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We consider generalizations of Shanks’ sequence of quadratic fields Q(
√

Sn)

where Sn = (2n + 1)2 + 2n+2. Quadratic fields of this type are of interest
because it is possible to explicitly determine the fundamental unit. If a se-
quence of quadratic fields given by Dn = A2x2n + Bxn + C2 satisfies certain
conditions (notably that the regulator is of order 2(n2)), then we determine
the exact form such a sequence must take.

1. History of creepers

We will be interested in simple continued fractions, which we denote by α =
[ a0 , a1 , a1 , a2 , . . . ]; the ai are called the partial quotients of α. It is well-known
that a continued fraction expansion is periodic if and only if it is the expansion of a
real quadratic irrational. We denote the period length of a real quadratic irrational
α by lp(α).

For real quadratic fields, it is expected that the class number will usually be
small; see [Cohen and Lenstra 1984]. By the correspondence between ideals and
continued fractions this is equivalent to the continued fraction expansion of

√
D

being long, generally of length about
√

D. Thus, examples of short expansions of
√

D should be considered as unusual and worthy of interest.
It is easy to find sequences of integers Di such that

√
Di has a bounded period

length. Many results have been determined for such families and we refer the
reader to [Perron 1950; van der Poorten and Williams 1999; Schinzel 1960; 1961].

Shanks [1969] examined the class numbers of quadratic fields with discriminants
given by n2

− 22k+1. He noticed that for the family Sn = (2n
+ 3)2 − 8, the class

number of Sn grows infinitely large. This sequence of fields is known as Shanks’
sequence. It happens that Shanks’ sequence is just a special case of an earlier
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example given in [Nyberg 1949]:

(1-1) Dn =
(
xn
+ (x ± 1)/2

)2
∓ xn.

The ring of algebraic integers of a quadratic number field K =Q(
√

D), denoted
by OK , is equal to Z[ω′], where dK is the squarefree kernel of D and

ω′ =

{√
dK if dK 6≡ 1 (mod 4),

(1+
√

dK )/2 if dK ≡ 1 (mod 4).

The discriminant, DK , of OK is equal to dK if dK is congruent to 1 modulo 4 and
4dK otherwise. An order O of K is defined to be a subring of K , containing 1, such
that the quotient OK /O is finite, such an order must be of the form O = Z[ f ω′].
The number f is called the conductor of O. The discriminant of an order O⊂ OK

is equal to D = f 2 Dk . Thus, the discriminant of an order is always congruent to
0 or 1 modulo 4. The discriminant of the maximal order is called a fundamental
discriminant.

For any discriminant, D ≡ t (mod 4), the element ω = (t +
√

D)/2 is an alge-
braic integer since t ≡ 0, 1 (mod 4). If we know that D is fundamental then we
usually writeω′ instead ofω. With this notation, the expansion ofωn= (1+

√
Sn)/2

corresponding to Shanks’ sequence has a period length of 2n+ 1,

ωn = [ 2n−1
+ 1 , 1 , 2n−1 , 2 , 2n−2 , 22 , . . . , 2n−1 , 1 , 2n + 1 ].

The fundamental unit of the order with discriminant Dn is given by

εn =
(
(2n
+ 1+

√
Dn)/2

)(
(2n
+ 3+

√
Dn)/4

)n
.

The regulator of the order O, denoted by R(O) or by R(D) if O has discriminant
D, is defined as the logarithm of the fundamental unit. Thus, sequences of dis-
criminants Dn , where ωn has a bounded period length have regulators of order
O(log Dn). Examples like Shanks’ sequence have regulators of order O((log Dn)

2).
Several people have since generalized Shanks’ sequence. They include Hendy

[1974], Bernstein [1976a; 1976b; 1976c], Azuhata [1984; 1987], and Levesque
and Rhin [1986]. A more synthetic account was given in [Williams 1985]. The
most general form was presented in [Williams 1995] as

Dn =
(
qr xn

+µ(xk
− λ)/q

)2
+ 4λr xn,

with µ, λ ∈ {−1, 1} and rq
∣∣xk
−λ. The automata of Raney were used in [van der

Poorten 1994] to provide an alternate way of constructing ωn and εn .
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Kaplansky [1998] coined the terms “sleepers”, a sequence of discriminants
whose period lengths are bounded, “creepers”, a sequence whose lengths gen-
tly1 go to infinity, and “leapers”, the generic discriminants whose period lengths
increase exponentially.

By selecting a sequence of discriminants from families of sleepers appropri-
ately, one can form a sequence of discriminants with linear period length. These
are known as “beepers” and can be found in [Mollin and Cheng 2002; van der
Poorten 1999; Williams and Buck 1994]. Since these discriminants are selected
from sleepers they have a regulator of order O(log Dn).

These two ideas were used simultaneously by Madden [2001], who explicitly
constructed a sequence of discriminants whose continued fraction expansions pos-
sessed slowly growing period lengths. These examples were distinct from the
known creepers since they were not polynomially parametrized. However, they
can be viewed as selecting specific discriminants from various families we will
construct here, much as beepers are specially selected sleepers.

We define a creeper to be an infinite family of discriminants Dn , such that
f (X, n) ∈Q[X, Xn

] and for a fixed x ∈ Z we have Dn = f (x, n) satisfying

lp(ωn)= an+ b with a, b ∈Q and R(Dn)=2(n2).

Kaplansky [1998] made several conjectures about creepers which are quadratic
in xn . He suggested that every such creeper could be written as Dn = A2x2n

+

Bxn
+C2 with A, B, C ∈Q. Each of the examples upon which these conjectures

were based has a principal ideal whose norm is a fixed power of x . Consequently,
we define a kreeper to be an infinite sequence of discriminants Dn such that

(1) Dn = A2x2n
+ Bxn

+C2, where A, B, C ∈Q, and x ∈ Z+.

(2) lp(ωn)= an+ b, where a and b are rational numbers.

(3) In the principal cycle there exists an element whose norm is xg for some g
fixed independently of n.

Note that the existence of some Qh = xg implies R(Dn)=2(n2). In other words,
every kreeper is also a creeper. A proof of this is given in [Patterson 2003, Theorem
17]. Indeed many details are excluded here, and can be found in the same reference.

The main results here are the following.

Theorem 1.1. Any kreeper Dn can be written as

(1-2) d2 Dn = c2
((

qr xn
+ (mz2xk

− ly2)/q
)2
+ 4ly2r xn

)
,

1By “gently” he meant that the periods could be written in an arithmetic progression involving a
parameter n used in the presentation of the family.
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where each term in the above equation is an element of Z, the terms r , l, m are
squarefree, r , x are positive, and the following conditions hold:

(qr x,mlzy)= 1 , (qr, x)= 1 , (mz, ly)= 1 ,(1-3)

q
∣∣mz2xk

− ly2 , c2rly2mz2 ∣∣d2 Dn.

Theorem 1.2. Any sequence of discriminants given by (1-2) and satisfying the
conditions (1-3) as above must in fact be a kreeper.

As a final introductory remark, we mention that Shanks’ sequence has also been
generalised to certain cubic fields with unit rank one, see [Adam 1995; 1998;
Levesque and Rhin 1991].

2. Preliminary results

Removing nonpositive partial quotients from a continued fraction is not difficult,
however removing a fractional partial quotient is, in general, quite difficult. The
following few results do provide some assistance. Multiplication can be accom-
plished via

x[ a , b , c , d , . . . ] = [ ax , b/x , xc , d/x , . . . ],

which leads to:

Lemma 2.1 (Folding Lemma [Mendès France 1973]). Let x/y = [a0 , a1 , . . . , ah]

with (x, y)= 1, and denote the sequence a1, . . . , ah by −→w (where←−w corresponds
to the sequence ah, . . . , a1). Then

x
y
+
(−1)h

cy2 =
[

a0 ,
−→w , c− y′/y

]
= [ a0 ,

−→w , c ,−←−w ],

where y/y′ = [ ah , . . . , a1 ], (y, y′)= 1, y′ > 0.

This result is more than just a novelty. Besides our use of it here, in [van der
Poorten 2002] it is used to rediscover the symmetry formulas.

A result which will be pivotal to our expansions later on is the following simple
lemma.

Lemma 2.2. If x/y = [ a0 ,
−→w ], where −→w is defined as above then

x/y+ γ =
[

a0 ,
−→w ,

(−1)h

γ y2 −
b
y

]
,

where b is equal to (−1)h+1/x modulo y.

