A T -pair of
X is a pair ω = (I, I ′) of ideals I, I ′ of A such that I is positively invariant and
I ⊂ I ′

⊂ J (I ).

Definition 5.7. Let ω1 = (I1, I ′

1) and ω2 = (I2, I ′

2) be T -pairs. We write ω1 ⊂ ω2

if I1 ⊂ I2 and I ′

1 ⊂ I ′

2. We denote by ω1 ∩ω2 the pair (I1 ∩ I2, I ′

1 ∩ I ′

2).

Proposition 5.8. For two T -pairs ω1 = (I1, I ′

1), ω2 = (I2, I ′

2), their intersection
ω1 ∩ω2 = (I1 ∩ I2, I ′

1 ∩ I ′

2) is a T -pair.

Proof. By Proposition 4.10, I1 ∩ I2 is a positively invariant ideal. By Proposition
5.5, we have

I1 ∩ I2 ⊂ I ′

1 ∩ I ′

2 ⊂ J (I1)∩ J (I2)⊂ J (I1 ∩ I2).

Hence ω1 ∩ω2 is a T -pair. �

T -pairs arise from representations.

Definition 5.9. For a representation (π, t) of X , we define I(π,t), I ′

(π,t) ⊂ A by

I(π,t) = kerπ, I ′

(π,t) = π−1(ψt(K(X))
)
.

The pair
(
I(π,t), I ′

(π,t)

)
is denoted by ω(π,t).
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Clearly I(π,t) is an ideal of A. By the remark before Definition 2.8, we see that
I ′

(π,t) is also an ideal of A.

Lemma 5.10. For a representation (π, t) of a C∗-correspondence X over a C∗-
algebra A, we have the following.

(i) I(π,t) is positively invariant.
(ii) ker t = X I(π,t).

(iii) There exists an injective representation (π̇, ṫ) of the C∗-correspondence X I(π,t)
on C∗(π, t) such that (π, t)= (π̇ ◦ [ · ]I(π,t), ṫ ◦ [ · ]I(π,t)).

(iv) a ∈ I ′

(π,t) implies [ϕX (a)]I(π,t) ∈ K(X I(π,t)) and π(a)= ψṫ([ϕX (a)]I(π,t)).
(v) For an element a ∈ A with ϕX (a) ∈ K(X), we have π(a) = ψt(ϕX (a)) if and

only if a ∈ I ′

(π,t).

Proof.

(i) For a ∈ I(π,t) and ξ, η ∈ X , we have 〈η, ϕX (a)ξ〉X ∈ I(π,t) because

π
(
〈η, ϕX (a)ξ〉X

)
= t (η)∗t (ϕX (a)ξ)= t (η)∗π(a)t (ξ)= 0.

Hence X (I(π,t))⊂ I(π,t). Thus I(π,t) is positively invariant.
(ii) For ξ ∈ X , we have

ξ ∈ ker t ⇐⇒ t (ξ)= 0 ⇐⇒ t (ξ)∗t (ξ)= 0

⇐⇒ π(〈ξ, ξ〉X )= 0 ⇐⇒ 〈ξ, ξ〉X ∈ I(π,t) ⇐⇒ ξ ∈ X I(π,t).

(iii) Obvious by the definition of I(π,t) and (ii).
(iv) Since a ∈ I ′

(π,t), we can find k ∈ K(X) with π(a)=ψt(k). For ξ ∈ X , we have

t (ϕX (a)ξ)= π(a)t (ξ)= ψt(k)t (ξ)= t (kξ).

Hence
(
ϕX (a) − k

)
ξ ∈ ker t = X I(π,t) for all ξ ∈ X . This implies that

[ϕX (a)]I(π,t) = [k]I(π,t) ∈ K(X I(π,t)) and

π(a)= ψt(k)= ψṫ([k]I(π,t))= ψṫ([ϕX (a)]I(π,t)).

(v) If π(a) = ψt(ϕX (a)), then a ∈ I ′

(π,t). For a ∈ I ′

(π,t) with ϕX (a) ∈ K(X), we
have π(a)= ψṫ([ϕX (a)]I(π,t))= ψt(ϕX (a)) by (iv).

�

Proposition 5.11. For a representation (π, t) of X , the pair ω(π,t) is a T -pair.

Proof. By Lemma 5.10 (i), I(π,t) is positively invariant. Clearly we have I(π,t) ⊂

I ′

(π,t). Take a ∈ I ′

(π,t). We have [ϕX (a)]I(π,t) ∈ K(X I(π,t)) by Lemma 5.10 (iv).
Take b ∈ X−1(I(π,t)). Since ab ∈ I ′

(π,t), we have π(ab) = ψṫ
(
[ϕX (ab)]I(π,t)

)
by

Lemma 5.10 (iv). We see [ϕX (ab)]I(π,t) = 0 because ab ∈ X−1(I(π,t)). Hence
π(ab) = 0. Thus we get ab ∈ kerπ = I(π,t). This shows a ∈ J (I(π,t)). Hence we
get I ′

(π,t) ⊂ J (I(π,t)). Thus ω(π,t) =
(
I(π,t), I ′

(π,t)

)
is a T -pair. �
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We will see that all T -pairs come from representations (Proposition 6.12). In
the same way as in the proof of Proposition 5.11, we can see that for a morphism
(Π, T ) from a C∗-correspondence X to a C∗-correspondence Y , the pair ω(Π,T ) =(
I(Π,T ), I ′

(Π,T )

)
defined by

I(Π,T ) = kerΠ, I ′

(Π,T ) = (ϕY ◦Π)−1(ΨT (K(X))
)

is a T -pair.

Definition 5.12. A T -pair ω = (I, I ′) satisfying JX ⊂ I ′ is called an O-pair.

It is clear that the intersection ω1 ∩ω2 of two O-pairs ω1, ω2 is an O-pair.

Lemma 5.13. A pair ω = (I, I ′) of ideals of A is an O-pair if and only if I is
invariant and I + JX ⊂ I ′

⊂ J (I ).

Proof. For an O-pair ω = (I, I ′), we have I + JX ⊂ I ′
⊂ J (I ). Thus we get

JX ⊂ J (I ). Now Proposition 5.3 implies that I is negatively invariant. Therefore
I is an invariant ideal. The converse is obvious. �

For a C∗-correspondence X =Cd(E1) arising from a topological graph E , an O-
pair (I, I ′) is in the form (C0(E0

\X0),C0(E0
\Z))where (X0, Z) is an admissible

pair of closed sets of E0 defined in [Katsura 2006a].

Proposition 5.14. A representation (π, t) is covariant if and only if the pair ω(π,t)
is an O-pair.

Proof. If (π, t) is covariant, then clearly JX ⊂ I ′

(π,t). Thus ω(π,t) is an O-pair. Con-
versely, if ω(π,t) is an O-pair, then for a ∈ JX ⊂ I ′

(π,t), we have π(a)= ψt(ϕX (a))
by Lemma 5.10 (v). Hence (π, t) is covariant. �

By Proposition 5.14, we have ω(π,t) = (0, JX ) for all injective covariant repre-
sentations (π, t).

6. C∗-correspondences associated with T -pairs

Take a T -pair ω= (I, I ′) of X and fix it throughout this section. In this section, we
construct a C∗-algebra Aω, a C∗-correspondence Xω over Aω and a representation
(πω, tω) of X on the C∗-algebra OXω . In the next section, we will see that this
representation (πω, tω) has a universal property.

(A, X)

([ · ]I ,[ · ]I ) %%LLLLLLLLLL

(πω,tω) // OXω

(A/I, X I )
(Πω,Tω)// (Aω, Xω)

(Π,T )xxqqqqqqqqqqq

(πXω ,tXω )

::uuuuuuuuu

(A/I, X I )
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Definition 6.1. For a T -pair ω = (I, I ′) of a C∗-correspondence X over A, we
define a C∗-algebra Aω and a Hilbert Aω-module Xω by

Aω =
{
(b, b′) ∈ A/I ⊕ A/I ′

∣∣ [b]J (I )/I = [b′
]J (I )/I ′ ∈ A/J (I )

}
,

Xω =
{
(η, η′) ∈ X I ⊕ X I ′

∣∣ [η]J (I )/I = [η′
]J (I )/I ′ ∈ X J (I )

}
,

where the operations are defined as in Section 1.

