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Let γ0 : [a, b] → R1+k be Lipschitz. Our main result provides a sufficient
condition, expressed in terms of further accessory Lipschitz maps, for the
C3-rectifiability of γ0([a, b]).

1. Introduction

A set in Rn is C3-rectifiable if H1-almost all of it can be covered by countably
many curves of class C3 embedded in Rn . The main goal of this paper is to prove
the following result.

Theorem 1.1. Let there be given Lipschitz maps

γ0, γ1 : [a, b] → R1+k and γ2 = (γ2>, γ2⊥) : [a, b] → R1+k
× R1+k

and a function ω : [a, b] → {±1} such that

γ ′

0(t)= ω(t) ‖γ ′

0(t)‖ γ1(t),(1-1)

(γ ′

0(t), γ
′

1(t))= ω(t) ‖(γ ′

0(t), γ
′

1(t))‖ γ2(t)(1-2)

for almost every t ∈ [a, b]. Then γ0([a, b]) is a C3-rectifiable set.

Remark. In the special case when ω := 1 while γ0 is regular and at least of class
C2, the conditions (1-1) and (1-2) say that γ1(t) and γ2(t) are, respectively, the unit
tangent vector of γ0 at t and the unit tangent vector of (γ0, γ1) at t . This remark is
at the root of the applications to geometric variational problems mentioned below.

Theorem 1.1 should be considered a step forward in a project, stated in [Delladio
2005], aimed at providing sufficient conditions for the C H -rectifiability of a n-
dimensional rectifiable set. Results concerning the case H = 2 were first obtained
in [Anzellotti and Serapioni 1994; Delladio 2003; Fu 1998], but subtle mistakes
seriously invalidating their proofs were discovered later [Delladio 2004; Fu 2004].
Then the paper [Delladio 2005], cleaning-up the simplest case n = 1 and H = 2,
followed. Our future efforts will be aimed at extending the theory to any value of n
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and H . Joint work with Joseph Fu on C2-rectifiability in all dimensions (invoking
slicing in order to reduce to dimension one) is in progress.

Further work is in progress to apply these results to geometric variational prob-
lems via geometric measure theory and more precisely through the notion, first in-
troduced in [Anzellotti et al. 1990], of a generalized Gauss graph. Former achieve-
ments in this direction include [Delladio 2001] (a somehow surprising application
to differential geometry context), [Anzellotti and Delladio 1995] (an application to
Willmore problem) and [Delladio 1997] (an application to a problem introduced
in [Bellettini et al. 1993]). These last two papers followed the idea by De Giorgi
of relaxing the functional with respect to L1-convergence of the domains of in-
tegration. Now we expect that our results can be applied to handle functionals
with integrands involving curvatures with their derivatives and, in particular, to get
explicit representation formulas after relaxation.

The proof of Theorem 1.1 starts from the C2-rectifiability of γ0([a, b]), which
is guaranteed by condition (1-1), as shown in [Delladio 2005]. The problem is
reduced in Section 2 to proving that γ0([a, b]) intersects the graph of any C2 map

f : R → (Ru)⊥ (u ∈ R1+k, ‖u‖ = 1)

in a C3-rectifiable set. From the first and second derivatives of f expressed in
terms of the γi , we obtain in Section 3 a second order Taylor-type formula for f
with the remainder in terms of the γi . Theorem 1.1 then follows by the Whitney
Extension Theorem, also involving a Lusin-type argument (Section 4). Finally, the
absolute curvature for a one-dimensional C2-rectifiable set P is defined and proved
to be approximately differentiable almost everywhere whenever P is C3-rectifiable
(Section 5).

2. Reduction to graphs

By virtue of the main result stated in [Delladio 2005], the equality (1-1) implies
that γ0([a, b]) is C2-rectifiable. As a consequence, there must be countably many
unit vectors

u j ∈ R1+k

and maps of class C2

f j : R → (Ru j )
⊥

such that

H1(γ0([a, b]) \
⋃

j G f j

)
= 0

where

G f j :=
{

xu j + f j (x) | x ∈ R
}
.
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Hence we need only show that the sets γ0([a, b])∩G f j are C3-rectifiable. In other
words, Theorem 1.1 becomes an immediate corollary of the following result.