Proof. Using the Folding Lemma we obtain,

x
y
+ γ =

x
y
+
(−1)h

y2 (−1)hγ y2
=

[
a0 ,
−→w ,

(−1)h

γ y2 −
b
y

]
,
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where b satisfies xb− cy = (−1)h+1, which implies b ≡ (−1)h+1/x (mod y).
�

If the minimal polynomial of α is x2
− t x+n then a typical line in the continued

fraction expansion of α appears as

α+ Ph

Qh
= ah −

(α+ Ph+1)

Qh
,

where P0=0, Q0=1 and α represents the nontrivial automorphism of the quadratic
number field2. We then have

Ph+1 = ah Qh − Ph − t and Qh+1 =−
n+ Ph(Ph + t)

Qh

A quadratic irrational α is called reduced if α > 1 and −1 < α < 0. An integral
ideal a is called primitive if it is not divisible by any element of Z. An integral
ideal a is reduced if there does not exist any nonzero α ∈ a satisfying

|α|< N (a) and |α|< N (a).

If a is a primitive ideal such that N (a) <
√

D/2 then a is reduced. From now on,
ideal will mean “integral ideal”.

One of the uses of the continued fraction expansion of a quadratic irrational
is the determination of the fundamental unit. Rather than keeping track of the
convergents, this can be done via the following result.

Proposition 2.3. If α=[ a0 , a1 , . . . , ai , αi+1 ] and x j/y j =[ a0 , . . . , a j ], where
(x j , y j )= 1, then

α1α2 . . . αh+1 = (−1)h+1(xh − yhα)
−1.

Corollary 2.4. If O is an order of Q(
√

D) and αi , 1≤ i ≤ h+1 represents a system
of reduced elements in any cycle of quadratic irrationals in O, then ε =

∏h+1
i=1 αi is

the fundamental unit of O.

Such a cycle of quadratic irrationals is produced by the continued fraction ex-
pansion. To be more precise, if a0 = Q0Z+ (P0 + ω)Z is an ideal of O then the
continued fraction expansion of (ω + P0)/Q0 produces a sequence of complete
quotients (ω+ Pi )/Qi such that the ideals associated to each complete quotient,
that is ai = Qi Z+ (ω+ Pi )Z, are all equivalent to a0.

Later we will need to transfer results from one order to another, where the fol-
lowing proposition will be useful.

2The Ph , Qh appearing here are not, in general, the same as those used in [Perron 1950]
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Proposition 2.5. Let O1, O2 be two orders of a real quadratic field given by O1 =

Z[ f ω′], O2 = Z[gω′] then

R(O1) >
(g, f )

2g
R(O2).

Let a be any ideal of the order O having conductor f in K , and suppose that
(N (a), f ) = 1. Then a = (t)rs, where t ∈ Z and any prime ideal divisor of r lies
over a prime which ramifies and any prime ideal divisor of s lies over a prime
which splits in O. Furthermore, r and s are primitive. We will denote by s(a) the
ideal s. Note that if t = 1 (in which case a is primitive) then a2

= (r)s2, where r
is squarefree and r

∣∣D. Also note that N (s(a))= N (s(ā)).
We now introduce a generalisation of a result of Yamamoto [1971].

Definition 1. Let b1, . . . , bn be invertible ideals of an order O. We say that
b1, . . . , bn are independent in O if whenever there exist nonzero integers u, v and
αi , βi ∈ Z+ (i = 1, . . . , n) such that

(u)
n∏

i=1

b
αi
i = (v)

n∏
i=1

b
βi
i

then αi = βi (i = 1, . . . , n).

A sufficient condition for the independence of two ideals b and c in O is given
in Theorem 2.7, which needs the following Lemma.

Lemma 2.6. If b and c are dependent in O then there exist nonzero integers u, v
and nonnegative integers m, n, with m+ n > 0, such that

(u)bm
= (v)dn,

where d is equal to c or c̄.

Theorem 2.7. If b and c are dependent in O and (N (b)N (c), f )= 1 then for some
nonnegative integers m, n, with m+ n > 0 we have

N (s(b))m = N (s(c))n.

Proof. By the preceding Lemma, we know there must exist integers m, n, u, v
such that (u)bm

= (v)dn , where m, n are nonnegative and at least one of m, n is
positive. Then we can write (utm

1 )b̃
m
= (vtn

2 )d̃
n , where b̃ and d̃ are primitive.

The condition ( f, N (b)N (c))= 1 and primitivity allow us to write

(utm
1 )b̃

m
= (utm

1 )r(b)
ms(b)m and (vtn

2 )d̃
n
= (vtn

2 )r(d)
ns(d)n.

Squaring these yields

(u2rm
1 t2m

1 )s(b)2m
= (v2rn

2 t2n
2 )s(d)

2n,
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where r1 and r2 divide Dn . Dividing out any common factors of u2rm
1 t2m

1 and
v2rn

2 t2n
2 provides coprime integers u1, v1 such that

(u1) (s(b))2m
= (v1) (s(d))2n .

Let pα
∥∥s(b) and pβ

∥∥s(d). If p2mα
6
∣∣ s(d) then N (p)

∣∣v1 implies that p̄
∣∣(v1). The

coprimality of u1 and v1 means p̄
∣∣(s(b))2m , which gives N (p)

∣∣s(b), which is im-
possible because s(b) is primitive.

Hence, p2mα
∣∣s(d), which means that 2mα ≤ 2nβ. By symmetry, 2nβ ≤ 2mα

and so mα = nβ. Thus, s(b)m = s(d)n and we find N (s(b))m = N (s(d))n . �

Suppose that b1, . . . , bn are independent ideals of O of discriminant D and let

S =
{ n∏

i=1

b
αi
i : αi ≥ 0 i = 1, . . . , n and

n∏
i=1

N (bi )
αi <
√

D/2
}

If ai = Qi−1Z+ (ω+ Pi−1)Z is a reduced ideal then

ω+ Pi−1

Qi−1
>

√
D/2

Qi−1
=

√
D/2
|N (ai )|

.

Now suppose (v)a ∈ S, where a is reduced and a= 〈Qi−1 , ω+ Pi−1〉. We have

ω+ Pi−1

Qi−1
>

v2
√

D/2∏n
i=1 N (bi )αi

≥

√
D/2∏n

i=1 N (bi )αi
.

Theorem 2.8. Let O1,O2, . . . , be a sequence of orders, each of discriminant Di ,
where Di < Di+1. Suppose further that in each Oi there exists an independent set
of principal ideals {bi, j : ( j = 1, . . . , n)} such that N (bi, j ) is fixed for each value
of i . Then

R(Di )� (log Di )
n+1.

See [Patterson 2003] for a proof.

3. Basic observations on kreepers

Given discriminants of the form Dn = U 2x2n
+ V xn

+W 2, where U , V , W ∈ Q,
there is no loss in generality in supposing that x is not a power. We may write our
discriminants Dn as

(3-1) Dn =
c2

d2

[
(Axn

+C)2+ 4Gxn], where G = (B− 2AC)/4,

for A, B, C , G, c, d ∈ Z and (c, d)= 1.
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Any common factors of C and x can be moved into the square divisors. By
considering

W :=max
i∈N

(x i ,C) , m :=min{i ∈ N : (x i ,C)=W } , v := n− 2m,

so that (x,C/W )= 1, we have

Dn =
c2W 2

d2

((
AW x2m

W 2 xv+ C
W

)2

+ 4G
x2m

W 2 xv
)
=

c2W 2

d2

(
(Axv +C)2+ 4Gxv

)
,

where (x,C)= 1 and A, C , G ∈ Z. Any square factors of (A2,C2,G) can also be
removed, so that without loss of generality we may suppose that

Dn =

( c
d

)2 (
(Axn

+C)2+ 4Gxn)
with A, C , G ∈ Z, (x,C)= 1 and (A2,C2,G) is squarefree.

The next few results don’t use any of the properties of kreepers, we are merely
interested in determining an explicit formula for (Axn

+C)2+4Gxn . Consequently,
we define

(3-2) En := (Axn
+C)2+ 4Gxn,

where (x,C)= 1 and (A2,C2,G) is squarefree. The first result is a representation
of A, C , G.