Note that Aω is a pull-back C∗-algebra of two surjections [ · ]J (I )/I : A/I →

A/J (I ) and [ · ]J (I )/I ′ : A/I ′
→ A/J (I ).

Definition 6.2. We define a ∗-homomorphism Ψω : L(X I )→ L(Xω) by

Ψω(S)(η, η′)= (Sη, [S]I ′/Iη
′) ∈ Xω

for S ∈ L(X I ) and (η, η′) ∈ Xω.

Definition 6.3. We define a left action ϕXω : Aω → L(Xω) by

ϕXω
(
(b, b′)

)
= Ψω

(
ϕX I (b)

)
,

for (b, b′) ∈ Aω. Thus Xω is a C∗-correspondence over Aω.

Definition 6.4. We set

Πω : A/I 3 b 7→ (b, [b]I ′/I ) ∈ Aω, Tω : X I 3 η 7→ (η, [η]I ′/I ) ∈ Xω.

Lemma 6.5. We have ϕXω ◦Πω = Ψω ◦ ϕX I , and Tω(Sη) = Ψω(S)Tω(η) for S ∈

L(X I ) and η ∈ X I .

Proof. Clear by the definitions. �

From this lemma, we easily get the following.

Proposition 6.6. The pair (Πω, Tω) is an injective morphism from X I to Xω, and
the map ΨTω : K(X I )→ K(Xω) coincides with the restriction of Ψω to K(X I ).

The next proposition is also easy to see from the definitions.

Proposition 6.7. For a T -pair ω = (I, I ′) with I ′
= J (I ), the morphism (Πω, Tω)

from X I to Xω is an isomorphism.

To compute JXω ⊂ Aω, we need the following lemma.

Lemma 6.8. A pair (Π, T ) of maps defined by

Π : Aω 3 (b, b′) 7→ b ∈ A/I, T : Xω 3 (η, η′) 7→ η ∈ X I ,

is a morphism from Xω to X I satisfying Π ◦Πω = idA/I and T ◦ Tω = idX I . A ∗-
homomorphism Ψ : L(Xω)3 S 7→ T ◦S◦Tω ∈ L(X I ) satisfies that Ψ ◦Ψω= idL(X I )

and the restriction of Ψ to K(Xω) coincides with ΨT : K(Xω)→ K(X I ).
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Proof. It is clear that (Π, T ) is a morphism satisfyingΠ ◦Πω = idA/I and T ◦Tω =

idX I . By Lemma 6.5, we have

Ψ (Ψω(S))η = T
(
Ψω(S)Tω(η)

)
= T

(
Tω(Sη)

)
= Sη,

for S ∈L(X I ) and η∈ X I . This provesΨ ◦Ψω= idL(X I ). For (η1, η
′

1), (η2, η
′

2)∈ Xω
and η ∈ X I , we have

Ψ
(
θ(η1,η

′

1),(η2,η
′

2)

)
η = T

(
θ(η1,η

′

1),(η2,η
′

2)
Tω(η)

)
= T

(
(η1〈η2, η〉X I , η

′

1〈η
′

2, [η]I ′/I 〉X I ′
)
)

= η1〈η2, η〉X I

= θη1,η2(η).

Hence we have Ψ
(
θ(η1,η

′

1),(η2,η
′

2)

)
= θη1,η2 . This shows that the restriction of Ψ to

K(Xω) coincides with ΨT : K(Xω)→ K(X I ). �

Proposition 6.9. We have

kerϕXω =
{
(b, b′) ∈ Aω

∣∣ b ∈ kerϕX I

}
,

ϕ−1
Xω

(
K(Xω)

)
=

{
(b, b′) ∈ Aω

∣∣ b ∈ ϕ−1
X I

(
K(X I )

)}
,

JXω =
{
(b, b′) ∈ Aω

∣∣ b ∈ JX I , b′
= 0

}
.

Proof. Since Ψ ◦Ψω = idL(X I ) by Lemma 6.8, we have Ψ
(
ϕXω((b, b′))

)
= ϕX I (b)

for (b, b′) ∈ Aω. Hence for (b, b′) ∈ Aω, we have that ϕXω((b, b′))= 0 if and only
if ϕX I (b) = 0. This proves the first equality. The second one follows similarly
because we have Ψω

(
K(X I )

)
⊂ K(Xω) and Ψ

(
K(Xω)

)
⊂ K(X I ). We will prove

the third equality. It is easy to see that for b ∈ JX I , we have

(b, 0) ∈ ϕ−1
Xω

(
K(Xω)

)
∩ (kerϕXω)

⊥
= JXω .

Take (b, b′)∈ JXω , and we will prove that b ∈ JX I and b′
= 0. Since ϕXω((b, b′))∈

K(Xω), we have ϕX I (b)∈ K(X I ). For any b0 ∈ kerϕX I ⊂ A/I , we have Πω(b0)=

(b0, [b0]I ′/I ) ∈ kerϕXω . Hence (b, b′)(b0, [b0]I ′/I ) = 0. This implies that b ∈

(kerϕX I )
⊥. Hence b ∈ JX I . Since JX I = J (I )/I by Lemma 5.2, we have

[b′
]J (I )/I ′ = [b]J (I )/I = 0.

Hence (0, b′∗) ∈ Aω. Since (0, b′∗) ∈ kerϕXω , we have (b, b′)(0, b′∗) = 0. This
implies b′

= 0. Thus we get JXω = {(b, b′) ∈ Aω | b ∈ JX I , b′
= 0}. �

We have JXω =
{
(b, b′)∈ Aω

∣∣ b′
= 0

}
because for b ∈ A/I we have (b, 0)∈ Aω

if and only if b ∈ JX I .
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Definition 6.10. We define a ∗-homomorphism πω : A → OXω and a linear map
tω : X → OXω by

πω(a)= πXω
(
Πω([a]I )

)
, tω(ξ)= tXω

(
Tω([ξ ]I )

)
for a ∈ A and ξ ∈ X , where (πXω , tXω) is the universal covariant representation of
the C∗-correspondence Xω on OXω .

Proposition 6.11. The pair (πω, tω) is a representation of X on OXω , which admits
a gauge action and satisfies C∗(πω, tω)= OXω .

Proof. Since (πω, tω) is a composition of morphisms, it is a representation. Clearly
the gauge action of OXω gives a gauge action for the representation (πω, tω). We
will prove C∗(πω, tω) = OXω . Since OXω is generated by the images of πXω and
tXω , it suffices to show that

πXω(Aω), tXω(Xω)⊂ C∗(πω, tω).

Take (b, b′)∈ Aω. Choose a ∈ A with [a]I ′ = b′. We have b−[a]I ∈ J (I )/I = JX I

because [b]J (I )/I = [b′
]J (I )/I ′ = [a]J (I ). Thus we have ϕX I (b − [a]I ) ∈ K(X I ).

Hence there exists k ∈K(X) such that [k]I =ϕX I (b−[a]I ). Since (b−[a]I , 0)∈ JXω
by Proposition 6.9, we have

πXω
(
(b − [a]I , 0)

)
= ψtXω

(
ϕXω

(
(b − [a]I , 0)

))
= ψtXω

(
Ψω(ϕX I (b − [a]I ))

)
= ψtXω

(
Ψtω([k]I )

)
= ψtω(k).

Therefore we get

πXω
(
(b, b′)

)
= πXω

(
([a]I , [a]I ′)

)
+πXω

(
(b − [a]I , 0)

)
= πω(a)+ψtω(k) ∈ C∗(πω, tω).

Thus we have shown that πXω(Aω)⊂ C∗(πω, tω).
Take (η, η′) ∈ Xω. Choose ξ ∈ X with [ξ ]I ′ = η′. As above, we get η −

[ξ ]I ∈ X I JX I . Choose ξ ′
∈ X and b ∈ JX I with η− [ξ ]I = [ξ ′

]I b. Then we have
(η− [ξ ]I , 0)= Tω([ξ ′

]I )(b, 0). Hence we get

tXω
(
(η, η′)

)
= tXω

(
([ξ ]I , [ξ ]I ′)

)
+ tXω

(
(η− [ξ ]I , 0)

)
= tω(ξ)+ tXω

(
Tω([ξ ′

]I )
)
πXω

(
(b, 0)

)
= tω(ξ)+ tω(ξ ′)πXω

(
(b, 0)

)
∈ C∗(πω, tω),

because πXω
(
(b, 0)

)
∈ C∗(πω, tω) as shown above. This completes the proof. �

Proposition 6.12. For a T -pair ω = (I, I ′), we have ω(πω,tω) = ω.
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Proof. Since the maps Πω : AI → Aω and πXω : Aω → OXω are injective, we have

I(πω,tω) = kerπω = ker([ · ]I )= I.