Theorem 2.1. Let γ0, γ1, γ2 be as in Theorem 1.1. Consider a map

f : R → (Ru)⊥ (u ∈ R1+k, ‖u‖ = 1)

of class C2 and define
G f := {xu + f (x) | x ∈ R}.

Then the set G f ∩ γ0([a, b]) is C3-rectifiable.

In this section we take the first step toward the proof of Theorem 2.1, which will
be concluded later in Section 4. Define

L := γ−1
0 (G f )∩

{
t ∈ [a, b]

∣∣ γ ′

0(t), γ
′

1(t) exist, γ ′

0(t) 6= 0, (1-1) and (1-2) hold
}
.

By Lusin’s Theorem, for any given real number ε > 0, there exists a closed subset
Lε of L such that

(2-1) γ ′

0|Lε and ω|Lε are continuous and L1(L\Lε)≤ ε.

If L∗
ε denotes the set of the density points of Lε, then

(2-2) L∗

ε ⊂ Lε

since Lε is closed. The equality

(2-3) L1(Lε\L∗

ε)= 0

also holds by a celebrated result of Lebesgue. In the special case that L has measure
zero, we take Lε := ∅, hence L∗

ε := ∅.
Now observe that

G f ∩ γ0([a, b])\γ0(L∗

ε)⊂ γ0
(
γ−1

0 (G f )∩ [a, b]\L∗

ε

)
hence

H1(G f ∩ γ0([a, b])\γ0(L∗

ε)
)
≤ H1(γ0

(
γ−1

0 (G f )∩ [a, b]\L∗

ε

))
≤

∫
γ−1

0 (G f )∩[a,b]\L∗
ε

‖γ ′

0‖ =

∫
L\L∗

ε

‖γ ′

0‖ ≤ ε Lip(γ0),

which implies
H1

(
G f ∩ γ0([a, b]) \

⋃
∞

j=1 γ0(L∗

1/j )
)
= 0.

Hence, to prove Theorem 2.1, it will be enough to verify that

(2-4) γ0(L∗

ε) is C3-rectifiable

for all ε > 0.
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3. Second order Taylor formula and estimates

Proposition 3.1 below gives formulas for the first and second derivatives of f in
terms of the γi . This yields a suitable second order Taylor formula in Theorem 3.1.

Throughout this section we shall assume L1(L) > 0. Notice that

(3-1) γ2>(s) 6= 0 for all s ∈ L

by (1-2), so the map

µ :
{
t ∈ [a, b]

∣∣ γ2>(t) 6= 0
}

→ R1+k, µ(t) :=
γ2⊥(t)

‖γ2>(t)‖

is well-defined in L .

Lemma 3.1. Let A, B, u ∈ R1+k , with ‖u‖ = 1. Then

(A ∧ B) u = (A · u)B − (B · u)A.

Proof. Let {e j } be an orthonormal basis of R1+k such that e1 = u. One has(
(A ∧ B) u

)
· ei = 〈A ∧ B, u ∧ ei 〉 =

∑
j<l

(A j Bl − Al B j )〈e j ∧ el, e1 ∧ ei 〉

= A1 Bi − Ai B1 =
(
(A · u)B − (B · u)A

)
· ei

for all i = 1, 2, . . . , 1 + k. �

Proposition 3.1. Set
x(t) := γ0(t) · u, t ∈ R.

Then, for all s ∈ L∗
ε , one has

(3-2) x ′(s)= γ ′

0(s) · u 6= 0 (that is, γ1(s) · u 6= 0)

and

(3-3) f ′(x(s))=
γ1(s)
γ1(s) · u

− u.

Moreover

(3-4) f ′′(x(s))=

(
γ1(s)∧µ(s)

)
u

(γ1(s) · u)3
.