Theorem 3.1. Given En as in (3-2) and the conditions on A, C , G, x stated above,
we have that

(3-3) En =
(
qr N xn

+ P(M − L)/q
)2
+ 4r L N Pxn,

where r , q , P , N ∈ Z+, M , L ∈ Z, and the following conditions are satisfied:

(1) r is squarefree , (2) (P, rq N )= 1 , (3) rq
∣∣M − L ,

(4) (M, L)= 1 , (5) (rq,M L)= 1 , (6) (r, L N P)= 1 .

Proof. The selections we make are

r := (A,C,G) , N :=
(

A
r
,

G
r

)
, q :=

A
r N

,

P :=
(

C
r
,

G
Nr

)
, L :=

G
r N P

, M :=
AC +G

r N P
.

These selections make (3-2) and (3-3) equivalent, so it only remains to show that
the conditions indicated hold. This is not difficult; see [Patterson 2003]. �

Our next objective is to determine the terms that divide En and those that are
coprime to En .
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Lemma 3.2. (En, x N P)= 1.

Proof. See [Patterson 2003]. �

Theorem 3.3. For the family of discriminants given by (3-3) with n ∈ I (an infinite
subset of N) there exists an infinite set I ′ ⊆ I such that for every n ∈ I ′ we have
M = v′mz2 Z , L = vly2Y with Z , Y , z, y positive and

ml
∣∣E ′n , vv′zy

∣∣Fn , vv′
∣∣2 , (ZY, E ′n)= 1 ,

(
Fn

zy
,ml ZY

)
= 1

and En = F2
n E ′n , where E ′n is squarefree. Here m, l, z, y, Z , Y are the same for all

n ∈ I ′.

Proof. Define y2
nvn := (F2

n , L), where vn is squarefree. Next, write

F̃n =
Fn

ynvn
so that

(
vn F̃n

2
,

L
vn y2

n

)
= 1,

and

(3-4) En = y2
nv

2
n F̃n

2
E ′n = S2

n + 4rvn y2
n

L
vn y2

n
N Pxn,

where

Sn = qr N xn
+

P(M − L)
q

.

It is not difficult to show that vn
∣∣2; see [Patterson 2003].

We now investigate the factors of L/vn y2
n . (Since (Fn/(vn yn), L/(vn y2

n))= 1 it
follows that for any prime factor, p, of L/vn y2

n , we have p
∣∣Sn/(vn yn) if and only

if p
∣∣E ′n). We define ln to be the product of all prime powers pα of L/vn y2

n that
satisfy pα

∥∥L/vn y2
n and p

∣∣E ′n , and Yn to be the product of all prime powers pβ that
satisfy pβ

∥∥L/vn y2
n and (E ′n, p)= 1. We also absorb the sign of L into ln . Clearly,

L/vn y2
n = lnYn . It is straightforward to show that ln is squarefree and so we find

L = vnln y2
nYn , (Yn, E ′n)= 1, vn yn

∣∣Fn , ln
∣∣E ′n , vn

∣∣2.
Equation (3-4) can also be written as

En = z2
n(v
′

n)
2 F̃n

2
E ′n = (S

′

n)
2
+ 4rv′nz2

n
M
v′nz2

n
N Pxn,

where v′n is squarefree and

S′n = qr N xn
− P(M − L)/q and z2

nv
′

n = (F
2
n ,M).

By similar reasoning we get M = mnv
′
nz2

n Zn , (Zn, E ′n) = 1, v′nzn
∣∣Fn , mn

∣∣E ′n ,
v′n

∣∣2, and 46
∣∣ vnv

′
n because (M, L)= 1.
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As there are only a finite number of choices for mn , ln , zn , yn , vn , v′n , Zn , Yn for
fixed values of L and M there must exist some infinite set I ′ ⊆ I for which

M = v′mz2 Z , L = vly2Y , ml
∣∣E ′n , zyvv′

∣∣Fn , (ZY, E ′n)= 1 , vv′
∣∣2.

The coprime conditions all follow easily. �

This completes our investigation of En; we have determined the factors coprime
to En and those which divide each part of it.

4. Independent ideals in kreepers

Completing the square on A2 En gives,

A2 En =
(

A2xn
+ B/2

)2
− 4G H

and B/2 is an integer because 4
∣∣(B − 2AC). In terms of the constants found in

the previous section, this equation becomes

(4-1) q2 F2
n E ′n =

(
q2r N xn

+ P(L +M)
)2
− 4P2L M.

We define ω′n := (σ
′
n−1+

√
E ′n)/σ

′
n , where E ′n is squarefree and σ ′n = 2 if E ′n ≡ 1

(mod 4) and σ ′n = 1 otherwise. We further define On = Z+ωnZ, where

ωn :=
tn +
√

Dn

2
and tn =

{
0 if Dn ≡ 0 (mod 4),

1 if Dn ≡ 1 (mod 4).

Proposition 4.1. On = Z+
cFnσ

′
n

2d
ω′nZ.

Our objective now is to find an ideal arising from (4-1) which has a norm coprime
to the conductor of some order.

Proposition 4.2. For each n, there exists an element αn ∈ Z + f1ω
′
nZ, where

f1 = Fn/(λzy), and λ= 1 or 2, and (N (αn), f1)= 1.

Proof. We take αn as

αn :=


sn/2−

q Fn

2zy
+

q Fn

zy
ω′n if 26

∣∣ q and 26
∣∣ Fn/zy,

sn/2+
q Fn

2zy

√
E ′n otherwise.

The remaining details are in [Patterson 2003]. �
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Bounded norms in kreepers. By the definition of a kreeper, the continued fraction
expansion of ωn has some Qi = xg with g fixed independently of n. In other words,
there exists some µn ∈On such that N (µn)= xg. Also recall Proposition 4.1, which
states that On = Z+ f2ω

′
nZ, where f2 = cFnσ

′
n/2d . Let f3 = ( f1, f2), so that αn ,

µn are both contained in O∗n := Z+ f3ω
′
nZ. We know that (x, En) = 1, so then

(x, Fn/zy)= 1. Hence,

(N (αn), f3)= (N (µn), f3)= 1.

Thus in the order O∗n we have the two principal ideals an = (αn) and bn = (µn)

(whose norms are fixed for infinitely many n ∈ I ). Both ideals have norms coprime
to the conductor. Hence, we may apply Theorems 2.7 and 2.8.

Proposition 4.3. If an and bn are independent ideals in O∗n then

R(On)� (log Dn)
3.

Proof. By Theorem 2.8,

R(O∗n)�
(
log1(O∗n)

)3
=
(
log( f 2

31(O
′

n))
)3
,

where O′n := Z + ω′nZ and 1(O) denotes the discriminant of the order O. By
Proposition 2.5,

(4-2) R(On) >
( f3, f2)

2 f3
R(O∗n) implies R(On) >

1
2 R(O∗n)�

(
log( f 2

31(O
′

n))
)3
.

Since f3 = Fn(2d, cσ ′nzyλ)/2λzyd we find(
log f 2

31(O
′

n)
)3
�
(
log F2

n1(O
′

n)
)3
�
(
log F2

n E ′n
)3
� (log Dn)

3 .

Hence, from (4-2), we have that R(On)� (log Dn)
3 . �

Consequently, in order for the sequence of discriminants {Dn} to be a kreeper, an

and bn must be dependent ideals in O∗n . By Theorem 2.7 there must exist nonneg-
ative integers e and f , with e and f not both 0 such that N (s(an))

e
= N (s(bn))

f .
With not too much effort (see [Patterson 2003, Chapter V, §15]) one shows that

N (s(an)) = P2 ZY and N (s(bn)) = xg. If e = 0 then xg f
= 1 and since in this

case we must have f > 0 we find x = 1, which is impossible. On the other hand,
if f = 0 then Y , Z and P are all ±1, in which case

q2 En

(zy)2
= s2

n ± 4mlvv′

But mlvv′ divides En/(zy)2, which by a result of Schinzel [1961] implies that
the period length of q2 En/(zy)2 is bounded for all n. In the terminology of [Ka-
plansky 1998], this says that q2 En/(zy)2 is a sleeper. It is shown in [Patterson
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2003, Chapter III] that any rational multiple of a sleeper is again a sleeper. Hence,
c2 En/d2

= Dn must also be a sleeper; in other words, Dn is not a kreeper. It
follows that if Dn is to be a kreeper we must have N (s(an))

e
= N (s(bn))

f with
e, f each being positive. Since (x, P) = 1 we must have P = ±1. Hence, we
may replace P M by M and P L by L and all the previous conditions hold. Taking
d := (g f, e), k := g f/d, h := e/d gives,

(ZY )h = xk , (h, k)= 1,

which implies that x = Rh , ZY = Rk . Hence, h = 1 and ZY = xk because x is not
a power. From Theorem 3.1 we have (Z , Y )= 1; hence

Z =U k , Y = T k , where (U, T )= 1.