For a ∈ I ′, we have [a]I ∈ I ′/I ⊂ J (I )/I = JX I . SinceΠω([a]I )= ([a]I , 0)∈ JX I ,
we have

πω(a)= πXω
(
Πω([a]I )

)
= ψtXω

(
ϕXω(([a]I , 0))

)
.

We see ϕX I ([a]I )∈ K(X I ) from [a]I ∈ JX I . Hence by the definition of ϕXω we get

ϕXω
(
([a]I , 0)

)
= ΨTω

(
ϕX I ([a]I )

)
∈ ΨTω

(
K(X I )

)
.

Since K(X I )= [K(X)]I , we have

πω(a) ∈ ψtXω

(
ΨTω

(
[K(X)]I

))
= ψtω

(
K(X)

)
.

Hence a ∈ I ′

(πω,tω). We have shown that I ′
⊂ I ′

(πω,tω). Conversely take a ∈ I ′

(πω,tω).
Since

πXω
(
Πω([a]I )

)
= πω(a) ∈ ψtω

(
K(X)

)
⊂ ψtXω

(
K(Xω)

)
,

we have Πω([a]I ) ∈ JXω . Hence by Proposition 6.9, we have [a]I ′ = 0. This
means a ∈ I ′. Thus we get I ′

(πω,tω) ⊂ I ′. Therefore I ′

(πω,tω) = I ′. We have shown
that ω(πω,tω) = ω. �

By Proposition 6.12, we see that all T -pairs come from representations.

7. C∗-algebras generated by representations of C∗-correspondences

In this section, we prove the following theorem.

Theorem 7.1. Let X be a C∗-correspondence over a C∗-algebra A, and (π, t) be
a representation of X. If a T -pair ω of X satisfies ω ⊂ ω(π,t), then there exists a
unique surjective ∗-homomorphism ρ : OXω → C∗(π, t) such that π = ρ ◦πω and
t = ρ ◦ tω. The surjection ρ is an isomorphism if and only if ω = ω(π,t) and (π, t)
admits a gauge action.

Take a representation (π, t) of a C∗-correspondence X and a T -pair ω= (I, I ′)

of X satisfying ω⊂ω(π,t). In order to get a ∗-homomorphism ρ : OXω → C∗(π, t),
we will construct a covariant representation (π̃, t̃) of the C∗-correspondence Xω
on C∗(π, t). Since I ⊂ I(π,t)= kerπ , we can define a representation (π̇, ṫ) of a C∗-
correspondence X I over A/I on C∗(π, t) such that π̇([a]I )= π(a) for a ∈ A and
ṫ([ξ ]I )= t (ξ) for ξ ∈ X as in Lemma 5.10 (iii). It is easy to see that I(π̇,ṫ)= I(π,t)/I
and I ′

(π̇,ṫ) = I ′

(π,t)/I .
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(A, X)
([ · ]I ,[ · ]I )

%%LLLLLLLLLL

(πω,tω) //

(π,t)
//

OXω

ρ

zz

(A/I, X I )

(π̇,ṫ) &&NNNNNNNNNN

(Πω,Tω)// (Aω, Xω)

(π̃,t̃)
��

(πXω ,tXω )
::uuuuuuuuu

C∗(π, t)

Definition 7.2. Let (b, b′)∈ Aω. Take d ∈ A/I with [d]I ′/I =b′. Define π̃
(
(b, b′)

)
∈

C∗(π, t) by
π̃

(
(b, b′)

)
= π̇(d)+ψṫ

(
ϕX I (b − d)

)
∈ C∗(π, t).

Note that this definition makes sense because b − d ∈ J (I )/I = JX I implies
ϕX I (b − d) ∈ K(X I ). Note also that π̃

(
(b, b′)

)
∈ C∗(π, t) does not depend on the

choice of d ∈ A/I with [d]I ′/I = b′ because we have π̇(d1−d2)=ψṫ
(
ϕX I (d1−d2)

)
if d1 − d2 ∈ I ′/I ⊂ I ′

(π,t)/I = I ′

(π̇,ṫ) by Lemma 5.10 (v).

Lemma 7.3. The map π̃ : Aω → C∗(π, t) is a ∗-homomorphism.

Proof. It is obvious that π̃ is a ∗-preserving linear map. We will show π̃ is mul-
tiplicative. Take (b1, b′

1), (b2, b′

2) ∈ Aω. Take d1, d2 ∈ A/I with [d1]I ′/I = b′

1,
[d2]I ′/I = b′

2. Since
π̇(d)ψṫ(ϕX I (b))= ψṫ(ϕX I (db))

for d ∈ A/I and b ∈ J (I )/I = JX I , we have

π̃
(
(b1, b′

1)
)
π̃

(
(b2, b′

2)
)

=
(
π̇(d1)+ψṫ(ϕX I (b1 − d1))

)(
π̇(d2)+ψṫ(ϕX I (b2 − d2))

)
= π̇(d1d2)+ψṫ

(
ϕX I

(
d1(b2 − d2)+ (b1 − d1)d2 + (b1 − d1)(b2 − d2)

))
= π̇(d1d2)+ψṫ

(
ϕX I (b1b2 − d1d2)

)
= π̃

(
(b1b2, b′

1b′

2)
)

= π̃
(
(b1, b′

1)(b2, b′

2)
)
.

Hence π̃ is a ∗-homomorphism. �

Proposition 7.4. The map π̃ : Aω → C∗(π, t) is injective if and only if ω = ω(π,t).

Proof. Suppose that π̃ is injective. For a ∈ I(π,t), we have ([a]I , [a]I ′) ∈ Aω and

π̃
(
([a]I , [a]I ′)

)
= π̇([a]I )= π(a)= 0.

Hence ([a]I , [a′
]I )= 0. This implies a ∈ I . Thus we get I(π,t) = I . For a ∈ I ′

(π,t),
we have [a]I ∈ I ′

(π,t)/I ⊂ J (I(π,t))/I = J (I )/I . Hence we get (0, [a]I ′) ∈ Aω. We
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also get ϕX I ([a]I ) ∈ K(X I ). Since [a]I ∈ I ′

(π,t)/I = I ′

(π̇,ṫ), we have

π̃
(
(0, [a]I ′)

)
= π̇([a]I )−ψṫ(ϕX I ([a]I ))= 0,

by Lemma 5.10 (v). Since π̃ is injective, we have (0, [a]I ′) = 0. This implies
a ∈ I ′. Thus we get I ′

(π,t) = I ′. Therefore if π̃ is injective, then ω = ω(π,t).
Conversely assume ω = ω(π,t). Take (b, b′) ∈ Aω with π̃

(
(b, b′)

)
= 0. Take

d ∈ A/I with [d]I ′/I = b′. Then we have π̇(d) = ψṫ(ϕX I (d − b)). Hence d ∈

I ′

(π,t)/I = I ′/I . Therefore we have b′
= 0. We also have ψṫ(ϕX I (b)) = 0. Since

I = I(π,t), the map ṫ is injective. Hence ψṫ is also injective. Therefore we have
b ∈ kerϕX I . We also have b ∈ J (I )/I = JX I because [b]J (I )/I = [b′

]J (I )/I ′ = 0.
Hence b = 0. We have proved that π̃ is injective. �

Definition 7.5. Let ζ ∈ X I JX I . Take η ∈ X I and b ∈ JX I such that ζ = ηb. We
define t̄(ζ )= ṫ(η)ψṫ(ϕX I (b)) ∈ C∗(π, t).