Proof. Observe that

f (x(t))= γ0(t)− (γ0(t) · u)u = γ0(t)− x(t)u

for all t ∈ γ−1
0 (G f ). The sides of this equality are both differentiable in L∗

ε and
since each point in L∗

ε ⊂ γ−1
0 (G f ) is a limit point of Lε ⊂ γ−1

0 (G f ), the derivatives
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have to coincide in L∗
ε . Thus

(3-5) x ′(s) f ′(x(s))= γ ′

0(s)− (γ
′

0(s) · u)u = γ ′

0(s)− x ′(s)u

for all s ∈ L∗
ε . We obtain (3-2) by recalling that γ ′

0(s) 6= 0 at all s ∈ L∗
ε .

Formula (3-3) follows at once from (3-5) and (1-1).
By virtue of (3-2), the sides of (3-3) are both differentiable in L∗

ε . The derivatives
must coincide in L∗

ε , since each point of L∗
ε is a limit point of L∗

ε . In view of Lemma
3.1, we then get

x ′(s) f ′′(x(s))=
(γ1(s) · u)γ ′

1(s)− (γ
′

1(s) · u)γ1(s)
(γ1(s) · u)2

=
(γ1(s)∧ γ ′

1(s)) u
(γ1(s) · u)2

for all s ∈ L∗
ε . Formula (3-4) finally follows from (3-2), (1-1) and (1-2). �

Now set
1s(t) := γ0(t)− γ0(s), s, t ∈ [a, b].

The map

6s(t) :=1s(t)− (1s(t) · γ1(s)) γ1(s)−
(1s(t) · u)2

2(γ1(s) · u)2
µ(s), t ∈ [a, b],

is well-defined for any given s ∈ L∗
ε , by Proposition 3.1.

If s ∈ L∗
ε , hence s ∈ (a, b) and (3-1) holds, one has

‖γ2>(σ )‖ ≥
1
2‖γ2>(s)‖> 0 for all σ ∈ Is,

where Is denotes a certain nontrivial open interval centered at s and included in
[a, b], existing by the continuity of γ2>. In particular, this inequality shows that
µ|Is is Lipschitz, so the map given, for σ ∈ Is , by

9s(σ) :=µ(σ)−(µ(σ)·γ1(s))γ1(s)−
µ(s)

(γ1(s)·u)2
(
(γ1(σ)·u)2+(1s(σ)·u)(µ(σ)·u)

)
is well-defined and Lipschitz, provided s ∈ L∗

ε . Moreover

9s(s)= 0,

as follows at once from (1-2) and from the following simple result.

Proposition 3.2. If s ∈ L∗
ε then γ1(s) · γ ′

1(s)= 0.

Proof. Let {s j } be a sequence in Lε converging to s, with s j 6= s for all j . Since

‖γ1(s j )‖ = ‖γ1(s)‖ = 1 for all j,

by (1-1) and (2-2), we have

0 =
‖γ1(s j )‖

2
− ‖γ1(s)‖2

s j − s
=
γ1(s j )− γ1(s)

s j − s
·
(
γ1(s j )+ γ1(s)

)
.
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The conclusion follows by letting j → ∞. �

Theorem 3.1. Let s ∈ L∗
ε .

(1) For all t ∈ γ−1
0 (G f ),

(3-6) f (x(t))− f (x(s))− f ′(x(s))
(
x(t)− x(s)

)
−

1
2 f ′′(x(s))

(
x(t)− x(s)

)2

=
1

γ1(s) · u
(γ1(s)∧6s(t)) u.

(2) For all t ∈ Is ,

6s(t)=

∫ t

s
ω(ρ)‖γ ′

0(ρ)‖

(∫ ρ

s
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ
)

dρ.

