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Cochran introduced Alexander polynomials over noncommutative Laurent
polynomial rings. Their degrees were studied by Cochran, Harvey and Tu-
raev, who gave lower bounds on the Thurston norm. We extend Cochran’s
definition to twisted Alexander polynomials, and show how Reidemeister
torsion relates to these invariants, giving lower bounds on the Thurston
norm in terms of the Reidemeister torsion. This yields a concise formulation
of the bounds of Cochran, Harvey and Turaev. The Reidemeister torsion
approach also provides a natural approach to proving and extending certain
monotonicity results of Cochran and Harvey.

1. Introduction

The following algebraic setup allows us to define twisted noncommutative Alexan-
der polynomials. Let K be a (skew) field and γ : K → K a ring homomorphism.
Denote by Kγ [t±1

] the skew Laurent polynomial ring over K, so the elements
in Kγ [t±1

] are formal sums
∑n

i=m ai t i (m ≤ n ∈ Z) with ai ∈ K. Addition is
given by addition of the coefficients, and multiplication is defined using the rule
t i a = γ i (a)t i for any a ∈ K.

Let X be a connected CW complex with finitely many cells in dimension i .
Given a representation α : π1(X) → GL(Kγ [t±1

], d) we can consider the Kγ [t±1
]-

modules Hα
i (X; Kγ [t±1

]
d) and we define twisted noncommutative Alexander poly-

nomials 1α
i (t) ∈ Kγ [t±1

] (see Section 3.3 for details). Twisted Alexander poly-
nomials over commutative Laurent polynomial rings were first introduced in [Lin
2001], Alexander polynomials over skew Laurent polynomial rings in [Cochran
2004]. Our definition is a combination of the definitions in [Kirk and Livingston
1999] and [Cochran 2004]. In Theorem 3.1 we describe the indeterminacy of these
polynomials.

Denote by Kγ (t) the quotient field of Kγ [t±1
]. We denote the induced represen-

tation π1(X) → GL(Kγ [t±1
], d) → GL(Kγ (t), d) by α as well. If the homology

groups Hα
i (X; Kγ (t)d) vanish and if X is a finite connected CW complex, then
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we can define the Reidemeister torsion τ(X, α) ∈ K1(Kγ (t))/ ± α(π1(X)). An
important tool is the Dieudonné determinant, which defines an isomorphism

det : K1(Kγ (t)) → Kγ (t)×ab,

where Kγ (t)×ab denotes the abelianization of the multiplicative group Kγ (t)× =

Kγ (t) \ {0}. We can therefore study det τ(X, α) ∈ Kγ (t)×ab/ ± det α(π1(X)). We
refer to Sections 2.3 and 3.1 for details.

The following result generalizes commutative results of Turaev [1986; 2001]
and Kirk and Livingston [1999].

Theorem 1.1. Let X be a finite connected CW complex of dimension n. Let α :

π1(X) → GL(Kγ [t±1
], d) be a representation such that Hα

∗
(X; Kγ (t)d) = 0. Then

1α
i (t) 6= 0 for all i and

det τ(X, α) =

n−1∏
i=0

1α
i (t)(−1)i+1

∈ Kγ (t)×ab/{kte
| k ∈ K \ {0}, e ∈ Z}.

For f (t) =
∑n

i=m ai t i
∈ Kγ [t±1

] \ {0} with am 6= 0, an 6= 0, we define its degree
to be deg f (t)= n−m. We can extend this to a degree function deg : Kγ (t)\{0}→

Z. We denote deg det τ(X, α) by deg τ(X, α). Theorem 1.1 then implies that the
degree of τ(X, α) is the alternating sum of the degrees of the twisted Alexander
polynomials (see Corollary 3.6).

We now turn to the study of 3-manifolds. Here and throughout the paper we
will assume that all manifolds are compact, orientable and connected. Recall that
given a 3-manifold M and φ ∈ H 1(M; Z) the Thurston norm [1986] of φ is defined
as

‖φ‖T = min{−χ(Ŝ) | S ⊂ M properly embedded surface dual to φ}

where Ŝ denotes the result of discarding all connected components of S with
positive Euler characteristic. As an example, consider X (K ) = S3

\ νK , where
K ⊂ S3 is a knot and νK denotes an open tubular neighborhood of K in S3. Let
φ ∈ H 1(X (K ); Z) be a generator, then ‖φ‖T = 2 genus(K ) − 1.

Let X be a connected CW complex and let φ ∈ H 1(X; Z). We identify hence-
forth H 1(X; Z) with Hom(H1(X; Z), Z) and Hom(π1(X), Z). A representation
α : π1(X) → GL(Kγ [t±1

], d) is called φ-compatible if for any g ∈ π1(X) we
have α(g) = Atφ(g) for some A ∈ GL(K, d). This generalizes a notion of Turaev
[2002a].

The following theorem gives lower bounds on the Thurston norm using Reide-
meister torsion. It contains the lower bounds of McMullen [2002], Cochran [2004],
Harvey [2005], Turaev [2002a] and of the paper [Friedl and Kim 2006]. To our
knowledge this theorem is the strongest of its kind. Not only does it contain these
results, the formulation of the inequalities given in the papers just cited in terms
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of the degrees of Reidemeister torsion also gives a very concise reformulation of
their results.

Theorem 1.2. Let M be a 3-manifold with empty or toroidal boundary. Let φ ∈

H 1(M; Z) and α : π1(M) → GL(Kγ [t±1
], d) a φ-compatible representation. Then

τ(M, α) is defined if and only if 1α
1 (t) 6= 0. If τ(M, α) is defined, then

‖φ‖T ≥
1
d

deg τ(M, α).

If (M, φ) fibers over S1, then

‖φ‖T = max
{

0,
1
d

deg τ(M, α)
}
.

The most commonly used skew fields are the quotient fields K(G) of group
rings F[G] (F a commutative field) for certain torsion-free groups G, we refer to
Section 5.1 for details. The following theorem says roughly that larger groups give
better bounds on the Thurston norm. The main idea of the proof is to use the fact
that Reidemeister torsion behaves well under ring homomorphisms, in contrast to
Alexander polynomials. See Section 6 or [Harvey 2006] for the definition of an
admissible triple.

Theorem 1.3. Let M be a 3-manifold with empty or toroidal boundary or let M
be a 2-complex with χ(M) = 0. Let φ ∈ H 1(M; Z). Let α : π1(M) → GL(F, d),
F a commutative field, be a representation and (ϕG : π → G, ϕH : π → H, φ) an
admissible triple for π1(M), in particular we have epimorphisms G → H → Z.
Write G ′

= Ker{G → Z} and H ′
= Ker{H → Z}.

If τ(M, ϕH ⊗α) ∈ K1(K(H ′)(t)) is defined, then τ(M, ϕG ⊗α) ∈ K1(K(G ′)(t))
is defined. Furthermore in that case

deg τ(M, ϕG ⊗ α) ≥ deg τ(M, ϕH ⊗ α).

A similar theorem holds for 2-complexes with Euler characteristic zero. As a
special case consider the case that α is the trivial representation. Using Theorem
1.1 we can recover the monotonicity results of [Cochran 2004; Harvey 2006]. We
hope that our alternative proof using Reidemeister torsion will contribute to the
understanding of their results.

In the next section we recall the definition of Reidemeister torsion. In Section 3
we introduce twisted noncommutative Alexander polynomials, compute their inde-
terminacies in Theorem 3.1 and prove Theorem 1.1. Beginning with Section 4 we
concentrate on 3-manifolds: Section 4 gives the proof of Theorem 1.2, Section 5
contains examples of φ-compatible representations, in Section 6 we prove Theorem
1.3, and in Section 7 we show that it implies Cochran’s and Harvey’s monotonicity
results. We conclude with a few open questions in Section 8.
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2. Reidemeister torsion

2.1. Definition of K1(R). For the remainder of the paper we will only consider
associative rings R with 1 6= 0 and with the property that if r 6= s ∈ N0, then Rr is
not isomorphic to Rs as an R-module.