The objective of the next 2 sections will be to show that T = 1 and U = x .

5. Part of the continued fraction expansion of ωn

There is no longer any need to distinguish between factors of E ′n and Fn , which
means that we may absorb the terms v and v′ into l and m respectively. The form
of a kreeper is now given by

(5-1) Dn =

( c
d

)2 ((
qr N (U T )n + (z2mU k

− y2lT k)/q
)2
+ 4r Nly2T k+nU n

)
,

where m, l, r are squarefree and

(qr,U T )= 1 , (qr NU T, yzml)= 1 , (T yl,mzU )= 1 , qr
∣∣z2mU k

− y2lT k

and for every n ∈ I ,

(5-2) yl
∣∣q2r N xn

+ z2mU k and mz
∣∣q2r N xn

+ y2lT k,

and N > 0, x = U T . Let µ be the least positive difference of any two integers in
I . Then ν, ν+µ ∈ I for some ν, and

yl
∣∣q2r N xν + z2mU k and yl

∣∣q2r N xν+µ+ z2mU k,

which means yl
∣∣q2r N xν(xµ − 1), so yl

∣∣xµ − 1 because (yl, qr N x) = 1. By
symmetry, zm

∣∣xµ− 1. Thus, ylmz
∣∣xµ− 1. Hence the conditions (5-2) become

yl
∣∣q2r N (U T )ν+ z2mU k , mz

∣∣q2r N (U T )ν+ y2lT k , (T U )µ ≡ 1 (mod ylmz)

for any n ∈ I , such that n ≡ ν (mod µ). Since the signs of m and l have not
yet been specified, there is no loss of generality in supposing that q , U , T are all
positive.
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Since (5-1) can also be represented as

(5-3) Dn =

( c
d

)2 ((
qr N (U T )n − (z2mU k

− y2lT k)/q
)2
+ 4r Nmz2T nU k+n

)
we may assume without loss of generality that U > T .

Some notation. We now rewrite equations (5-1) and (5-3) as

Dn =

(s1

d

)2
+ 4

( c
d

)2
r Nly2T k+nU n

=

(s2

d

)2
+ 4

( c
d

)2
r Nmz2T nU k+n,

where

s1 = cqr N xn
+ c(z2mU k

− y2lT k)/q, s2 = cqr N xn
− c(z2mU k

− y2lT k)/q.

We choose an infinite subset of I such that t ≡ Dn (mod 4) is fixed. Then we take
S1 := (s1− td)/2 and S2 := (s2− td)/2. We also write

α = ωn + S1/d , α = ωn + S1/d and β = ωn + S2/d , β = ωn + S2/d.

Then

αα =−c2r Nly2T k xn/d2 and ββ =−c2r Nmz2U k xn/d2.

Further, we have

q2d2 Dn = (qs3)
2
− 4c2ml(zy)2(U T )k,

where
qs3 = cq2r N xn

+mz2U k
+ ly2T k .

Also of relevance will be S1+ S2+ td = Axn
= cqr N xn .

We now detail an initial segment of the continued fraction expansion of ωn .
In the case of T > 1, this segment will have length O(n1+ε), hence the entire
expansion could not satisfy lp(ωn)= an+ b, as required by kreepers.

Before commencing we need to determine the common factors between some of
the terms. First, we define g := (s1, s2, d). It is not to difficult to show that (z, s1/c)
and (y, s2/c) each divides 2. We also define dy := (S1, d), d ′y := (s1/g, d/g) and
τy :=dy/d ′y . It follows easily that τy is an integer. Similarly, we define dz := (S2, d),
d ′z := (s2/g, d/g) and τz :=dz/d ′z . Next, we write d= d̄dzdy . Here are some simple
results:

• g
∣∣2, moreover, g = 2 if and only if 2

∣∣d .

• τz
∣∣g and τy

∣∣g.

• τyd ′y
∣∣ y and τzd ′z

∣∣z; in other words dy
∣∣ y and dz

∣∣z.
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Expansion of ωn. The continued fraction expansion of ωn begins as

ωn =
(S1+ td)/dy

d/dy
− (ωn + S1/d)

and
(
(S1+ td)/dy, d/dy

)
= 1 by the definition of dy . Hence we may apply Lemma

2.2, and find that after the expansion of (S1+ td)/d , of length h0, a new complete
quotient in the continued fraction expansion is

(5-4)
−(−1)h0+1

(ωn + S1/d)(d/dy)2
−

c0

d/dy
,

where

c0 ≡
(−1)h0

(S1+ td)/dy
(mod d/dy).

By choosing (−1)h0+1
= sign(l) the element in (5-4) then becomes

(5-5)
ωn + S1/d

c2r N |l| y2T k xn/(dy)2
−

c0

d/dy
=
ωn + S1/d − c0c2r N |l|dy(y/dy)

2T k xn/d
c2r N |l|(y/dy)2T k xn .

Now define: s := maxi∈N{(x i , c)} and u := c/s. Hence (u, x) = 1. Recall,
(x, qrzyml) = 1 so then (s, qrzyml) = 1. We will denote the element in (5-5) as
θh0 . From it, we can write

(5-6) θh0 =
ωn + Ph0

Qh0

=
A0

B0
−

β

c2r N |l|(y/dy)2T k xn ,

where

A0 = cqr N xn
− c0c2r N |l|dy(y/dy)

2T k xn, B0 = c2dr N |l|(y/dy)
2T k xn.

Next, we define 10 := (A0, B0). We need to determine 10 before we can apply
Lemma 2.2 again. One finds,

10 = cr N xnδdz and B0/10 = c/δd/dz |l|(y/dy)
2T k .

From (5-6), by applying Lemma 2.2, we find the next partial quotients are those of
the continued fraction expansion of A0/B0 of length p0. By choosing (−1)p0+1

=

sign(m) , the next element in the continued fraction expansion is θh1 , where h1 :=

h0+ p0,

θh1 =
c2r N |l|(y/dy)

2T k xn

−β sign(m) (B0/10)2
−

c1

B0/10
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and c1 ≡− sign(m)10/A0 (mod B0/10). We can write

θh1 =
ωn + S2/d − c1(c/δ)|m|z(z/dz)U k/d
(c/δ)2|ml|(y/dy)2(z/dz)2(U T )k

.(5-7)

Finding other complete quotients. The set of conditions

u2i−1
∣∣u , z2i−1

∣∣z/dz , z′2i−1

∣∣z , (c2i−1, sT )= 1 , (z2i−1 y2i−1, u/u2i−1)= 1 ,

m2i−1 ∈ {1, |m|} , l2i−1 ∈ {1, |l|} , r2i−1 ∈ {1, r} , y2i−1
∣∣ y/dy , u′2i−1

∣∣u.
will be denoted by C2i−1. The set of conditions C2i are the same as C2 j−1 (with
2 j − 1 replaced by 2i) except that instead of requiring z′2 j−1

∣∣z, we need y′2i

∣∣ y.

Theorem 5.1. Suppose there exists a complete quotient (ωn+ Ph2i−1)/Qh2i−1 satis-
fying

Ph2i−1 = S2/d − sm2i−1r2i−1u2i−1u′2i−1z2i−1z′2i−1c2i−1U ki/d(5-8a)

Qh2i−1 = r2i−1l2i−1m2i−1(su2i−1 y2i−1z2i−1)
2(U T )ki ,(5-8b)

where n> ki and the set of conditions C2i−1 are satisfied. Then there is a complete
quotient (ωn + Ph2i )/Qh2i , where

Ph2i = S1/d − Nsr2i l2i u2i u′2i y2i y′2i c2iU n−ki T n+k/d(5-9a)

Qh2i = r2i l2i m2i (su2i y2i z2i )
2 N T n+k(i+1)U n−ki(5-9b)

and the conditions C2i are satisfied.