Proof. (1) By recalling Proposition 3.1 and Lemma 3.1, we get

f (x(t))− f (x(s))− f ′(x(s))(x(t)− x(s))− 1
2 f ′′(x(s))(x(t)− x(s))2

= γ0(t)− x(t)u − (γ0(s)− x(s)u)−
(
γ1(s)
γ1(s) · u

− u
)
(x(t)− x(s))

−
(γ1(s)∧ γ2⊥(s)) u

2‖γ2>(s)‖(γ1(s) · u)3
(x(t)− x(s))2

=1s(t)−
γ1(s)
γ1(s) · u

(1s(t) · u)−
(γ1(s)∧ γ2⊥(s)) u

2‖γ2>(s)‖(γ1(s) · u)3
(1s(t) · u)2

=
1

γ1(s) · u

(
(γ1(s)∧1s(t)) u −

(γ1(s)∧ γ2⊥(s)) u
2‖γ2>(s)‖(γ1(s) · u)2

(1s(t) · u)2
)
.

This is just (3-6), in view of the definition of 6s(t).

(2) Since 1s is Lipschitz and 1s(s)= 0, one has

6s(t)=

∫ t

s
γ ′

0(ρ)− (γ
′

0(ρ) · γ1(s))γ1(s)−
µ(s)

2(γ1(s) · u)2
d

dρ
(1s(ρ) · u)2dρ

=

∫ t

s
γ ′

0(ρ)− (γ
′

0(ρ) · γ1(s))γ1(s)−
µ(s)

(γ1(s) · u)2
(1s(ρ) · u)(γ ′

0(ρ) · u) dρ

namely

(3-7) 6s(t)=

∫ t

s
ω(ρ)‖γ ′

0(ρ)‖8s(ρ) dρ

by (1-1), where 8s is the Lipschitz map defined by

8s(ρ) := γ1(ρ)− (γ1(ρ) · γ1(s))γ1(s)−
µ(s)

(γ1(s) · u)2
(1s(ρ) · u)(γ1(ρ) · u)
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for ρ ∈ [a, b]. Observe that

‖γ ′

0(σ )‖γ2⊥(σ )= ‖(γ ′

0(σ ), γ
′

1(σ ))‖‖γ2>(σ )‖γ2⊥(σ )= ω(σ)‖γ2>(σ )‖γ
′

1(σ )

for a.e. σ ∈ [a, b], by (1-2). Hence

γ ′

1(σ )= ω(σ)‖γ ′

0(σ )‖
γ2⊥(σ )

‖γ2>(σ )‖
= ω(σ)‖γ ′

0(σ )‖µ(σ)

for a.e. σ ∈ [a, b] such that γ2>(σ ) 6= 0 — in particular, for a.e. σ ∈ Is . By recalling
the definition of 9s , it follows at once that

(3-8) 8′

s(σ )= ω(σ)‖γ ′

0(σ )‖9s(σ )

for a.e. σ ∈ Is . We conclude using (3-7), (3-8) and noting that 8s(s)= 0. �

As a consequence, we get the following integral representation of 6′
s and the

related first order Taylor formula for f ′.

Corollary 3.1. Let s ∈ L∗
ε and t ∈ L∗

ε ∩ Is . Then

(1) The map 6s is differentiable at t and

6′

s(t)= ω(t)‖γ ′

0(t)‖
∫ t

s
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ.

(2) One has

f ′(x(t))− f ′(x(s))− f ′′(x(s))(x(t)− x(s))

=
1

(γ1(t) · u) (γ1(s) · u)

(
γ1(s)∧

∫ t

s
ω(σ)‖γ ′

0(σ )‖9s(σ )dσ
)

u.

Proof. (1) Observe that t + h ∈ Is ⊂ (a, b) provided |h| is small enough. By
Theorem 3.1(2), then,

6s(t + h)−6s(t)
h

=
1
h

∫ t+h

t
ω(ρ)‖γ ′

0(ρ)‖

(∫ ρ

s
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ
)

dρ

= I1(h)+ I2(h)

for all small enough values of |h|, where we have set — with a harmless abuse of
notation and recalling that ω|L∗