For such a ring R define GL(R) = lim
−→

GL(R, d), where the maps GL(R, d) →

GL(R, d+1) in the direct system are given by A 7→
( A

0
0
1

)
. Then K1(R) is defined as

GL(R)/[GL(R), GL(R)]. Note that K1(R) is an abelian group. For details we refer
to [Milnor 1966; Turaev 2001]. There exists a canonical map GL(R, d) → K1(R)

for every d , in particular there exists a homomorphism from the units of R into
K1(R). By abuse of notation we denote the image of A ∈ GL(R, d) in K1(R) by A
as well. We denote by −A the product of A ∈ K1(R) by the image of (−1) under
the map GL(R, 1) → K1(R).

We will often make use of the observation (see [Rosenberg 1994, p. 61]) that
for A ∈ GL(R, d1), B ∈ GL(R, d2) the product AB ∈ K1(R) is given by

AB =

(
A 0
0 B

)
∈ K1(R).

2.2. Definition of Reidemeister torsion. Let C∗ be a finite free chain complex of
R-modules. By this we mean a chain complex of free finite right R-modules such
that Ci = 0 for all but finitely many i ∈ Z. Let Ci ⊂ Ci be a basis for all i with
Ci 6= 0. Assume that Bi = Im(Ci+1) ⊂ Ci is free, pick a basis Bi of Bi and a lift
B̃i of Bi to Ci+1. We write Bi B̃i−1 for the collection of elements given by Bi

and B̃i−1. Since C∗ is acyclic this is indeed a basis for Ci . Then we define the
Reidemeister torsion of the based acyclic complex (C∗, {Ci }) to be

τ(C∗, {Ci }) =

∏
[Bi B̃i−1/Ci ]

(−1)i+1
∈ K1(R),

where [d/e] denotes the matrix of a basis change, i.e. [d/e] = (ai j ) where di =∑
j a j i e j . (In contrast to Turaev’s book we view vectors as column vectors, so our

matrix is the transpose of the matrix in [Turaev 2001, p. 1].)
It is easy to see that τ(C∗, {Ci }) is independent of the choice of {Bi } and of the

choice of the lifts B̃i . If the R-modules Bi are not free, then one can show that
they are stably free and a stable basis will then make the definition work again.
See [Milnor 1966, p. 369] or [Turaev 2001, p. 13] for details.

2.3. Reidemeister torsion of a CW complex. Let X be a connected CW complex.
Denote the universal cover of X by X̃ . We view C∗(X̃), the chain complex of
the universal cover, as a chain complex of right Z[π1(X)]-modules, where the
Z[π1(X)]-module structure is given via deck transformations.

Let R be a ring. Let α : π1(X) → GL(R, d) be a representation. This equips
Rd with a left Z[π1(X)]-module structure. We can therefore consider the chain
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complex Cα
∗
(X; Rd) = C∗(X̃) ⊗Z[π1(X)] Rd . This is a finite free chain complex of

(right) R-modules. We denote its homology by Hα
∗
(X; Rd), we drop α from the

notation if it is clear from the context.
Now assume that X is a finite connected CW complex. If

Hα
i (X; Rd) = Hi (Cα

∗
(X; Rd)) 6= 0

for some i , we write τ(X, α)= 0. Otherwise denote the i-cells of X by σ 1
i , . . . , σ

ri
i

and denote by e1, . . . , ed the standard basis of Rd . Pick an orientation for each cell
σ

j
i , and also pick a lift σ̃

j
i for each cell σ

j
i to the universal cover X̃ . We get a basis

Ci = {σ̃ 1
i ⊗ e1, . . . , σ̃

1
i ⊗ ed , . . . , σ̃

ri
i ⊗ e1, . . . , σ̃

ri
i ⊗ ed}

for Cα
i (X; Rd). Then we can define

τ(Cα
∗
(X; Rd), {Ci }) ∈ K1(R).

This element depends only on the ordering and orientation of the cells and on the
choice of lifts of the cells to the universal cover. Therefore

τ(X, α) = τ(Cα
∗
(X, Rd), {Ci }) ∈ K1(R)/ ± α(π1(X))

is a well defined invariant of the CW complex X .
Now let M be a compact PL manifold. Pick any finite CW structure for M to

define τ(M, α)∈ K1(R)/±α(π1(M)). By Chapman’s theorem [1974] this is a well
defined invariant of the manifold (independent of the choice of the CW structure).

2.4. Computation of Reidemeister torsion. We explain an algorithm for comput-
ing Reidemeister torsion formulated in [Turaev 2001, Section 2.1] in the commu-
tative case.

Assume that we have a finite free chain complex of R-modules

0 → Cm
∂m
−→ Cm−1 → · · · → C1

∂1
−→ C0 → 0.

Let Ai = (ai
jk) be the matrix representing ∂i corresponding to the given bases.

Again, in contrast with Turaev, we view the elements in Rrank(Ci ) as column vec-
tors.

Following [Turaev 2001, p. 8] we define a matrix chain for C to be a collection
of sets ξ = (ξ0, ξ1, . . . , ξm) where ξi ⊂ {1, 2, . . . , rank(Ci )} so that ξ0 = ∅. Given
a matrix chain ξ we define Ai (ξ), i = 1, . . . , m to be the matrix formed by the
entries ai

jk with j 6∈ ξi−1 and k ∈ ξi . Put differently the matrix (ai
jk) jk is given by

considering only the ξi -columns of Ai and with the ξi−1-rows removed.
We say that a matrix chain ξ is a τ -chain if A1(ξ), . . . , Am(ξ) are square matri-

ces. The following is the generalization of Turaev’s Theorem 2.2 to the noncom-
mutative setting. His proof can easily be generalized to this more general setting.
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Theorem 2.1. Let ξ be a τ -chain such that Ai (ξ) is invertible for all odd i . Then
Ai (ξ) is invertible for all even i if and only if H∗(C) = 0. If H∗(C) = 0, then

τ(C) = ε

m∏
i=1

Ai (ξ)(−1)i
∈ K1(R) for some ε ∈ {±1}.

This proposition is the reason why Reidemeister torsion behaves in general well
under ring homomorphisms.

3. Reidemeister torsion and Alexander polynomials

3.1. Laurent polynomial rings and the Dieudonné determinant. For the remain-
der of this paper let K be a (skew) field and let Kγ [t±1

] be a skew Laurent polyno-
mial ring. By [Dodziuk et al. 2003, Corollary 6.3] the ring Kγ [t±1

] has a classical
quotient field Kγ (t) which is flat over Kγ [t±1

] (compare [Ranicki 1998, p. 99]). In
particular we can view Kγ [t±1

] as a subring of Kγ (t) and any element in Kγ (t) is
of the form f (t)g(t)−1 for some f (t)∈ Kγ [t±1

] and g(t)∈ Kγ [t±1
]\{0}. We refer

to Theorem 5.1 for a related result. Recall that we write Kγ (t)× = Kγ (t) \ {0}.
In the following we mean by an elementary column (row) operation the addition

of a right multiple (left multiple) of one column (row) to a different column (row).
Let A be an invertible k × k matrix over the skew field Kγ (t). After elemen-
tary row operations we can turn A into a diagonal matrix D = (di j ). Then the
Dieudonné determinant det A ∈ Kγ (t)×ab = Kγ (t)×/[Kγ (t)×, Kγ (t)×] is defined
to be

∏k
i=1 di i . This is a well defined map. The Dieudonné determinant is in-

variant under elementary row and column operations, and induces an isomorphism
det : K1(Kγ (t)) → Kγ (t)×ab. Using the last observation in Section 2.1 it is easy to
see that A = det A ∈ K1(Kγ (t)). We will often make use of this equality. We refer
to [Rosenberg 1994, Theorem 2.2.5 and Corollary 2.2.6] for more details.

In the introduction we defined deg : Kγ [t±1
]\{0} → N. This can be extended to

a homomorphism deg : Kγ (t)× → Z via deg( f (t)g(t)−1) = deg f (t)−deg g(t) for
f (t), g(t) ∈ Kγ [t±1

] \ {0}. Clearly the degree map vanishes on [Kγ (t)×, Kγ (t)×]

and we get an induced homomorphism K1(Kγ (t)) → Kγ (t)×ab → Z which we also
denote by deg.