Observe that with appropriate selections, θh1 is a complete quotient satisfying (5-8)
and the conditions C1.

Proof. From (5-8), we find that the current line in the continued fraction expansion
is

ωn + Ph2i−1

Qh2i−1

=
cqr N xn

− sr2i−1m2i−1u2i−1u′2i−1z2i−1z′2i−1c2i−1U ki

dr2i−1m2i−1l2i−1(su2i−1z2i−1 y2i−1)2(U T )ki −

(ωn + S1/d)
r2i−1m2i−1l2i−1(su2i−1z2i−1 y2i−1)2(U T )ki .

Now, define

A2i−1 := cqr N xn
− sr2i−1m2i−1u2i−1u′2i−1z2i−1z′2i−1c2i−1U ki ,

B2i−1 := dr2i−1m2i−1l2i−1(su2i−1z2i−1 y2i−1)
2(U T )ki ,

12i−1 := (A2i−1, B2i−1).

The next few results aid in determining common factors.

Lemma 5.2. If A2i−1 = d Ph2i−1 + (s1+ td)/2 then dyu2i−1l2i−1 y2i−1
∣∣A2i−1.
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Lemma 5.3. For any rational integers a, b, d , f such that d
∣∣ab and ( f, d) = 1

there exist rational integers x , y such that

dxy = ab

and x
∣∣a, y

∣∣b, ( f x, b/y)= 1.

Proof. Take x = a/(a, d) and y = b(a, d)/d. �

Returning to the expansion of ωn , we write

w2i−1 := (m2i−1, u/u2i−1) and e2i−1 := sdyu2i−1l2i−1 y2i−1r2i−1w2i−1.

Note that if n ≥ ki then w2i−1u2i−1sU kir2i−1
∣∣A2i−1 and by Lemma 5.2 we get

dyu2i−1l2i−1 y2i−1
∣∣A2i−1. Now we define G2i−1 := A2i−1/(U ki e2i−1). It follows

easily (see [Patterson 2003, Chapter 16]) that (G2i−1, sT z2i−1m2i−1/w2i−1) = 1.
In summary,

12i−1 =U ki e2i−1(G2i−1, d̄dz y2i−1u2i−1).

Since A2i−1= d Ph2i−1+ S1+ td, we have (d, A2i−1)= dy . Thus (d̄dz,G2i−1)= 1.
Hence, 12i−1 =U ki e2i−112i−1, where 12i−1 := (y2i−1u2i−1,G2i−1).

From the complete quotient

θh2i−1 =
A2i−1

B2i−1
−

α

r2i−1l2i−1m2i−1(su2i−1 y2i−1z2i−1)2(U T )ki

we apply Lemma 2.2, so the next partial quotients are those of the expansion of
A2i−1/B2i−1 of length p2i−1. The parity of p2i−1 is determined by (−1)p2i−1+1

=

sign(l) . Following this, the next complete quotient is θh2i , where h2i := h2i−1 +

p2i−1. By Lemma 2.2, θh2i is equal to

(5-10)
r2i−1l2i−1m2i−1(su2i−1 y2i−1z2i−1)

2(U T )ki

−α(B2i−1/12i−1)2
−

c2i

B2i−1/12i−1
=

r2i−1l2i−1(ωn + S1/d)(w2i−1dy12i−1)
2

s2u2r N |l| y2m2i−1z2
2i−1U n−ki T n+k(i+1)

−
c2i

B2i−1/12i−1
,

where
c2i ≡− sign(l)12i−1/A2i−1 (mod B2i−1/12i−1).

Also note that sT
∣∣B2i−1/12i−1 and (A2i−1/12i−1, B2i−1/12i−1) = 1 imply that

(c2i , sT )= 1.
According to Lemma 5.3 there exists y2i , u2i such that

y2i
∣∣ y/dy , u2i

∣∣u/w2i−1 , y2i u2i12i−1 =
y

dy

u
w2i−1

and (z2i−1 y2i , u/(u2iw2i−1)) = 1. By taking l2i := |l|/ l2i−1, r2i := r/r2i−1,
m2i := m2i−1, z2i := z2i−1, y′2i := y/y2i−1, and u′2i := u/u2i−1, one finds that
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(y2i z2i , u/u2i ) = 1. Moreover, the complete quotient θh2i now satisfies (5-9) and
the set of conditions C2i . �

There is also an analogous result for θh2i .

Theorem 5.4. Suppose there is a complete quotient θh2i = (ωn + Ph2i )/Qh2i satis-
fying (5-9) and the set of conditions C2i . Then there is a complete quotient θh2i+1 ,
where

Ph2i+1 = S2/d − sm2i+1r2i+1u2i+1u′2i+1z2i+1z′2i+1c2i+1U k(i+1)/d

Qh2i+1 = r2i+1l2i+1m2i+1(su2i+1z2i+1 y2i+1)
2(U T )k(i+1)

and the set of conditions C2i+1 are satisfied.

Thus, from the complete quotient θh2i−1 we find another complete quotient θh2i+1

satisfying exactly the same requirements as θh2i−1 . Moreover, only a bounded num-
ber of the these complete quotients are not reduced. More precisely,

A2i

B2i
=

k1xn
− k2U n−ki T n+k

k3T n+k(i+1)U n−ki =
k1U ki

k3T k(i+1) −
k2

k3T ki > 1

for some i ≥ W , where W only depends on the parameters m, l, y, z, r , d , c, N ,
U , T .

Similarly,

A2i+1

B2i+1
=

k1xn
− k2U k(i+1)

k3(U T )k(i+1) =
k1xn
− k ′2U ki

k ′3(U T )ki =
k1xn−ki

k ′3
−

k ′2
k ′3T ki > 1

for some V such that n− ki ≥ V . Again, V depends only on the parameters m, l,
y, z, r , d, c, N , U , T .

Since the pairs (Phi , Qhi ) are all distinct for i = 1, 2, . . . , 2(n− V )/k + 1, we
see that

lp(ωn) >

(n−V )/k∑
j=W

p2 j .

Our interest now falls on the length of the expansion of A2i/B2i . Basically, since
we have 2(n) of these expansions, if the lengths are unbounded then, from above,
the period length can not possibly be linear in n. In the next section we show that
in order to have the length of A2i/B2i bounded for all i we must have T = 1.

6. The length of the continued fraction of A2i/B2i

Let i be fixed with W ≤ i ≤ (n− V )/k, so that θh2i is reduced. We have

Ph2i = S1/d − Nsl2ir2i u2i u′2i y2i y′2i c2iU n−ki T n+k/d = S1/d − J/d.
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As usual, we have

d2(t − Dn)/4+ d2(t Ph2i + P2
h2i
)≡ 0 (mod d2 Qh2i ),

where in the above case

Qh2i = r2i m2i l2i N (su2i z2i y2i )
2U n−ki T n+k(i+1).

We can write this as

−Gxn
− td J − 2S1 J + J 2

≡ 0 (mod d2 Qh2i ).

Modulo T k(i+1) we have

(6-1) GU ki
≡−C Nsl2ir2i u2i u′2i y2i y′2i c2i T k (mod T k(i+1)).

Returning now to A2i/B2i , we previously found that

A2i

B2i
=

AU ki
− Nsr2i l2i u2i u′2i y2i y′2i c2i T k

d Nl2ir2i m2i (su2i y2i z2i )2T k(i+1) .

Writing (6-1) as

C Nsl2ir2i u2i u′2i y2i y′2i c2i T k
=−GU ki

− f2i T k(i+1),

where f2i ∈ Z, we find,

A2i

B2i
=

c2r Nmz2U k(i+1)
+ f2i T k(i+1)

C Ndl2ir2i m2i (su2i y2i z2i )2T k(i+1) =
1

F2i

(
Eξ i+1

+ f2i
)
,

where F2i and E are bounded integers and ξ =U k/T k .

Depth of a sequence of rationals. We now provide an aside regarding the depth of
(a/b)h as h→∞ for coprime integers a and b. The depth of the regular continued
fraction expansion of α ∈ Q is denoted by δ(α). This is defined as the number of
partial quotients in the even length continued fraction expansion of α.