Lemma 7.6. The map t̄ : X I JX I → C∗(π, t) is a well-defined linear map satisfying
that ṫ(η)∗ t̄(ζ )=ψṫ

(
ϕX (〈η, ζ 〉X I )

)
for all ζ ∈ X I JX I and η ∈ X I , and t̄(ζ1)

∗ t̄(ζ2)=

ψṫ
(
ϕX I (〈ζ1, ζ2〉X I )

)
for all ζ1, ζ2 ∈ X I JX I .

Proof. Take η1, η2 ∈ X I , b1, b2 ∈ JX I , and define ζ1, ζ2 ∈ X I JX I by ζ1 = η1b1, ζ2 =

η2b2. We have

ṫ(η1)
∗ ṫ(η2)ψṫ(ϕX I (b2))= π̇(〈η1, η2〉X I )ψṫ(ϕX I (b2))

= ψṫ
(
ϕX I (〈η1, η2〉X I b2)

)
= ψṫ

(
ϕX I (〈η1, ζ2〉X I )

)
.

A similar computation shows that(
ṫ(η1)ψṫ(ϕX I (b1))

)∗(ṫ(η2)ψṫ(ϕX I (b2))
)
= ψṫ

(
ϕX I (〈ζ1, ζ2〉X I )

)
.

For ζ ∈ X I JX I , take η1, η2 ∈ X I and b1, b2 ∈ JX I such that ζ = η1b1 = η2b2. Set
x = ṫ(η1)ψṫ(ϕX I (b1))− ṫ(η2)ψṫ(ϕX I (b2)) ∈ C∗(π, t). We have x∗x = 0 because
for i, j = 1, 2,(

ṫ(ζi )ψṫ(ϕX I (bi ))
)∗(ṫ(ζ j )ψṫ(ϕX I (b j ))

)
= ψṫ

(
ϕX I (〈ζ, ζ 〉X I )

)
.

This shows t̄ is well-defined. We can check the linearity of t̄ in a similar fashion.
The two equalities in the statement had been already checked. �

Lemma 7.7. We have

π̇(b)t̄(ζ )= t̄(ϕX I (b)ζ ), ψṫ(k)t̄(ζ )= t̄(kζ ),

for b ∈ A/I , k ∈ K(X I ), and ζ ∈ X I JX I .
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Proof. Take η ∈ X I and d ∈ JX I with ζ = ηd . Then we have

π̇(b)t̄(ζ )= π̇(b)ṫ(η)ψṫ(ϕX I (d))

= ṫ(ϕX I (b)η)ψṫ(ϕX I (d))

= t̄
(
(ϕX I (b)η)d

)
= t̄(ϕX I (b)ζ ),

ψṫ(k)t̄(ζ )= ψṫ(k)ṫ(η)ψṫ(ϕX I (d))

= ṫ
(
kη

)
ψṫ(ϕX I (d))

= t̄
(
(kη)d

)
= t̄(kζ ). �

Lemma 7.8. For ζ ∈ X I (I ′/I ), we have t̄(ζ )= ṫ(ζ ).

Proof. Choose η ∈ X I and b ∈ I ′/I ⊂ J (I )/I = JX I such that ζ = ηb. Since
b ∈ I ′/I ⊂ I ′

(π,t)/I = I ′

(π̇,ṫ), we have π̇(b) = ψṫ(ϕX I (b)) by Lemma 5.10 (v).
Hence, we get

t̄(ζ )= ṫ(η)ψṫ(ϕX I (b))= ṫ(η)π̇(b)= ṫ(ηb)= ṫ(ζ ).

�

Definition 7.9. Let (η, η′) ∈ Xω. Take ζ ∈ X I such that [ζ ]I ′/I = η′. Define
t̃
(
(η, η′)

)
∈ C∗(π, t) by

t̃
(
(η, η′)

)
= ṫ(ζ )+ t̄(η− ζ ) ∈ C∗(π, t).

Note that η−ζ ∈ X I JX I and that t̃ : Xω → C∗(π, t) is a well-defined linear map
by Lemma 7.8.

Proposition 7.10. The pair (π̃, t̃) is a representation of the C∗-correspondence
Xω on C∗(π, t) such that π̇ = π̃ ◦Πω and ṫ = t̃ ◦ Tω.

Proof. It is easy to see that π̇ = π̃ ◦Πω and ṫ = t̃ ◦ Tω. We will check that the pair
(π̃, t̃) satisfies the two conditions in Definition 2.7. Take (η1, η

′

1), (η2, η
′

2) ∈ Xω.
Choose ζ1, ζ2 ∈ X I with [ζ1]I ′/I = η′

1, [ζ2]I ′/I = η′

2. By Lemma 7.6, we have

t̃
(
(η1, η

′

1)
)∗ t̃

(
(η2, η

′

2)
)

=
(
ṫ(ζ1)+ t̄(η1 − ζ1)

)∗(ṫ(ζ2)+ t̄(η2 − ζ2)
)

=π̇
(
〈ζ1, ζ2〉X I

)
+ψṫ

(
ϕX (〈ζ1, η2 − ζ2〉X I + 〈η1 − ζ1, ζ2〉X I + 〈η1 − ζ1, η2 − ζ2〉X I )

)
=π̇

(
〈ζ1, ζ2〉X I

)
+ψṫ

(
ϕX (〈η1, η2〉X I − 〈ζ1, ζ2〉X I )

)
=π̃

((
〈η1, η2〉X I , 〈η

′

1, η
′

2〉X I

))
=π̃

(〈
(η1, η

′

1), (η2, η
′

2)
〉
Xω

)
.

This proves condition (i) in Definition 2.7. We check condition (ii). Take (b, b′) ∈

Aω and (η, η′)∈ Xω. Choose d ∈ A/I and ζ ∈ X I with [d]I ′/I = b′ and [ζ ]I ′/I = η′.
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By Lemma 7.7, we have

π̃
(
(b, b′)

)
t̃
(
(η, η′)

)
=

(
π̇(d)+ψṫ(ϕX I (b − d))

)(
ṫ(ζ )+ t̄(η− ζ )

)
=π̇(d)ṫ(ζ )+ψṫ(ϕX I (b − d))ṫ(ζ )

+ π̇(d)t̄(η− ζ )+ψṫ(ϕX I (b − d))t̄(η− ζ )

=ṫ(ϕX I (d)ζ )+ ṫ(ϕX I (b − d)ζ )+ t̄(ϕX I (d)(η− ζ ))+ t̄(ϕX I (b − d)(η− ζ ))

=ṫ(ϕX I (b)ζ )+ t̄(ϕX I (b)(η− ζ )).

On the other hand, we have

ϕXω((b, b′))(η, η′)=
(
ϕX I (b)η, [ϕX I (b)]I ′/Iη

′
)
=

(
ϕX I (b)η, [ϕX I (b)ζ ]I ′/I

)
.

Hence we get

t̃
(
ϕXω((b, b′))(η, η′)

)
= ṫ

(
ϕX I (b)ζ

)
+ t̄

(
ϕX I (b)(η− ζ )

)
.

Thus we have π̃
(
(b, b′)

)
t̃
(
(η, η′)

)
= t̃

(
ϕXω((b, b′))(η, η′)

)
. We are done. �

Proposition 7.11. The representation (π̃, t̃) is covariant.

Proof. Take (b, 0) ∈ JXω . By definition, we have π̃((b, 0)) = ψṫ(ϕX I (b)). Since
ϕXω((b, 0))= ΨTω(ϕX I (b)), we have

ψt̃
(
ϕXω((b, 0))

)
= ψt̃

(
ΨTω(ϕX I (b))

)
= ψt̃◦Tω(ϕX I (b))= ψṫ(ϕX I (b)).

Hence we get π̃((b, 0)) = ψt̃
(
ϕXω((b, 0))

)
for every element (b, 0) ∈ JXω . This

completes the proof. �

Lemma 7.12. The representation (π̃, t̃) of Xω is injective if and only if ω= ω(π,t).
It admits a gauge action if and only if so does (π, t).