ε is continuous, by (2-1) and (2-2) —

I1(h) :=
ω(t)

h

∫
[t,t+h]∩L∗

ε

‖γ ′

0(ρ)‖

(∫ ρ

s
ω(σ)‖γ ′

0(σ )‖9s(σ )dσ
)

dρ,

I2(h) :=
1
h

∫
[t,t+h]\L∗

ε

ω(ρ)‖γ ′

0(ρ)‖

(∫ ρ

s
ω(σ)‖γ ′

0(σ )‖9s(σ )dσ
)

dρ.
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We have

I1(h)=
ω(t)

h

∫
[t,t+h]∩L∗

ε

(
‖γ ′

0(ρ)‖ −‖γ ′

0(t)‖
)(∫ ρ

s
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ
)

dρ

+
ω(t)‖γ ′

0(t)‖
h

×

∫
[t,t+h]∩L∗

ε

(∫ t

s
ω(σ)‖γ ′

0(σ )‖9s(σ )dσ +

∫ ρ

t
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ
)

dρ.

Recalling that

(i) γ ′

0|L
∗
ε is continuous, by (2-1) and (2-2),

(ii) γ0 is Lipschitz and 9s is bounded (in fact it is Lipschitz!), and

(iii) t is a density point of Lε (hence of L∗
ε , by (2-3)),

we see that

lim
h→0

I1(h)= ω(t)‖γ ′

0(t)‖
∫ t

s
ω(σ)‖γ ′

0(σ )‖9s(σ ) dσ.

The conclusion follows now by observing that, as an easy consequence of (ii) and
(iii), one also has

lim
h→0

I2(h)= 0.

(2) The two members of (3-6) are differentiable at t , by (1). Since t is a limit
point of Lε⊂γ−1

0 (G f ) the derivatives have to coincide, by Theorem 3.1(1), namely(
f ′(x(t))− f ′(x(s))− f ′′(x(s))

(
x(t)−x(s)

))
x ′(t)=

1
γ1(s)·u

(
γ1(s)∧6′

s(t)
)

u.

We conclude by recalling Proposition 3.1, part (1) of the corollary and (1-1). �

4. Conclusion of the proof of Theorem 1.1

To complete the proof of Theorem 2.1, hence of Theorem 1.1, we have to verify
(2-4). For i = 1, 2, . . . , define 0(i) as the set of the points s ∈ L∗

ε satisfying, for all
t ∈ L∗

ε such that |t − s| ≤ (b − a)/ i , the estimates∥∥ f (x(t))− f (x(s))− f ′(x(s))(x(t)− x(s))− 1
2 f ′′(x(s))(x(t)− x(s))2

∥∥
≤ i |x(t)− x(s)|3,

‖ f ′(x(t))− f ′(x(s))− f ′′(x(s))(x(t)− x(s))‖ ≤ i |x(t)− x(s)|2,

‖ f ′′(x(t))− f ′′(x(s))‖ ≤ i |x(t)− x(s)|.

Obviously,
0(i) ⊂ 0(i+1)

⊂ L∗

ε
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for all i , and it is easy to verify that

(4-1)
⋃

i 0
(i)

= L∗
ε;

indeed, for s ∈ L∗
ε , Theorem 3.1 and the equality 9s(s) = 0 for the Lipschitz

function 9s imply that∥∥ f (x(t))− f (x(s))− f ′(x(s))(x(t)− x(s))− 1
2 f ′′(x(s))(x(t)− x(s))2

∥∥
≤

‖6s(t)‖
|γ1(s) · u|

≤
Lip(γ0)

2 Lip(9s)

|γ1(s) · u|

∣∣∣∣ ∫ t

s

( ∫ ρ

s
|σ − s| dσ

)
dρ

∣∣∣∣
= A(s) |t − s|3

for all t ∈ L∗
ε ∩ Is , where

A(s) :=
Lip(γ0)

2 Lip(9s)

6 |γ1(s) · u|
.