Theorem 6.1. If a and b are two coprime integers with 1< b < a then

lim
i→∞

δ
(
(a/b)i

)
=∞

Whether this is so was asked by Mendès France and proved by Pourchet in a letter
to him. A summary of Pourchet’s response is given in [van der Poorten 1984].3

3Van der Poorten provides the following correction to the given argument: Consider pn+1 <

pnahεn so that ah
= pψ(h) < ah(ε1+···+εψ(h)) and then consider ε1+ . . . εψ(h) = ψ(h)ε.
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It is clear that δ(1/α)≥ δ(α)−2, δ(−α)≥ δ(α)−2 and δ(α+n)= δ(α) for any
n ∈ Z. Furthermore, Mendès France [1973] has shown that for any α ∈Q, n ∈ Z+,

δ(nα)≥
δ(α)− 1
κ(n)+ 2

− 1,

where κ(n) is a positive valued function whose values depend only on n. Conse-
quently, for any sequence αi ∈Q satisfying limi→∞ δ(αi )=∞ and any n ∈Z+ we
have limi→∞ δ(αi/n)=∞. It follows that, if T > 1, then

(6-2) lim
i→∞

δ

(
A2i

B2i

)
= lim

i→∞
δ

(
1

F2i
(Eξ i+1

+ f2i )

)
=∞.

Period length of ωn. By our criteria for a kreeper we must have for some a, b∈Q,

an+ b = lp(ωn) >

(n−V )/k∑
j=W

p2 j

for all n ∈ I . Hence we must have

(6-3)
(n−V )/k∑

i=W

δ

(
A2i

B2i

)
< an+ b.

By (6-2) there exists a γ >W such that δ (A2i/B2i ) > k(a+1) for all i ≥ γ . Then,

(6-4)
(n−V )/k∑

i=W

δ

(
A2i

B2i

)
> k(a+ 1)

[
(n− V )/k− γ

]
.

When n > b+ (a + 1)
(
V + kγ

)
we have (6-4) is greater than an+ b. And since

all the terms on the right side of this inequality are bounded, there must exist an
infinitude of values of n ∈ I such that lp(ωn) > an + b for any fixed a, b. In
conclusion Dn can not be a kreeper if T > 1. In other words, we must have T = 1
and U = x .

Our only remaining objective is to show that necessarily N = 1. Clearly, there
is no loss in generality in supposing that N is not a power of x . In Section 5 we
established the existence of the following complete quotient in all kreepers,

θh2i =
ωn + S1/d − Nsr2i l2i u2i u′2i y2i y′2i c2i xn−ki/d

r2i m2i l2i (su2i y2i z2i )2 N xn−ki .

By taking i = bn/kc we find an element, η ∈ On , whose norm can be written as
RN xν , where R

∣∣Dn , (N , En)= 1 and 0≤ ν < k. Hence the norm of η is bounded
independently of n, and coprime to the conductor of the order O∗n . First, recall the
ideal bn ∈ O∗n from page 195, which has norm xg, with g fixed independently of
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n. Suppose that N > 1 and that the ideals (η), bn are dependent in O∗n . Then by
Theorem 2.7 we must have N exνe

= xg f for some nonnegative integers e, f , not
both zero. Since N is not a power of x , we must have e= 0, f > 0. But this would
imply x = 1, which is impossible. Hence (η) and bn are independent ideals in O∗n .
Then by Proposition 4.3, R(On)� (log Dn)

3; that is the sequence of discriminants
{Dn} is not a kreeper. Thus we must have N = 1.

This completes the proof of Theorem 1.1.

7. Function field kreepers

Almost everything done here is also valid in function fields. Instead of consider-
ing quadratic fields over Q, we can consider the so-called congruence quadratic
function fields Fq(X,

√
f ), where f ∈ Fq [X ]. It is well-known that the results in

Section 2 have similar analogues for expansions over Fq [X ]. The main exception
for our interests here, is that the continued fraction expansion of a rational function
f (X) ∈ Fq [X ] has a fixed length. This was used in Section 5 to ensure each Qh j

was positive. In the function field case the term (−1)p2i−1+1l is equal to ul, where
u ∈ F∗q . By interpreting |l| to be equal to ul for some u ∈ F∗q , the results carry over.

Other minor details: P lies in F∗q rather than in {±1}, which is easily handled by
just renaming M ; further, L , g should be defined to be 2 and τy , τz can be ignored.

The main problem is that Theorem 6.1 does not hold for coprime functions in
Fq [X ]. Consequently, we have no direct proof that T = 1 and U = x . However, if
we suppose only the weaker condition: that x is a monomial in X (then necessarily
x = X by assumption about powers of x) then trivially, T ∈ Fq and U = x/T . Then
by renaming l and m we have:

Theorem 7.1. A function field kreeper, that is a sequence of polynomials fn(X)
such that

(1) fn(X)= A(X)2 X2n
+ B(X)Xn

+C2, where A, B, C ∈ Fq [X ]

(2) lp(
√

fn(X))= an+ b for some a, b ∈Q

(3) In the principal cycle there exists an element whose norm is X g for some g
fixed independently of n.

must satisfy

d2 fn(X)= c2 ((qr Xn
+ (mz2 X k

− ly2)/q)2+ 4rly2 Xn) ,
where q, r , l, m ∈ Fq [X ] and

(qr X,mlzy)= 1 , (ml, zy)= 1 , (qr, X)= 1 ,

c2rly2mz2 ∣∣d2 Dn , q
∣∣mz2 X k

− ly2.
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8. Some more notations

Define s :=maxi∈N

{
(x i , c)

}
, u := c/s so that (u, x)= 1. In order to make things

easier for ourselves when we come to the expansion of ωn , we would like to have

xµ ≡ 1 (mod u2mz2ly2) and xµ ≡ 0 (mod s2) .

Clearly, such a µ must exist. We shall want to consider the congruence class,
Iν := {n ∈ N : n ≡ ν (mod µ), n > µ}. Our proof will show that Dn is a kreeper
for n ∈ Iν , and since every n lies in some Iν , we shall not be losing any generality
in this restriction. Moreover, the value of xn (mod u2s2mz2ly2) is the same for all
n ∈ Iν .

If θi+1 represents the (i + 1)-th complete quotient of ωn , that is, if

ωn = [ a0 , a1 , . . . , ai , θi+1 ],

we define
9i+1 = θ1 . . . θi−1θi Qi ∈ Z[ωn].

Then, we have N (9i+1) = (−1)i Qi . If we write the complete quotient θhi =

(ωn + Phi )/Qhi as θhi = Ai/Bi − γ , where we take

Bi = d Qhi and Ai =

{
d Phi + cqr xn

− Sm εi = 0 or i ≡ 0 (mod 2),

d Phi + s1− S2 εi−1 = 1 and i ≡ 1 (mod 2),

where Phi = Sm/d − J , Sm being one of S1 and S2 and J is some function of r , l,
m, z, y, c, x . Applying Lemma 2.2 (where 1i = (Ai , Bi )), we find

θhi+1 =
(−1)piγ

γ γ (Bi/1i )2
−

ci

Bi/1i
,

where ci ≡ (−1)pi+11i/Ai (mod Bi/1i ). Thus,

Qhi+1 = (−1)piγ γ (Bi/1i )
2 Qhi .

Hence,
(−1)pi Qhi+1

Qhi

=
(Ai − Biθhi )(Ai − Biθhi )

12
i

.

By Corollary 2.4,

θhi+1θhi+2 . . . θhi+1 =
(Ai − θhi Bi )Qhi

1i Qhi+1

.

Hence,

(8-1) 9hi+1+1 =

(
Ai − Biθhi

1i

)
9hi+1.
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9. Determination of some specific elements in the expansion

In Section 5 we determined the existence of the following complete quotient in the
expansion of ωn ,

(9-1) θh1 =
ωn + S2/d − c1(c/δ)z(z/dz)xk/d
(c/δ)2|ml|(y/dy)2(z/dz)2xk ,

Moreover, for sufficiently large n, θh1 is reduced. Furthermore,

(9-2) 9h1+1 = αβ/(d10).

As shown earlier, the development of the expansion of ωn depends upon whether
or not a power of xk can be factored out from Qhi or not. In order to accommodate
this we define

εi =

{
1 if λi ≥ n− k,

0 if λi < n− k,

where λi is defined recursively as

λ1 := k, λi+2 :=

{
λi + k− nεi if i ≡ 1 (mod 2),

0 if i ≡ 0 (mod 2).

Note that λ2i−1 ≡ ki (mod n).