3.2. Orders of Kγ [t±1]-modules. Let H be a finitely generated right Kγ [t±1
]-

module. The ring Kγ [t±1
] is a principal ideal domain (PID) since K is a skew

field. We can therefore find an isomorphism

H ∼=

l⊕
i=1

Kγ [t±1
]/pi (t)Kγ [t±1

]

for pi (t)∈Kγ [t±1
] for i =1, . . . , l. Following [Cochran 2004] we define ord(H)=∏l

i=1 pi (t) ∈ Kγ [t±1
]. This is called the order of H .
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Note that ord(H) ∈ Kγ [t±1
] has a high degree of indeterminacy. For example

writing the pi (t) in a different order will change ord(H). Furthermore we can
change pi (t) by multiplication by any element of the form kte where k ∈ K×

=

K \ {0} and e ∈ Z. The following theorem can be viewed as saying that these are
all possible indeterminacies.

Theorem 3.1. Let H be a finitely generated right Kγ [t±1
]-module. Then ord(H)=

0 if and only if H is not Kγ [t±1
]-torsion. If ord(H) 6= 0, then ord(H) ∈ Kγ [t±1

]

is well defined considered as an element in Kγ (t)×ab up to multiplication by an
element of the form kte, k ∈ K× and e ∈ Z.

The first statement is clear. We postpone the proof of the second statement of
the theorem to Section 3.4. We refer to [Cochran 2004, p. 367] for an alternative
discussion of the indeterminacy of ord(H); the idea of considering ord(H) as an
element in Kγ (t)×ab is already present there.

It follows from Theorem 3.1 that deg ord(H) is well defined. In fact we have
the following interpretation of ord(H).

Lemma 3.2 [Cochran 2004, p. 368]. Let H be a finitely generated right Kγ [t±1
]-

torsion module. Then
deg ord(H) = dimK H.

Here we used that by [Stenström 1975, Proposition I.2.3] and [Cohn 1985, p. 48]
every right K-module V is free and has a well defined dimension dimK(V ).

Proof. It is easy to see that for f (t) ∈ Kγ [t±1
] \ {0} we have

deg f (t) = dimK(Kγ [t±1
]/ f (t)Kγ [t±1

]).

The lemma is now immediate. �

3.3. Alexander polynomials. Let X be a connected CW complex with finitely
many cells in dimension i . Let α : π1(X) → GL(Kγ [t±1

], d) be a representation.
The right Kγ [t±1

]-module Hi (X; Kγ [t±1
]
d) is called twisted (noncommutative)

Alexander module. Similar modules were studied in [Cochran 2004; Harvey 2005;
Turaev 2002a]. Note that Hi (X; Kγ [t±1

]
d) is a finitely generated Kγ [t±1

]-module
since we assumed that X has only finitely many cells in dimension i and since
Kγ [t±1

] is a PID. We now define 1α
i (t) = ord(Hi (X; Kγ [t±1

]
d)) ∈ Kγ [t±1

], this
is called the (twisted) i -th Alexander polynomial of (X, α).

The degrees of these polynomials (corresponding to one-dimensional repre-
sentations) have been studied recently in various contexts [Cochran 2004; Har-
vey 2005; 2006; Turaev 2002a; Leidy and Maxim 2006; Friedl and Kim 2005;
Friedl and Harvey 2006]. We hope that by determining the indeterminacy of the
Alexander polynomials (Theorem 3.1) more information can be extracted from the
Alexander polynomials than just the degrees.
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3.4. Proof of Theorem 3.1. We first point out that Kγ [t±1
] is a Euclidean ring with

respect to the degree function. This means that given f (t), g(t) ∈ Kγ [t±1
]\{0} we

can find a(t), r(t) ∈ Kγ [t±1
] such that f (t) = g(t)a(t)+ r(t) and such that either

r(t) = 0 or deg r(t) < deg g(t).
Let A be an r × s matrix over Kγ [t±1

] of rank r . Here and in the following
the rank of a matrix over Kγ [t±1

] will be understood as the rank of the matrix
considered as a matrix over the skew field Kγ (t). Note that rank(A) = r implies
that in particular s ≥ r . Since Kγ [t±1

] is a Euclidean ring we can perform a
sequence of elementary row and column operations to turn A into a matrix of the
form

(
D 0r×(s−r)

)
where D is an r ×r matrix and 0r×(s−r) stands for the r ×(s−r)

matrix consisting only of zeros. Since A is of rank r it follows that D has rank r as
well, in particular D is a square matrix which is invertible over Kγ (t) and we can
consider its Dieudonné determinant det D. We define det A = det D ∈ Kγ (t)×ab.

Lemma 3.3. Let A be a (square) matrix over Kγ [t±1
] which is invertible over

Kγ (t).

(1) The Dieudonné determinant det A ∈ Kγ (t)×ab can be represented by an element
in Kγ [t±1

] \ {0}.

(2) If A ∈ GL(Kγ [t±1
], d), then det A ∈ Kγ (t)×ab can be represented by an element

of the form kte, k ∈ K×, e ∈ Z.

(3) The Dieudonné determinant induces a homomorphism

det : K1(Kγ (t)) → Kγ (t)×ab

sending K1(Kγ [t±1
]) to {kte

|k ∈ K×, e ∈ Z}/[Kγ (t)×, Kγ (t)×] ⊂ Kγ (t)×ab.

Proof. The first statement follows from the discussion preceding the lemma. Now
let A ∈ GL(Kγ [t±1

], r). Then det A has degree zero, by Lemma 3.2 applied to
H = Kγ [t±1

]
r/AKγ [t±1

]
r . This proves the second statement. The last statement

follows from the second statement and the fact that the Dieudonné determinant
induces a homomorphism det : K1(Kγ (t)) → Kγ (t)×ab. �

Proposition 3.4. Let A be an r × s matrix over Kγ [t±1
] of rank r. Then det A ∈

Kγ (t)×ab is well defined up to multiplication by an element of the form kte, k ∈

K×, e ∈ Z. Furthermore det A is invariant under elementary row and column
operations.

Proof. First note that the effect of an elementary row operation on A over Kγ [t±1
]

can be described by left multiplication by a matrix P ∈ GL(Kγ [t±1
], r). Similarly

an elementary column operation on A over Kγ [t±1
] can be described by right

multiplication by an s × s matrix Q ∈ GL(Kγ [t±1
], s).

Now assume we have P1, P2 ∈ GL(Kγ [t±1
], r) and Q1, Q2 ∈ GL(Kγ [t±1

], s)
such that Pi AQi =

(
Di 0r×(s−r)

)
, i = 1, 2 where Di is an r × r matrix. We are
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done once we show that det D1 = kte det D2 ∈ Kγ (t)×ab for some k ∈ K×, e ∈ Z.
Let Ei = P−1

i Di . Then by Lemma 3.3 we only have to show that E1 = E2 ∈

K1(Kγ (t))/K1(Kγ [t±1
]).

We have
(
E1 0

)
Q−1

1 =
(
E2 0

)
Q−1

2 . Let Q := Q−1
2 Q1 ∈ GL(Kγ [t±1

], s), we
therefore get the equality

(
E1 0

)
=

(
E2 0

)
Q. Now write

Q =

(
Q11 Q12

Q21 Q22

)
,

where Qi j is a ni × n j matrix over Kγ [t±1
] with n1 = r and n2 = s − r . We get

the equality (
E1 0
Q21 Q22

)
=

(
E2 0
0 ids−r

) (
Q11 Q12

Q21 Q22

)
.

It follows in particular that Q22 is invertible over Kγ (t). Furthermore we have

E1 · Q22 = E2 ∈ K1(Kγ (t))/K1(Kγ [t±1
]).

Note that deg : K1(Kγ (t))→ Z vanishes on K1(Kγ [t±1
]) by Lemma 3.3. We there-

fore get deg det E1+deg det Q22 =deg det E2, in particular deg det E1 ≤deg det E2.
But by symmetry we have deg det E2 ≤ deg det E1. In particular deg det Q22 = 0.
The proposition now follows immediately from Lemma 3.3 since deg f (t) = 0 for
f (t) ∈ Kγ [t±1

] \ {0} if and only if f (t) = kte for some k ∈ K×, e ∈ Z.
The last statement is immediate. �

Let H be a finitely generated right Kγ [t±1
]-module. We say that an r ×s matrix

A is a presentation matrix for H if the following sequence is exact:

Kγ [t±1
]
s A
−→ Kγ [t±1

]
r
→ H → 0.