Since
x(t)− x(s)

t − s
→ x ′(s) (as t → s)

and x ′(s) 6= 0 by Proposition 3.1, it follows that

(4-2)
∣∣∣∣ x(t)− x(s)

t − s

∣∣∣∣ ≥
|x ′(s)|

2
> 0

provided |t − s| is small enough. Then

(4-3)
∥∥ f (x(t))− f (x(s))− f ′(x(s))(x(t)− x(s))− 1

2 f ′′(x(s))(x(t)− x(s))2
∥∥

≤
8A(s)
|x ′(s)|3

|x(t)− x(s)|3

whenever t lies in L∗
ε and |t − s| is small enough.

Analogously, from Corollary 3.1(2) we get

‖ f ′(x(t))− f ′(x(s))− f ′′(x(s))(x(t)− x(s))‖

≤
1

|γ1(t) · u| |γ1(s) · u|

∥∥∥∥ ∫ t

s
ω(σ)‖γ ′

0(σ )‖9s(σ )dσ
∥∥∥∥

≤
Lip(γ0)Lip(9s)

|γ1(t) · u| |γ1(s) · u|

∣∣∣∣ ∫ t

s
|σ − s| dσ

∣∣∣∣ =
B(s)

|γ1(t) · u|
|t − s|2

for all t ∈ L∗
ε ∩ Is , where

B(s) :=
Lip(γ0)Lip(9s)

2 |γ1(s) · u|
.
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Since γ1(t)→ γ1(s) as t → s and since γ1(s) · u 6= 0 by Proposition 3.1, one also
has

(4-4) |γ1(t) · u| ≥
|γ1(s) · u|

2
> 0

provided |t − s| is small enough. Recalling (4-2), we obtain

(4-5) ‖ f ′(x(t))− f ′(x(s))− f ′′(x(s))(x(t)− x(s))‖

≤
8 B(s)

|γ1(s) · u| |x ′(s)|2
|x(t)− x(s)|2

on condition that t ∈ L∗
ε and |t − s| is small enough.

Since µ|Is is Lipschitz and by (4-4), it follows that the map

t 7→

(
γ1(t)∧µ(t)

)
u

(γ1(t) · u)3

is Lipschitz in a neighborhood of s. Then, by also recalling Proposition 3.1, a
number C(s) has to exist such that

‖ f ′′(x(t))− f ′′(x(s))‖ ≤ C(s) |t − s|

provided t ∈ L∗
ε and |t − s| is small enough. By (4-2) one has

(4-6) ‖ f ′′(x(t))− f ′′(x(s))‖ ≤
2 C(s)
|x ′(s)|

|x(t)− x(s)|

whenever t ∈ L∗
ε and |t − s| is small enough.

Now (4-3), (4-5) and (4-6) imply that s ∈ 0(i), for i big enough. Hence (4-1)
follows.

As a consequence of (4-1), we are reduced to verifying that

(4-7) γ0(0
(i)) is C3-rectifiable for all i .

To prove this, we first set

a(i)j := a +
(b − a) j

i
( j = 0, . . . , i),

0
(i)
j := 0(i) ∩

(
a(i)j , a(i)j+1

)
( j = 0, . . . , i − 1),

F (i)j := x
(
0
(i)
j

)
( j = 0, . . . , i − 1).

For any pair ξ, η ∈ F (i)j , there are two sequences {sh}, {th} ⊂ 0
(i)
j such that

lim
h→∞

x(sh)= ξ, lim
h→∞

x(th)= η.
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Since the three estimates at the beginning of this section (page 264) hold with
s = sh , t = th , we obtain, by letting h → ∞,∥∥ f (η)− f (ξ)− f ′(ξ)(η− ξ)− 1

2 f ′′(ξ)(η− ξ)2
∥∥ ≤ i |η− ξ |3,∥∥ f ′(η)− f ′(ξ)− f ′′(ξ)(η− ξ)
∥∥ ≤ i |η− ξ |2,∥∥ f ′′(η)− f ′′(ξ)
∥∥ ≤ i |η− ξ |.

Therefore f |F (i)j can be extended to a map of class C2,1

f (i)j : R → (Ru)⊥

by invoking the Whitney extension Theorem [Stein 1970, Chapter VI, §2.3].
Finally, a Lusin-type result [Federer 1969, §3.1.15] implies that γ0(0

(i)
j ) has

to be C3-rectifiable (compare [Anzellotti and Serapioni 1994, Proposition 3.2]).
Hence (4-7) follows.