Theorem 9.1. Suppose there exists a complete quotient (ωn+ Phi )/Qhi satisfying

(9-3) Phi = S2/d − smiri ui u′i zi z′i ci xλi /d , Qhi = ri li mi (sui yi zi )
2xλi ,

and the set of conditions Ci are satisfied. Then there exists a complete quotient
(ωn + Phi+2)/Qhi+2 satisfying (9-3) and Ci+2. Furthermore,

9hi+2+1 =

(
αεi+1β

d21i1i+1

)
9hi+1

Note: It is clear that with the appropriate selections, the complete quotient θh1 in
(9-1) satisfies the conditions of the theorem.

Proof. In Section 5 we determined the existence of a complete quotient satisfying
the conditions C ′i+1. Furthermore,

(9-4) 9hi+1+1 =

(
Ai − Biθhi

1i

)
9hi+1 =

(
α

d1i

)
9hi+1.

Moreover we have hi+1 = hi + pi , where pi is the length of the appropriately
selected continued fraction expansion of Ai/Bi .

Suppose εi = 0. If λi < n− k then εi = 0 and λi+2 = λi + k. This now follows
as in Section 5.
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Suppose εi = 1. When λi ≥ n− k we have εi = 1 and this situation has not yet
been considered. In this situation, the previous choice of Ai+1 is not appropriate.
Instead, we need to consider

θhi+1 =
s1/d − sri+1li+1ui+1u′i+1 yi+1 y′i+1ci+1xn−λi /d

ri+1li+1mi+1(sui+1 yi+1zi+1)2xn−λi
−

α

ri+1li+1mi+1(sui+1 yi+1zi+1)2xn−λi
.

There is a slight problem in notation because there is going to be an extra inter-
mediate complete quotient. Consequently, we will use overlines to represent the
terms involved. This time we take

Ai+1 := s1− sri+1li+1ui+1u′i+1 yi+1 y′i+1ci+1xn−λi ,

Bi+1 := dri+1li+1mi+1(sui+1 yi+1zi+1)
2xn−λi ,

1i+1 := (Ai+1, Bi+1).

Then, Ai+1 = d Phi+1 + (s1 + td)/2, which leads to dyui+1li+1 yi+1
∣∣Ai+1 after a

short calculation. We also define

w̄i+1 := (mi+1, u/ui+1) , ēi+1 := sdyui+1li+1 yi+1ri+1w̄i+1.

By writing 1′i+1 = (Gi+1, ui+1 yi+1), a little calculation gives

1i+1 = sdyui+1li+1 yi+1ri+1w̄i+11
′

i+1.

Note that
Bi+1

1i+1
=

sdmi+1ui+1 yi+1z2
i+1xn−λi

dyw̄i+11
′

i+1
.

According to Lemma 5.3 there exists two numbers ȳi+2 and ūi+2, such that

ȳi+2
∣∣ y/dy , ūi+2

∣∣u/w̄i+1 , ȳi+2ūi+21
′

i+1 =
y

dy

u
w̄i+1

,

and (
zi+1 ȳi+2,

u
ūi+2w̄i+1

)
= 1.

From

θhi+1 =
Ai+1

Bi+1
−

α

ri+1li+1mi+1(sui+1 yi+1zi+1)2xn−λi
,

we apply Lemma 2.2 and find that the next partial quotients are those of the con-
tinued fraction expansion of Ai+1/Bi+1 of length p̄i+1, where the parity of p̄i+1
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is determined by (−1) p̄i+1+1
= sign(l) . The next complete quotient is then θ ji+2 ,

where ji+2 = hi+1+ p̄i+1 and

(9-5) θ ji+2 =
ri+1li+1mi+1(sui+1 yi+1zi+1)

2xn−λi

− sign(l) α
(

sdmi+1ui+1 yi+1z2
i+1xn−λi

dyw̄i+11
′

i+1

)2 −
c̄i+2

Bi+1/1i+1
,

where c̄i+2≡− sign(l)1i+1/Ai+1 (mod Bi+1/1i+1). The standard choices yield

(9-6) θ ji+2 =
ωn + S1/d − sr̄i+2l̄i+2ūi+2ū′i+2 ȳi+2 ȳ′i+2c̄i+2x2n−λi /d

r̄i+2l̄i+2m̄i+2(sūi+2 ȳi+2 z̄i+2)2x2n−λi

Since s
∣∣Bi+1/1i+1 we get (c̄i+2, s)= 1, also (z̄i+2 ȳi+2, u/ūi+2)= 1. Hence, the

conditions C ′i+2 are satisfied. Furthermore,

9 ji+2+1 =

(
α

d1i+1

)
9hi+1+1.

The complete quotient in (9-6) satisfies the conditions of Theorem 5.4 Hence,
there exists a complete quotient

(9-7) θ ji+3 =
ωn + S2/d − sm̄i+3r̄i+3ūi+3ū′i+3 z̄i+3 z̄′i+3c̄i+3xλi+k−n/d

r̄i+3l̄i+3m̄i+3(sūi+3 ȳi+3 z̄i+3)2xλi+k−n

with the conditions C i+3 satisfied, and

9 ji+3+1 =

(
β

d1i+2

)
9 ji+2+1 =

(
αβ

d21i+11i+2

)
9hi+1+1.

Since εi = 1 we have λi+2 = λi + k−n. With appropriate renaming, the complete
quotient θ ji+3 in (9-7) becomes

θhi+2 =
ωn + S2/d − sri+2mi+2ui+2u′i+2zi+2z′i+2ci+2xλi+2/d

ri+2li+2mi+2(sui+2 yi+2zi+2)2xλi+2

with the conditions Ci+2 being satisfied. Combining both the εi = 0 and εi = 1
cases, we have

9hi+2+1 =

(
αεiβ

d1i+1

)
9hi+1+1 =

(
αεi+1β

d21i1i+1

)
9hi+1,

and hi+2 = hi + pi + pi+1. �

Our next step will be to investigate the number of partial quotients in the period
of the continued fraction expansion of ωn .
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10. Determining the number of partial quotients

By defining, f0 := h0 and fi+1 := pi for i ≥ 1 we find

(10-1) hi =

i∑
k=0

fk .

The value of fi is dependent only upon the set

Zi := {li ,mi , ri , si , s ′i , zi , z′i , ui , u′i , yi , y′i , ci , L i , x},

where L i := λi (mod µ). Moreover, if Zi = Z j then fi = f j . There are only
finitely many distinct sets Zi ; we denote the total number of distinct sets by Z . For
a fixed t , there are precisely tk values of i ∈ {1, . . . , 2tn − 1}, where εi = 1. Let
i1, . . . , itk represent these points. Then

ih =


2nh

k
− 3 if k

∣∣2nh,⌊2nh
k

⌋
− 2 if k 6

∣∣ 2nh.

From (10-1),

h2nt−1 =

i1−1∑
i=0

fi +

tk−1∑
h=1

fih +

tk−1∑
h=1

ih+1−1∑
i=ih+1

fi .

The number of summands in
∑ih+1−1

ih+1 fi is ih+1− 1− (ih + 1)+ 1 ≥ b2n/kc− 2.
Hence the distance between ih and ih+1 can be made arbitrarily large. But Z is
independent of n, which by the box principle means that for large enough n, there
exists ρh and τh such that

Zih+τh = Zih+τh+ρh ih + τh + ρh ≤ ih+1− 1 1≤ τh, ρh ≤ Z .

Now we examine Zκ+ih+τh+ jρh , where κ+ih+τh+ jρh≤ ih+1−1 and 0≤κ <ρh .
Since εih+τh = 0 and εih+τh+ρh = 0 we have

Zih+τh+1 = Zih+τh+ρh+1 provided ih + τh + ρh + 1≤ ih+1− 1.

By induction,

Zih+τh+κ = Zih+τh+κ+ jρh provided ih + τh + κ + jρh ≤ ih+1− 1,

which implies fih+τh+κ = fih+τh+κ+ jρh . Define

υ :=

⌊
b2n/kc− τh − ρh

ρh

⌋
− 1.
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It is straightforward that ih + τh + κ + υρh < ih+1. Then

ih+1−1∑
i=ih+1

fi =

τh−1∑
j=1

fih+ j +

ρh−1∑
κ=0

( υ∑
j=0

fih+τh+κ+ jρh

)
+

ih+1−1∑
j=ih+τh+ρh+υρh

f j .