We say that A has full rank if the rank of A equals r . Note that A has full rank if
and only if H ⊗Kγ [t±1] Kγ (t) = 0.

The following lemma clearly implies Theorem 3.1.

Lemma 3.5. Let H be a finitely generated right Kγ [t±1
]-module and let A1, A2 be

presentation matrices for H. Then A1 has full rank if and only if A2 has full rank.
Furthermore if Ai has full rank, then

det A1 = det A2 ∈ Kγ (t)×ab/{kte
|k ∈ K \ {0}, e ∈ Z}.

Proof. Two presentation matrices for H differ by a sequence of matrix moves of
the following forms and their inverses:

(1) Permutation of rows or columns.

(2) Replacement of the matrix A by
(

A 0
0 1

)
.
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(3) Addition of an extra column of zeros to the matrix A.

(4) Addition of a right scalar multiple of a column to another column.

(5) Addition of a left scalar multiple of a row to another row.

This result coincides with [Lickorish 1997, Theorem 6.1] in the commutative case,
but the proof there carries through in the case of the base ring Kγ [t±1

] as well
(compare [Harvey 2005, Lemma 9.2]).

Clearly none of the moves changes the status of being of full rank, and if a
representation is of full rank, then it is easy to see that none of the moves changes
the determinant. �

3.5. Proof of Theorem 1.1. Now let X be a finite connected CW complex of
dimension n. Let α : π1(X) → GL(Kγ [t±1

], d) be a representation such that
Hα

∗
(X; Kγ (t)d) = 0. (Recall that we denote the induced representation π1(X) →

GL(Kγ (t), d) by α as well). Furthermore recall that Kγ (t) is flat over Kγ [t±1
],

in particular Hi (X; Kγ (t)d) = Hi (X; Kγ [t±1
]
d) ⊗Kγ [t±1] Kγ (t). It follows that

Hi (X; Kγ (t)d) = 0 if and only if Hi (X; Kγ [t±1
]
d) is Kγ [t±1

]-torsion, which is
equivalent to 1α

i (t) 6= 0. This proves the first statement of Theorem 1.1. To
conclude the proof of Theorem 1.1 it remains to prove the following claim.

Claim. If Hα
∗
(X; Kγ (t)d) = 0, then

det τ(X, α) =

n−1∏
i=0

1α
i (t)(−1)i+1

∈ Kγ (t)×ab/{kte
|k ∈ K \ {0}, e ∈ Z}.

Proof. Let C∗ = C∗(X̃)⊗Z[π1(X)] Kγ [t±1
]
d . Any Kγ [t±1

]-basis for C∗ also gives a
basis for C∗ ⊗Kγ [t±1] Kγ (t), which we will always denote by the same symbol.

Denote by C∗ the Kγ [t±1
]-basis of C∗ as in Section 2.3. Let

ri := dimK(t)(Ci ⊗Kγ [t±1] Kγ (t)),

si := dimK(t)(Ker{Ci ⊗Kγ [t±1] Kγ (t)
∂i
−→ Ci−1 ⊗Kγ [t±1] Kγ (t)}).

Note that si + si−1 = ri since H∗(X; Kγ (t)d) = 0. Note also that Ker{Ci
∂i
−→ Ci−1}

is a free direct summand of Ci of rank si since Kγ [t±1
] is a PID. We can therefore

pick Kγ [t±1
]-bases C′

i = {v1, . . . , vri } for Ci such that {v1, . . . , vsi } is a basis for
the kernel in question. Base changes from Ci to C′

i are given by matrices which
are invertible over Kγ [t±1

], so

τ(C∗⊗Kγ [t±1]Kγ (t), {Ci })=τ(C∗⊗Kγ [t±1]Kγ (t), {C′

i })∈ K1(Kγ (t))/K1(Kγ [t±1
]).

Let Ai be the ri−1 ×ri matrix representing ∂i : Ci → Ci−1 with respect to the bases
C′

i and C′

i−1. Let ξi := {si + 1, . . . , ri }, i = 1, . . . , n and ξ0 := ∅. Let Ai (ξ) as in
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Theorem 2.1. Note that Ai (ξ) is an si−1 × si−1 matrix over Kγ [t±1
]. In particular

ξ := (ξ0, . . . , ξn) is a τ -chain. It is easy to see that

Ai =

(
0si−1×si Ai (ξ)

0si−2×si 0si−2×si−1

)
.

Since Ai has rank si−1 it follows that Ai (ξ) is invertible over Kγ (t). It follows
from Theorem 2.1 that

τ(C∗ ⊗Kγ [t±1] Kγ (t), {C′

i }) =

n∏
i=1

Ai (ξ)(−1)i
∈ K1(Kγ (t)).

We also have short exact sequences

0 → Kγ [t±1
]
si−1

Ai (ξ)
−−−→ Kγ [t±1

]
si−1 → Hi−1(C∗) = Hi−1(X; Kγ [t±1

]
d) → 0.

In particular (Ai (ξ)) is a presentation matrix for Hi−1(X; Kγ [t±1
]
d). It therefore

follows from Lemma 3.5 that det Ai (ξ) = 1α
i−1(t). �

The following corollary now follows from the fact that deg : Kγ (t)× → Z is a
homomorphism and from Lemma 3.2.

Corollary 3.6. Let X be a finite connected CW complex of dimension n. Let
α : π1(X) → GL(Kγ [t±1

], d) be a representation such that Hα
∗
(X; Kγ (t)d) = 0.

Then

deg τ(X, α) =

n−1∑
i=0

(−1)i+1 deg 1α
i (t) =

n−1∑
i=0

(−1)i+1 dimK(Hi (X; Kγ [t±1
]
d).

Remark. In the case that H∗(X; Kγ (t)d) 6= 0 we can pick Kγ [t±1
]-bases Hi for

the Kγ [t±1
]-free parts of Hi (X; Kγ [t±1

]
d). These give bases for Hi (X; Kγ (t)d) =

Hi (X; Kγ [t±1
]
d) ⊗Kγ [t±1] Kγ (t) and we can consider

τ(X, α, {Hi }) = τ(C∗(X̃) ⊗Z[π1(X)] Kγ (t)d , {Hi }) ∈ K1(Kγ (t))

(see [Milnor 1966] for details). As an element of K1(Kγ (t))/K1(Kγ [t±1
]), this

τ(X, α, {Hi }) is independent of the choice of {Hi }. The proof of Theorem 1.1
can be generalized to show that it is the alternating product of the orders of the
Kγ [t±1

]-torsion submodules of H∗(X; Kγ [t±1
]
d) (compare [Kirk and Livingston

1999] in the commutative case).

4. 3-manifolds and 2-complexes

We now restrict ourselves to φ-compatible representations since these have a closer
connection to the topology of a space.
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Lemma 4.1. Let X be a connected CW complex with finitely many cells in dimen-
sions 0 and 1. Let φ ∈ H 1(X; Z) nontrivial and let α : π1(X) → GL(Kγ [t±1

], d)

be a φ-compatible representation. Then 1α
0 (t) 6= 0. If X is in fact an k-manifold,

then 1α
k (t) = 1.

We need the following notation. If A = (ai j ) is an r × s matrix over Z[π1(X)]

and α : π1(X) → GL(R, d) a representation. Then we denote by α(A) the rd × sd
matrix over R obtained by replacing each entry ai j ∈ Z[π1(X)] of A by the d × d
matrix α(ai j ).

Proof. First equip X with a CW structure with one 0-cell and n 1-cells g1, . . . , gn .
We denote the corresponding elements in π1(X) by g1, . . . , gn as well. Since φ is
nontrivial there exists at least one i such that φ(gi ) 6=0. Write C∗ =C∗(X̃)⊗Z[π1(X)]

Kγ [t±1
]
d . The boundary map ∂1 : C1 → C0 is represented by the matrix

(α(1 − g1), . . . , α(1 − gn)) = (id − α(g1), . . . , id − α(gn)).

Since α is φ-compatible it follows that α(1 − gi ) = id − Atφ(gi ) for some matrix
A ∈ GL(K, d). The first statement of the lemma now follows from Lemma 4.2.