Proof. The first assertion follows from Proposition 7.4. If a representation (π, t)
admits a gauge action β, then β is also a gauge action for the representation (π̃, t̃)
because βz(ψt(k))=ψt(k) for all k ∈ K(X) and z ∈ T. The converse is obvious. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 7.1. Define ρ = ρ(π̃,t̃) : OXω → C∗(π, t). Since π̇ = π̃ ◦Πω and
ṫ = t̃ ◦ Tω, we have π = ρ ◦ πω and t = ρ ◦ tω. This implies that ρ is surjective.
The uniqueness follows from C∗(πω, tω) = OXω which was proved in Proposition
6.11. Finally by Lemma 7.12 and Theorem 3.6, ρ is an isomorphism if and only
if ω = ω(π,t) and (π, t) admits a gauge action. �

Corollary 7.13. Let X be a C∗-correspondence over a C∗-algebra A and (π, t) be
a representation of X which admits a gauge action. Then the C∗-algebra C∗(π, t)
is naturally isomorphic to the C∗-algebra OXω(π,t) .
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We finish this section with a characterization of the C∗-algebra OX without using
JX and the notion of covariance.

Proposition 7.14. If a representation (π, t) is injective and admits a gauge action,
then there exists a surjection ρ : C∗(π, t)→ OX with πX = ρ ◦π and tX = ρ ◦ t .

Proof. Set ω = ω(π,t) = (I(π,t), I ′

(π,t)). Since (π, t) is injective, we have I(π,t) = 0
and I ′

(π,t) ⊂ J (0) = JX . Hence we get ω ⊂ (0, JX ) = ω(πX ,tX ). Thus by Theorem
7.1, there exists a surjective ∗-homomorphism ρ : OXω → OX with πX = ρ ◦ πω

and tX = ρ ◦ tω. Since (π, t) admits a gauge action, the C∗-algebra C∗(π, t) is
isomorphic to OXω by Corollary 7.13. This completes the proof. �

By Proposition 7.14, we can define OX to be the smallest C∗-algebra among C∗-
algebras generated by injective representations admitting gauge actions. Theorem
3.6 tells us that the covariance of representations characterizes the representation
(πX , tX ) among injective representations admitting gauge actions.

8. Structure of gauge-invariant ideals of OX

We say that an ideal of OX is gauge-invariant if it is globally invariant under the
gauge action γ . In this section, we analyze structure of gauge-invariant ideals of
OX .

Definition 8.1. For an ideal P of OX , we define IP , I ′

P ⊂ A by

πX (IP)= πX (A)∩ P, πX (I ′

P)= πX (A)∩
(
P +ψtX (K(X))

)
.

We set ωP = (IP , I ′

P).

Proposition 8.2. For an ideal P of OX , denote by σP a natural surjection from OX

to OX/P. Then we have ωP = ω(σP◦πX ,σP◦tX ). Hence ωP is an O-pair.

Proof. Clear by the definitions. �

Definition 8.3. Let ω be an O-pair of X . The representation (πω, tω) of X on
OXω is covariant by Proposition 5.14 and Proposition 6.12. Hence there exists a
surjection ρ(πω,tω) : OX → OXω . We define Pω = ker ρ(πω,tω).

Lemma 8.4. For an O-pair ω, the ideal Pω of OX is gauge-invariant and satisfies
ωPω = ω.

Proof. Clear by the definitions. �

Proposition 8.5. For a gauge-invariant ideal P of OX , we have P = PωP and
OX/P ∼= OXωP

.

Proof. If P is gauge-invariant, the representation (σP ◦πX , σP ◦ tX ) admits a gauge
action, where σP : OX → OX/P is a natural surjection. Hence by the definition
of ωP and Theorem 7.1, we have an isomorphism ρ : OXωP

→ OX/P such that
(ρ ◦πωP , ρ ◦ tωP )= (σP ◦πX , σP ◦ tX ). Hence OX/P ∼= OXωP

and P = PωP . �
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Now we get the following.

Theorem 8.6. The set of all gauge-invariant ideals of OX corresponds bijectively
to the set of all O-pairs of X by P 7→ ωP and ω 7→ Pω. These maps preserve
inclusions and intersections.

In the case that C∗-correspondences are defined from graphs, or more gener-
ally from topological graphs, Theorem 8.6 was proved in [Bates et al. 2002] and
[Katsura 2006a].

Corollary 8.7 [Muhly and Tomforde 2004, Theorem 6.4]. If A = JX +kerϕX , then
P 7→ IP is a bijection from the set of all gauge-invariant ideals of OX to the set of
all invariant ideals of A with respect to X.

Proof. By Theorem 8.6 and Lemma 5.2, it suffices to show that JX I ⊂ [JX ]I for
all invariant ideals I of A. Let I be an invariant ideal. Since A = JX + kerϕX ,
we have A/I = [JX ]I + [kerϕX ]I . Hence we get ([kerϕX ]I )

⊥
= [JX ]I . Since

kerϕX I ⊃ [kerϕX ]I , we obtain

JX I ⊂ (kerϕX I )
⊥

⊂ ([kerϕX ]I )
⊥

= [JX ]I . �

Note that the assumption A = JX + kerϕX is equivalent to the assumption in
[Muhly and Tomforde 2004, Theorem 6.4]. This is also equivalent to saying that
A ∼= A1 ⊕ A2 and ϕX : A → L(X) is the composition of the natural surjection
A → A1 and an embedding A1 ↪→ K(X). This assumption is not necessary for the
map P 7→ IP to be bijective, as we will see in Sections 9 and 10.

We finish this section with the following result on the gauge-invariant ideals of
TX .

Proposition 8.8. The set of all gauge-invariant ideals of TX corresponds bijec-
tively to the set of all T -pairs of X such that inclusions and intersections are
preserved.

Proof. The set of all gauge-invariant ideals of TX corresponds bijectively to the
“set” of all representations of X admitting gauge actions if we consider two repre-
sentations (π, t) and (π ′, t ′) to be the same when there exists a (necessarily unique)
isomorphism ρ : C∗(π, t)→ C∗(π ′, t ′) such that ρ ◦π = π ′ and ρ ◦ t = t ′. Under
this identification, the “set” of all representations of X admitting gauge actions
corresponds bijectively to the set of all T -pairs of X by (π, t) 7→ ω(π,t) defined in
Definition 5.9, and ω 7→ (πω, tω) defined in Definition 6.10 by Proposition 6.12
and Theorem 7.1. This completes the proof. �

9. Gauge invariant ideals and strong Morita equivalence.

In this section, we prove that each gauge-invariant ideal P of the C∗-algebra OX is
strongly Morita equivalent to the C∗-algebra OYP for a certain C∗-correspondence
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YP . In the next section, we will see that in fact we can find a C∗-correspondence
Y ′

P such that P is isomorphic to OY ′

P
.

For a positively invariant ideal I of A, we have ϕX (I )X ⊂ X I . Hence the closed
linear subspace YI = ϕX (I )X of X is naturally considered as a C∗-correspondence
over I .

Lemma 9.1. For a positively invariant ideal I of A, we have kerϕYI = I ∩ kerϕX

and ϕ−1
YI
(K(YI ))= I ∩ϕ−1

X (K(X)).

Proof. Take a ∈ kerϕYI . For ξ ∈ X , we have ϕX (a)ϕX (a∗)ξ = 0 because ϕX (a∗)ξ ∈

YI . Hence we have aa∗
∈ kerϕX . Thus we get a ∈ I ∩kerϕX . This shows kerϕYI ⊂

I ∩ kerϕX . Since the converse inclusion is obvious, we get kerϕYI = I ∩ kerϕX .
Take a ∈ ϕ−1

YI
(K(YI )). Set k = ϕYI (a) ∈ K(YI ) ⊂ K(X). Since we have

ϕX (a)ϕX (b)ξ = kϕX (b)ξ for b ∈ I and ξ ∈ X , we get ϕX (a)ϕX (a)∗ = kϕX (a)∗.
We also get ϕX (a)k∗

= kk∗ because k ∈ K(YI ). Thus (ϕX (a)−k)(ϕX (a)−k)∗ = 0.
Hence ϕX (a) = k ∈ K(X). Since the converse inclusion is obvious, we have
ϕ−1

YI
(K(YI ))= I ∩ϕ−1

X (K(X)). �

Proposition 9.2. For a positively invariant ideal I of A, we have JYI = I ∩ JX .