The number of terms in
∑ih+1−1

j=ih+τh+ρh+υρh
f j is ≤ ρh + 2. Hence,

(10-2)
ih+1−1∑
i=ih+1

fi =

⌊
2n− kτh − kρh

kρh

⌋
ζh + ξh,

where ζh , ξh are independent of n.
We now take ρ =

∏tk
i=1 ρh and w= lcm [k, µ, ρ] both of which are independent

of n. We write n = wγ + φ, where 0 ≤ φ < w. From the original set Iν , we now
wish to consider the following subset, Iν,φ = {n ∈ Iν : n ≡ φ (mod w)}. Without
loss of generality, we may suppose that n ∈ Iν,φ . Consequently,⌊

2n− kτh − kρh

kρh

⌋
= 2γ

w

kρh
+

⌊
2φ− kτh − kρh

kρh

⌋
.

Thus, the sum (10-2) becomes,

ih+1−1∑
i=ih+1

fi = 2ζhγ
w

kρh
+ ζh

⌊
2φ− kτh − kρh

kρh

⌋
+ ξh,

which means we can now write h2nt−1 as

h2nt−1 =

i1−1∑
i=0

fi +

tk−1∑
h=1

fih + 2γ
tk−1∑
h=1

ζh
w

kρh
+

tk−1∑
h=1

(
ζh

⌊
2φ− kτh − kρh

kρh

⌋
+ ξh

)
.

Now, let

xt = 2
tk−1∑
h=1

ζh
w

kρh

yt =

tk−1∑
h=1

(
ζh

⌊
2φ− kτh − kρh

kρh

⌋
+ ξh

)
+

i1−1∑
i=0

fi +

tk−1∑
h=1

fih ,

both of which are integers and independent of γ . Then

h2nt−1 = γ xt + yt =
(
(n−φ)/w

)
xt + yt = at n+ bt ,

where at , bt are both rational numbers independent of n for all n ∈ Iν,φ .
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This shows that the length of the expansion up to h2nt−1 is linear in n. It remains
to show that there exists some h2nt−1, where Qh2nt−1 = 1, and if Q j = 1 then
j = h2nt−1 for some t independent of n.

11. Finding an element of norm 1

We now examine the product of the elements in the expansion. By Theorem 9.1
and (9-2),

9h2i−1+1 =
(αβ)iα

∑i−1
j=1 ε2 j−1

d2i−1
∏2i−2

j=0 1 j
.

So,

9h2nt−1+1 =
(αβ)ntαkt

d2nt−1
∏2nt−2

j=0 1 j
and |N (9h2nt−1+1)| = Qh2nt−1 .

Hence,

Qh2nt−1

(
d2nt−1

2nt−2∏
j=0

1 j

)2

=
∣∣N (

(αβ)nt) N
(
αkt)∣∣= ∣∣N((αβ)n)N (αk)

∣∣t
as well as

Qh2n−1

(
d2n−1

2n−2∏
j=0

1 j

)2

=
∣∣N((αβ)n)N (αk)

∣∣ .
Thus,

√
Qh2nt−1/

(
Qh2n−1

)t
∈Q. Since λ2 j−1≡ jk (mod n)we have that λ2ni−1=0

for positive i . Hence, λ2n−1 = λ2nt−1 = 0 and so

Qh2n−1 = l2n−1m2n−1r2n−1 (su2n−1z2n−1 y2n−1)
2 ,

Qh2nt−1 = l2nt−1m2nt−1r2nt−1 (su2nt−1z2nt−1 y2nt−1)
2 .

Thus, √
l2nt−1m2nt−1r2nt−1

(l2n−1m2n−1r2n−1)t
∈Q.

Since l2n−1, m2n−1, r2n−1 are each squarefree and relatively prime, if 2
∣∣t then

√
l2nt−1m2nt−1r2nt−1 ∈ Q, which implies l2nt−1m2nt−1r2nt−1 = 1. Conversely, if

26
∣∣ t , then l2nt−1m2nt−1r2nt−1 = l2n−1m2n−1r2n−1.
Now, we construct an element of norm 1. Put

ε =

{
1 if l2n−1m2n−1r2n−1 6= 1,

0 if l2n−1m2n−1r2n−1 = 1,
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and

0 =
91+ε

h2n−1+1

(l2n−1m2n−1r2n−1)ε(su2n−1 y2n−1z2n−1)1+ε
.

Then it is easily shown that N (0)= 1.

Lemma 11.1. If Dn = F2
n D′n , where D′n is squarefree, then sui yi zi

∣∣Fn .

The lemma and above results imply that we have V1, Y1 ∈ Z such that

0 = V1+ Y1
Fn

su2n−1 y2n−1z2n−1
ω′n,

where Z[ω′n] is the maximal order of Q(
√

D′n) and D′n is the squarefree kernel of
Dn , that is Dn = F2

n D′n . If we now define V j and Y j by(
V j + Y j

Fn

su2n−1 y2n−1z2n−1
ω′n

)
= 0 j .

Then Y j/Y1 is the Lucas function, (0 j
−0

j
)/(0−0). Since 00 = 1, there must

exist some minimal positive p such that su2n−1 y2n−1z2n−1
∣∣Yp. Putting t = g :=

(1+ ε)p we get

9h2ng−1+1 = 0
p√l2ng−1m2ng−1r2ng−1su2ng−1 y2ng−1z2ng−1.

If ε = 1 then 2
∣∣g implies that l2ng−1m2ng−1r2ng−1 = 1. If ε = 0 then

l2n−1m2n−1r2n−1= 1,

so l2ng−1m2ng−1r2ng−1=1. Since0 p
∈Z[ωn], this implies su2ng−1 y2ng−1z2ng−1=1.

Hence |N (9h2ng−1+1)| = 1, which means that Qh2ng−1 = 1. The values of p depend
only on su2n−1 y2n−1z2n−1, which divides suyz. Thus, there can only be a finite
number of possible values for p.

Conversely, one can also show (see [Patterson 2003, Chapter 25]) that such a
solution is either fundamental or the square of the fundamental solution, although
this is superfluous in showing that Dn is a kreeper.

12. Returning to the regular continued fraction expansion

Up to now we have determined

ωn = [ a0 , . . . , ah0−1 , b1 , ah0+1 , . . . , ah1−1 , b2 , . . . , ah2nt−1−1 , 2a0− t ],

but in this evaluation we never insisted that bi ≥ 1. In other words this expansion
might not correspond to the regular continued fraction expansion of ωn . This is
equivalent to saying that the expansions of Ai/Bi might have an initial nonpositive
partial quotient.



CHARACTERIZATION OF A GENERALIZED SHANKS SEQUENCE 213

Proposition 12.1. In the expansion of ωn given by the earlier procedure, the num-
ber of nonpositive partial quotients is bounded independently of n.

Proof. See [Patterson 2003]. �

This proposition means that there are only finitely many partial quotients that
need to be altered in order to find the regular continued fraction expansion of ωn .

The removal of nonpositive partial quotients is covered in [Dirichlet 1999].
There it is shown that any negative partial quotient can be moved to the left in the
continued fraction expansion. In our situation, we discover that either the negative
partial quotient disappears easily or we are left with

[ bi−1 ,−1 , 1 , u , v , . . . ] = [ bi−1− 2− u , 1 , v− 1 , . . . ],

where u > 0 and is bounded independently of n, and bi−1 = bAi−1/Bi−1c. When

θhi−1 =
ωn + S2/d − Ei−1xλi /d

E ′i−1xλi
=

Ai−1

Bi−1
+ e

we have λi� 1, implies bAi−1/Bi−1c> xn−J1 , where J1 is bounded independently
of n. Consequently, bi−1 − 2− u > 0 for all sufficiently large n. The other case
follows similarly.

Finally, we note that ahi+ j with j > 0 can not be the end of the period since
Qhi+ j > 1. For sufficiently large n, each b j which is not some bh2nt−1 satisfies
b j < xn since Bi ≥ x .

In conclusion, we have shown that,

lp(ωn)= h2ng−1+ cn = agn+ bg + cn = agn+ b′g,

where cn ∈Z can be bounded independently of n. Then ag, b′g are rational numbers
bounded independently of n.

Hence there must exist an infinitude of values of n ∈ I such that

lp(ωn)= an+ b,

where a, b ∈ Q and are fixed independently of n. This completes the proof of
Theorem 1.2.
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