If X is a closed k-manifold then equip X with a CW structure with one k-cell.
Since φ is primitive and φ-compatible an argument as above shows that ∂k : Ck →

Ck−1 has full rank, i.e. Hk(X; Kγ [t±1
]
d) = 0. Hence 1α

k (t) = 1. If X is a k-
manifold with boundary, then it is homotopy equivalent to a (k−1)-complex, and
hence Hk(X; Kγ [t±1

]
d) = 0. �

Lemma 4.2. Let Kγ [t±1
] be a skew Laurent polynomial ring and let A, B be

invertible d × d matrices over K and r 6= 0. Then deg det(A + Btr ) = dr. In
particular A + Btr is invertible over Kγ (t).

Harvey has proved a related result [2005, Proposition 9.1].

Proof. We can clearly assume that r > 0. Let {e1, . . . , ed} be a basis for Kd .
Consider the projection map p :Kγ [t±1

]
d
→ P =Kγ [t±1

]
d/(A+Btr )Kγ [t±1

]
d . By

Lemma 3.2 we are done once we show that p(ei t j ), i ∈ {1, . . . , d}, j ∈ {0, . . . , r −

1} form a basis for P as a right K-vector space.
It follows easily from the fact that A, B are invertible that this is indeed a gen-

erating set. Let v ∈ Kγ [t±1
]
d

\ {0}. We can write v =
∑m

i=n vi t i , vi ∈ Kd with
vn 6= 0, vm 6= 0. Since A, B are invertible it follows that (A+ Btr )v has terms with
t-exponent n and terms with t-exponent m + r . This observation can be used to
show that the vectors in question are linearly independent in P . �

We can now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Now let M be a 3-manifold whose boundary is empty or
consists of tori. A standard duality argument shows that 2χ(M) = χ(∂ M) = 0.
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Let φ ∈ H 1(M; Z) be nontrivial, and α :π1(M)→ GL(Kγ [t±1
], d) a φ-compatible

representation.
We first show that H∗(M; Kγ (t)d) = 0 if and only if 1α

1 (t) 6= 0. In Sec-
tion we showed that Hi (M; Kγ (t)d) = 0 if and only if 1α

i (t) 6= 0. It now fol-
lows from Lemma 4.1 that Hi (M; Kγ (t)d) = 0 for i = 0, 3. If 1α

1 (t) 6= 0, then
H1(M; Kγ (t)d) = 0. Since χ(Hi (M; Kγ (t)d)) = dχ(M) = 0 it follows that
H2(M; Kγ (t)d) = 0.

Claim. ‖φ‖T is bounded below by

1
d

(
−dimK Hα

0 (M;Kγ [t±1
]
d)+dimK Hα

1 (M;Kγ [t±1
]
d)−dimK Hα

2 (M;Kγ [t±1
]
d)

)
.

This inequality becomes an equality if (M, φ) fibers over S1 and if M 6= S1
× D2,

M 6= S1
× S2.

Proof. If φ vanishes on X ⊂ M , the restriction of α to π1(X) lies in GL(K, d) ⊂

GL(Kγ [t±1
], d) since α is φ-compatible. Therefore

Hα
i (X; Kγ [t±1

]
d) ∼= Hα

i (X; Kd) ⊗K Kγ [t±1
].

The proofs of [Friedl and Kim 2006, Theorem 3.1 and Theorem 6.1] can now easily
be translated to this noncommutative setting. This proves the claim. �

Combining the results of the claim with Lemma 3.2 and Corollary 3.6 we im-
mediately get a proof for Theorem 1.2. �

In order to relate Theorem 1.2 to the results of [Cochran 2004; Harvey 2005; Tu-
raev 2002a] we need the following computations for one-dimensional φ-compatible
representations. Recall that φ ∈ H 1(X; Z) is called primitive if the corresponding
map φ : H1(X; Z) → Z is surjective.

Lemma 4.3. Let X be a connected CW complex with finitely many cells in dimen-
sions zero and one. Let φ ∈ H 1(X; Z) primitive. Let α : π1(X) → GL(Kγ [t±1

], 1)

be a φ-compatible one-dimensional representation. If α(π1(X))⊂ GL(Kγ [t±1
], 1)

is cyclic, then 1α
0 (t) = at − 1 for some a ∈ K \ {0}. Otherwise 1α

0 (t) = 1.

Proof. Equip X with a CW structure with one 0-cell and then consider the chain
complex for X as in Lemma 4.1. The lemma now follows easily from the obser-
vation that in Kγ [t±1

] we have gcd(1−at, 1−bt) = 1 if a 6= b ∈ K. �

Lemma 4.4. Let X be a 3-manifold with empty or toroidal boundary or let X be
a 2-complex with χ(X) = 0. Let φ ∈ H 1(M; Z) nontrivial. Let α : π1(M) →

GL(Kγ [t±1
], 1) be a φ-compatible one-dimensional representation. Assume that

1α
1 (t) 6= 0. If X is a closed 3-manifold, then deg 1α

2 (t) = deg 1α
0 (t), otherwise

1α
2 (t) = 1.
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Proof. First assume that X is a 3-manifold. Then the lemma follows from com-
bining [Turaev 2002a, Sections 4.3 and 4.4] with [Friedl and Kim 2006, Lem-
mas 4.7 and 4.9]. (The latter results also hold in the noncommutative setting.)
If X is a 2-complex then the argument in the proof of Theorem 1.2 shows that
H2(X; Kγ (t)d) = 0. But since X is a 2-complex we have H2(X; Kγ [t±1

]
d) ⊂

H2(X; Kγ (t)d), hence H2(X; Kγ [t±1
]
d) = 0 and 1α

2 (t) = 1. �

Remark. We cannot apply the duality results of [Friedl and Kim 2006, Lemma 4.12
and Proposition 4.13] since the natural involution on Z[G] does not necessarily
extend to an involution on Kγ [t±1

], i.e., the representation Z[G] → Kγ [t±1
] is not

necessarily unitary.

It now follows immediately from Lemma 4.3 and 4.4 and the discussion in Sec-
tion 5 that Theorem 1.2 contains the results of [McMullen 2002; Cochran 2004;
Harvey 2005; Turaev 2002a; Friedl and Kim 2006].

Remark. Given a 2-complex X , Turaev [2002b] defined a norm

‖ ‖X : H 1(X; R) → R,

modeled on the definition of the Thurston norm of a 3–manifold. He then gave
lower bounds for the Turaev norm (see also [Turaev 2002a]) which have the same
form as certain lower bounds for the Thurston norm. Going through the proofs in
[Friedl and Kim 2006] it is not hard to see that the obvious version of Theorem 1.2
for 2-complexes also holds.

If M is a 3-manifold with boundary, then it is homotopy equivalent to a 2-
complex X . It is not known whether the Thurston norm of M agrees with the
Turaev norm on X . But the fact that Theorem 1.2 holds in both cases, and the
observation that deg τ(X, α) is a homotopy invariant by Theorem 1.1 suggests that
they do in fact agree.

5. Examples for skew fields and φ-compatible representations

5.1. Skew fields of group rings. A group G is called locally indicable if for every
finitely generated subgroup U ⊂ G there exists a nontrivial homomorphism U →Z.

Theorem 5.1. Let G be a locally indicable and amenable group and let F be a
commutative field. Then the following hold.

(1) F[G] is an Ore domain, in particular it embeds in its classical right ring of
quotients K(G).

(2) K(G) is flat over F[G].

It follows from [Higman 1940] that F[G] has no zero divisors. The first part
now follows from [Tamari 1957] or [Dodziuk et al. 2003, Corollary 6.3]. Part (b)
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is a property of Ore localizations (see [Ranicki 1998, p. 99], for example). We call
K(G) the Ore localization of F[G].

A group G is called poly–torsion-free–abelian (PTFA) if there exists a filtration

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G

such that Gi/Gi−1 is torsion free abelian. PTFA groups are amenable and locally
indicable [Strebel 1974]. The group rings of PTFA groups played an important
role in [Cochran et al. 2003; Cochran 2004; Harvey 2005].

5.2. Examples for φ-compatible representations. Let X be a connected CW com-
plex and φ ∈ H 1(X; Z). We give examples of φ-compatible representations.