5. Approximately differentiable absolute curvature of a one-dimensional
C3-rectifiable set

We now extend the notion of absolute curvature to arbitrary one-dimensional C2-
rectifiable subsets P of R1+k . Consider a “C2-covering of P”, that is, a countable
family

A = {Ci },

where the Ci are compact curves of class C2, embedded in the base space and such
that

H1(P \
⋃

i Ci
)
= 0.

Part (1) of the next proposition and the remark following it provide the argument
proving the well-posedness of Definition 5.1 below.

Proposition 5.1. Let ϕ,ψ : R → R1+k be maps of class C2 and let x0 be a density
point of

F :=
{

x ∈ R
∣∣ϕ(x)= ψ(x)

}
.

(1) ϕ′(x0)= ψ ′(x0) and ϕ′′(x0)= ψ ′′(x0).

(2) ϕ′′′(x0)= ψ ′′′(x0) if ϕ and ψ are of class C3.

Proof. The set F∗ of density points of F satisfies F∗
⊂ F and L1(F\F∗) = 0;

hence every point in F∗ is a limit point of F∗. The proposition follows. �

Remark. The following facts follow easily from Proposition 5.1(1).
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(a) If x is a density point of both P ∩Ci and P ∩C j , then the absolute curvatures
of Ci and C j coincide at x . Hence, denoting by (P ∩ Ci )

∗ the set of density
points of P ∩ Ci , the function

αA
P :

⋃
i (P ∩ Ci )

∗
→ R, x 7→ the absolute curvature of Ci(x) at x

where i(x) is any index such that x ∈ (P ∩Ci(x))
∗, is well-defined. Moreover,

H1
(
P \

⋃
i (P ∩ Ci )

∗
)
= H1

(
P \

⋃
i (P ∩ Ci )

)
= H1

(
P \

⋃
i Ci

)
= 0,

by a well-known result of Lebesgue.

(b) If B is another C2-covering of P , then αA
P and αB

P are representatives of the
same measurable function, with domain P .

Definition 5.1. The measurable real-valued function with domain P and having
αA

P as a representative (see preceding remark) is said to be the absolute curvature
of P and is denoted by αP .

Proposition 5.2. If P is C3-rectifiable, then αP is approximately differentiable;
that is:

(1) For any given C3-covering A = {Ci } of P , the function αA
P is approximately

differentiable at every point in (P ∩ Ci )
∗, for all i .

(2) If A and B are C3-coverings of P , then one has

apDαA
P = apDαB

P , a.e. in P.

Proof. (1) Consider any point a ∈ (P ∩ Ci0)
∗. Without loss of generality, we can

assume that Ci0 is the graph of a function of class C3, namely

Ci0 = {tu + h(t) | t ∈ I }

where u is a unit vector in R1+k , I is a closed interval centered at 0 and

h ∈ C3(I , (Ru)⊥), h(0)= a.

Set U := I ◦
×Rk and let g : U → R be defined as the function mapping (t, v) ∈ U

to the absolute curvature of Ci0 at tu + h(t), that is,

(5-1) g(t, v)=
‖(u + h′(t))∧ h′′(t)‖
(1 + ‖h′(t)‖2)3/2

, (t, v) ∈ U

by (8.4.13.1) in [Berger and Gostiaux 1988].
Obviously, the function g is differentiable at a. Moreover, since

(P ∩ Ci0)
∗
⊂ E :=

{
x ∈

⋃
i (P ∩ Ci )

∗
∣∣αA

P (x)= g(x)
}
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by the definition of αA
P , the set E has density 1 at a. According to [Federer 1969,

§3.2.16], the function αA
P is approximately differentiable at a and one has

(5-2) apDαA
P (a)= Dg(a)|Rτ, with τ := (1, h′(0)).

(2) This follows easily from (5-1) and (5-2), by recalling Proposition 5.1. �
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