Proof. Since kerϕYI ⊂ kerϕX , we have (kerϕYI )
⊥

⊃ (kerϕX )
⊥. By Lemma 9.1,

we have (kerϕYI )
⊥

∩ I ∩ kerϕX = 0. Hence (kerϕYI )
⊥

∩ I ⊂ (kerϕX )
⊥. Thus we

have (kerϕYI )
⊥

∩ I = (kerϕX )
⊥

∩ I . From this equality and Lemma 9.1, we get

JYI = ϕ−1
YI
(K(YI ))∩ (kerϕYI )

⊥

= I ∩ϕ−1
X (K(X))∩ (kerϕYI )

⊥

= I ∩ϕ−1
X (K(X))∩ (kerϕX )

⊥

= I ∩ JX . �

Proposition 9.3. For a positively invariant ideal I of A, the C∗-subalgebra gen-
erated by πX (I ) and tX (YI ) is isomorphic to OYI , and it is the smallest hereditary
C∗-subalgebra in OX containing πX (I ).

Proof. Let B be the C∗-subalgebra of OX generated by πX (I ) and tX (YI ). Clearly
the restrictions of πX and tX to I and YI give an injective representation (π, t)
of YI on OX which admits a gauge action. It is also clear that C∗(π, t) = B. By
Proposition 9.2, this representation (π, t) is covariant. Thus B is isomorphic to
OYI by Theorem 3.6.

Since we have πX (I )tX (X)πX (I ) = tX (YI )πX (I ) = tX (YI ), B is contained in
the C∗-subalgebra πX (I )OXπX (I ). By [Katsura 2004b, Proposition 2.7], OX is the
closure of the linear span of elements in the form

tX (ξ1) · · · tX (ξn)πX (a)tX (ηm)
∗
· · · tX (η1)

∗
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for a ∈ A and ξk, ηl ∈ X . Using the fact that πX (I )tX (X)= tX (YI )πX (I ), we can
prove by induction on n that πX (b)tX (ξ1) · · · tX (ξn)πX (a) ∈ B for b ∈ I , a ∈ A
and ξk ∈ X . Hence πX (I )OXπX (I ) is contained in B. Thus we have shown that
B = πX (I )OXπX (I ) which is the smallest hereditary C∗-subalgebra containing
πX (I ). �

Proposition 9.4. For an ideal I of A, the ideal of OX generated by πX (I ) is Pω
where ω = (X∞

−∞
(I ), X∞

−∞
(I )+ JX ).

Proof. Let P be the ideal of OX generated by πX (I ). Since I ⊂ IP and IP is
invariant, we have X∞

−∞
(I )⊂ IP by Proposition 4.16. Hence we have X∞

−∞
(I )+

JX ⊂ IP + JX ⊂ I ′

P . Therefore we get ω ⊂ (IP , I ′

P) = ωP . Since πX (I ) ⊂

πX (X∞
−∞
(I ))⊂ Pω implies P ⊂ Pω, we have ωP ⊂ωPω =ω. Thus we get ωP =ω.

Since πX (I ) is closed under the gauge action, the ideal P is gauge-invariant. Hence
we have P = PωP = Pω by Proposition 8.5. �

Proposition 9.5. Let I be a positively invariant ideal of A. For an O-pair ω =

(X−∞(I ), X−∞(I )+ JX ), the gauge-invariant ideal Pω is strongly Morita equiva-
lent to the C∗-algebra OYI .

Proof. By Proposition 9.3 and Proposition 9.4, the C∗-subalgebra generated by
πX (I ) and tX (YI ) is isomorphic to OYI and is a hereditary and full C∗-subalgebra
of Pω which is the ideal generated by πX (I ). Thus Pω is strongly Morita equivalent
to the C∗-algebra OYI . �

Corollary 9.6. Let X be a C∗-correspondence over a C∗-algebra A. Define a C∗-
correspondence Y over A by Y = ϕX (A)X. Then OY is strongly Morita equivalent
to OX .

Proof. Apply Proposition 9.5 to the invariant ideal A. �

The C∗-correspondence Y defined in the above corollary is nondegenerate; that
is, ϕY (A)Y = Y . Thus, by Corollary 9.6, we can exchange a given C∗-corre-
spondence to a nondegenerate one so that the C∗-algebras constructed by them are
strongly Morita equivalent (we used this fact in [Katsura 2004b, Appendix C]).

By Proposition 9.5, gauge-invariant ideals P satisfying that I ′

P = IP + JX are
shown to be strongly Morita equivalent to the C∗-algebra OYIP

of the C∗-correspon-
dence YIP . To deal with all gauge-invariant ideals of O(X), we need the following
argument.

Let us define a C∗-algebra Ã and a Banach space X̃ by

Ã = πX (A)+ψtX (K(X))⊂ OX ,

X̃ = span
(
tX (X)+ tX (X)ψtX (K(X))

)
⊂ OX .

If we define the left and right actions of Ã on X̃ as multiplication, and the inner
product by 〈ξ, η〉X̃ = ξ∗η, X̃ becomes a C∗-correspondence over Ã. Since the
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embeddings Ã ↪→ OX and X̃ ↪→ OX give an injective representation of X̃ , we have
an injective ∗-homomorphism from K(X̃) onto span(X̃ X̃∗) ⊂ OX . Thus we can
identify K(X̃) with span(X̃ X̃∗).

Lemma 9.7. We have JX̃ = ψtX (K(X))⊂ Ã.

Proof. By the identification above, the restriction of ϕX̃ to the ideal ψtX (K(X)) of
Ã is just the embedding ψtX (K(X)) ↪→ K(X̃). Hence we have ψtX (K(X)) ⊂ JX̃ .
We will prove the converse inclusion. Take πX (a)+ψtX (k) ∈ JX̃ . Then we have
πX (a) ∈ JX̃ . Let {uλ} be an approximate unit of ψtX (K(X)). It is not difficult to
see that {ϕX̃ (uλ)} is an approximate unit of K(X̃) (see [Katsura 2004b, Lemma
5.10]). Since ϕX̃ (πX (a)) ∈ K(X̃), we have

ϕX̃ (πX (a))= lim
λ
ϕX̃ (πX (a))ϕX̃ (uλ)= lim

λ
ϕX̃ (πX (a)uλ) ∈ ϕX̃

(
ψtX (K(X))

)
.

Hence there exists k ∈ K(X) with ϕX̃ (πX (a))= ϕX̃ (ψtX (k)). Therefore we have

tX (ϕX (a)ξ)= πX (a)tX (ξ)= ϕX̃ (πX (a))tX (ξ)

= ϕX̃ (ψtX (k))tX (ξ)= ψtX (k)tX (ξ)= tX (kξ)

for each ξ ∈ X . Hence we obtain ϕX (a) = k ∈ K(X). For b ∈ kerϕX we have
πX (b) ∈ kerϕX̃ . Therefore we get πX (ab) = 0 for all b ∈ kerϕX . Thus a ∈

ϕ−1
X (K(X)) ∩ (kerϕX )

⊥
= JX . Therefore πX (a) + ψtX (k) = ψtX (ϕX (a) + k) ∈

ψtX (K(X)). This shows JX̃ ⊂ ψtX (K(X)). Thus we get JX̃ = ψtX (K(X)). �

Proposition 9.8. The natural inclusions Ã ↪→ OX and X̃ ↪→ OX induce an isomor-
phism OX̃

∼= OX .

Proof. It is clear that the pair (π, t) of the inclusions π : Ã ↪→OX and t : X̃ ↪→OX is
an injective representation of X̃ admitting a gauge action and satisfying C∗(π, t)=
OX . By Lemma 9.7, the representation (π, t) is covariant. Hence we have an
isomorphism ρ(π,t) : OX̃ → OX by Theorem 3.6. �

Proposition 9.9. For a gauge-invariant ideal P of OX , we set Ĩ = Ã ∩ P. Then
P is strongly Morita equivalent to the C∗-algebra OY Ĩ

where Y Ĩ = ϕX̃ ( Ĩ )X̃ is a
C∗-correspondence over Ĩ .