Let F be a commutative field. The element φ ∈ H 1(X; Z)∼=Hom(H1(X; Z), 〈t〉)
induces a φ-compatible representation φ : Z[π1(X)] → F[t±1

]. Furthermore if
α : π1(X) → GL(F, d) is a representation, then π1(X) acts via α⊗φ on the F[t±1

]-
module Fd

⊗F F[t±1
] ∼= F[t±1

]
d . We therefore get a representation α⊗φ : π1(X) →

GL(F[t±1
], d), which is clearly φ-compatible. In this particular case Theorem 1.2

was proved in [Friedl and Kim 2006].
To describe the φ-compatible representations of Cochran [2004] and Harvey

[2005; 2006] we need the following definition.

Definition. Let π be a group, φ : π → Z an epimorphism and ϕ : π → G an
epimorphism to a locally indicable and amenable group G such that there exists a
map φG : G → Z (which is necessarily unique) such that

π

φ ��@
@@

@@
@@

@
ϕ // G

φG
��

Z

commutes. Following [Harvey 2006, Definition 1.4] we call (ϕ, φ) an admissible
pair. If φG is an isomorphism, then (ϕ, φ) is called initial.

Now let (ϕ : π1(X) → G, φ) be an admissible pair for π1(X). In the following
we denote Ker{φ : G →Z} by G ′(φ). When the homomorphism φ is understood we
will write G ′ for G ′(φ). Clearly G ′ is still a locally indicable and amenable group.
Let F be any commutative field and K(G ′) the Ore localization of F[G]. Pick an
element µ ∈ G such that φ(µ) = 1. Let γ : K(G ′) → K(G ′) be the homomorphism
given by γ (a) = µaµ−1. Then we get a representation

G → GL(K(G ′)γ [t±1
], 1)

g 7→ (gµ−φ(g)tφ(g)).

It is clear that α : π1(X) → G → GL(K(G ′)γ [t±1
], 1) is φ-compatible. Note

that the ring K(G ′)γ [t±1
], and hence the representation above, depend on the
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choice of µ. We will nonetheless suppress γ from the notation since different
choices of splittings give isomorphic rings. We often make use of the fact that
f (t)g(t)−1

→ f (µ)g(µ)−1 defines an isomorphism K(G ′)(t) → K(G) (see [Har-

vey 2005, Proposition 4.5]). Similarly Z[G ′
][t±1

]
∼=
−→ Z[G].

An important example of admissible pairs is provided by Harvey’s rational de-
rived series of a group G; see [Harvey 2005, Section 3]. Let G(0)

r = G and define
inductively

G(n)
r =

{
g ∈ G(n−1)

r | gk
∈

[
G(n−1)

r , G(n−1)
r

]
for some k ∈ Z \ {0}

}
.

Note that G(n−1)
r /G(n)

r ∼=
(
G(n−1)

r /
[
G(n−1)

r , G(n−1)
r

])
/Z-torsion. By [Harvey 2005,

Corollary 3.6] the quotients G/G(n)
r are PTFA groups for any G and any n. If

φ : G → Z is an epimorphism, then (G → G/G(n)
r , φ) is an admissible pair for

(G, φ) for any n > 0.
For example, if K is a knot and G = π1(S3

\ K ), it follows from [Strebel 1974]
that G(n)

r = G(n), i.e. the rational derived series equals the ordinary derived series
(compare [Cochran 2004; Harvey 2005]).

Remark. Recall that for a knot K the knot exterior S3
\ νK is denoted by X (K ).

Let π = π1(X (K )) and let φ ∈ H 1(X (K ); Z) primitive. Then

δn(K ) = dim
K(π ′/(π ′)

(n)
r )

(H1(X (K ), K(π ′/(π ′)(n)
r )[t±1

])

is a knot invariant for n > 0. Cochran [2004, p. 395, Question 5] asked whether
K 7→ δn(K ) is of finite type.

Eisermann [2000, Lemma 7] has shown that the genus is not a finite type knot
invariant. Cochran [2004] showed that δn(K ) ≤ 2 genus(K ) (see also Theorem 1.2
together with Corollary 3.6 and Lemmas 4.3 and 4.4). Eisermann’s argument can
now be used to show that K 7→ δn(K ) is not of finite type either.

Let X be again be a connected CW complex and φ ∈ H 1(X; Z). The two types
of φ-compatible representations given above can be combined as follows. Let α :

π1(X)→ GL(F, d) be a representation and let ϕ :π1(X)→ G be a homomorphism
such that (ϕ, φ) is an admissible pair. Denote the Ore localization of F[G ′

] by
K(G ′). Then π1(X) acts via ϕ ⊗ α on K(G ′)[t±1

] ⊗F Fd ∼= K(G ′)[t±1
]
d . We

therefore get a φ-compatible representation ϕ ⊗ α : π1(X) → GL(K(G ′)[t±1
], d).

6. Comparing different φ-compatible maps

Definition [Harvey 2006]. Let π be a group and φ : π → Z an epimorphism.
Furthermore let ϕ1 :π → G1 and ϕ2 :π → G2 be epimorphisms to locally indicable
and amenable groups G1 and G2. We call (ϕ1, ϕ2, φ) an admissible triple for π
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if there exist epimorphisms ϕ1
2 : G1 → G2 (which is not an isomorphism) and

φ2 : G2 → Z such that ϕ2 = ϕ1
2 ◦ ϕ1, and φ = φ2 ◦ ϕ2.

The situation can be summarized in the diagram

G1

ϕ1
2
��

π

φ   A
AA

AA
AA

A

ϕ1
>>~~~~~~~~ ϕ2 // G2

φ2

��
Z.

In particular, (ϕi , φ), i = 1, 2, are admissible pairs for π . Given an admissible
triple we can pick splittings Z → Gi of ϕi , i = 1, 2 which make the following
diagram commute:

Z //

  A
AA

AA
AA

A G1

ϕ1
2
��

G2.

We therefore get an induced commutative diagram of ring homomorphisms

Z[π ] //

%%JJJJJJJJJJ Z[G ′

1][t
±1

]

ϕ1
2
��

Z[G ′

2][t
±1

].

(We are suppressing the notation for the twisting in the skew Laurent polynomial
rings.) Denote the φ-compatible maps Z[π ] → K(G ′

i )[t
±1

], i = 1, 2 by ϕi as well.
For convenience we recall Theorem 1.3.

Theorem 1.3. Let M be a 3-manifold whose boundary is a (possibly empty) collec-
tion of tori or let M be a 2-complex with χ(M)=0. Let α :π1(M)→GL(F, d) be a
representation and (ϕ1, ϕ2, φ) an admissible triple for π1(M). If τ(M, ϕ2⊗α) 6= 0,
then τ(M, ϕ1 ⊗ α) 6= 0. Furthermore in that case

deg τ(M, ϕ1 ⊗ α) ≥ deg τ(M, ϕ2 ⊗ α).

6.1. Proof of Theorem 1.3 for closed 3-manifolds. Let M be a closed 3-manifold.
Choose a triangulation of M . Let T be a maximal tree in the 1-skeleton of the trian-
gulation and let T ′ be a maximal tree in the dual 1-skeleton. Following [McMullen
2002, Section 5] we collapse T to form a single 0-cell and join the 3-simplices
along T ′ to form a single 3-cell. Since χ(M) = 0 the number n of 1-cells equals
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the number of 2-cells. Consider the chain complex of the universal cover M̃ :

0 → C3(M̃)1 ∂3
−→ C2(M̃)n ∂2

−→ C1(M̃)n ∂1
−→ C0(M̃)1

→ 0,

where the superscript indicates the rank over Z[π1(M)]. Picking appropriate lifts
of the (oriented) cells of M to cells of M̃ we get bases σ̃i = {σ̃ 1

i , . . . , σ̃
ri
i } for the

Z[π1(M)]-modules Ci (M̃), such that if Ai denotes the matrix corresponding to ∂i ,
then A1 and A3 are of the form

A3 = (1 − g1, . . . , 1 − gn)
t , gi ∈ π1(M)

A1 = (1 − h1, . . . , 1 − hn), hi ∈ π1(M).