Proof. Since Ĩ is the intersection of Ã and the ideal P of OX̃ = OX , the ideal Ĩ
is an invariant ideal of Ã. Let P̃ be the ideal in OX̃ = OX generated by Ĩ . By
Proposition 9.5, P̃ is strongly Morita equivalent to the C∗-algebra OY Ĩ

. We will
show that P̃ = P . To do so, it suffices to see ωP̃ = ωP by Theorem 8.6 because
both P̃ and P are gauge-invariant. Since Ĩ ⊂ P , we have P̃ ⊂ P . Hence ωP̃ ⊂ωP .
We have

πX (A)∩ P = πX (A)∩ Ã ∩ P = πX (A)∩ Ĩ ⊂ πX (A)∩ P̃.
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Similarly,

πX (A)∩
(
P +ψtX (K(X))

)
= πX (A)∩

(
Ã ∩ P +ψtX (K(X))

)
= πX (A)∩

(
Ĩ +ψtX (K(X))

)
⊂ πX (A)∩

(
P̃ +ψtX (K(X))

)
.

Hence we get ωP ⊂ ωP̃ . Thus ωP̃ = ωP . �

Remark 9.10. As we saw in the proof of Proposition 9.9, we can see that gauge-
invariant ideals of OX are distinguished by their intersection with Ã. By Proposition
9.9, the set of all gauge-invariant ideals of OX̃ corresponds bijectively to the set of
all invariant ideals of Ã even though the C∗-correspondence X̃ does not satisfy the
assumption in Corollary 8.7 in general.

Proposition 9.9 shows that every gauge-invariant ideal of OX is strongly Morita
equivalent to the C∗-algebra OY for some C∗-correspondences Y . In the next
section, we will see that for every gauge-invariant ideal P of OX we can find a
C∗-correspondence Y so that P is isomorphic to OY .

10. Crossed products by Hilbert C∗-bimodules

For a C∗-algebra A, a Hilbert A-bimodule is a C∗-correspondence X over A to-
gether with a left inner product X 〈·, ·〉 : X × X → A such that ϕX (X 〈ξ, η〉) = θξ,η

for ξ, η ∈ X (for details, see [Abadie et al. 1998], for example). We have

JX = span{X 〈ξ, η〉 ∈ A | ξ, η ∈ X}.

A C∗-correspondence X has a left inner product so that it becomes a Hilbert A-
bimodules if and only if we have ϕX (JX ) = K(X), and in this case a left inner
product is uniquely determined by the structure of C∗-correspondence as X 〈ξ, η〉=

(ϕX |JX )
−1(θξ,η) ∈ JX (see [Katsura 2003a, Lemma 3.4]).

For a general C∗-correspondence X over A, an ideal I of A is positively invariant
if and only if ϕX (I )X ⊂ X I . For Hilbert C∗-bimodules, we get an analogous
statement for negative invariance. Let us fix a Hilbert A-bimodule X whose left
inner product is denoted by X 〈 · , · 〉.

Lemma 10.1. An ideal I of A is negatively invariant if and only if ϕX (I )X ⊃ X I .

Proof. Let I be a negatively invariant ideal of A. Take ξ ∈ X and a ∈ I . For
arbitrary η ∈ X , we have ϕX (X 〈ξa, η〉)= θξa,η ∈ K(X I ). Since X 〈ξa, η〉 ∈ JX , the
negative invariance of I implies X 〈ξa, η〉 ∈ I for arbitrary η ∈ X . Similarly to the
proof of Proposition 1.3, we can prove ξa ∈ ϕX (I )X . Thus we have ϕX (I )X ⊃

X I . Conversely, assume that an ideal I satisfies ϕX (I )X ⊃ X I . For ξ, η ∈ X I ,
we can find ξ ′

∈ X and a ∈ I with ξ = ϕX (a)ξ ′. Therefore we have X 〈ξ, η〉 =
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X 〈ϕX (a)ξ ′, η〉 = a(X 〈ξ ′, η〉) ∈ I . Hence we can see that (ϕX |JX )
−1(k) ∈ I for

k ∈ K(X I ). Therefore for a ∈ JX with ϕX (a) ∈ K(X I ) we have a ∈ I . This shows
that I is negatively invariant. �

Proposition 10.2. An ideal I of A is invariant if and only if ϕX (I )X = X I .

Proof. Clear from Lemma 10.1. �

Proposition 10.3. For an invariant ideal I of A, the C∗-correspondence X I defined
in Section 5 has a left inner product X I 〈 · , · 〉 such that X I 〈[ξ ]I , [η]I 〉 = [X 〈ξ, η〉]I

for ξ, η ∈ X.

Proof. Since ϕX (I )X = X I , it is not difficult to see that the left inner product of
X I described above is well-defined, and satisfies the required conditions. �

Corollary 10.4. For an invariant ideal I of A, we have JX I = [JX ]I .

Proof. By Proposition 10.3, we have

JX I = span{X I 〈ξ
′, η′

〉 ∈ A/I | ξ ′, η′
∈ X I }

= span{[X 〈ξ, η〉]I ∈ A/I | ξ, η ∈ X} = [JX ]I .

�

Proposition 10.5. For an invariant ideal I , the C∗-subalgebra of OX generated by
πX (I ) and tX (X I ) is an ideal.

Proof. This follows from the fact that X I = ϕX (I )X = ϕX (I )X I . �

Theorem 10.6. Let X be a Hilbert A-bimodule. For an ideal P of OX , we define
an ideal IP of A by πX (IP) = πX (A)∩ P. Then the map P 7→ IP gives a one-to-
one correspondence from the set of all gauge-invariant ideals P of OX to the set of
ideals I of A satisfying ϕX (I )X = X I . We also have isomorphisms P ∼= OX IP and
OX/P ∼= OX IP

for a gauge-invariant ideal P.

Proof. By Corollary 10.4, we have I ′
= I + JX for all O-pair ω = (I, I ′). Thus

the first assertion follows from Theorem 8.6 and Proposition 10.2. The second
assertion follows from Proposition 8.5, Proposition 9.3 and Proposition 10.5. �

Both X I and X I are Hilbert C∗-bimodules. Thus the class of C∗-algebras as-
sociated with Hilbert C∗-bimodules behave well. We will see that this class is
same as the one of C∗-algebras associated with C∗-correspondences, which we
are studying in this paper.

Let us take a C∗-algebra A and a C∗-correspondence X over A. We define a
C∗-algebra A and a Banach space X by

A = O
γ

X , X = {x ∈ OX | γz(x)= zx for all z ∈ T}.
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Remark 10.7. In a similar way as in the proof of [Katsura 2004b, Proposition 5.7],
we can prove that X = span(tX (X)O

γ

X ). We do not use this fact.

It is easy to see that X is a Hilbert A-bimodule where the inner products are
defined by

〈ξ, η〉X = ξ∗η, X 〈ξ, η〉 = ξη∗,

for ξ, η ∈ X , and the left and right actions are multiplication.

Proposition 10.8 (compare [Abadie et al. 1998, Theorem 3.1]). The natural em-
bedding of A and X into OX gives an isomorphism OX

∼= OX .

Proof. By Theorem 3.6, it suffices to check that the embedding of A and X into OX

is an injective covariant representation admitting a gauge action. These conditions
are easily checked. �

Corollary 10.9. Let X be a C∗-correspondence over a C∗-algebra A, and P be a
gauge-invariant ideal of OX . If we set I = P ∩ A, then P is isomorphic to OX I .

Proof. Combine Theorem 10.6 and Proposition 10.8. �

We remark that in order to compute the K -groups of gauge-invariant ideals,
Proposition 9.5 and Proposition 9.9 seem to be more useful than Corollary 10.9.

11. Relative Cuntz–Pimsner algebras

In this last section, we apply the results obtained above to the relative Cuntz–
Pimsner algebras introduced in [Muhly and Solel 1998]. Recall that for a C∗-cor-
respondence X over a C∗-algebra A, and an ideal J of A with ϕX (J )⊂ K(X), the
relative Cuntz–Pimsner algebra O(J, X) is generated by the image of a representa-
tion (π, t) which is universal among representations satisfying π(a)= ψt(ϕX (a))
for a ∈ J (see [Muhly and Solel 1998, Theorem 2.19]). We will show that every
relative Cuntz–Pimsner algebra is isomorphic to OX ′ for some C∗-correspondences
X ′. In particular, every Cuntz–Pimsner algebra and Toeplitz algebra introduced in
[Pimsner 1997], including augmented ones, is in the class of our C∗-algebras.

By universality, the representation (π, t) of X on O(J, X) admits a gauge action.
Hence by Corollary 7.13 we see that O(J, X) is isomorphic to OXω(π,t) . We will
express ω(π,t) in terms of a C∗-correspondence X over A and an ideal J of A.

Now let us take a C∗-correspondence X over a C∗-algebra A, and an ideal J of A
with ϕX (J )⊂K(X). We inductively define an increasing family of ideals {J−n}n∈N

by J0 = 0 and J−(n+1) = J−n + J ∩ X−1(J−n). We set J−∞ = limn→∞ J−n . We
denote by ωJ the pair (J−∞, J ) of ideals of A. Since X−1(0) = kerϕX , we have
J−1 = J ∩ kerϕX . It is easy to see that J−∞ = 0 if and only if J ∩ kerϕX = 0.

Lemma 11.1. The pair ωJ = (J−∞, J ) is a T -pair of X.
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Proof. Clearly J0 = 0 is positively invariant. We can prove that J−n is positively
invariant for all n ∈ N by induction with respect to N, as in Lemma 4.15. Hence
J−∞ is positively invariant. Again by induction, we see that J−∞ ⊂ J . Since
J ∩ X−1(J−n) ⊂ J−(n+1) ⊂ J−∞ for all n, we have J ∩ X−1(J−∞) ⊂ J−∞ by
Proposition 4.7. Since ϕX (J ) ⊂ K(X) by assumption, we have

[
ϕX (J )

]
J−∞

⊂

K(X J−∞
). Hence we get J ⊂ J (J−∞). Thus we have J−∞ ⊂ J ⊂ J (J−∞). We are

done. �

Lemma 11.2. If a T -pair ω = (I, I ′) satisfies J ⊂ I ′, then ωJ ⊂ ω.

Proof. We will prove J−n ⊂ I by induction on n. For n = 0, it is trivial. Assume
J−n ⊂ I . We have

J ∩ X−1(J−n)⊂ I ′
∩ X−1(I )⊂ J (I )∩ X−1(I )= I

by Lemma 5.2. Hence

J−(n+1) = J−n + J ∩ X−1(J−n)⊂ I.

We have shown that J−n ⊂ I for all n. This implies that J−∞ ⊂ I . Hence we have
ωJ ⊂ ω. �

Proposition 11.3. The relative Cuntz–Pimsner algebra O(J, X) is isomorphic to
the C∗-algebra OXωJ

of the C∗-correspondence XωJ .

Proof. Let us denote by (π, t) the universal representation of X on O(J, X) sat-
isfying π(a) = ψt(ϕX (a)) for all a ∈ J , and by (πωJ , tωJ ) the representation of
X on the C∗-algebra OXωJ

defined in Section 6. By Proposition 6.12, we have
I ′

(πωJ ,tωJ )
= J . Hence by Lemma 5.10 (v), we have πωJ (a) = ψtωJ

(ϕX (a)) for
all a ∈ J . By the universal property of O(J, X), there exists a ∗-homomorphism
ρ : O(J, X) → OXωJ

such that πωJ = ρ ◦ π and tωJ = ρ ◦ t . On the other hand,
J ⊂ I ′

(π,t) implies ωJ ⊂ω(π,t) by Lemma 11.2. Hence by Theorem 7.1, there exists
a surjective ∗-homomorphism ρ ′

: OXωJ
→ O(J, X) such that π = ρ ′

◦ πωJ and
t = ρ ′

◦ tωJ . Clearly ρ and ρ ′ are the inverses of each others. Hence O(J, X) is
isomorphic to OXωJ

. �

By Proposition 11.3, the T -pair ω(π,t) arising from the representation (π, t) on
O(J, X) coincides with ωJ = (J−∞, J ). From this fact, we have the following
corollaries.

Corollary 11.4. Let (π, t) be the representation of X on O(J, X). Then the kernel
of the map π : A → O(J, X) is J−∞, and we have

{a ∈ A | ϕX (a) ∈ K(X), and π(a)= ψt(ϕX (a))} = J.

Proof. This easily follows from ω(π,t) = ωJ . �
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Corollary 11.5. The relative Cuntz–Pimsner algebra O(J, X) is zero if and only if
J−∞ = A.

Proof. Clear by Proposition 11.3. �

Corollary 11.6 [Muhly and Solel 1998, Proposition 2.21]. The map π : A →

O(J, X) is injective if and only if J ∩ kerϕX = 0.

Proof. By Corollary 11.4, π : A → O(J, X) is injective if and only if J−∞ = 0,
which is equivalent to the condition J ∩ kerϕX = 0 as we saw above. �

We now state a gauge-invariant uniqueness theorem for relative Cuntz–Pimsner
algebras.

Corollary 11.7. For a representation (π ′, t ′) of X satisfying π ′(a) = ψt ′(ϕX (a))
for a ∈ J , the natural surjection O(J, X) → C∗(π ′, t ′) is an isomorphism if and
only if (π ′, t ′) admits a gauge action, kerπ ′

= J−∞, and

{a ∈ A | π ′(a) ∈ ψt ′(K(X))} = J.

Proof. By Proposition 11.3, O(J, X) is canonically isomorphic to OXωJ
. By The-

orem 7.1, the surjection from OXωJ
to C∗(π ′, t ′) is injective if and only if (π ′, t ′)

admits a gauge action and ω(π ′,t ′) = ωJ . The last two conditions in the statement
just rephrase the condition ω(π ′,t ′) = ωJ . �

Note that we automatically have kerπ ′
⊃ J−∞ and {a ∈ A |π ′(a)∈ψt ′(K(X))}⊃

J . Note also that in general we cannot replace the condition

{a ∈ A | π ′(a) ∈ ψt ′(K(X))} = J.

with the condition

{a ∈ A | ϕX (a) ∈ K(X), and π ′(a)= ψt ′(ϕX (a))} = J,

which seems natural at first glance. This is because there may exist a ∈ A with
ϕX (a) /∈ K(X) satisfying [ϕX (a)]J−∞

∈ K(X J−∞
) and π ′(a) = ψṫ ′([ϕX (a)]J−∞

) ∈

ψt ′(K(X)) (see Lemma 5.10 (iv) and (v)). In the case that J ∩ kerϕX = 0, the
statement of Corollary 11.7 has the following simple forms.

Corollary 11.8. Let us assume J ∩ kerϕX = 0. For a representation (π ′, t ′) of
X satisfying π ′(a) = ψt ′(ϕX (a)) for a ∈ J , the natural surjection O(J, X) →

C∗(π ′, t ′) is an isomorphism if and only if (π ′, t ′) is injective, admits a gauge
action, and satisfies

{a ∈ A | ϕX (a) ∈ K(X), and π ′(a)= ψt ′(ϕX (a))} = J.

We remark that an ideal J of A satisfies ϕX (J ) ⊂ K(X) and J ∩ kerϕX = 0
if and only if J ⊂ JX . As we saw in Corollary 11.6, the maps from A and X
to the relative Cuntz–Pimsner algebra O(J, X) is injective only when J satisfies
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J ⊂ JX . Thus it is not a good idea to examine the structure of O(J, X) in terms
of A, X and J unless J satisfies J ⊂ JX . Anyway, the following result on the
ideal structure of relative Cuntz–Pimsner algebras O(J, X) can be easily obtained
similarly as Theorem 8.6 or Proposition 8.8.

Proposition 11.9. Let X be a C∗-correspondence over a C∗-algebra A, and J be
an ideal of A with ϕX (J )⊂ K(X). Then there exists a one-to-one correspondence
between the set of all gauge-invariant ideals of O(J, X) and the set of all T -pairs
ω = (I, I ′) of X satisfying J ⊂ I ′, which preserves inclusions and intersections.

We note that a T -pair ω = (I, I ′) satisfies J ⊂ I ′ if and only if ωJ ⊂ ω by
Lemma 11.2.

Acknowledgements

The author is grateful to Yasuyuki Kawahigashi for his constant encouragement.
This paper was written while the author was staying at the University of Oregon.
He would like to thank people there for their warm hospitality.

References

[Abadie et al. 1998] B. Abadie, S. Eilers, and R. Exel, “Morita equivalence for crossed products
by Hilbert C∗-bimodules”, Trans. Amer. Math. Soc. 350:8 (1998), 3043–3054. MR 98k:46109
Zbl 0899.46053

[Bates et al. 2002] T. Bates, J. H. Hong, I. Raeburn, and W. Szymański, “The ideal structure of
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