Clearly {h1, . . . , hn} is a generating set for π1(M). Since M is a closed 3-manifold
{g1, . . . , gn} is a generating set for π1(M) as well. In particular we can find k, l ∈

{1, . . . , n} such that φ(gk) 6= 0, φ(hl) 6= 0.
In the following we write αi = ϕi ⊗ α : π1(M) → GL(K(G ′

i )[t
±1

] ⊗ Fd) →

GL(K(G ′

i )[t
±1

], d), i = 1, 2 and we write ϕ = ϕ1
2 .

Lemma 6.1. We have

deg(α1(1 − hl)) = deg(α2(1 − hl)) = d|φ(hl)|,

deg(α1(1 − gk)) = deg(α2(1 − gk)) = d|φ(gk)|.

In particular, the matrices αi (1 − hl), αi (1 − gk) are invertible over K(G ′

i )(t) for
i = 1, 2.

Proof. Note that αi (1 − hl) = id − αi (hl), αi (1 − gk) = id − αi (gk) and that
φ(hl) 6= 0, φ(gk) 6= 0. The lemma now follows from Lemma 4.2 since α1 and α2

are φ-compatible. �

Denote by B the result of deleting the k-column and the l-row of A2.

Lemma 6.2. τ(M, αi ) 6= 0 if and only if αi (B) is invertible. Furthermore if
τ(M, αi ) 6= 0, then

τ(M, αi ) = αi (1 − gk)
−1αi (B)αi (1 − hl)

−1
∈ K1(K(G ′

i )(t))/ ± αi (π1(M)).

Proof. Denote the standard basis of K(G ′

i )(t)
d by e1, . . . , ed . We equip C j =

Cαi
j (M; K(G ′

i )(t)
d) with the ordered bases

C j = {σ̃ 1
j ⊗ e1, . . . , σ̃

1
j ⊗ ed , . . . , σ̃

r j
i ⊗ e1, . . . , σ̃

r j
i ⊗ ed}.

Now let
ξ0 = ∅,

ξ1 = {ld+1, . . . , l(d+1)},

ξ2 = {1, . . . , nd} \ {kd+1, . . . , (k+1)d},

ξ3 = {1, . . . , d}.
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Then ξ = (ξ0, ξ1, ξ2, ξ3) is a τ -chain for C∗. We have A1(ξ) = αi (1−hl), A2(ξ) =

αi (B) and A3(ξ) = αi (1 − gk). Clearly A1(ξ) and A3(ξ) are invertible by Lemma
6.1. The proposition now follows immediately from Theorem 2.1. �

Now assume that τ(M, α2) 6= 0. Then α2(B) is invertible over K(G ′

2)(t) by
Lemma 6.2. Note that αi (B) is defined over Z[G ′

i ][t
±1

] ⊂ K(G ′

i )(t). In particular
α2(B) = ϕ(α1(B)). It follows from the following lemma that α1(B) is invertible
as well.

Lemma 6.3. Let P be an r × s matrix over Z[G ′

1][t
±1

]. If

Z[G2]
s

→ Z[G2]
r

v 7→ ϕ(P)v

is invertible over K(G ′

2)(t), then P is invertible over K(G ′

1)(t). The same holds
with “invertible” replaced by “injective”.

Proof. Assume that multiplication by ϕ(P) is injective over K(G ′

2)(t). Since
Z[G2] → K(G ′

2)(t) = K(G2) is injective it follows that ϕ(P) : Z[G2]
s
→ Z[G2]

r

is injective. By Proposition 6.4 the map P : Z[G1]
s

→ Z[G1]
r is injective as

well. Since K(G ′

1)(t) = K(G1) is flat over Z[G1] it follows that P : K(G ′

1)(t)
s
→

K(G ′

1)(t)
r is injective.

If ϕ(P) is invertible over the skew field K(G ′

2)(t), then r = s. But an injective
homomorphism between vector spaces of the same dimension over a skew field is
in fact an isomorphism. This shows that P is invertible over K(G ′

1)(t). �

Proposition 6.4. If G1 is locally indicable, and if Z[G1]
s
→ Z[G1]

r is a map such
that Z[G1]

s
⊗Z[G1] Z[G2] → Z[G1]

r
⊗Z[G1] Z[G2] is injective, then Z[G1]

s
→

Z[G1]
r is injective as well.

Proof. Let K = Ker{ϕ : G1 → G2}. Clearly K is again locally indicable. Note that
Z[G1]

s
→ Z[G1]

r can also be viewed as a map between free Z[K ]-modules. Pick
any right inverse λ : G2 → G1 of ϕ. It is easy to see that g ⊗ h 7→ gλ(h) ⊗ 1, g ∈

G1, h ∈ G2 induces an isomorphism

Z[G1] ⊗Z[G1] Z[G2] → Z[G1] ⊗Z[K ] Z.

By assumption Z[G1]
s
⊗Z[K ] Z → Z[G2]

r
⊗Z[K ] Z is injective. Since K is locally

indicable it follows immediately from [Gersten 1983] or [Howie and Schneebeli
1983] (see also [Strebel 1974] for the case of PTFA groups) that Z[G1]

s
→ Z[G1]

r

is injective. �

By Lemma 6.2 we have now showed that if τ(M, α2) 6= 0, then τ(M, α1) 6= 0.
Furthermore

deg τ(M, αi ) = deg αi (B) − deg αi (1−gk) − deg αi (1−hl), i = 1, 2.
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Theorem 1.3 now follows immediately from Lemma 6.1 and from the following
proposition.

Proposition 6.5. Let P be an r × r matrix over Z[G ′

1][t
±1

]. If ϕ(P) is invertible,

deg P ≥ deg ϕ(P).

Remark. (1) If ϕ : R → S is a homomorphism of commutative rings, and if P is
a matrix over R[t±1

], then clearly

deg P = deg det P ≥ deg ϕ(det P) = deg det ϕ(P) = deg ϕ(P).

Similarly, several other results in this paper, e.g. Theorem 3.1 and Lemma 6.1 are
clear in the commutative world, but require more effort in our noncommutative
setting.

(2) If (Z[G ′

1], { f ∈ Z[G ′

1]|ϕ( f ) 6= 0 ∈ Z[G ′

2]}) has the Ore property, one can give
an elementary proof of the proposition by first diagonalizing over K(G ′

2) and then
over K(G ′

1). Since this is not known to be the case, we have to give a more indirect
proof.

The following proof is based on arguments in [Cochran 2004] and [Harvey
2006].

Proof of Proposition 6.5. Let s = deg ϕ(P). Pick a map f : Z[G ′

1]
s
→ Z[G ′

1][t
±1

]
r

such that the induced map

K(G ′

2)
s
→ K(G ′

2)[t
±1

]
r
→ K(G ′

2)[t
±1

]
r/ϕ(P)K(G ′

2)[t
±1

]
r

is an isomorphism. Denote by 0 → C1
P
−→ C0 → 0 the complex

0 → Z[G ′

1][t
±1

]
r P
−→ Z[G ′

1][t
±1

]
r
→ 0,

and denote by 0 → D0 → 0 the complex with D0 = Z[G ′

1]
s . We have a chain map

D∗ → C∗ given by f : D0 → C0. Denote by Cyl(D∗

f
−→ C∗) the mapping cylinder

of the complexes. We then get a short exact sequence of complexes

0 → D∗ → Cyl(D∗

f
−→ C∗) → Cyl(D∗

f
−→ C∗)/D∗ → 0.

More explicitly, we get the commutative diagram

0 //

��

C1 ⊕ D0
(id id) //(

P − f
0 id

)
��

C1 ⊕ D0 //

(P − f )

��

0

��
0 // D0

(0 )// C0 ⊕ D0 // C0 // 0.



REIDEMEISTER TORSION, THE THURSTON NORM AND HARVEY’S INVARIANTS 291

Recall that Cyl(D∗

f
−→ C∗) and C∗ are chain homotopic. Using the definition of f

we therefore see that

f : H0(D∗; K(G ′

2)) → H0(Cyl(D∗

f
−→ C∗), K(G ′

2))

is an isomorphism. Since P is invertible over K(G ′

2)(t) it follows that

H1(Cyl(D∗

f
−→ C∗); K(G ′

2)) = 0.

It follows from the long exact homology sequence corresponding to the short exact
sequence of chain complexes above that

H1(Cyl(D∗

f
−→ C∗)/D∗; K(G ′

2)) = 0;

thus the matrix
(
P − f

)
is injective over K(G ′

2). It follows from Lemma 6.3 that

H1(Cyl(D∗

f
−→ C∗)/D∗; K(G ′

1)) = 0

as well. Again looking at the long exact homology sequence we get that

f : H0(D∗; K(G ′

1)) → H0(Cyl(D∗

f
−→ C∗); K(G ′

1)) = H0(C∗; K(G ′

1))

is an injection. Hence

deg ϕ(P) = s = dimK(G ′

2)
(H0(D∗; K(G ′

2)))

= dimK(G ′

1)
(H0(D∗; K(G ′

1)))

≤ dimK(G ′

1)
(H0(C∗; K(G ′

1))) = deg P. �

6.2. Proof of Theorem 1.3 for 3-manifolds with boundary and for 2-complexes.
First let X be a finite connected 2-complex with χ(X) = 0. We can give X a CW
structure with one 0-cell. If n denotes the number n of 1-cells, then n − 1 equals
the number of 2-cells. Now consider the chain complex of the universal cover X̃ :

0 → C2(X̃)n−1 ∂2
−→ C1(X̃)n ∂1

−→ C0(X̃)1
→ 0.

As in Section 6.1 we pick lifts of the cells of X to cells of X̃ to get bases such that
if Ai denotes the matrix corresponding to ∂i , then

A1 = (1 − h1, . . . , 1 − hn).

Note that {h1, . . . , hn} is a generating set for π1(X). Let l ∈ {1, . . . , n} such that
φ(l) 6= 0. The proof of Lemma 6.2 can easily be modified to prove the following.

Lemma 6.6. Denote by B the result of deleting the l-row of A2. Then τ(X, α) 6= 0
if and only if α(B) is invertible. Furthermore if τ(X, α) 6= 0, then

τ(X, α) = α(B)α(1 − hl)
−1

∈ K1(K(G ′

i )(t))/ ± αi (π1(X)).
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The proof of Theorem 1.3 for closed manifolds can now easily be modified to
cover the case of 2-complexes X with χ(X) = 0.

Now let M be again a 3-manifold whose boundary consists of a nonempty set of
tori. A duality argument shows that χ(M) =

1
2χ(∂(M)) = 0. Clearly M is homo-

topy equivalent to a 2-complex. Reidemeister torsion is not a homotopy invariant
but the following lemma still allows us to reduce the case of a 3-manifold with
boundary to the case of a 2-complex.

Lemma 6.7 [Turaev 2001, p. 56 and Theorem 9.1]. Let M be a 3-manifold with
boundary. Then there exists a 2-complex X and a simple homotopy equivalence
M → X. In particular, if α : π1(X) ∼= π1(M) → GL(R, d) is a representation such
that H∗(X, Rd) = 0, then

τ(M, α) = τ(X, α) ∈ K1(R)/ ± α(π1(M)).

Theorem 1.3 for 3-manifolds with boundary now follows from Theorem 1.3 for
2-complexes X with χ(X) = 0.

7. Harvey’s monotonicity theorem for groups

Let π be a finitely presented group and let (ϕ :π → G, φ :π → Z) be an admissible
pair for π . Consider G ′

= G ′(φG) and pick a splitting Z → G of φG . As in Section
5.2 we can consider the skew Laurent polynomial ring K(G ′)[t±1

] together with
the φ-compatible representation π → GL(K(G ′)[t±1

], 1).
Following [Harvey 2006, Definition 1.6] we define δG(φ) to be zero if the group

H1(π, K(G ′)[t±1
]) is not K(G ′)[t±1

]-torsion and

δG(φ) = dimK(G ′)(H1(π, K(G ′)[t±1
]))

otherwise. We give an alternative proof for the following result of Harvey [2006,
Theorem 2.9].

Theorem 7.1. Let π = π1(M), where M is a closed 3-manifold. If (ϕ1 : π → G1,

ϕ2 : π → G2, φ) is an admissible triple for π , then

δG1(φ) ≥ δG2(φ) if (ϕ2, φ) is not initial,
δG1(φ) ≥ δG2(φ) − 2 otherwise.

Proof. We clearly only have to consider the case that δG2(φ) > 0. We can build
K (π, 1) by adding i-handles to M with i ≥ 3. It therefore follows that for the
admissible pairs (ϕi : π → Gi , φ) we have

δGi (φ) = dimK(G ′

i )
(H1(K1(π, 1); K(G ′

i )[t
±1

])) = dimK(G ′

i )
(H1(M; K(G ′

i )[t
±1

])).
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We combine this equality with Theorem 1.3, Corollary 3.6 and Lemmas 3.2, 4.3,
4.4. The theorem follows now immediately from the observation that Im{π1(M)→

Gi →GL(K(G ′

i )[t
±1

], 1)} is cyclic if and only if φ : Gi → Z is an isomorphism. �

This monotonicity result gives in particular an obstruction for a group π to
be the fundamental group of a closed 3-manifold. For example, Harvey [2006,
Example 3.2] shows that as an immediate consequence we get the well-known fact
that Zm , m ≥ 4, is not a 3-manifold group.

Remark. In [Friedl and Kim 2005] we considered the case π = π1(M), where M
is a closed 3-manifold. Given an admissible pair (ϕ : π → G, φ) we show (under a
mild assumption) that δG(φ) is even, generalizing [Turaev 1986, p. 141]. In [Friedl
and Harvey 2006] it is shown that given π → G, G locally indicable and amenable,
the map

Hom(G, Z) → Z

φ 7→ δG(φ)

defines a seminorm on Hom(G, Z).

Let π be a finitely presented group of deficiency at least one, for example π =

π1(M) where M is a 3-manifold with boundary. Using a presentation of deficiency
one we can build a 2-complex X with χ(X) = 0 and π1(X) = π . The same proof
as the proof of Theorem 7.1 now gives the following theorem of Harvey. (In the
case that π = π1(S3

\ K ) for K a knot, this was first proved in [Cochran 2004].)

Theorem 7.2 [Harvey 2006, Theorem 2.2]. If π is a finitely presented group of
deficiency one and if (ϕ1, ϕ2, φ) is an admissible triple for π , then

δG1(φ) ≥ δG2(φ) if (ϕ2, φ) is not initial,
δG1(φ) ≥ δG2(φ) − 1 otherwise.

8. Open questions and problems

Let M be a 3-manifold and φ ∈ H 1(M; Z). We propose the following three prob-
lems for further study.

(1) If (ϕ : π1(M) → G, φ) is an admissible pair for π1(M) and if α : π1(M) →

GL(F, d) factors through ϕ, does it follow that

1
d

deg τ(M, α) ≤ deg τ(M, Z[π1(M)] → K(G ′)(t))?

Put differently, are the Thurston norm bounds of Cochran and Harvey optimal, i.e.,
at least as good as the Thurston norm bounds of [Friedl and Kim 2006] for any
representation factoring through G?
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(2) In many cases deg τ(M, Z[π1(M)] → K(G ′)(t)) < ‖φ‖T , for any admissible
pair (ϕ :π1(M)→ G, φ). For example this is the case if K is a knot with 1K (t)=1
and M = X (K ). It is an interesting question whether invariants can be defined for
any map π1(M) → G, G a (locally indicable) torsion-free group. For example it
might be possible to work with U(G) the algebra of affiliated operators (see [Reich
1998], for instance) instead of K(G). If such an extension is possible, then it is a
natural question whether the Thurston norm is determined by such more general
bounds. This might be too optimistic in the general case, but it could be true in the
case of a knot complement.

(3) If (M, φ) fibers over S1, the corresponding Alexander polynomial defined over
Z[t±1

] is monic, that is, the top coefficient is ±1. Because of the high degree of
indeterminacy of Alexander polynomials over skew Laurent polynomial rings a
corresponding statement is meaningless. Since Reidemeister torsion has a much
smaller indeterminacy it is potentially possible to use it to extend the fiberedness
obstruction as in [Goda et al. 2005].
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UQAM
C.P. 8888, SUCCURSALE CENTRE-VILLE
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